More stories

  • in

    Fueling of a marine-terrestrial ecosystem by a major seabird colony

    1.
    Blais, J. M. et al. Arctic seabirds transport marine-derived contaminants. Science  309, 445 (2005).
    CAS  PubMed  Article  Google Scholar 
    2.
    Qin, X. et al. From sea to land: assessment of the bio-transport of phosphorus by penguins in Antarctica. Chin. J. Oceanol. Limnol. 32, 148–154 (2014).
    ADS  CAS  Article  Google Scholar 

    3.
    Nicol, S. et al. Southern Ocean iron fertilization by baleen whales and Antarctic krill. Fish Fish. 11, 203–209 (2010).
    Article  Google Scholar 

    4.
    Doughty, C. E. et al. Global nutrient transport in a world of giants. Proc. Natl. Acad. Sci. 113, 868–873 (2016).
    ADS  CAS  PubMed  Article  Google Scholar 

    5.
    Macavoy, S. E., Garman, G. C. & Macko, S. A. Anadromous fish as marine nutrient vectors. Fish. Bull. 107, 165–174 (2009).
    Google Scholar 

    6.
    Michelutti, N. et al. Seabird-driven shifts in Arctic pond ecosystems. Proc. R. Soc. B Biol. Sci. 276, 591–596 (2009).
    Article  Google Scholar 

    7.
    Otero, X. L., De La Peña-Lastra, S., Pérez-Alberti, A., Ferreira, T. O. & Huerta-Diaz, M. A. Seabird colonies as important global drivers in the nitrogen and phosphorus cycles. Nat. Commun. 9, 246 (2018).

    8.
    Ellis, J. R., Fariña, J. M. & Witman, J. D. Nutrient transfer from sea to land: the case of gulls and cormorants in the Gulf of Maine. J. Anim. Ecol. 75, 565–574 (2006).
    PubMed  Article  PubMed Central  Google Scholar 

    9.
    Kolb, G. S., Ekholm, J. & Hambäck, P. A. Effects of seabird nesting colonies on algae and aquatic invertebrates in coastal waters. Mar. Ecol. Prog. Ser. 417, 287–300 (2010).
    ADS  Article  Google Scholar 

    10.
    Anderson, W. & Polis, G. Nutrient fluxes from water to land: seabirds affect plant nutrient status on Gulf of California islands. Oecologia 118, 324–332 (1999).
    ADS  PubMed  Article  Google Scholar 

    11.
    Zwolicki, A., Zmudczyńska-Skarbek, K. M., Iliszko, L. & Stempniewicz, L. Guano deposition and nutrient enrichment in the vicinity of planktivorous and piscivorous seabird colonies in Spitsbergen. Polar Biol. 36, 363–372 (2013).
    Article  Google Scholar 

    12.
    Duda, M. P. et al. Long-term changes in terrestrial vegetation linked to shifts in a colonial seabird population. Ecosystems https://doi.org/10.1007/s10021-020-00494-8 (2020).
    Article  Google Scholar 

    13.
    Kolb, G. S., Jerling, L. & Hambäck, P. A. The impact of cormorants on plant-arthropod food webs on their nesting Islands. Ecosystems 13, 353–366 (2010).
    CAS  Article  Google Scholar 

    14.
    Christie, K. S., Hocking, M. D. & Reimchen, T. E. Tracing salmon nutrients in riparian food webs: isotopic evidence in a ground-foraging passerine. Can. J. Zool. 86, 1317–1323 (2008).
    CAS  Article  Google Scholar 

    15.
    Maron, J. L. et al. An introduced predator alters Aleutian Island plant communities by thwarting nutrient subsidies. Ecol. Monogr. 76, 3–24 (2006).
    Article  Google Scholar 

    16.
    Wainright, S. C., Haney, J. C., Kerr, C., Golovkin, A. N. & Flint, M. V. Utilization of nitrogen derived from seabird guano by terrestrial and marine plants at St. Paul, Pribilof Islands, Bering Sea, Alaska. Mar. Biol. 131, 63–71 (1998).
    CAS  Article  Google Scholar 

    17.
    Lorrain, A. et al. Seabirds supply nitrogen to reef-building corals on remote Pacific islets. Sci. Rep. 7, 1–11 (2017).
    CAS  Article  Google Scholar 

    18.
    Gagnon, K., Rothäusler, E., Syrjänen, A., Yli-Renko, M. & Jormalainen, V. Seabird guano fertilizes Baltic Sea littoral food webs. PLoS ONE 8, e61284 (2013).
    ADS  CAS  PubMed  PubMed Central  Article  Google Scholar 

    19.
    Diaz, R. J. & Rosenberg, R. Spreading dead zones and consequences for marine ecosystems. Science 321, 926–929 (2008).
    ADS  CAS  Article  Google Scholar 

    20.
    Gustafsson, B. et al. Reconstructing the development of Baltic sea eutrophication 1850–2006. Ambio 41, 534–548 (2012).
    CAS  PubMed  PubMed Central  Article  Google Scholar 

    21.
    Cross, A. D. P., Hentati-Sundberg, J., Österblom, H., McGill, R. A. R. & Furness, R. W. Isotopic analysis of island House Martins Delichon urbica indicates marine provenance of nutrients. Ibis 156, 676–681 (2014).
    PubMed  Article  PubMed Central  Google Scholar 

    22.
    Armitage, P. D., Cranston, P. S. & Pinder, L. C. V. The Chironomidae. Biology and Ecology of Non-biting Midges (Springer, New York, 1995).
    Google Scholar 

    23.
    Olsson, O. & Hentati-Sundberg, J. Population trends and status of four seabird species (Uria aalge, Alca torda, Larus fuscus, Larus argentatus) at Stora Karlsö in the Baltic Sea. Ornis Svecica 27, 64–93 (2017).
    Article  Google Scholar 

    24.
    Hentati-Sundberg, J. et al. Fish and seabird spatial distribution and abundance around the largest seabird colony in the baltic sea. Mar. Ornithol. 46, 61–68 (2018).
    Google Scholar 

    25.
    Hentati-Sundberg, J., Österblom, H., Kadin, M., Jansson, Å & Olsson, O. The Karlsö Murre lab methodology can stimulate innovative seabird research. Mar. Ornithol. 40, 11–16 (2012).
    Google Scholar 

    26.
    Bond, A. L. & Hobson, K. A. Reporting stable-isotope ratios in ecology: recommended terminology, guidelines and best practices. Waterbirds 35, 324–331 (2012).
    Article  Google Scholar 

    27.
    Grasshoff, K., Kremling, K. & Ehrhardt, M. Methods of Seawater Analysis. Wiley, Hoboken. https://doi.org/10.1016/0043-1354(85)90057-0 (2009).
    Article  Google Scholar 

    28.
    Berg, P., Risgaard-Petersen, N. & Rysgaard, S. Interpretation of measured concentration profiles in sediment pore water. Limnol. Oceanogr. 43, 1500–1510 (1998).
    ADS  CAS  Article  Google Scholar 

    29.
    Iversen, N. & Jørgensen, B. B. Diffusion coefficients of sulfate and methane in marine sediments: Influence of porosity. Geochim. Cosmochim. Acta 57, 571–578 (1993).
    ADS  CAS  Article  Google Scholar 

    30.
    Berglund, P. A. Evaluating ten years of ecological seabird research in the Baltic Sea. (MSc thesis, Stockholm University, 2016).

    31.
    Brekke, B. & Gabrielsen, G. W. Assimilation efficiency of adult Kittiwakes and Brünnich’s Guillemots fed Capelin and Arctic Cod. Polar Biol. 14, 279–284 (1994).
    Article  Google Scholar 

    32.
    HELCOM. Sources and pathways of nutrients to the Baltic Sea. Balt. Sea Environ. Proc. 153, 48 (2018).
    Google Scholar 

    33.
    Lescroël, A. et al. Seeing the ocean through the eyes of seabirds: a new path for marine conservation?. Mar. Policy 68, 212–220 (2016).
    Article  Google Scholar 

    34.
    Yorio, P. Marine protected areas, spatial scales, and governance: implications for the conservation of breeding seabirds. Conserv. Lett. 2, 171–178 (2009).
    Article  Google Scholar 

    35.
    Länsstyrelsen Gotlands Län. Bevarandeplan för Natura 2000-området SE0340023 Stora Karlsö. (2018).

    36.
    Pinder, L. C. V. Biology of freshwater chironomidae. Annu. Rev. Entomol. 31, 1–23 (1986).
    Article  Google Scholar 

    37.
    Hirvenoja, M., Palmén, E. & Hirvenoja, E. The emergence of Halocladius variabilis (Staeger) (Diptera: Chironomidae) in the surroundings of the Tvärminne Biological Station in the northern Baltic Sea. Entomol. Fenn. 17, 87–89 (2006).
    Article  Google Scholar 

    38.
    Voss, M., Larsen, B., Leivuori, M. & Vallius, H. Stable isotope signals of eutrophication in Baltic Sea sediments. J. Mar. Syst. 25, 287–298 (2000).
    Article  Google Scholar 

    39.
    Deutsch, B., Alling, V., Humborg, C., Korth, F. & Mörth, C. M. Tracing inputs of terrestrial high molecular weight dissolved organic matter within the Baltic Sea ecosystem. Biogeosciences 9, 4465–4475 (2012).
    ADS  CAS  Article  Google Scholar 

    40.
    Griffiths, J. R. et al. The importance of benthic-pelagic coupling for marine ecosystem functioning in a changing world. Glob. Chang. Biol. 23, 2179–2196 (2017).
    ADS  PubMed  Article  PubMed Central  Google Scholar 

    41.
    Bonaglia, S., Deutsch, B., Bartoli, M., Marchant, H. K. & Brchert, V. Seasonal oxygen, nitrogen and phosphorus benthic cycling along an impacted Baltic Sea estuary: regulation and spatial patterns. Biogeochemistry 119, 139–160 (2014).
    CAS  Article  Google Scholar 

    42.
    Bianchi, T. S. et al. Cyanobacterial blooms in the Baltic Sea: Natural or human-induced?. Limnol. Oceanogr. 45, 716–726 (2000).
    ADS  CAS  Article  Google Scholar 

    43.
    Gunnars, A. & Blomqvist, S. Phosphate exchange across the sediment-water interface when shifting from anoxic to oxic conditions: an experimental comparison of freshwater and brackish-marine systems. Biogeochemistry 37, 203–226 (1997).
    CAS  Article  Google Scholar 

    44.
    Brook, B. W., Ellis, E. C., Perring, M. P., Mackay, A. W. & Blomqvist, L. Does the terrestrial biosphere have planetary tipping points?. Trends Ecol. Evol. 28, 396–401 (2013).
    PubMed  Article  PubMed Central  Google Scholar 

    45.
    Mackin, J. E. & Aller, R. C. Ammonium adsorption in marine sediments. Limnol. Oceanogr. 29, 250–257 (1984).
    ADS  CAS  Article  Google Scholar 

    46.
    Carstensen, J., Andersen, J. H., Gustafsson, B. & Conley, D. J. Deoxygenation of the Baltic Sea during the last century. Proc. Natl. Acad. Sci. 111, 5628–5633 (2014).
    ADS  CAS  PubMed  Article  PubMed Central  Google Scholar 

    47.
    Cleary, D. M., Onac, B. P., Forray, F. L. & Wynn, J. G. Effect of diet, anthropogenic activity, and climate on δ15N values of cave bat guano. Palaeogeogr. Palaeoclimatol. Palaeoecol. 461, 87–97 (2016).
    Article  Google Scholar 

    48.
    Vahtera, E. et al. Internal ecosystem feedbacks enhance nitrogen-fixing cyanobacteria blooms and complicate management in the Baltic Sea. Ambio 36, 186–194 (2007).
    CAS  PubMed  Article  PubMed Central  Google Scholar  More

  • in

    Southern Ocean convection amplified past Antarctic warming and atmospheric CO2 rise during Heinrich Stadial 4

    1.
    Barker, S. et al. 800,000 years of abrupt climate variability. Science 334, 347–351 (2011).
    CAS  Article  Google Scholar 
    2.
    Stocker, T. F. & Johnsen, S. J. A minimum thermodynamic model for the bipolar seesaw. Paleoceanography 18, PA1087 (2003).
    Article  Google Scholar 

    3.
    Wais Divide Project Members et al. Precise interpolar phasing of abrupt climate change during the last ice age. Nature 520, 661, https://doi.org/10.1038/nature14401 (2015).
    CAS  Article  Google Scholar 

    4.
    EPICA community members. One-to-one coupling of glacial variability in Greenland and Antarctica. Nature 444, 195–198 (2006).
    Article  Google Scholar 

    5.
    Barker, S. et al. Interhemispheric Atlantic seesaw response during the last deglaciation. Nature 457, 1097–1102 (2009).
    CAS  Article  Google Scholar 

    6.
    Schmittner, A., Saenko, O. A. & Weaver, A. J. Coupling of the hemispheres in observations and simulations of glacial climate change. Quat. Sci. Rev. 22, 659–671 (2003).
    Article  Google Scholar 

    7.
    Seidov, D. & Maslin, M. Atlantic Ocean heat piracy and the bipolar climate see-saw during Heinrich and Dansgaard-Oeschger events. J Quat. Sci. 16, 321–328 (2001).
    Article  Google Scholar 

    8.
    Pedro, J. B. et al. Beyond the bipolar seesaw: toward a process understanding of interhemispheric coupling. Quat. Sci. Rev. 192, 27–46, https://doi.org/10.1016/j.quascirev.2018.05.005 (2018).
    Article  Google Scholar 

    9.
    Kageyama, M. et al. Climatic impacts of fresh water hosing under Last Glacial Maximum conditions: a multi-model study. Clim. Past 9, 935–953 (2013).
    Article  Google Scholar 

    10.
    Stouffer, R. et al. Investigating the causes of the response of the thermohaline circulation to past and future climate changes. J. Clim. 19, 1365–1387 (2006).
    Article  Google Scholar 

    11.
    Ganopolski, A. & Rahmstorf, S. Rapid changes of glacial climate simulated in a coupled climate model. Nature 409, 153–158 (2001).
    CAS  Article  Google Scholar 

    12.
    Menviel, L., Spence, P. & England, M. H. Contribution of enhanced Antarctic Bottom Water formation to Antarctic warm events and millennial-scale atmospheric CO2 increase. Earth Planet. Sci. Lett. 413, 37–50, https://doi.org/10.1016/j.epsl.2014.12.050 (2015).
    CAS  Article  Google Scholar 

    13.
    Hemming, S. R. Heinrich events: massive late pleistocene detritus layers of the North Atlantic and their global climate imprint. Rev. Geophys. 42, 1–43 (2004).
    Article  Google Scholar 

    14.
    Henry, L. G. et al. North Atlantic ocean circulation and abrupt climate change during the last glaciation. Science 353, 470–474, https://doi.org/10.1126/science.aaf5529 (2016).
    CAS  Article  Google Scholar 

    15.
    Skinner, L. C. & Elderfield, H. Rapid fluctuations in the deep North Atlantic heat budget during the last glaciation. Paleoceanography 22, PA1205 (2007).
    Article  Google Scholar 

    16.
    Skinner, L. C., Shackleton, N. J. & Elderfield, H. Millennial-scale variability of deep-water temperature and d18Odw indicating deep-water source variations in the Northeast Atlantic, 0–34 cal. ka BP. Geochem. Geophys. Geosys. 4, 1–17 (2003).
    Article  Google Scholar 

    17.
    Weldeab, S., Friedrich, T., Timmermann, A. & Schneider, R. R. Strong middepth warming and weak radiocarbon imprints in the equatorial Atlantic during Heinrich 1 and Younger Dryas. Paleoceanography 31, 1070–1082, https://doi.org/10.1002/2016pa002957 (2016).
    Article  Google Scholar 

    18.
    Repschläger, J., Weinelt, M., Andersen, N., Garbe-Schönberg, D. & Schneider, R. Northern source for Deglacial and Holocene deepwater composition changes in the Eastern North Atlantic Basin. Earth Planet. Sci. Lett. 425, 256–267, https://doi.org/10.1016/j.epsl.2015.05.009 (2015).
    CAS  Article  Google Scholar 

    19.
    Marcott, S. A. et al. Ice-shelf collapse from subsurface warming as a trigger for Heinrich events. Proc. Natl Acad. Sci. USA 108, 13415–13419, https://doi.org/10.1073/pnas.1104772108 (2011).
    Article  Google Scholar 

    20.
    Weldeab, S., Arce, A. & Kasten, S. Mg/Ca- CO2−-temperature calibration for Globobulimina spp.: a sensitive paleothermometer for deep-sea temperature reconstruction. Earth Planet. Sci. Lett. 438, 95–102 (2016).
    CAS  Article  Google Scholar 

    21.
    Roberts, J. et al. Evolution of South Atlantic density and chemical stratification across the last deglaciation. Proc. Natl Acad. Sci. USA, 1–6, http://www.pnas.org/cgi/doi/10.1073/pnas.1511252113 (2016).

    22.
    Bryan, S. & Marchitto, T. Mg/Ca-temperature proxy in benthic foraminifera: new calibrations from the Florida Straits and a hypothesis regarding Mg/Li. Paleoceanography 23 (2008).

    23.
    Elderfield, H., Yu, J., Anand, P., Keifer, T. & Nyland, B. Calibrations for benthic foraminiferal Mg/Ca palaeothermometry and the carbonate ion hypothesis. Earth Planet. Sci. Lett. 250, 633–649 (2006).
    CAS  Article  Google Scholar 

    24.
    de Lavergne, C., Palter, J. B., Galbraith, E. D., Bernardello, R. & Marinov, I. Cessation of deep convection in the open Southern Ocean under anthropogenic climate change. Nat. Clim. Change 4, 278–282, https://doi.org/10.1038/nclimate2132 (2014).
    Article  Google Scholar 

    25.
    Gottschalk, J. et al. Abrupt changes in the southern extent of North Atlantic Deep Water during Dansgaard-Oeschger events. Nat. Geosci. 8, 950–954, https://doi.org/10.1038/ngeo2558 (2015).
    CAS  Article  Google Scholar 

    26.
    Stocker, T. F., Timmermann, A., Renold, M. & Timm, O. Effects of salt compensation on the climate model response in simulations of large changes of the Atlantic Meridional Overturning Circulation. J. Clim. 20, 5912–5928 (2007).
    Article  Google Scholar 

    27.
    Schmittner, A., Brook, E. J. & Ahn, J. In Ocean circulation: mechanisms and impacts (eds A. Schmittner A. et al.) 315–334 (AGU Monograph, 2007).

    28.
    Schmittner, A. & Galbraith, E. Glacial greenhouse-gas fluctuations controlled by ocean circulation changes. Nature 456, 373–376 (2008).
    CAS  Article  Google Scholar 

    29.
    Buizert, C. et al. Abrupt ice-age shifts in southern westerly winds and Antarctic climate forced from the north. Nature 563, 681–685, https://doi.org/10.1038/s41586-018-0727-5 (2018).
    CAS  Article  Google Scholar 

    30.
    Menviel, L. et al. Southern Hemisphere westerlies as a driver of the early deglacial atmospheric CO2 rise. Nature Communications 9, 2503, https://doi.org/10.1038/s41467-018-04876-4 (2018).
    CAS  Article  Google Scholar 

    31.
    Gottschalk, J. et al. Mechanisms of millennial-scale atmospheric CO2 change in numerical model simulations. Quat. Sci. Rev. 220, 30–74, https://doi.org/10.1016/j.quascirev.2019.05.013 (2019).
    Article  Google Scholar 

    32.
    Galbraith, E. D., Merlis, T. M. & Palter, J. B. Destabilization of glacial climate by the radiative impact of Atlantic Meridional Overturning Circulation disruptions. Geophys. Res. Lett. 43, 8214–8221, https://doi.org/10.1002/2016GL069846 (2016).
    Article  Google Scholar 

    33.
    Broecker, W. S. Palaeocean circulation during the last deglaciation: a bipolar seesaw? Paleoceanography 13, 119–121 (1998).
    Article  Google Scholar 

    34.
    Skinner, L. C., Waelbroeck, C., Scrivner, A. & Fallon, S. Radiocarbon evidence for alternating northern and southern sources of ventilation of the deep Atlantic carbon pool during the last deglaciation. Proc. Natl Acad. Sci. USA 111, 5480–5484, http://www.pnas.org/cgi/doi/10.1073/pnas.1400668111 (2014).
    CAS  Article  Google Scholar 

    35.
    Brown, N. & Galbraith, E. D. Hosed vs. unhosed: interruptions of the Atlantic Meridional Overturning Circulation in a global coupled model, with and without freshwater forcing. Clim. Past 12, 1663–1679, https://doi.org/10.5194/cp-12-1663-2016 (2016).
    Article  Google Scholar 

    36.
    Barker, S. et al. Icebergs not the trigger for North Atlantic cold events. Nature 520, 333–338 (2015).
    CAS  Article  Google Scholar 

    37.
    Gottschalk, J. et al. Biological and physical controls in the Southern Ocean on past millennial-scale atmospheric CO2 changes. Nat. Commun. 7, 11539, https://doi.org/10.1038/ncomms11539 (2016).
    CAS  Article  Google Scholar 

    38.
    Jaccard, S. L., Galbraith, E. D., Martínez-García, A. & Anderson, R. F. Covariation of deep Southern Ocean oxygenation and atmospheric CO2 through the last ice age. Nature 530, 207–210, https://doi.org/10.1038/nature16514 (2016).
    CAS  Article  Google Scholar 

    39.
    Thompson, A. F., Hines, S. K. V. & Adkins, J. F. A Southern Ocean mechanism for the interhemispheric coupling and phasing of the bipolar seesaw. J Clim. 32, 4347–4365 (2019).
    Article  Google Scholar 

    40.
    Hines, S. K. V., Thompson, A. F. & Adkins, J. F. The role of the Southern Ocean in abrupt transitions and hysteresis in glacial ocean circulation. Paleoceanogr. Paleoclimatol. 34, 490–510, https://doi.org/10.1029/2018pa003415 (2019).
    Article  Google Scholar 

    41.
    Skinner, L. C., Muschitiello, F. & Scrivner, A. E. Marine reservoir age variability over the last deglaciation: implications for marine carboncycling and prospects for regional radiocarbon calibrations. Paleoceanogr. Paleoclimatol. 34, 1807–1815, https://doi.org/10.1029/2019pa003667 (2019).
    Article  Google Scholar 

    42.
    Baggenstos, D. et al. Earth’s radiative imbalance from the Last Glacial Maximum to the present. Proc. Natl Acad. Sci. USA 116, 14881–14886, https://doi.org/10.1073/pnas.1905447116 (2019).
    CAS  Article  Google Scholar 

    43.
    Bereiter, B., Shackleton, S., Baggenstos, D., Kawamura, K. & Severinghaus, J. Mean global ocean temperatures during the last glacial transition. Nature 553, 39–44 (2018).
    CAS  Article  Google Scholar 

    44.
    Boiteau, R., Greaves, M. & Elderfield, H. Authigenic uranium in foraminiferal coatings: a proxy for ocean redox chemistry. Paleoceanography 27, https://doi.org/10.1029/2012pa002335 (2012).

    45.
    Klinkhammer, G. & Palmer, M. R. Uranium in the oceans: where it goes and why. Geochim. Cosmochim. Acta 55, 1799–1806 (1991).
    CAS  Article  Google Scholar 

    46.
    Skinner, L. et al. Rare earth elements in the service of palaeoceanography: a novel microanalysis approach. Geochim. Cosmochim. Acta 245, 118–132 (2019).
    CAS  Article  Google Scholar 

    47.
    Barker, S., Greaves, M. & Elderfield, H. A study of cleaning procedures used for foraminiferal Mg/Ca paleothermometry. Geochem. Geophys. Geosys. 4, 84078 (2003).
    Article  Google Scholar 

    48.
    Yu, J., Day, J. A., Greaves, M. J. & Elderfield, H. Determination of multiple element/calcium ratios in foraminiferal calcite by quadrupole ICP-MS. Geochem. Geophys. Geosys. 6, Q08P01 (2005).
    Article  Google Scholar 

    49.
    Locarnini, R. A. et al. NOAA Atlas NESDIS Vol. 73 (eds Levitus S. & Mishonov, A. V.) (Maryland Ocean Climate Laboratory, 2013).

    50.
    Garcia, H. E. et al. In NOAA Atlas NESDIS Vol. 75 (eds Levitus S. & Mishonov A. V.) 27 (U.S Government Printing Office, 2004).

    51.
    Svensson, A. et al. A 60,000 year Greenland stratigraphic ice core chronology. Clim. Past 4, 47–57 (2008).
    Article  Google Scholar  More

  • in

    Isotopic systematics point to wild origin of mummified birds in Ancient Egypt

    1.
    Pinch, G. Handbook of Egyptian Mythology (ABC-CLIO, Santa Barbara, 2002).
    Google Scholar 
    2.
    Ikram, S. Animals in ancient Egyptian religion: belief, identity, power, and economy. In The Oxford Handbook of Zooarchaeolog (ed. Viner-Daniels, S.) 452–465 (Oxford University Press, Oxford, 2017).
    Google Scholar 

    3.
    Ikram, S. An eternal aviary: bird mummies from ancient egypt. In Between heaven and earth: Birds in Ancient Egypt 232 (ed. Rozenn, B. L.) (Rozenn Bailleul-Le Suer, London, 2012).
    Google Scholar 

    4.
    Von den Driesch, A., Kessler, D., Steinmann, F., Berteaux, V. & Peters, J. Mummified, Deified and Buried at Hermopolis Mgna: The Sacred Birds from Tuna el-Gebel, Middle Egypt. in Ägypten und Levante vol. 15 203–44 (Manfred Bietak, Vienna, 2005).

    5.
    de Diodore, S. Introduction générale. in Bibliothèque historique vol. 1 74 (1993).

    6.
    Strabon. Le voyage en Egypte. vol. 4 (1997).

    7.
    Ray, J. D. The archives of Hor. Texts from Excavations 2 (Londres EES, London, 1976).
    Google Scholar 

    8.
    Martin, G. T. The Sacred Animal Necropolis at North Saqqâra: The Southern Dependencies of the Main Temple Complex Vol. 50 (Egypt Exploration Society, London, 1981).
    Google Scholar 

    9.
    Meeks, D. Les couveuses artificielles en Égypte. in Techniques et économie antiques et médiévales: le temps de l’innovation: colloque international (C.N.R.S.) Aix-en-Provence, 21–23 mai 1996, 1997, Travaux du Centre Camille Jullian 21 132–136 (Errance, Providence, 1997).

    10.
    de Davies, N. G. Ancient Egyptian Paintings (University Press, Cambridge, 1936).
    Google Scholar 

    11.
    Wasef, S. et al. Mitogenomic diversity in Sacred Ibis Mummies sheds light on early Egyptian practices. PLoS ONE 14, e0223964 (2019).
    CAS  PubMed  PubMed Central  Article  Google Scholar 

    12.
    Amiot, R. et al. Oxygen isotope fractionation between bird bone phosphate and drinking water. Sci. Nat. 104, 47 (2017).
    Article  CAS  Google Scholar 

    13.
    Craig, H. & Gordon, L. I. Deuterium and Oxygen 18 Variations in the Ocean and the Marine Atmosphere (Laboratorio di geologia nucleare, Pisa, 1965).
    Google Scholar 

    14.
    Dansgaard, W. Stable isotopes in precipitation. Tellus 16, 436–468 (1964).
    ADS  Article  Google Scholar 

    15.
    IAEA/WMO. Global Network of Isotopes in Precipitation. https://www.iaea.org/water (2019).

    16.
    IAEA/WMO. Global Network of Isotopes in Rivers. Global Network of Isotopes in Rivers https://www.iaea.org/water (2019).

    17.
    Stewart, M. K. Stable isotope fractionation due to evaporation and isotopic exchange of falling waterdrops: applications to atmospheric processes and evaporation of lakes. J. Geophys. Res. 80, 1133–1146 (1975).
    ADS  CAS  Article  Google Scholar 

    18.
    Hobson, K. A. & Clark, R. G. Assessing avian diets using stable isotopes II: factors influencing diet-tissue fractionation. Condor Ornithol. Appl. 94, 189–197 (1992).
    Google Scholar 

    19.
    Passey, B. H. et al. Carbon isotope fractionation between diet, breath CO2, and bioapatite in different mammals. J. Archaeol. Sci. 32, 1459–1470 (2005).
    Article  Google Scholar 

    20.
    Mizutani, H., Fukuda, M. & Kabaya, Y. 13C and 15N enrichment factors of feathers of 11 species of adult birds. Ecology 73, 1391–1395 (1992).
    Article  Google Scholar 

    21.
    Angst, D. et al. Isotopic and anatomical evidence of an herbivorous diet in the Early Tertiary giant bird Gastornis. Implications for the structure of Paleocene terrestrial ecosystems. Naturwissenschaften 101, 313–322 (2014).
    ADS  CAS  PubMed  Article  PubMed Central  Google Scholar 

    22.
    Hobson, K. A. Reconstructing Avian diets using stable-carbon and nitrogen isotope analysis of egg components: patterns of isotopic fractionation and turnover. The Condor 97, 752–762 (1995).
    Article  Google Scholar 

    23.
    Peterson, B. J. & Fry, B. Stable isotopes in ecosystem studies. Annu. Rev. Ecol. Syst. 18, 293–320 (1987).
    Article  Google Scholar 

    24.
    Caccamise, D. F., Reed, L. M., Castelli, P. M., Wainright, S. & Nichols, T. C. Distinguishing migratory and resident Canada geese using stable isotope analysis. J. Wildl. Manag. 64, 1084–1091 (2000).
    Article  Google Scholar 

    25.
    Hebert, C. E., Bur, M., Sherman, D. & Shutt, J. L. Sulfur isotopes link overwinter habitat use and breeding condition in double-crested cormorants. Ecol. Appl. 18, 561–567 (2008).
    PubMed  Article  PubMed Central  Google Scholar 

    26.
    Lott, C. A., Meehan, T. D. & Heath, J. A. Estimating the latitudinal origins of migratory birds using hydrogen and sulfur stable isotopes in feathers: influence of marine prey base. Oecologia 134, 505–510 (2003).
    ADS  PubMed  Article  PubMed Central  Google Scholar 

    27.
    DeNiro, M. J. & Epstein, S. Influence of diet on the distribution of nitrogen isotopes in animals. Geochim. Cosmochim. Acta 45, 341–351 (1981).
    ADS  CAS  Article  Google Scholar 

    28.
    Blum, J. D., Taliaferro, E. H. & Holmes, R. T. Changes in Sr/Ca, Ba/Ca and 87Sr/86Sr ratios between trophic levels in two forest ecosystems in the northeastern USA. Biochemistry 49, 87–101 (2000).
    CAS  Google Scholar 

    29.
    Capo, R. C., Stewart, B. W. & Chadwick, O. A. Strontium isotopes as tracers of ecosystem processes: theory and methods. Geoderma 82, 197–225 (1998).
    ADS  CAS  Article  Google Scholar 

    30.
    Graustein, W. C. 87Sr/86Sr ratios measure the sources and flow of strontium in terrestrial ecosystems. In Stable Isotopes in Ecological Research (eds Rundel, P. W. et al.) 491–512 (Springer, New York, 1989).
    Google Scholar 

    31.
    Blum, J. D., Taliaferro, E. H. & Holmes, R. T. Determining the sources of calcium for migratory songbirds using stable strontium isotopes. Oecologia 126, 569–574 (2001).
    ADS  PubMed  Article  PubMed Central  Google Scholar 

    32.
    Libby, W. F., Berger, R., Mead, J. F., Alexander, G. V. & Ross, J. F. Replacement rates for human tissue from atmospheric radiocarbon. Science 146, 1170–1172 (1964).
    ADS  CAS  PubMed  Article  PubMed Central  Google Scholar 

    33.
    Thompson, C. & Ballou, E. Studies of metabolic turnover with tritium as a tracer IV. Metabolically inert lipide and protein fractions from the rat. J. Biol. Chem. 200, 731–743 (1953).
    CAS  PubMed  PubMed Central  Google Scholar 

    34.
    Leeson, S. & Walsh, T. Feathering in commercial poultry II. Factors influencing feather growth and feather loss. Worlds Poult. Sci. J. World Poult. Sci J 60, 52–63 (2004).
    Article  Google Scholar 

    35.
    De la Hera, I., Pérez-Tris, J. & Tellería, J. Migratory behaviour affects the trade-off between feather growth rate and feather quality in a passerine bird. Biol. J. Linn. Soc. 97, 98–105 (2009).
    Article  Google Scholar 

    36.
    Bacon Wood, H. Growth bars in feathers. 3016 North Second St Harrisburd Pa. 67, (1949).

    37.
    Burke, W. H. et al. Variation of seawater 87Sr/86Sr throughout Phanerozoic time. Geology 10, 516–519 (1982).
    ADS  CAS  Article  Google Scholar 

    38.
    Prokoph, A., Shields, G. A. & Veizer, J. Compilation and time-series analysis of a marine carbonate δ18O, δ13C, 87Sr/86Sr and δ34S database through Earth history. Earth-Sci. Rev. 87, 113–133 (2008).
    ADS  CAS  Article  Google Scholar 

    39.
    Touzeau, A. et al. Egyptian mummies record increasing aridity in the Nile valley from 5500 to 1500yr before present. Earth Planet. Sci. Lett. 375, 92–100 (2013).
    ADS  CAS  Article  Google Scholar 

    40.
    Touzeau, A. et al. Diet of ancient Egyptians inferred from stable isotope systematics. J. Archaeol. Sci. 46, 114–124 (2014).
    CAS  Article  Google Scholar 

    41.
    Grimes, V. & Pellegrini, M. A comparison of pretreatment methods for the analysis of phosphate oxygen isotope ratios in bioapatite. Rapid Commun. Mass Spectrom. 27, 375–390 (2013).
    CAS  PubMed  Article  PubMed Central  Google Scholar 

    42.
    Lécuyer, C. Oxygen isotope analysis of phosphate. In Handbook of Stable Isotope Analytical Techniques 482–496 (Elsevier, 2004).

    43.
    Lécuyer, C., Grandjean, P., O’Neil, J. R., Cappetta, H. & Martineau, F. Thermal excursions in the ocean at the Cretaceous—Tertiary boundary (northern Morocco): δ18O record of phosphatic fish debris. Palaeogeogr. Palaeoclimatol. Palaeoecol. 105, 235–243 (1993).
    Article  Google Scholar 

    44.
    Fourel, F. et al. Carbon and oxygen isotope variability among foraminifera and ostracod carbonated shells. Ann. Univ. Mariae Curie-Sklodowska Sect. Phys. 70, 133 (2015).
    Google Scholar 

    45.
    Coplen, T. B. et al. After two decades a second anchor for the VPDB δ13C scale. Rapid Commun. Mass Spectrom. 20, 3165–3166 (2006).
    ADS  CAS  PubMed  Article  PubMed Central  Google Scholar 

    46.
    Friedman, I., O’neil, J. & Cebula, G. Two new carbonate stable-isotope standards. Geostand. Newsl. 6, 11–12 (1982).
    CAS  Article  Google Scholar 

    47.
    Hut, G. Consultants’ group meeting on stable isotope reference samples for geochemical and hydrological investigations. Consult. Group Meet. Stable Isot. Ref. Samples Geochem. Hydrol. Investig. (1987).

    48.
    Stichler, W. Interlaboratory comparison of new materials for carbon and oxygen isotope ratio measurements. Int. At. Energy Agency Vienna 825, 67–74 (1993).
    Google Scholar 

    49.
    Bondetti, M., Porcier, S., Ménager, M. & Vieillescazes, C. Analyse chimique de la composition de baumes provenant de momies animales égyptiennes. In Creatures of Earth, Water, and Sky Essays on Animals in Ancient Egypt and Nubia (ed. Pasquali, S.) (SideStone Press, Leiden, 2019).
    Google Scholar 

    50.
    De Muynck, D., Huelga-Suarez, G., Van-Heghe, L., Degryse, P. & Vanhaecke, F. Systematic evaluation of a strontium-specific extraction chromatographic resin for obtaining a purified Sr fraction with quantitative recovery from complex and Ca-rich matrices. J. Anal. At. Spectrom. 24, 1498–1510 (2009).
    Article  CAS  Google Scholar 

    51.
    Richardin, P., Coudert, M., Gandolfo, N. & Vincent, J. Radiocarbon dating of mummified human remains: application to a series of coptic mummies from the Louvre Museum. Radiocarbon 55, 345–352 (2013).
    CAS  Article  Google Scholar 

    52.
    Richardin, P., Perraud, A., Hertzog, J., Madrigal, K. & Berthet, D. Radiocarbon dating of a series of Egyptian mummies heads from Confluences Museum. Radiocarbon 59, 609–619 (2017).
    CAS  Article  Google Scholar 

    53.
    Richardin, P., Porcier, S., Ikram, S., Louarn, G. & Berthet, D. Cats, Crocodiles, cattle, and more: initial steps toward establishing a chronology of ancient egyptian animal mummies. Radiocarbon 59, 595–607 (2017).
    Article  Google Scholar 

    54.
    Richardin, P. & Coudert, M. Datation par le carbone 14 et restes humains. Une étude de cas: la momie dorée de Dunkerque. Techné 44, 75–78 (2016).
    Google Scholar 

    55.
    Moreau, C. et al. Research and development of the artemis 14C AMS facility: status report. Radiocarbon 55, 331–337 (2013).
    CAS  Article  Google Scholar 

    56.
    Bronk-Ramsey, C. Analysis of chronological information and radiocarbon calibration : the program OxCal. Archaeol. Comput. Newsl. 41, 11–16 (1994).
    Google Scholar 

    57.
    Dupras, T. L. & Schwarcz, H. P. Strangers in a strange land: stable isotope evidence for human migration in the Dakhleh Oasis Egypt. J. Archaeol. Sci. 28, 1199–1208 (2001).
    Article  Google Scholar 

    58.
    Thompson, A. H., Richards, M. P., Shortland, A. & Zakrzewski, S. R. Isotopic palaeodiet studies of Ancient Egyptian fauna and humans. J. Archaeol. Sci. 32, 451–463 (2005).
    Article  Google Scholar 

    59.
    Copley, M. S. et al. Short- and long-term foraging and foddering strategies of domesticated animals from Qasr Ibrim Egypt. J. Archaeol. Sci. 31, 1273–1286 (2004).
    Article  Google Scholar 

    60.
    Iacumin, P., Bocherens, H., Mariotti, A. & Longinelli, A. An isotopic palaeoenvironmental study of human skeletal remains from the Nile Valley. Palaeogeogr. Palaeoclimatol. Palaeoecol. 126, 15–30 (1996).
    Article  Google Scholar 

    61.
    Macko, S. A. et al. Documenting the diet in ancient human populations through stable isotope analysis of hair. Philos. Trans. R. Soc. Lond. B. Biol. Sci. 354, 65–76 (1999).
    CAS  PubMed  PubMed Central  Article  Google Scholar 

    62.
    Blake, R. E., Oneil, J. R. & Garcia, G. A. Oxygen isotope systematics of biologically mediated reactions of phosphate: I. Microbial degradation of organophosphorus compounds. Geochim. Cosmochim. Acta 61, 4411–4422 (1997).
    ADS  CAS  Article  Google Scholar 

    63.
    Lécuyer, C. et al. Stable isotope composition and rare earth element content of vertebrate remains from the Late Cretaceous of northern Spain (Laño): did the environmental record survive?. Palaeogeogr. Palaeoclimatol. Palaeoecol. 193, 457–471 (2003).
    Article  Google Scholar 

    64.
    Trueman, C., Chenery, C., Eberth, D. A. & Spiro, B. Diagenetic effects on the oxygen isotope composition of bones of dinosaurs and other vertebrates recovered from terrestrial and marine sediments. J. Geol. Soc. 160, 895–901 (2003).
    ADS  CAS  Article  Google Scholar 

    65.
    Zazzo, A., Lécuyer, C., Sheppard, S. M. F., Grandjean, P. & Mariotti, A. Diagenesis and the reconstruction of paleoenvironments: a method to restore original δ18O values of carbonate and phosphate from fossil tooth enamel. Geochim. Cosmochim. Acta 68, 2245–2258 (2004).
    ADS  CAS  Article  Google Scholar 

    66.
    Zazzo, A., Lécuyer, C. & Mariotti, A. Experimentally-controlled carbon and oxygen isotope exchange between bioapatites and water under inorganic and microbially-mediated conditions. Geochim. Cosmochim. Acta 68, 1–12 (2004).
    ADS  CAS  Article  Google Scholar 

    67.
    Stanton Thomas, K. J. & Carlson, S. J. Microscale δ18O and δ13C isotopic analysis of an ontogenetic series of the hadrosaurid dinosaur Edmontosaurus: implications for physiology and ecology. Palaeogeogr. Palaeoclimatol. Palaeoecol. 206, 257–287 (2004).
    Article  Google Scholar 

    68.
    Kohn, M. J., Morris, J. & Olin, P. Trace element concentrations in teeth—a modern Idaho baseline with implications for archeometry, forensics, and palaeontology. J. Archaeol. Sci. 40, 1689–1699 (2013).
    CAS  Article  Google Scholar 

    69.
    Balter, V. & Lécuyer, C. Determination of Sr and Ba partition coefficients between apatite and water from 5 to 60°C: a potential new thermometer for aquatic paleoenvironments. Geochim. Cosmochim. Acta 68, 423–432 (2004).
    ADS  CAS  Article  Google Scholar 

    70.
    Buzon, M. R., Simonetti, A. & Creaser, R. A. Migration in the Nile Valley during the New Kingdom period: a preliminary strontium isotope study. J. Archaeol. Sci. 34, 1391–1401 (2007).
    Article  Google Scholar 

    71.
    Meyburg, B. U., Kirwan, G. M. & Garcia, E. F. J. Greater Spotted Eagle (Clanga clanga). In Handbook of the Birds of the World Alive (ed. de Juana, E.) (Lynx Edicions, Barcelona, 2019).
    Google Scholar 

    72.
    Orta, J., Boesman, P., Kirwan, G. M. & Marks, J. S. Long-legged Buzzard (Buteo rufinus). In Handbook of the Birds of the World Alive (ed. de Juana, E.) (Lynx Edicions, Barcelona, 2019).
    Google Scholar 

    73.
    Svensson, L. & Madge, S. (eds) Handbook of the Middle East, and North Africa: The Birds of the Western Palearctic (Oxford University Press, Oxford, 1977).
    Google Scholar 

    74.
    Hancock, J., Kushlan, J. A. & Kahl, M. P. Storks (Ibises and Spoonbills of the World. Academic Press, Cambridge, 2010).
    Google Scholar 

    75.
    Matheu, E., del Hoyo, J., Christie, D. A., Kirwan, G. M. & Garcia, E. F. J. African Sacred Ibis (Threskiornis aethiopicus). In Handbook of the Birds of the World Alive (ed. de Juana, E.) (Lynx Edicions, Barcelona, 2019).
    Google Scholar 

    76.
    Audouin, V. Explication sommaire des planches d’oiseaux de l’Egypte et de la Syrie, publiées par J.-C. Savigny, membre de l’Institut, offrant un exposé des caractères naturels des genres avec la distinction des espèces. in Description de l’Egypte, ou Recueil des observations et des recherches qui ont été faites en Egypte pendant l’expédition de l’armée française, publié par les ordres de sa Majesté–L’Empereur Napoléon le Grand vol. 1 251–318 (1809).

    77.
    Savigny, J.-C. Histoire Naturelle et Mythologique de l’Ibis. (1805).

    78.
    Lortet, C. E. & Gaillard, C. L. faune momifiée de l’Ancienne Egypte. Archives du Muséum d’histoire naturelle de Lyon 8, 1–205 (1903).
    Google Scholar 

    79.
    De Margerie, E. Fonction biomécanique des microstructures osseuses chez les oiseaux / Biomechanical function of bone microstructure in birds. C.R. Palevol 5, 619–628 (2006).
    Article  Google Scholar 

    80.
    Kerley, E. R. The microscopic determination of age in human bone. Am. J. Phys. Anthropol. 23, 149–163 (1965).
    CAS  PubMed  Article  PubMed Central  Google Scholar 

    81.
    Peek, S. & Clementz, M. T. Sr/Ca and Ba/Ca variations in environmental and biological sources: a survey of marine and terrestrial systems. Geochim. Cosmochim. Acta 95, 36–52 (2012).
    ADS  CAS  Article  Google Scholar 

    82.
    Zuberogoitia, I., Zabala, J. & Martínez, J. E. Moult in birds of prey: a review of current knowledge and future challenges for research. Ardeola 65, 183–207 (2018).
    Article  Google Scholar 

    83.
    Kovacs, G. Occurrence of the Long-legged buzzard (Buteo rufinus) in the Hortobagy between 1976 and 1991. Aquila 99, 41–48 (1992).
    Google Scholar 

    84.
    Bloom, P. H. & Clark, W. S. Molt and sequence of plumages of Golden eagles and a technique for in-hand ageing. North Am. Bird Bander 26, 97–116 (2001).
    Google Scholar 

    85.
    Lowe, K. W., Clark, A. & Clark, R. A. Body measurements, plumage and moult of the Sacred ibis in south Africa. Ostrich 56, 111–116 (1985).
    Article  Google Scholar 

    86.
    Van Neer, W. Evolution of prehistoric fishing in the Nile Valley. J. Afr. Archaeol. 2, 251–269 (2004).
    Article  Google Scholar 

    87.
    Porcier, S. et al. Wild crocodiles hunted to make mummies in Roman Egypt: Evidence from synchrotron imaging. J. Archaeol. Sci. 110, 105009 (2019).
    Article  Google Scholar 

    88.
    Kjellén, N. Moult in relation to migration in birds-a review. Ornis Svec. 4, 1–24 (1994).
    Google Scholar 

    89.
    Iacumin, P., Bocherens, H., Mariotti, A. & Longinelli, A. Oxygen isotope analyses of co-existing carbonate and phosphate in biogenic apatite: a way to monitor diagenetic alteration of bone phosphate?. Earth Planet. Sci. Lett. 142, 1–6 (1996).
    ADS  CAS  Article  Google Scholar  More

  • in

    Root pathogen diversity and composition varies with climate in undisturbed grasslands, but less so in anthropogenically disturbed grasslands

    1.
    Mordecai EA. Pathogen impacts on plant communities: unifying theory, concepts, and empirical work. Ecol Monogr. 2011;81:429–41.
    Article  Google Scholar 
    2.
    Bever JD, Mangan SA, Alexander HM. Maintenance of plant species diversity by pathogens. Annu Rev Ecol Evol Syst. 2015;46:305–25.
    Article  Google Scholar 

    3.
    van der Heijden MG, Bardgett RD, van Straalen NM. The unseen majority: soil microbes as drivers of plant diversity and procductivity in terrestrial ecosystems. Ecol Lett. 2008;11:296–310.
    PubMed  Article  PubMed Central  Google Scholar 

    4.
    Mangan SA, Schnitzer SA, Herre EA, Mack KM, Valencia MC, Sanchez EI, et al. Negative plant-soil feedback predicts tree-species relative abundance in a tropical forest. Nature. 2010;466:752–5.
    CAS  PubMed  Article  PubMed Central  Google Scholar 

    5.
    Comita LS, Muller-Landau HC, Aguilar S, Hubbell SP. Asymmetric density dependence shapes species abundances in a tropical tree community. Science. 2010;329:330–2.
    CAS  PubMed  Article  PubMed Central  Google Scholar 

    6.
    Janzen DH. Herbivores and the number of tree species in tropical forests. Am Naturalist. 1970;104:501–28.
    Article  Google Scholar 

    7.
    Connell JH. On the role of natural enemies in preventing competitive exclusion in some marine animals and in rain forest trees. Dyn Popul. 1971;298:312.
    Google Scholar 

    8.
    Augspurger CK. Seedling survival of tropical tree species: interactions of dispersal distance, light‐gaps, and pathogens. Ecology. 1984;65:1705–12.
    Article  Google Scholar 

    9.
    Van der Putten WH, Bardgett RD, Bever JD, Bezemer TM, Casper BB, Fukami T, et al. Plant–soil feedbacks: the past, the present and future challenges. J Ecol. 2013;101:265–76.
    Article  Google Scholar 

    10.
    Eppinga MB, Baudena M, Johnson DJ, Jiang J, Mack KM, Strand AE, et al. Frequency-dependent feedback constrains plant community coexistence. Nat Ecol evolution. 2018;2:1403.
    Article  Google Scholar 

    11.
    Crawford KM, Bauer JT, Comita LS, Eppinga MB, Johnson DJ, Mangan SA, et al. When and where plant‐soil feedback may promote plant coexistence: a meta‐analysis. Ecol Lett. 2019;22:1274–84.
    PubMed  Google Scholar 

    12.
    Callaway RM, Thelen GC, Rodriguez A, Holben WE. Soil biota and exotic plant invasion. Nature. 2004;427:731–3.
    CAS  PubMed  Article  PubMed Central  Google Scholar 

    13.
    Mitchell CE, Agrawal AA, Bever JD, Gilbert GS, Hufbauer RA, Klironomos JN, et al. Biotic interactions and plant invasions. Ecol Lett. 2006;9:726–40.
    PubMed  Article  PubMed Central  Google Scholar 

    14.
    Fierer N, Strickland MS, Liptzin D, Bradford MA, Cleveland CC. Global patterns in belowground communities. Ecol Lett. 2009;12:1238–49.
    PubMed  Article  PubMed Central  Google Scholar 

    15.
    Rousk J, Bååth E, Brookes PC, Lauber CL, Lozupone C, Caporaso JG, et al. Soil bacterial and fungal communities across a pH gradient in an arable soil. ISME J. 2010;4:1340.
    PubMed  Article  PubMed Central  Google Scholar 

    16.
    Thomson BC, Tisserant E, Plassart P, Uroz S, Griffiths RI, Hannula SE, et al. Soil conditions and land use intensification effects on soil microbial communities across a range of European field sites. Soil Biol Biochem. 2015;88:403–13.
    CAS  Article  Google Scholar 

    17.
    Van Agtmaal M, Straathof A, Termorshuizen A, Teurlincx S, Hundscheid M, Ruyters S, et al. Exploring the reservoir of potential fungal plant pathogens in agricultural soil. Appl Soil Ecol. 2017;121:152–60.
    Article  Google Scholar 

    18.
    Rincón A, Santamaría‐Pérez B, Rabasa SG, Coince A, Marçais B, Buée M. Compartmentalized and contrasted response of ectomycorrhizal and soil fungal communities of Scots pine forests along elevation gradients in France and Spain. Environ Microbiol. 2015;17:3009–24.
    PubMed  Article  PubMed Central  Google Scholar 

    19.
    Newsham KK, Hopkins DW, Carvalhais LC, Fretwell PT, Rushton SP, O’Donnell AG, et al. Relationship between soil fungal diversity and temperature in the maritime Antarctic. Nat Clim Change. 2016;6:182.
    Article  Google Scholar 

    20.
    Zhou J, Deng Y, Shen L, Wen C, Yan Q, Ning D, et al. Temperature mediates continental-scale diversity of microbes in forest soils. Nat Commun. 2016;7:12083.
    CAS  PubMed  PubMed Central  Article  Google Scholar 

    21.
    Tedersoo L, Bahram M, Põlme S, Kõljalg U, Yorou NS, Wijesundera R, et al. Global diversity and geography of soil fungi. Science. 2014;346:1256688.
    PubMed  Article  CAS  Google Scholar 

    22.
    McGuire KL, Fierer N, Bateman C, Treseder KK, Turner BL. Fungal community composition in neotropical rain forests: the influence of tree diversity and precipitation. Micro Ecol. 2012;63:804–12.
    Article  Google Scholar 

    23.
    Oliverio AM, Geisen S, Delgado-Baquerizo M, Maestre FT, Turner BL, Fierer N. The global-scale distributions of soil protists and their contributions to belowground systems. Sci Adv. 2020;6:eaax8787.
    PubMed  PubMed Central  Article  Google Scholar 

    24.
    Talley SM, Coley PD, Kursar TA. The effects of weather on fungal abundance and richness among 25 communities in the Intermountain West. BMC Ecol. 2002;2:7.
    PubMed  PubMed Central  Article  Google Scholar 

    25.
    Spear ER. Phylogenetic relationships and spatial distributions of putative fungal pathogens of seedlings across a rainfall gradient in Panama. Fungal Ecol. 2017;26:65–73.
    Article  Google Scholar 

    26.
    Geml J, Pastor N, Fernandez L, Pacheco S, Semenova TA, Becerra AG, et al. Large‐scale fungal diversity assessment in the Andean Yungas forests reveals strong community turnover among forest types along an altitudinal gradient. Mol Ecol. 2014;23:2452–72.
    CAS  PubMed  Article  Google Scholar 

    27.
    Rojas JA, Jacobs JL, Napieralski S, Karaj B, Bradley CA, Chase T, et al. Oomycete species associated with soybean seedlings in North America—Part II: diversity and ecology in relation to environmental and edaphic factors. Phytopathology. 2017;107:293–304.
    PubMed  Article  Google Scholar 

    28.
    van West P, Appiah AA, Gow NA. Advances in research on oomycete root pathogens. Physiol Mol plant Pathol. 2003;62:99–113.
    Article  Google Scholar 

    29.
    Oehl F, Sieverding E, Ineichen K, Mäder P, Boller T, Wiemken A. Impact of land use intensity on the species diversity of arbuscular mycorrhizal fungi in agroecosystems of Central Europe. Appl Environ Microbiol. 2003;69:2816–24.
    CAS  PubMed  PubMed Central  Article  Google Scholar 

    30.
    House GL, Bever JD. Disturbance reduces the differentiation of mycorrhizal fungal communities in grasslands along a precipitation gradient. Ecol Appl. 2018;28:736–48.
    PubMed  Article  PubMed Central  Google Scholar 

    31.
    Trenberth KE, Dai A, Van Der Schrier G, Jones PD, Barichivich J, Briffa KR, et al. Global warming and changes in drought. Nat Clim Change. 2014;4:17.
    Article  Google Scholar 

    32.
    IPCC. Climate change 2014: synthesis report. Switzerland: IPCC Geneva; 2014. p. 151.
    Google Scholar 

    33.
    Zhang N, Wan S, Guo J, Han G, Gutknecht J, Schmid B, et al. Precipitation modifies the effects of warming and nitrogen addition on soil microbial communities in northern Chinese grasslands. Soil Biol Biochem. 2015;89:12–23.
    CAS  Article  Google Scholar 

    34.
    Sheik CS, Beasley WH, Elshahed MS, Zhou X, Luo Y, Krumholz LR. Effect of warming and drought on grassland microbial communities. ISME J. 2011;5:1692.
    CAS  PubMed  PubMed Central  Article  Google Scholar 

    35.
    Wu Z, Dijkstra P, Koch GW, Peñuelas J, Hungate BA. Responses of terrestrial ecosystems to temperature and precipitation change: a meta‐analysis of experimental manipulation. Glob Change Biol. 2011;17:927–42.
    Article  Google Scholar 

    36.
    Ihrmark K, Bödeker IT, Cruz-Martinez K, Friberg H, Kubartova A, Schenck J, et al. New primers to amplify the fungal ITS2 region–evaluation by 454-sequencing of artificial and natural communities. FEMS Microbiol Ecol. 2012;82:666–77.
    CAS  PubMed  Article  PubMed Central  Google Scholar 

    37.
    White TJ, Bruns T, Lee S, Taylor J. Amplification and direct sequencing of fungal ribosomal RNA genes for phylogenetics. PCR Protoc Guide Methods Appl. 1990;18:315–22.
    Google Scholar 

    38.
    Schoch CL, Seifert KA, Huhndorf S, Robert V, Spouge JL, Levesque CA, et al. Nuclear ribosomal internal transcribed spacer (ITS) region as a universal DNA barcode marker for fungi. Proc Natl Acad Sci. 2012;109:6241–6.

    39.
    Oliver AK, Callaham MA Jr, Jumpponen A. Soil fungal communities respond compositionally to recurring frequent prescribed burning in a managed southeastern US forest ecosystem. For Ecol Manag. 2015;345:1–9.
    Article  Google Scholar 

    40.
    Riit T, Tedersoo L, Drenkhan R, Runno-Paurson E, Kokko H, Anslan S. Oomycete-specific ITS primers for identification and metabarcoding. MycoKeys. 2016;14:17.
    Article  Google Scholar 

    41.
    Caporaso JG, Kuczynski J, Stombaugh J, Bittinger K, Bushman FD, Costello EK, et al. QIIME allows analysis of high-throughput community sequencing data. Nat Methods. 2010;7:335.
    CAS  PubMed  PubMed Central  Article  Google Scholar 

    42.
    Kõljalg U, Nilsson RH, Abarenkov K, Tedersoo L, Taylor AF, Bahram M, et al. Towards a unified paradigm for sequence‐based identification of fungi. Mol Ecol. 2013;22:5271–7.
    PubMed  Article  CAS  PubMed Central  Google Scholar 

    43.
    Lindahl BD, Nilsson RH, Tedersoo L, Abarenkov K, Carlsen T, Kjøller R, et al. Fungal community analysis by high‐throughput sequencing of amplified markers–a user’s guide. N. Phytologist. 2013;199:288–99.
    CAS  Article  Google Scholar 

    44.
    Love MI, Huber W, Anders S. Moderated estimation of fold change and dispersion for RNA-seq data with DESeq2. Genome Biol. 2014;15:550.
    PubMed  PubMed Central  Article  CAS  Google Scholar 

    45.
    Wang Q, Garrity GM, Tiedje JM, Cole JR. Naive Bayesian classifier for rapid assignment of rRNA sequences into the new bacterial taxonomy. Appl Environ Microbiol. 2007;73:5261–7.
    CAS  PubMed  PubMed Central  Article  Google Scholar 

    46.
    James TY, Kauff F, Schoch CL, Matheny PB, Hofstetter V, Cox CJ, et al. Reconstructing the early evolution of fungi using a six-gene phylogeny. Nature 2006;443:818.
    CAS  PubMed  Article  PubMed Central  Google Scholar 

    47.
    Nguyen NH, Song Z, Bates ST, Branco S, Tedersoo L, Menke J, et al. FUNGuild: an open annotation tool for parsing fungal community datasets by ecological guild. Fungal Ecol. 2016;20:241–8.
    Article  Google Scholar 

    48.
    Altschul SF, Madden TL, Schäffer AA, Zhang J, Zhang Z, Miller W, et al. Gapped BLAST and PSI-BLAST: a new generation of protein database search programs. Nucleic Acids Res. 1997;25:3389–402.
    CAS  PubMed  PubMed Central  Article  Google Scholar 

    49.
    Rujirawat T, Patumcharoenpol P, Lohnoo T, Yingyong W, Kumsang Y, Payattikul P, et al. Probing the phylogenomics and putative pathogenicity genes of pythium insidiosum by oomycete genome analyses. Sci Rep. 2018;8:4135.
    PubMed  PubMed Central  Article  CAS  Google Scholar 

    50.
    Team RC. R: A language and environment for statistical computing. Vienna, Austria: R Foundation for Statistical Computing; 2016. p. 2017.
    Google Scholar 

    51.
    Helmus MR, Bland TJ, Williams CK, Ives AR. Phylogenetic measures of biodiversity. Am Naturalist. 2007;169:E68–83.
    Article  Google Scholar 

    52.
    Stamatakis A. RAxML-VI-HPC: maximum likelihood-based phylogenetic analyses with thousands of taxa and mixed models. Bioinformatics 2006;22:2688–90.
    CAS  PubMed  Article  Google Scholar 

    53.
    Nilsson RH, Kristiansson E, Ryberg M, Hallenberg N, Larsson K-H. Intraspecific ITS variability in the kingdom Fungi as expressed in the international sequence databases and its implications for molecular species identification. Evolut Bioinforma. 2008;4:EBO. S653.
    Article  Google Scholar 

    54.
    Pearse WD, Cadotte MW, Cavender-Bares J, Ives AR, Tucker CM, Walker SC, et al. Pez: Phylogenetics for the environmental sciences. Bioinformatics. 2015;31:2888–90.
    CAS  PubMed  Article  Google Scholar 

    55.
    Fitzpatrick DA, Logue ME, Stajich JE, Butler G. A fungal phylogeny based on 42 complete genomes derived from supertree and combined gene analysis. BMC Evolut Biol. 2006;6:99.
    Article  CAS  Google Scholar 

    56.
    Lauber CL, Strickland MS, Bradford MA, Fierer N. The influence of soil properties on the structure of bacterial and fungal communities across land-use types. Soil Biol Biochem. 2008;40:2407–15.
    CAS  Article  Google Scholar 

    57.
    Chaudhary VB, O’Dell TE, Rillig MC, Johnson NC. Multiscale patterns of arbuscular mycorrhizal fungal abundance and diversity in semiarid shrublands. Fungal Ecol. 2014;12:32–43.
    Article  Google Scholar 

    58.
    Morisita M. Measuring of interspecific association and similarity between communities. Mem Fac Sci Kyushu Univ Ser E. 1959;3:65–80.
    Google Scholar 

    59.
    Oksanen J, Blanchet FG, Kindt R, Legendre P, Minchin PR, O’hara R, et al. Package ‘vegan’. Community ecology package, version. 2013;2.

    60.
    McMurdie PJ, Holmes S. Waste not, want not: why rarefying microbiome data is inadmissible. PLoS Comput Biol. 2014;10:e1003531.
    PubMed  PubMed Central  Article  CAS  Google Scholar 

    61.
    Ochoa‐Hueso R, Collins SL, Delgado‐Baquerizo M, Hamonts K, Pockman WT, Sinsabaugh RL, et al. Drought consistently alters the composition of soil fungal and bacterial communities in grasslands from two continents. Glob Change Biol. 2018;24:2818–27.
    Article  Google Scholar 

    62.
    Dequiedt S, Saby N, Lelievre M, Jolivet C, Thioulouse J, Toutain B, et al. Biogeographical patterns of soil molecular microbial biomass as influenced by soil characteristics and management. Glob Ecol Biogeogr. 2011;20:641–52.
    Article  Google Scholar 

    63.
    Samson FB, Knopf FL, Ostlie WR. Great Plains ecosystems: past, present, and future. Wildl Soc Bull. 2004;32:6–15.
    Article  Google Scholar 

    64.
    Gilbert GS, Webb CO. Phylogenetic signal in plant pathogen-host range. Proc Natl Acad Sci USA. 2007;104:4979–83.
    CAS  PubMed  Article  Google Scholar 

    65.
    Robideau GP, de Cock AW, Coffey MD, Voglmayr H, Brouwer H, Bala K, et al. DNA barcoding of oomycetes with cytochrome c oxidase subunit I and internal transcribed spacer. Mol Ecol Resour. 2011;11:1002–11.
    CAS  PubMed  PubMed Central  Article  Google Scholar 

    66.
    Martin LM, Moloney KA, Wilsey BJ. An assessment of grassland restoration success using species diversity components. J Appl Ecol. 2005;42:327–36.
    Article  Google Scholar 

    67.
    Leach MK, Givnish TJ. Ecological determinants of species loss in remnant prairies. Science. 1996;273:1555–8.
    CAS  Article  Google Scholar  More

  • in

    Rapid functional traits turnover in boreal dragonfly communities (Odonata)

    1.
    Bjørnstad, O. N. & Grenfell, B. T. Noisy clockwork: Time series analysis of population fluctuations in animals. Science 293, 638–643 (2001).
    PubMed  Google Scholar 
    2.
    Ricklefs, R. E. & Relyea, R. Ecology, The Economy of Nature 7th edn. (W.H. Freeman & Co., Ltd., New York, 2014).
    Google Scholar 

    3.
    Beisner, B. E., Haydon, D. T. & Cuddington, K. Alternative stable states in ecology. Front. Ecol. Environ. 1, 376–382 (2003).
    Google Scholar 

    4.
    Calijuri, M. D. C., Dos Santos, A. C. A. & Jati, S. Temporal changes in the phytoplankton community structure in a tropical and eutrophic reservoir (Barra Bonita, SP—Brazil). J. Plankton Res. 24, 617–634 (2002).
    CAS  Google Scholar 

    5.
    Allan, E. et al. More diverse plant communities have higher functioning over time due to turnover in complementary dominant species. Proc. Natl. Acad. Sci. U.S.A. 108, 17034–17039 (2011).
    ADS  CAS  PubMed  PubMed Central  Google Scholar 

    6.
    Magurran, A. E. & Henderson, P. A. Temporal turnover and the maintenance of diversity in ecological assemblages. Philos. Trans. R. Soc. Lond. Ser. B. 365, 3611–3620 (2010).
    Google Scholar 

    7.
    Poff, N. L. et al. Functional trait niches of North American lotic insects: traits-based ecological applications in light of phylogenetic relationships. J. N. Am. Benthol. Soc. 25, 730–755 (2006).
    Google Scholar 

    8.
    Villéger, S., Mason, N. W. & Mouillot, D. New multidimensional functional diversity indices for a multifaceted framework in functional ecology. Ecology 89, 2290–2301 (2008).
    PubMed  Google Scholar 

    9.
    Powney, G. D., Cham, S. S., Smallshire, D. & Isaac, N. J. Trait correlates of distribution trends in the Odonata of Britain and Ireland. PeerJ 3, e1410. https://doi.org/10.7717/peerj.1410 (2015).
    Article  PubMed  PubMed Central  Google Scholar 

    10.
    Moldan, F., Cosby, B. J. & Wright, R. F. Modeling past and future acidification of Swedish lakes. Ambio 42, 577–586 (2013).
    PubMed  PubMed Central  Google Scholar 

    11.
    Levers, C. et al. Drivers of forest harvesting intensity patterns in Europe. For. Ecol. Manag. 315, 160–172 (2014).
    Google Scholar 

    12.
    Cousins, S. A., Auffret, A. G., Lindgren, J. & Tränk, L. Regional-scale land-cover change during the 20th century and its consequences for biodiversity. Ambio 44, 17–27 (2015).
    PubMed Central  Google Scholar 

    13.
    HELCOM, Helsinki Commission. Climate change in the Baltic Sea Area. HELCOM thematic assessment in 2013; https://www.helcom.fi/lists/publications/bsep137.pdf (2013).

    14.
    Daniel, J., Gleason, J. E., Cottenie, K. & Rooney, R. C. Stochastic and deterministic processes drive wetland community assembly across a gradient of environmental filtering. Oikos 128, 1158–1169 (2019).
    Google Scholar 

    15.
    Hassall, C. Odonata as candidate macroecological barometers for global climate change. Fresh Sci. 34, 1040–1049 (2015).
    Google Scholar 

    16.
    Sahlén, G. & Ekestubbe, K. Identification of dragonflies (Odonata) as indicators of general species richness in boreal forest lakes. Biodiv. Cons. 10, 673–690 (2001).
    Google Scholar 

    17.
    Monteiro-Júnior, C. D. S., Juen, L. & Hamada, N. Analysis of urban impacts on aquatic habitats in the central Amazon basin: adult odonates as bioindicators of environmental quality. Ecol. Ind. 48, 303–311 (2015).
    Google Scholar 

    18.
    Suhling, F. et al. Order Odonata. In Ecology and General Biology: Thorp and Covich’s Freshwater Invertebrates (eds Thorp, J. & Rogers, D. C.) 893–932 (Academic Press, New York, 2015).
    Google Scholar 

    19.
    Appelberg, M., Henrikson, B. I., Henrikson, L. & Svedäng, M. Biotic interactions within the littoral community of Swedish forest lakes during acidification. Ambio 22, 290–297 (1993).
    Google Scholar 

    20.
    Al Jawaheri, R. & Sahlén, G. Negative impact of lake liming programmes on the species richness of dragonflies (Odonata): A study from southern Sweden. Hydrobiologia 788, 99–113 (2017).
    Google Scholar 

    21.
    Sahlén, G. Specialists vs generalists in the Odonata–the importance of forest environments in the formation of diverse species pools. In Forests and dragonflies (ed. Cordero Rivera, A.) 153–179 (Pensoft, Sofia, 2006).
    Google Scholar 

    22.
    Dalzochio, M. S., Périco, E., Renner, S. & Sahlén, G. Effect of tree plantations on the functional composition of Odonata species in the highlands of southern Brazil. Hydrobiologia 808, 283–300 (2018).
    Google Scholar 

    23.
    Renner, S., Périco, E., Dalzochio, M. S. & Sahlén, G. Water body type and land cover shape the dragonfly communities (Odonata) in the Pampa biome, Rio Grande do Sul Brazil. J. Insect Cons. 22, 113–125 (2018).
    Google Scholar 

    24.
    Flenner, I. & Sahlén, G. Dragonfly community re-organisation in boreal forest lakes: rapid species turnover driven by climate change?. Insect Conserv. Diver. 1, 169–179 (2008).
    Google Scholar 

    25.
    Ball-Damerow, J. E., M’Gonigle, L. K. & Resh, V. H. Changes in occurrence, richness, and biological traits of dragonflies and damselflies (Odonata) in California and Nevada over the past century. Biodiv. Cons. 23, 2107–2126 (2014).
    Google Scholar 

    26.
    Buisson, L., Grenouillet, G., Villéger, S., Canal, J. & Laffaille, P. Toward a loss of functional diversity in stream fish assemblages under climate change. Global Change Biol. 19, 387–400 (2013).
    ADS  Google Scholar 

    27.
    Angert, A. L. et al. Do species’ traits predict recent shifts at expanding range edges?. Ecol. Lett. 14, 677–689 (2011).
    PubMed  Google Scholar 

    28.
    Lawson, C., Vindenes, Y., Baley, L. & van de Pol, M. Environmental variation and population responses to global change. Ecol. Lett. 18, 724–736 (2015).
    PubMed  Google Scholar 

    29.
    Shimadzu, H., Dornelas, M. & Magurran, A. E. Measuring temporal turnover in ecological communities. Methods Ecol. Evol. 6, 1384–1394 (2015).
    Google Scholar 

    30.
    Jonsson, M. et al. Climate change modifies the size structure of assemblages of emerging aquatic insects. Freshw. Biol. 60, 78–88 (2015).
    Google Scholar 

    31.
    Koch, K., Wagner, C. & Sahlén, G. Farmland versus forest: comparing changes in Odonata species composition in western and eastern Sweden. Insect Cons. Divers. 7, 22–31 (2014).
    Google Scholar 

    32.
    Norling, U. & Sahlén, G. Odonata, dragonflies and damselflies in Aquatic insects of North Europe: a taxonomic handbook, Vol. 2 (ed. Nilsson, A.) 13–65 (Apollo books, 1997).

    33.
    Corbet, P. S. Dragonflies–behaviour and ecology of Odonata (Cornell University Press, Cornell, 1999).
    Google Scholar 

    34.
    Pereira, D. F. G., de Oliveira Junior, J. M. B. & Juen, L. Environmental changes promote larger species of Odonata (Insecta) in Amazonian streams. Ecol. Ind. 98, 179–192 (2019).
    Google Scholar 

    35.
    Johansson, F., Śniegula, S. & Brodin, T. Emergence patterns and latitudinal adaptations in development time of Odonata in north Sweden and Poland. Odonatologica 39, 97–106 (2010).
    Google Scholar 

    36.
    Suhling, I. & Suhling, F. Thermal adaptation affects interactions between a range-expanding and a native odonate species. Freshw. Biol. 58, 705–714 (2013).
    Google Scholar 

    37.
    Atkinson, D. Temperature and organism size: a biological law for ectotherms?. Adv. Ecol. Res. 25, 1–58 (1994).
    Google Scholar 

    38.
    Menéndez, R. How are insects responding to global warming?. Tijdschr. Entomol. 150, 355–364 (2007).
    Google Scholar 

    39.
    Hogue, J. N. & Hawkins, C. P. Morphological variation in adult aquatic insects: Associations with developmental temperature and seasonal growth patterns. J. N. Am. Benth. Soc. 10, 309–321 (1991).
    Google Scholar 

    40.
    Waringer, J. A. & Humpesch, U. H. Embryonic development, larval growth and life cycle of Coenagrion puella (Odonata: Zygoptera) from an Austrian pond. Freshw. Biol. 14, 385–399 (1984).
    Google Scholar 

    41.
    Martens, A. Annual development of Libellula quadrimaculata L in a newly setup pond (Anisoptera: Libellulidae). Notul. Odonatol. 2, 133–134 (1986).
    Google Scholar 

    42.
    Norling, U. Life history patterns in the northern expansion of dragonflies. Adv. Odonatol. 2, 127–156 (1984).
    Google Scholar 

    43.
    Hassall, C., Thompson, D. J., French, G. C. & Harvey, I. F. Historical changes in the phenology of British Odonata are related to climate. Glob. Change Biol. 13, 933–941 (2007).
    ADS  Google Scholar 

    44.
    Dingemanse, N. J. & Kalkman, V. J. Changing temperature regimes have advanced the phenology of Odonata in the Netherlands. Ecol. Ent. 33, 394–402 (2008).
    Google Scholar 

    45.
    McCauley, S. J., Hammond, J. I. & Mabry, K. E. Simulated climate change increases larval mortality, alters phenology, and affects flight morphology of a dragonfly. Ecosphere 9, e02151. https://doi.org/10.1002/ecs2.2151 (2018).
    Article  PubMed  PubMed Central  Google Scholar 

    46.
    Fincke, O. M. & Hadrys, H. Unpredictable offspring survivorship in the damselfly Megaloprepus coerulatus, shapes parental behavior, constraints sexual selection, and challenges traditional fitness-estimates. Evolution 55, 762–772 (2001).
    CAS  PubMed  Google Scholar 

    47.
    Johansson, F. Intraguild predation and cannibalism in odonate larvae: effects of foraging behaviour and zooplankton availability. Oikos 66, 80–87 (1993).
    Google Scholar 

    48.
    Parmesan, C. Ecological and evolutionary responses to recent climate change. Ann. Rev. Ecol. Evol. Syst. 37, 637–669 (2006).
    Google Scholar 

    49.
    SMHI, Swedish Meteorological and Hydrological Institute. Swedish air temperature, snow and wind; https://www.smhi.se/klimatdata (2017).

    50.
    Johansson, F. The slow–fast life style characteristics in a suite of six species of odonate larvae. Freshw. Biol. 43, 149–159 (2000).
    Google Scholar 

    51.
    Rychła, A., Benndorf, J. & Buczyński, P. Impact of pH and conductivity on species richness and community structure of dragonflies (Odonata) in small mining lakes. Fundam. Appl. Limnol. Arch. Hydrobiol. 179, 41–50 (2011).
    Google Scholar 

    52.
    National Register of Survey test-fishing – NORS. Swedish test fishing database; https://www.slu.se/en/departments/aquatic-resources1/databases1/national-register-of-survey-test-fishing-nors/ (2020).

    53.
    Robert, P.-A. Les Libellules (Delachaux & Niestlié, 1958).

    54.
    Harrington, R., Fleming, R. A. & Woiwod, I. P. Climate change impacts on insect management and conservation in temperate regions: Can they be predicted?. Agric. For. Entomol. 3, 233–240 (2001).
    Google Scholar 

    55.
    Bale, J. S. & Hayward, S. A. L. Insect overwintering in a changing climate. J. Exp. Biol. 213, 980–994 (2010).
    CAS  PubMed  Google Scholar 

    56.
    Grewe, Y., Hof, C., Dehling, D. M., Brandl, R. & Brändle, M. Recent range shifts of European dragonflies provide support for an inverse relationship between habitat predictability and dispersal. Glob. Ecol. Biogeogr. 22, 403–409 (2013).
    Google Scholar 

    57.
    Kalkman, V.J. et al. European Red List of Dragonflies. Publications Office of the European Union; https://ec.europa.eu/environment/nature/conservation/species/redlist/downloads/European_dragonflies.pdf (2010).

    58.
    Lande, R. Risks of population extinction from demographic and environmental stochasticity and random catastrophes. Am. Nat. 142, 911–927 (1993).
    PubMed  Google Scholar 

    59.
    Tsimring, L. S. Noise in biology. Rep. Prog. Phys. 77, 026601. https://doi.org/10.1088/0034-4885/77/2/026601 (2014).
    ADS  CAS  Article  PubMed  PubMed Central  Google Scholar 

    60.
    Popova, O. N., Haritonov, AYu. & Erdakov, L. N. Cyclicity of long-term population dynamics in dragonflies of the genus Sympetrum (Odonata, Anisoptera) in the basin of Lake Chany. Contemp. Probl. Ecol. 11, 551–562 (2018).
    Google Scholar 

    61.
    Sahlén, G. & Ekestubbe, K. Identification of dragonflies (Odonata) as indicators of general species richness in boreal forest lakes. Biodiv. Conserv. 10, 673–690 (2001).
    Google Scholar 

    62.
    Korkeamäki, E., Elo, M., Sahlén, G., Salmela, J. & Suhonen, J. Regional variations in occupancy frequency distribution patterns between odonate assemblages in Fennoscandia. Ecosphere 9, e02192. https://doi.org/10.1002/ecs2.2192 (2018).
    Article  Google Scholar 

    63.
    Angeler, D. G. & Johnson, R. K. Patterns of temporal community turnover are spatially synchronous across boreal lakes. Freshw. Biol. 57, 1782–1793 (2012).
    Google Scholar 

    64.
    MAGIC biblioteket sjöar. Lake data from Sweden; https://magicbiblioteket.ivl.se/ (2016).

    65.
    Swedish Forest Agency. Silvicultural activities; Planted area and Pre-commercially thinned area: 3-year average, 1000 hectares by region, year and ownership class; https://pxweb.skogsstyrelsen.se/pxweb/en/Skogsstyrelsens%20statistikdatabas/ (2016).

    66.
    SCB, Statistics Sweden. Land use in Sweden – Land use: Arable land and forest land by region and land use category; https://www.statistikdatabasen.scb.se/pxweb/en/ssd/START__MI__MI0803__MI0803A/MarkanvJbSk/ (2019).

    67.
    Hickling, R., Roy, D. B., Hill, J. K. & Thomas, C. D. A northward shift of range margins in British Odonata. Global Change Biol. 11, 502–506 (2005).
    ADS  Google Scholar 

    68.
    Conti, L., Schmidt-Kloiber, A., Grenouillet, G. & Graf, W. A trait-based approach to assess the vulnerability of European aquatic insects to climate change. Hydrobiologia 721, 297–315 (2014).
    CAS  Google Scholar 

    69.
    Lavorel, S. et al. Assessing functional diversity in the field–methodology matters!. Funct. Ecol. 22, 134–147 (2008).
    Google Scholar 

    70.
    Laliberté, E., Legendre, P. & Shipley, B. FD: measuring functional diversity from multiple traits, and other tools for functional ecology. R package version 1.0–12; https://cran.r-project.org/web/packages/FD/index.html (2014).

    71.
    R Development Core Team. R: A language and environment for statistical computing. R Foundation for Statistical Computing, Vienna. https://www.R-project.org (2019).

    72.
    Violle, C. et al. Let the concept of trait be functional!. Oikos 116, 882–892 (2007).
    Google Scholar 

    73.
    Dijkstra, K. D. B. & Lewington, R. Field Guide to the Dragonflies of Britain and Europe (British Wildlife Publishing, Devon, 2006).
    Google Scholar 

    74.
    Norling, U. Livscykler hos svenska Odonater. Entomologen 4, 1–14 (1975).
    Google Scholar 

    75.
    Norling, U. The life cycle and larval photoperiodic responses of Coenagrion hastulatum (Charpentier) in two climatically different areas (Zygoptera: Coenagrionidae). Odonatologica 13, 429–449 (1984).
    Google Scholar 

    76.
    Norling, U. Photoperiodic control of larval development in Leucorrhinia dubia (Vander Linden): a comparison between populations from northern and southern Sweden (Anisoptera: Libellulidae). Odonatologica 13, 529–550 (1984).
    Google Scholar  More

  • in

    Over 90 endangered fish and invertebrates are caught in industrial fisheries

    1.
    FAO. The State of World Fisheries and Aquaculture 2020: Sustainability in Action (FAO, 2020).
    2.
    Diaz, S. et al. Summary for Policymakers of the Global Assessment Report on Biodiversity and Ecosystem Services of the Intergovernmental Science-Policy Platform on Biodiversity and Ecosystem Services, IPBES (2019).

    3.
    FAO. The State of World Fisheries and Aquaculture 2018—Meeting the Sustainable Development Goals (FAO, 2018).

    4.
    IUCN. The IUCN Red List of Threatened Species. Version 2019-1 (IUCN, 2019). https://www.iucnredlist.org.

    5.
    McClenachan, L., Cooper, A. B., Carpenter, K. E. & Dulvy, N. K. Extinction risk and bottlenecks in the conservation of charismatic marine species. Conserv. Lett. 5, 73–80 (2012).
    Google Scholar 

    6.
    McClenachan, L., Cooper, A. B. & Dulvy, N. K. Rethinking trade-driven extinction risk in marine and terrestrial Megafauna. Curr. Biol. 26, 1640–1646 (2016).
    CAS  PubMed  Google Scholar 

    7.
    Ripple, W. J. et al. Are we eating the world’s megafauna to extinction? Conserv. Lett. 12, e12627 (2019).
    Google Scholar 

    8.
    Di Minin, E., Leader-Williams, N. & Bradshaw, C. J. A. Banning trophy hunting will exacerbate biodiversity loss. Trends Ecol. Evol. 31, 99–102 (2016).
    PubMed  Google Scholar 

    9.
    Batavia, C. et al. The elephant (head) in the room: a critical look at trophy hunting. Conserv. Lett. 12, 1–6 (2019).
    ADS  Google Scholar 

    10.
    Nelson, M. P., Bruskotter, J. T., Vucetich, J. A. & Chapron, G. Emotions and the ethics of consequence in conservation decisions: lessons from cecil the lion. Conserv. Lett. 9, 302–306 (2016).
    Google Scholar 

    11.
    Aron, W., Burke, W. & Freeman, M. M. R. The whaling issue. Mar. Pol. 24, 179–191 (2000).
    Google Scholar 

    12.
    Shiffman, D. S., Gallagher, A. J., Wester, J., Macdonald, C. C. & Thaler, A. D. Trophy fishing for species threatened with extinction: a way forward building on a history of conservation. Mar. Pol. 50, 318–322 (2014).
    Google Scholar 

    13.
    Dulvy, N. K., Sadovy, Y. & Reynolds, J. D. Extinction vulnerability in marine populations. Fish Fish. 4, 25–64 (2003).
    Google Scholar 

    14.
    Pinsky, M. L., Jensen, O. P., Ricard, D. & Palumbi, S. R. Unexpected patterns of fisheries collapse in the world’s oceans. Proc. Natl Acad. Sci. USA 108, 8317–8322 (2011).
    ADS  CAS  PubMed  Google Scholar 

    15.
    Sumaila, U. R. et al. Updated estimates and analysis of global fisheries subsidies. Mar. Pol. 109, 103695 (2019).
    Google Scholar 

    16.
    Vincent, A. C. J., Sadovy de Mitcheson, Y. J., Fowler, S. L. & Lieberman, S. The role of CITES in the conservation of marine fishes subject to international trade. Fish Fish. 15, 563–592 (2014).
    Google Scholar 

    17.
    Crespo, G. O. et al. High-seas fish biodiversity is slipping through the governance net. Nat. Ecol. Evol. 3, 1273–1276 (2019).
    PubMed  Google Scholar 

    18.
    Reiss, H., Hoarau, G., Dickey-Collas, M. & Wolff, W. J. Genetic population structure of marine fish: mismatch between biological and fisheries management units. Fish Fish. 10, 361–395 (2009).
    Google Scholar 

    19.
    Collette, B. B. et al. High value and long life—double jeopardy for tunas and billfi shes. Science 333, 291–292 (2011).
    ADS  CAS  PubMed  Google Scholar 

    20.
    Neubauer, P., Jensen, O. P., Hutchings, J. A. & Baum, J. K. Resilience and recovery of overexploited marine populations. Science 340, 347–349 (2013).
    ADS  CAS  PubMed  Google Scholar 

    21.
    Hutchings, J. A. Collapse and recovery of marine fishes. Nature 406, 882–885 (2000).
    ADS  CAS  PubMed  Google Scholar 

    22.
    Doney, S. C. et al. Climate change impacts on marine ecosystems. Annu. Rev. Mar. Sci. 4, 11–37 (2012).
    ADS  Google Scholar 

    23.
    Ye, Y. & Gutierrez, N. L. Ending fishery overexploitation by expanding from local successes to globalized solutions. Nat. Ecol. Evol. 1, 0179 (2017).
    Google Scholar 

    24.
    Williams, B. R., Burgess, M. G., Ashe, E., Gaines, S. D. & Randall, R. Marine mammal protections require increased global capacity. Science 354, 1372–1374 (2016).
    ADS  CAS  PubMed  Google Scholar 

    25.
    Watson, R. & Pauly, D. Systematic distortions in world fisheries catch trends. Nature 414, 534–536 (2001).
    ADS  CAS  PubMed  Google Scholar 

    26.
    Powles, H. et al. Assessing and protecting endangered marine species. ICES J. Mar. Sci. 57, 669–676 (2000).
    Google Scholar 

    27.
    Dent, F. & Clarke, S. State of the Global Market for Shark Products. FAO Fisheries and Aquaculture Technical Paper no. 590 (Food and Agriculture Organization of the United Nations, Rome 2015).

    28.
    Oliver, S., Braccini, M., Newman, S. J. & Harvey, E. S. Global patterns in the bycatch of sharks and rays. Mar. Pol. 54, 86–97 (2015).
    Google Scholar 

    29.
    Davies, R. W. D., Cripps, S. J., Nickson, A. & Porter, G. Defining and estimating global marine fisheries bycatch. Mar. Pol. 33, 661–672 (2009).
    Google Scholar 

    30.
    Watson, R. A., Green, B. S., Tracey, S. R., Farmery, A. & Pitcher, T. J. Provenance of global seafood. Fish Fish. 17, 585–595 (2016).
    Google Scholar 

    31.
    Jabado, R. W. et al. Troubled waters: threats and extinction risk of the sharks, rays and chimaeras of the Arabian Sea and adjacent waters. Fish Fish. 19, 1043–1062 (2018).
    Google Scholar 

    32.
    Anticamara, J. A., Watson, R., Gelchu, A. & Pauly, D. Global fishing effort (1950-2010): trends, gaps, and implications. Fish. Res. 107, 131–136 (2011).
    Google Scholar 

    33.
    Anderson, S. C., Flemming, J. M., Watson, R. & Lotze, H. K. Serial exploitation of global sea cucumber fisheries. Fish Fish. 12, 317–339 (2011).
    Google Scholar 

    34.
    Webb, T. J. & Mindel, B. L. Global patterns of extinction risk in marine and non-marine systems. Curr. Biol. 25, 506–511 (2015).
    CAS  PubMed  Google Scholar 

    35.
    Dulvy, et al. Extinction risk and conservation of the world’s sharks and rays. Elife 3, e00590 (2014).
    PubMed  PubMed Central  Google Scholar 

    36.
    Anderson, S. C., Flemming, J. M., Watson, R. & Lotze, H. K. Rapid global expansion of invertebrate fisheries: trends, drivers, and ecosystem effects. PLoS ONE 6, 1–9 (2011).
    Google Scholar 

    37.
    Willette, D. A. & Cheng, S. H. Delivering on seafood traceability under the new U.S. import monitoring program. AMBIO 47, 25–30 (2018).
    PubMed  Google Scholar 

    38.
    Simpfendorfer, C. A. & Dulvy, N. K. Bright spots of sustainable shark fishing. Curr. Biol. 27, R97–R98 (2017).
    CAS  PubMed  Google Scholar 

    39.
    Hobbs, C. A. D. et al. Using DNA barcoding to investigate patterns of species utilisation in UK shark products reveals threatened species on sale. Sci. Rep. 9, 1–10 (2019).
    Google Scholar 

    40.
    Porszt, E. J., Peterman, R. M., Dulvy, N. K., Cooper, A. B. & Irvine, J. R. Reliability of indicators of decline in abundance. Conserv. Biol. 26, 894–904 (2012).
    PubMed  Google Scholar 

    41.
    D’Eon-Eggertson, F., Dulvy, N. K. & Peterman, R. M. Reliable identification of declining populations in an uncertain world. Conserv. Lett. 8, 86–96 (2015).
    Google Scholar 

    42.
    Foley, C. M., Lynch, M. A., Thorne, L. H. & Lynch, H. J. Listing foreign species under the endangered species act: a primer for conservation biologists. Bioscience 67, 627–637 (2017).
    Google Scholar 

    43.
    Sky, M. B. Getting on the list: politics and procedural maneuvering in cites appendix I and II decisions for commercially exploited marine and timber species. Sustain. Dev. Law Policy 10, 35–40 (2010).
    Google Scholar 

    44.
    UNEP‐WCMC (2019). The checklist of CITES species website. http://checklist.cites.org.

    45.
    Probst, W. N. How emerging data technologies can increase trust and transparency in fisheries. ICES J. Mar. Sci. 77, 1286–1294 (2019).
    Google Scholar 

    46.
    Lewis, S. G. & Boyle, M. The expanding role of traceability in seafood: tools and key initiatives. J. Food Sci. 82, A13–A21 (2017).
    CAS  PubMed  PubMed Central  Google Scholar 

    47.
    Kamilaris, A., Fonts, A. & Prenafeta-Boldύ, F. X. The rise of blockchain technology in agriculture and food supply chains. Trends Food Sci. Technol. 91, 640–652 (2019).
    CAS  Google Scholar 

    48.
    WWF. WWF-Australia and OpenSc (Panda Labs, 2019). https://www.wwf.org.au/get-involved/panda-labs/opensc#gs.hi7rtb.

    49.
    Boulais, O. Exploring Provenance of Tuna using Distributed Ledgers. (Viral Communications, 2019). https://viral.media.mit.edu/pub/tunaprovenance.

    50.
    Hosch, G. & Blaha, F. Seafood Traceability for Fisheries Compliance: Country-Level Support for Catch Documentation Schemes. FAO Fisheries and Aquaculture Technical Paper 619 (Food and Agriculture Organization of the United Nations, Rome, 2017).

    51.
    Miller, N. A., Roan, A., Hochberg, T., Amos, J. & Kroodsma, D. A. Identifying global patterns of transshipment behavior. Front. Mar. Sci. 5, 1–9 (2018).
    Google Scholar 

    52.
    Miller, A. M. M., Bush, S. R. & Mol, A. P. J. Power Europe: EU and the illegal, unreported and unregulated tuna fisheries regulation in the West and Central Pacific Ocean. Mar. Pol. https://doi.org/10.1016/j.marpol.2013.12.009 (2014).

    53.
    Osterblom, H. et al. Transnational corporations as ‘keystone actors’ in marine ecosystems. PLoS ONE 10, 1–15 (2015).
    Google Scholar 

    54.
    Davies, T. D. & Baum, J. K. Extinction risk and overfishing: reconciling conservation and fisheries perspectives on the status of marine fishes. Sci. Rep. 2, 561 (2012).
    ADS  CAS  PubMed  PubMed Central  Google Scholar 

    55.
    Hornborg, S., Svensson, M., Nilsson, P. & Ziegler, F. By-catch impacts in fisheries: utilizing the IUCN red list categories for enhanced product level assessment in seafood LCAS. Environ. Manag. 52, 1239–1248 (2013).
    ADS  Google Scholar 

    56.
    Dulvy, N. K., Jennings, S., Goodwin, N. B., Grant, A. & Reynolds, J. D. Comparison of threat and exploitation status in North-East Atlantic marine populations. J. Appl. Ecol. 42, 883–891 (2005).
    Google Scholar 

    57.
    Mace, G. M. et al. Quantification of extinction risk: IUCN’s system for classifying threatened species. Conserv. Biol. 22, 1424–1442 (2008).
    PubMed  Google Scholar 

    58.
    Fernandes et al. Coherent assessments of Europe’s marine fishes show regional divergence and megafauna loss. Nat. Ecol. Evol. 1, 0170 (2017).
    Google Scholar 

    59.
    Pauly, D., Zeller, D. & Palomares, M. L. D. Sea Around us Concepts, Design and Data. seaaroundus.org (University of British Columbia, Vancouver, BC 2020).

    60.
    Watson, R. A. & Tidd, A. Mapping nearly a century and a half of global marine fishing: 1869–2015. Mar. Pol. 93, 171–177 (2018).
    Google Scholar 

    61.
    Pauly, D. & Zeller, D. Agreeing with FAO: comments on SOFIA 2018. Mar. Pol. 100, 332–333 (2019).
    Google Scholar 

    62.
    Tai, T. C., Cashion, T., Lam, V. W. Y., Swartz, W. & Sumaila, U. R. Ex-vessel fish price database: disaggregating prices for low-priced species from reduction fisheries. Front. Mar. Sci. 4, 1–10 (2017).
    Google Scholar  More

  • in

    Visual mate preference evolution during butterfly speciation is linked to neural processing genes

    1.
    Coyne, J. A., Orr, H. A. Speciation (Sinauer, Sunderland, MA, 2004).
    2.
    Rosenthal, G. G. Mate Choice (Princeton University Press, 2017).

    3.
    Mayr, E. Animal Species and Evolution (Harvard University Press, 1963).

    4.
    Arguello, J. R. & Benton, R. Open questions: tackling Darwin’s “instincts”: the genetic basis of behavioural evolution. BMC Biol. 15, 8–10 (2017).
    Google Scholar 

    5.
    Bay, R. A. et al. Genetic coupling of female mate choice with polygenic ecological divergence facilitates stickleback speciation. Curr. Biol. 27, 3344–3349 (2017).
    CAS  PubMed  PubMed Central  Google Scholar 

    6.
    Shahandeh, M. P., Pischedda, A., Rodriguez, J. M. & Turner, T. L. The genetics of male pheromone preference difference between Drosophila melanogaster and Drosophila simulans. G3 Genes Genomes Genet. 10, 401–415 (2020).
    Google Scholar 

    7.
    Gould, F. et al. Sexual isolation of male moths explained by a single pheromone response QTL containing four receptor genes. Proc. Natl Acad. Sci. USA. 107, 8660–8665 (2010).
    ADS  CAS  PubMed  Google Scholar 

    8.
    Leary, G. P. et al. Single mutation to a sex pheromone receptor provides adaptive specificity between closely related moth species. Proc. Natl Acad. Sci. USA 109, 14081–14086 (2012).
    ADS  CAS  PubMed  Google Scholar 

    9.
    Fan, P. et al. Genetic and neural mechanisms that inhibit Drosophila from mating with other species. Cell 154, 89–102 (2013).
    CAS  PubMed  Google Scholar 

    10.
    Brand, P. et al. The evolution of sexual signaling is linked to odorant receptor tuning in perfume-collecting orchid bees. Nat. Commun. 11, 1–11 (2020).
    ADS  Google Scholar 

    11.
    Xu, M. & Shaw, K. L. Genetic coupling of signal and preference facilitates sexual isolation during rapid speciation. Proc. R. Soc. B 286, 20191607 (2019).
    CAS  PubMed  Google Scholar 

    12.
    Seehausen, O. et al. Speciation through sensory drive in cichlid fish. Nature 455, 620–626 (2008).
    ADS  CAS  PubMed  Google Scholar 

    13.
    Hench, K., Vargas, M., Höppner, M. P., McMillan, W. O. & Puebla, O. Inter-chromosomal coupling between vision and pigmentation genes during genomic divergence. Nat. Ecol. Evol. 3, 657–667 (2019).
    PubMed  Google Scholar 

    14.
    Merrill, R. M. et al. Disruptive ecological selection on a mating cue. Proc. R. Soc. B Biol. Sci. 279, 4907–4913 (2012).
    Google Scholar 

    15.
    Jiggins, C. D., Naisbit, R. E., Coe, R. L. & Mallet, J. Reproductive isolation caused by colour pattern mimicry. Nature 411, 302–305 (2001).
    ADS  CAS  PubMed  Google Scholar 

    16.
    Servedio, M. R., Van Doorn, G. S., Kopp, M., Frame, A. M. & Nosil, P. Magic traits in speciation: ‘magic’ but not rare? Trends Ecol. Evol. 26, 389–397 (2011).
    PubMed  Google Scholar 

    17.
    Jiggins, C. D. Ecological speciation in mimetic butterflies. Bioscience 58, 541–548 (2008).
    Google Scholar 

    18.
    Jiggins, C. D., Estrada, C. & Rodrigues, A. Mimicry and the evolution of premating isolation in Heliconius melpomene Linnaeus. J. Evol. Biol. 17, 680–691 (2004).
    CAS  PubMed  Google Scholar 

    19.
    Merrill, R. M. et al. Genetic dissection of assortative mating behaviour. PLoS Biol. 17, e2005902 (2018).
    Google Scholar 

    20.
    Reed, R. D. et al. Optix drives the repeated convergent evolution of butterfly wing pattern mimicry. Science 333, 1137–1141 (2011).
    ADS  CAS  PubMed  Google Scholar 

    21.
    Martin, A. et al. Diversification of complex butterfly wing patterns by repeated regulatory evolution of a Wnt ligand. Proc. Natl Acad. Sci. USA 109, 12632–12637 (2012).
    ADS  CAS  PubMed  Google Scholar 

    22.
    Nadeau, N. J. et al. The gene cortex controls mimicry and crypsis in butterflies and moths. Nature 534, 106–110 (2016).
    ADS  CAS  PubMed  PubMed Central  Google Scholar 

    23.
    Felsenstein, J. Skepticism Towards Santa Rosalia, or why are there so few kinds of animals? Evolution 35, 124–138 (1981).
    PubMed  Google Scholar 

    24.
    Massey, J. H., Chung, D., Siwanowicz, I., Stern, D. L. & Wittkopp, P. J. The yellow gene influences Drosophila male mating success through sex comb melanization. Elife 8, 1–20 (2019).
    Google Scholar 

    25.
    Merrill, R. M., Van Schooten, B., Scott, J. A. & Jiggins, C. D. Pervasive genetic associations between traits causing reproductive isolation in Heliconius butterflies. Proc. R. Soc. B Biol. Sci. 278, 511–518 (2011).
    Google Scholar 

    26.
    Van Schooten, B. et al. Divergence of chemosensing during the early stages of speciation. Proc. Natl. Acad. Sci. USA 117, 16348–16447 (2020).
    Google Scholar 

    27.
    Seeholzer, L. F., Seppo, M., Stern, D. L. & Ruta, V. Evolution of a central neural circuit underlies Drosophila mate preferences. Nature 559, 564–569 (2018).
    ADS  CAS  PubMed  PubMed Central  Google Scholar 

    28.
    Martin, S. H. et al. Genome-wide evidence for speciation with gene flow in Heliconius butterflies. Genome Res. 23, 1817–1828 (2013).
    CAS  PubMed  PubMed Central  Google Scholar 

    29.
    Davey, J. et al. Major improvements to the Heliconius melpomene genome assembly used to confirm 10 chromosome fusion events in 6 million years of butterfly evolution. G3 6, 695–708 (2015).
    Google Scholar 

    30.
    Darragh, K. et al. A novel terpene synthase produces an anti-aphrodisiac pheromone in the butterfly Heliconius melpomene. Preprint at https://www.biorxiv.org/content/10.1101/779678v1 (2019).

    31.
    Pinharanda, A. et al. Sexually dimorphic gene expression and transcriptome evolution provide mixed evidence for a fast-Z effect in Heliconius. J. Evol. Biol. 32, 194–204 (2019).
    CAS  PubMed  PubMed Central  Google Scholar 

    32.
    Roberts, A., Pimentel, H., Trapnell, C. & Pachter, L. Identification of novel transcripts in annotated genomes using RNA-seq. Bioinformatics 27, 2325–2329 (2011).
    CAS  PubMed  Google Scholar 

    33.
    Wittkopp, P. J., Haerum, B. K. & Clark, A. G. Evolutionary changes in cis and trans gene regulation. Nature 430, 85–88 (2004).
    ADS  CAS  PubMed  Google Scholar 

    34.
    Thomas, P. D. et al. Applications for protein sequence-function evolution data: mRNA/protein expression analysis and coding SNP scoring tools. Nucleic Acids Res. 34, 645–650 (2006).
    ADS  Google Scholar 

    35.
    Choi, Y., Sims, G. E., Murphy, S., Miller, J. R. & Chan, A. P. Predicting the functional effect of amino acid substitutions and indels. PLoS ONE 7, e46688 (2012).
    ADS  CAS  PubMed  PubMed Central  Google Scholar 

    36.
    Martin, S. H., Davey, J. W. & Jiggins, C. D. Evaluating the use of ABBA-BABA statistics to locate introgressed loci. Mol. Biol. Evol. 32, 244–257 (2015).
    CAS  PubMed  Google Scholar 

    37.
    Martin, S. H., Davey, J. W., Salazar, C. & Jiggins, C. D. Recombination rate variation shapes barriers to introgression across butterfly genomes. PLoS Biol. 17, 1–28 (2019).
    Google Scholar 

    38.
    Nosil, P. Ecological Speciation (Oxford University Press, 2012).

    39.
    Kopp, M. et al. Mechanisms of assortative mating in speciation with gene flow: connecting theory and empirical research. Am. Nat. 191, 1–20 (2018).
    PubMed  Google Scholar 

    40.
    Butlin, R. K. & Smadja, C. M. Coupling, reinforcement, and speciation. Am. Nat. 191, 155–172 (2018).
    PubMed  Google Scholar 

    41.
    Westerman, E. L. et al. Aristaless controls butterfly wing color variation used in mimicry and mate choice. Curr. Biol. 28, 3469–3474 (2018).
    CAS  PubMed  PubMed Central  Google Scholar 

    42.
    Kronfrost, M. R. et al. Linkage of butterfly mate preference and wing color preference cue at the genomic location of wingless. Proc. Natl Acad. Sci. USA 103, 6575–6580 (2006).
    ADS  Google Scholar 

    43.
    Chamberlain, N. L., Hill, R. I., Kapan, D. D., Gilbert, L. E. & Kronforst, M. R. Polymorphic butterfly reveals the missing link in ecological speciation. Science 326, 847–850 (2009).
    ADS  CAS  PubMed  PubMed Central  Google Scholar 

    44.
    McCulloch, K. J. et al. Sexual dimorphism and retinal mosaic diversification following the evolution of a violet receptor in butterflies. Mol. Biol. Evol. 34, 2271–2284 (2017).
    CAS  PubMed  Google Scholar 

    45.
    Zaccardi, G., Kelber, A., Sison-Mangus, M. P. & Briscoe, A. D. Colour discrimination in the red range with only one long-wavelength sensitive opsin. J. Exp. Biol. 209, 1944–1955 (2006).
    PubMed  Google Scholar 

    46.
    Monteiro, A. Gene regulatory networks reused to build novel traits. BioEssays 34, 181–186 (2012).
    CAS  PubMed  Google Scholar 

    47.
    Martin, A. et al. Multiple recent co-options of optix associated with novel traits in adaptive butterfly wing radiations. Evodevo 5, 7 (2014).
    PubMed  PubMed Central  Google Scholar 

    48.
    Kandel, E. R., Schwartz, J. H., Jessell, T. M., Siegelbaum, S. A. & Hudspeth. A. J. Principles of Neural Science, 2012th edn. (McGraw Hill, New York, 2000).

    49.
    Ramsey, M. E., Vu, W. & Cummings, M. E. Testing synaptic plasticity in dynamic mate choice decisions: N-methyl d-aspartate receptor blockade disrupts female preference. Proc. R. Soc. B Biol. Sci. 281, 20140047 (2014).
    Google Scholar 

    50.
    Bloch, N. I. et al. Early neurogenomic response associated with variation in guppy female mate preference. Nat. Ecol. Evol. 2, 1772–1781 (2018).
    PubMed  PubMed Central  Google Scholar 

    51.
    Delclos, P. J., Forero, S. A. & Rosenthal, G. G. Divergent neurogenomic responses shape social learning of both personality and mate preference. J. Evol. Biol. 223 (2020)

    52.
    Yamaguchi, M. Role of regucalcin in brain calcium signaling. Integr. Biol. 4, 825–837 (2012).
    CAS  Google Scholar 

    53.
    Berridge, M. J. Neuronal calcium signaling. Neuron 21, 13–26 (1998).
    CAS  PubMed  Google Scholar 

    54.
    Bashaw, G. J. & Klein, R. Signaling from axon guidance receptors. Cold Spring Harb. Perspect. Biol. 2, 1–17 (2010).
    Google Scholar 

    55.
    Prud’homme, B., Gompel, N. & Carroll, S. B. Emerging principles of regulatory evolution. Proc. Natl Acad. Sci. USA 104, 8605–8612 (2007).
    ADS  PubMed  Google Scholar 

    56.
    Preger-Ben Noon, E. et al. Comprehensive analysis of a cis-regulatory region reveals pleiotropy in enhancer function. Cell Rep. 22, 3021–3031 (2018).
    CAS  PubMed  Google Scholar 

    57.
    Lewis, J. et al. Parallel evolution of ancient, pleiotropic enhancers underlies butterfly wing pattern mimicry. Proc. Natl Acad. Sci. USA. 116, 24174–24183 (2019).
    CAS  PubMed  Google Scholar 

    58.
    Chouteau, M., Llaurens, V., Piron-Prunier, F. & Joron, M. Polymorphism at a mimicry supergene maintained by opposing frequency-dependent selection pressures. Proc. Natl Acad. Sci. USA 114, 8325–8329 (2017).
    CAS  PubMed  Google Scholar 

    59.
    Southcott, L. & Kronforst, M. R. Female mate choice is a reproductive isolating barrier in Heliconius butterflies. Ethology 124, 862–869 (2018).
    PubMed  PubMed Central  Google Scholar 

    60.
    González-Rojas, M. F. et al. Chemical signals act as the main reproductive barrier between sister and mimetic Heliconius butterflies. Proc. R. Soc. B Biol. 287, 20200587 (2020).
    Google Scholar 

    61.
    Zhang, W. et al. Comparative transcriptomics provides insights into reticulate and adaptive evolution of a butterfly radiation. Genome Biol. Evol. 11, 2963–2975 (2019).
    PubMed  PubMed Central  Google Scholar 

    62.
    Weber, J. N., Peterson, B. K. & Hoekstra, H. E. Discrete genetic modules are responsible for complex burrow evolution in Peromyscus mice. Nature 493, 402–405 (2013).
    ADS  CAS  PubMed  Google Scholar 

    63.
    Cande, J., Andolfatto, P., Prud’homme, B., Stern, D. L. & Gompel, N. Evolution of multiple additive loci caused divergence between Drosophila yakuba and D. santomea in wing rowing during male courtship. PLoS ONE 7, 1–10 (2012).
    Google Scholar 

    64.
    McBride, C. S. et al. Evolution of mosquito preference for humans linked to an odorant receptor. Nature 515, 222–227 (2014).
    ADS  CAS  PubMed  PubMed Central  Google Scholar 

    65.
    Ding, Y., Berrocal, A., Morita, T., Longden, K. D. & Stern, D. L. Natural courtship song variation caused by an intronic retroelement in an ion channel gene. Nature 536, 329–332 (2016).
    ADS  CAS  PubMed  Google Scholar 

    66.
    Bendesky, A. et al. The genetic basis of parental care evolution in monogamous mice. Nature 544, 434–439 (2017).
    ADS  CAS  PubMed  PubMed Central  Google Scholar 

    67.
    Auer, T. O. et al. Olfactory receptor and circuit evolution promote host specialization. Nature 579, 402–408 (2020).
    ADS  CAS  PubMed  PubMed Central  Google Scholar 

    68.
    Vehtari, A., Gelman, A. & Gabry, J. Practical Bayesian model evaluation using leave-one-out cross-validation and WAIC. Stat. Comput. 27, 1413–1432 (2017).
    MathSciNet  MATH  Google Scholar 

    69.
    Jiggins, C. D. The Ecology and Evolution of Heliconius Butterflies (Oxford University Press, 2016).

    70.
    Dobin, A. et al. STAR: ultrafast universal RNA-seq aligner. Bioinformatics 29, 15–21 (2013).
    CAS  Google Scholar 

    71.
    Li, H. et al. The sequence alignment/map format and SAMtools. Bioinformatics 25, 2078–2079 (2009).
    PubMed  PubMed Central  Google Scholar 

    72.
    Anders, S., Pyl, P. T. & Huber, W. HTSeq- a Python framework to work with high-throughput sequencing data. Bioinformatics 31, 166–169 (2015).
    CAS  Google Scholar 

    73.
    Love, M. I., Huber, W. & Anders, S. Moderated estimation of fold change and dispersion for RNA-seq data with DESeq2. Genome Biol. 15, 1–21 (2014).
    Google Scholar 

    74.
    Montgomery, S. H. & Mank, J. E. Inferring regulatory change from gene expression: the confounding effects of tissue scaling. Mol. Ecol. 25, 5114–5128 (2016).
    CAS  PubMed  Google Scholar 

    75.
    Montgomery, S. H., Rossi, M., McMillan, W. O. & Merrill, R. Neural divergence and hybrid disruption between ecologically isolated Heliconius butterflies. Preprint at https://www.biorxiv.org/content/10.1101/2020.07.01.182337v1 (2020)

    76.
    McKenna, A. et al. The genome analysis toolkit: a MapReduce framework for analyzing next-generation DNA sequencing data. Genome Res. 20, 1297–1303 (2010).
    CAS  PubMed  PubMed Central  Google Scholar 

    77.
    Finn, R. D. et al. InterPro in 2017-beyond protein family and domain annotations. Nucleic Acids Res. 45, D190–D199 (2017).
    CAS  PubMed  Google Scholar 

    78.
    York, R. A. et al. Behaviour-dependent cis regulation reveals genes and pathways associated with bower building in cichlid fishes. Proc. Natl Acad. Sci. USA 115, 1081–1090 (2018).
    Google Scholar 

    79.
    Cingolani, P. et al. A program for annotating and predicting the effects of single nucleotide polymorphisms, SnpEff. Fly 6, 80–92 (2012).
    CAS  PubMed  PubMed Central  Google Scholar  More

  • in

    Small-scale population divergence is driven by local larval environment in a temperate amphibian

    Aguillon SM, Fitzpatrick JW, Bowman R, Schoech SJ, Clark AG, Coop G et al. (2017) Deconstructing isolation-by-distance: the genomic consequences of limited dispersal. PLOS Genet 13:e1006911
    PubMed  PubMed Central  Article  CAS  Google Scholar 

    Arens P, van der Sluis T, van’t Westende WPC, Vosman B, Vos CC, Smulders MJM (2007) Genetic population differentiation and connectivity among fragmented Moor frog (Rana arvalis) populations in The Netherlands. Landsc Ecol 22:1489–1500
    Article  Google Scholar 

    Bachmann JC, van Rensburg AJ, Cortazar-Chinarro M, Laurila A, Buskirk JV (2020) Gene Flow Limits Adaptation along Steep Environmental Gradients. The American Naturalist 195:E67–E86
    PubMed  Article  PubMed Central  Google Scholar 

    Balkau BJ, Feldman MW (1973) Selection for migration modification. Genetics 74:171–174
    CAS  PubMed  PubMed Central  Google Scholar 

    Barrett RDH, Schluter D (2008) Adaptation from standing genetic variation. Trends Ecol Evol 23:38–44
    PubMed  Article  PubMed Central  Google Scholar 

    Bates D, Mächler M, Bolker B, Walker S (2015) Fitting linear mixed-effects models using lme4. J Stat Softw 67:1–48.
    Article  Google Scholar 

    Becker CG, Rodriguez D, Longo AV, Talaba AL, Zamudio KR (2012) Disease risk in temperate amphibian populations is higher at closed-canopy sites. PLOS ONE 7:e48205
    CAS  PubMed  PubMed Central  Article  Google Scholar 

    Bolnick D, Otto S (2013) The magnitude of local adaptation under genotype-dependent dispersal. Ecol Evol 3:4722–4735
    PubMed  PubMed Central  Article  Google Scholar 

    Bolnick DI, Snowberg LK, Patenia C, Stutz WE, Ingram T, Lau OL (2009) Phenotype-dependent native habitat preference facilitates divergence between parapatric lake and stream stickleback. Evolution 63:2004–2016
    PubMed  Article  PubMed Central  Google Scholar 

    Brown PS, Frye BE (1969) Effects of prolactin and growth hormone on growth and metamorphosis of tadpoles of the frog, Rana pipiens. Gen Comp Endocrinol 13:126–138
    CAS  PubMed  Article  PubMed Central  Google Scholar 

    Buxton VL, Ward MP, Sperry JH (2017) Frog breeding pond selection in response to predators and conspecific cues. Ethology 123:397–404
    Article  Google Scholar 

    Campbell-Staton SC, Cheviron ZA, Rochette N, Catchen J, Losos JB, Edwards SV (2017) Winter storms drive rapid phenotypic, regulatory, and genomic shifts in the green anole lizard. Science 357:495–498
    CAS  PubMed  Article  PubMed Central  Google Scholar 

    Capblancq T, Luu K, Blum MGB, Bazin E (2018) Evaluation of redundancy analysis to identify signatures of local adaptation. Mol Ecol Resour 18:1223–1233
    CAS  PubMed  Article  PubMed Central  Google Scholar 

    Catchen J, Hohenlohe PA, Bassham S, Amores A, Cresko WA (2013) Stacks: an analysis tool set for population genomics. Mol Ecol 22:3124–3140
    PubMed  PubMed Central  Article  Google Scholar 

    Caye K, Jay F, Michel O, François O (2018) Fast inference of individual admixture coefficients using geographic data. Ann Appl Stat 12:586–608
    Article  Google Scholar 

    Clarke RT, Rothery P, Raybould AF (2002) Confidence limits for regression relationships between distance matrices: estimating gene flow with distance. JABES 7:361
    Article  Google Scholar 

    Conesa A, Götz S, García-Gómez JM, Terol J, Talón M, Robles M (2005) Blast2GO: a universal tool for annotation, visualization and analysis in functional genomics research. Bioinformatics 21:3674–3676
    CAS  Article  Google Scholar 

    Delph LF (2018) The study of local adaptation: a thriving field of research. J Heredity 1:1–2
    Article  Google Scholar 

    Denver RJ (1997) Proximate mechanisms of phenotypic plasticity in amphibian metamorphosis. Integr Comp Biol 37:172–184
    CAS  Google Scholar 

    Dyer RJ, Chan DM, Gardiakos VA, Meadows CA (2012) Pollination graphs: Quantifying pollen pool covariance networks and the influence of intervening landscapes on genetic connectivity in the North American understory tree, Cornus florida. Landsc Ecol 27:239–251
    Article  Google Scholar 

    Forester BR, Lasky JR, Wagner HH, Urban DL (2018) Comparing methods for detecting multilocus adaptation with multivariate genotype–environment associations. Mol Ecol 27:2215–2233
    CAS  PubMed  Article  PubMed Central  Google Scholar 

    Fox F, Weisberg S (2019) An R Companion to Applied Regression, Third Edition. Sage, Thousand Oaks CA, https://socialsciences.mcmaster.ca/jfox/Books/Companion/

    Fraser DJ, Weir L, Bernatchez L, Hansen MM, Taylor EB (2011) Extent and scale of local adaptation in salmonid fishes: review and meta-analysis. Heredity 106:4040–4420
    Article  Google Scholar 

    Frichot E, François O (2015) LEA: An R package for landscape and ecological association studies. Methods Ecol Evol 6:925–929
    Article  Google Scholar 

    Frichot E, Schoville SD, Bouchard G, François O (2013) Testing for associations between loci and environmental gradients using latent factor mixed models. Mol Biol Evol 30:1687–1699
    CAS  PubMed  PubMed Central  Article  Google Scholar 

    Galas L, Raoult E, Tonon M-C, Okada R, Jenks BG, Castaño JP et al. (2009) TRH acts as a multifunctional hypophysiotropic factor in vertebrates. Gen Comp Endocrinol 164:40–50

    Gjertsen AK (2007) Accuracy of forest mapping based on Landsat TM data and a kNN-based method. Remote Sens Environ 110:420–430
    Article  Google Scholar 

    Gosselin T (2018) grur: an R package tailored for RADseq data imputations. R package version 0.0.10. https://github.com/thierrygosselin/grur. https://doi.org/10.5281/zenodo.496176

    Gosselin T, Anderson EC, Bradbury I (2016) assigner: Assignment Analysis with GBS/RAD Data using R. R package version 0.4.1. https://github.com/thierrygosselin/assigner. https://doi.org/10.5281/zenodo.51453

    Gosner KL (1960) A simplified table for staging anuran embryos and larvae with notes on identification. Herpetologica 16:183–190
    Google Scholar 

    Graham LJ, Haines-Young RH, Field R (2017) Metapopulation modeling of long-term urban habitat-loss scenarios. Landsc Ecol 32:989–1003
    PubMed  PubMed Central  Article  Google Scholar 

    Haldane JBS (1930) A mathematical theory of natural and artificial selection. (Part VI, Isolation.). Math Proc Camb Philos Soc 26:220–230
    Article  Google Scholar 

    Hammond SA, Warren RL, Vandervalk BP, Kucuk E, Khan H, Gibb EA et al. (2017) The North American bullfrog draft genome provides insight into hormonal regulation of long noncoding RNA. Nature. Communications 8:1433
    Google Scholar 

    Hangartner S, Laurila A, Räsänen K (2012) Adaptive divergence in Moor Frog (Rana arvalis) populations along an acidification gradient: inferences from Qst–Fst correlations. Evolution 66:867–881
    PubMed  Article  PubMed Central  Google Scholar 

    Hanski I, Mononen T, Ovaskainen O (2011) Eco-evolutionary metapopulation dynamics ant the spatial scale of adaptation. Am Naturalist 177:29–43
    Article  Google Scholar 

    Hedrick PW (2013) Adaptive introgression in animals: examples and comparison to new mutation and standing variation as sources of adaptive variation. Mol Ecol 22:4606–4618
    PubMed  Article  PubMed Central  Google Scholar 

    Hellsten U, Harland RM, Gilchrist MJ, Hendrix D, Jurka J, Kapitonov V et al. (2010) The genome of the western clawed frog Xenopus tropicalis. Science 328:633–636
    CAS  PubMed  PubMed Central  Article  Google Scholar 

    Hemmer-Hansen J, Nielsen EE, Therkidsen NO, Taylor MI, Ogden R, Geffen AJ et al. (2013) A genomic island linked to ecotype divergence in Atlantic cod. Mol Ecol 22:2653–2667
    PubMed  Article  PubMed Central  Google Scholar 

    Hendry AP, Day T (2005) Population structure attributable to reproductive time: isolation by time and adaptation by time. Mol Ecol 14:901–916
    CAS  PubMed  Article  PubMed Central  Google Scholar 

    Hoban S, Kelley JL, Lottherhos KE, Antolin MF, Bradburd G, Lowry DB et al. (2016) Finding the genomic basis of local adaptation: pitfalls, practical solutions, and future directions. Am Naturalist 188:379–397
    Article  Google Scholar 

    Holt RD, Roy M (2007) Predation Can increase the prevalence of infectious disease. Am Naturalist 169:690–699
    Article  Google Scholar 

    Homola JJ, Loftin CS, Kinnison MT (2019) Landscape genetics reveals unique and shared effects of urbanization for sympatric pool-breeding amphibians. Ecol Evol 9:17799–17823
    Article  Google Scholar 

    Ishwaran H, Kogalur UB (2018) Fast unified random forests for survival, regression, and classification (RF-SRC), R package version 2.7.0

    Ismail SA, Kokko H (2019) An analysis of mating biases in trees. Mol Ecol 29:1–15
    Google Scholar 

    Jenkins DG, Carey M, Czerniewska J, Fletchet J, Hether T, Jones A et al. (2010) A meta-analysis of isolation by distance: relic or reference standard for landscape genetics? Ecography 33:315–320
    Google Scholar 

    Johansson F, Halvarsson P, Mikolajewski DJ, Höglund J (2017) Genetic differentiation in the boreal dragonfly Leucorrhinia dubia in the Palearctic region. Biol J Linn Soc 121:294–304
    Article  Google Scholar 

    Johansson M, Primmer CR, Sahlsten J, Merila J (2005) The influence of landscape structure on occurrence, abundance and genetic diversity of the common frog, Rana temporaria. Global Change Biol 11:1664–1679
    Article  Google Scholar 

    Jombart T (2008) adegenet: a R package for the multivariate analysis of genetic markers. Bioinformatics 24:1403–1405
    CAS  PubMed  Article  PubMed Central  Google Scholar 

    Jombart T, Ahmed I (2011) adegenet 1.3-1: new tools for the analysis of genome-wide SNP data. Bioinformatics 27:3070–3071
    CAS  PubMed  PubMed Central  Article  Google Scholar 

    Kawecki TJ, Ebert D (2004) Conceptual issues in local adaptation. Ecol Lett 7:1225–1241
    Article  Google Scholar 

    Korhonen L, Korhonen K, Rautiainen M, Stenberg P (2006) Estimation of forest canopy cover: a comparison of field measurement techniques. Silva Fennica 40:577–588
    Article  Google Scholar 

    Legendre L, Legendre P (1998) Numerical ecology. Second English edition. Elsevier Science BV, Amsterdam, The Netherlands

    Legendre P, Oksanen J, ter Braak CJF (2011) Testing the significance of canonical axes in redundancy analysis. Methods Ecol Evol 2:269–277
    Article  Google Scholar 

    Leinonen T, McCairns RJS, O’Hara RB, Merilä J (2013) QST–FST comparisons: evolutionary and ecological insights from genomic heterogeneity. Nat Rev Genet 14:179–190
    CAS  PubMed  Article  PubMed Central  Google Scholar 

    Leimu R, Fischer M (2008) A meta-analysis of local adaptation in plants. PLoS ONE 3:e4010
    PubMed  PubMed Central  Article  CAS  Google Scholar 

    Lenormand T (2002) Gene flow and the limits to natural selection. Trends Ecol Evol 17:183–189
    Article  Google Scholar 

    Lenhardt PP, Brühl CA, Leeb C, Theissinger K (2017) Amphibian population genetics in agricultural landscapes: does viniculture drive the population structuring of the European common frog (Rana temporaria)? PeerL 5:e3520
    Article  CAS  Google Scholar 

    Lind MI, Johansson F (2007) The degree of adaptive phenotypic plasticity is correlated with the spatial environmental heterogeneity experienced by island populations of Rana temporaria. J Evolut Biol 20:1288–1297
    CAS  Article  Google Scholar 

    Lüdecke D, Makowski D, Waggoner P, Patil I (2020) performance: Assessment of regression models performance. R package version 0.4.6. https://CRAN.R-project.org/package=performance

    Luquet E, Mörch PR, Cortázar‐Chinarro M, Meyer‐Lucht Y, Höglund J, Laurila A (2019) Post‐glacial colonization routes coincide with a life‐history breakpoint along a latitudinal gradient. J Evol Biol 32:356–368
    PubMed  Article  PubMed Central  Google Scholar 

    Luu K, Bazin E, Blum MGB (2017) pcadapt: an R package to perform genome scans for selection based on principal component analysis. Mol Ecol Resour 17:67–77
    CAS  PubMed  Article  PubMed Central  Google Scholar 

    Maes GE, Pujolar JM, Hellemans B, Volkaert FA (2006) Evidence for isolation by time in the European eel (Anguilla anguilla). Mol Ecol 15:2095–2107
    CAS  PubMed  Article  PubMed Central  Google Scholar 

    Mastretta‐Yanes A, Arrigo N, Alvarez N, Jorgensen TH, Piñero D, Emerson BC (2015) Restriction site-associated DNA sequencing, genotyping error estimation and de novo assembly optimization for population genetic inference. Mol Ecol Resour 15:28–41
    PubMed  Article  CAS  PubMed Central  Google Scholar 

    McRae BH (2006) Isolation by Resistance. Evolution 60:1551–1561
    PubMed  Article  PubMed Central  Google Scholar 

    Meirmans PG (2015) Seven common mistakes in population genetics and how to avoid them. Mol Ecol 24:3223–3231
    PubMed  Article  PubMed Central  Google Scholar 

    Meurling S, Kärvemo S, Chondrelli N, Cortazar-Chinarro M, Åhlén D, Brookes L et al. (2020) Occurrence of Batrachochytrium dendrobatidis in Sweden: higher infection prevalence in southern species. Dis Aquat Organ in press.

    Michel MJ (2011) Spatial dependence of phenotype-environment associations for tadpoles in natural ponds. Evolut Ecol 25:915–932
    Article  Google Scholar 

    Montero-Mendieta S, Tan K, Christmas MJ, Olsson A, Vilà C, Wallberg A et al. (2019) The genomic basis of adaptation to high-altitude habitats in the eastern honey bee (Apis cerana). Mol Ecol 28:746–760.
    PubMed  PubMed Central  Google Scholar 

    Nakajima K, Fujimoto K, Yaoita Y (2005) Programmed cell death during amphibian metamorphosis. Semin Cell Dev Biol 16:271–280
    CAS  PubMed  Article  PubMed Central  Google Scholar 

    Nunes AL, Orizaola G, Laurila A, Rebelo R (2014) Rapid evolution of constitutive and inducible defenses against an invasive predator. Ecology 95:1520–1530
    PubMed  Article  PubMed Central  Google Scholar 

    Oksanen J, Guillaume-Blanchet F, Friendly M, Kindt R, Legendre P, McGlinn D et al. (2019) vegan:Community Ecology Package. R package version 2:5–5. https://CRAN.R-project.org/package=vegan

    Palik B, Batzer DP, Buech R, Nichols D, Cease K, Egeland L et al. (2001) Seasonal pond characteristics across a chronosequence of adjacent forest ages in northern Minnesota, USA. Wetlands 21:532–542
    Article  Google Scholar 

    Papaïx J, David O, Lannou C, Monod H (2013) Dynamics of adaptation in spatially heterogeneous metapopulations. PLoS ONE 8:e54697. https://doi.org/10.1371/journal.pone.0054697
    CAS  Article  PubMed  PubMed Central  Google Scholar 

    Paxton RJ, Thorén PA, Tengö J, Estoup A, Pamilo P (1996) Mating structure and nestmate relatedness in a communal bee, Andrena jacobi (Hymenoptera, Andrenidae), using microsatellites. Mol Ecol 5:511–519
    CAS  PubMed  Article  PubMed Central  Google Scholar 

    Peterson BK, Weber JN, Kay EH, Fisher HS, Hoekstra HE (2012) Double Digest RADseq: an inexpensive method for de novo SNP discovery and genotyping in model and non-model species. PLOS ONE 7:e37135
    CAS  PubMed  PubMed Central  Article  Google Scholar 

    R Core Team (2019) R: A language and environment for statistical computing. R Foundation for Statistical Computing, Vienna, Austria, https://www.R-project.org/

    Rašić G, Filipović I, Weeks AR, Hoffmann AA (2014) Genome-wide SNPs lead to strong signals of geographic structure and relatedness patterns in the major arbovirus vector, Aedes aegypti. BMC Genomics 15:275
    PubMed  PubMed Central  Article  Google Scholar 

    Reese H, Nilsson M, Pahén TG, Hagner O, Joyce S, Tingelöf U et al. (2003) Countrywide estimates of forest variables using satellite data and field data from the National Forest Inventory. Ambio 32:542–548
    PubMed  Article  PubMed Central  Google Scholar 

    Ribolli J, Hoeinghaus DJ, Johnson JA, Zaniboni-Filho E, de Freitas PD, Galetti PM (2017) Isolation-by-time population structure in potamodromous Dourado Salminus brasiliensis in southern Brazil. Conserv Genet 18:67–76
    Article  Google Scholar 

    Richardson JL, Urban MC, Bolnick DI, Skelly DK (2014) Microgeographic adaptation and the spatial scale of evolution. Trends Ecol Evol 29:165–176
    PubMed  Article  PubMed Central  Google Scholar 

    Richter-Boix A, Katzenberger M, Duarte H, Quintela M, Tejedo M, Laurila A (2015) Local divergence of thermal reaction norms among amphibian populations is affected by pond temperature variation. Evolution 69:2210–2226
    PubMed  Article  PubMed Central  Google Scholar 

    Richter-Boix A, Quintela M, Kierczak M, Franch M, Laurila A (2013) Fine-grained adaptive divergence in an amphibian: genetic basis of phenotypic divergence and the role of nonrandom gene flow in restricting effective migration among wetlands. Mol Ecol 22:1322–1340
    CAS  PubMed  Article  PubMed Central  Google Scholar 

    Rödin-Mörch P (2019) Population divergence at different spatial scales in a wide-spread amphibian. PhD thesis. Uppsala University, Sweden
    Google Scholar 

    Rödin-Mörch P, Luquet E, Meyer-Lucht Y, Richter‐Boix A, Höglund J, Laurila A (2019) Latitudinal divergence in a widespread amphibian: contrasting patterns of neutral and adaptive genomic variation. Mol Ecol 28:2996–3011
    PubMed  Article  PubMed Central  Google Scholar 

    Rollins-Smith LA (2009) The role of amphibian antimicrobial peptides in protection of amphibians from pathogens linked to global amphibian declines. Biochim et Biophys Acta 1788:1593–1599
    CAS  Article  Google Scholar 

    Rollins-Smith LA, Conlon JM (2005) Antimicrobial peptide defenses against chytridiomycosis, an emerging infectious disease of amphibian populations. Dev Comp Immunol 29:589–598
    CAS  PubMed  Article  PubMed Central  Google Scholar 

    Row JR, Knick ST, Oyler‐McCance SJ, Lougheed SC, Fedy BC (2017) Developing approaches for linear mixed modeling in landscape genetics through landscape-directed dispersal simulations. Ecol Evol 7:3751–3761
    PubMed  PubMed Central  Article  Google Scholar 

    Rundle HD, Nosil P (2005) Ecological speciation. Ecol Lett 8:336–352
    Article  Google Scholar 

    Safner T, Miaud C, Gaggiotti O, Decout S, Rioux D, Zundel S et al. (2011) Combining demography and genetic analysis to asses the population structure of an amphibian in a human-dominated landscape. Conserv Genet 12:161–173
    Article  Google Scholar 

    Santos H, Rousselet J, Magnoux E, Paiva MR, Branco M, Kerdelhué C (2007) Genetic isolation though time: allochronic differentiation of a phonologically atypical population of the pine processionary moth. Proc R Soc B 274:935–941
    CAS  PubMed  Article  PubMed Central  Google Scholar 

    Savolainen O, Lascoux M, Merilä J (2013) Ecological genomics of local adaptation. Nat Rev Genet 14:807–820
    CAS  PubMed  Article  PubMed Central  Google Scholar 

    Savolainen O, Pyhäjärvi T, Knürr T (2007) Gene flow and local adaptation in trees. Annu Rev Ecol Evol Syst 38:595–619
    Article  Google Scholar 

    Semlitsch RD (2008) Differentiating migration and dispersal processes for pond-breeding amphibians. J Wildl Manag 72:260–267
    Article  Google Scholar 

    Session AM, Uno Y, Kwon T, Chapman JA, Toyoda A, Takahashi S et al. (2016) Genome evolution in the allotetraploid frog Xenopus laevis. Nature 538:336–343
    CAS  PubMed  PubMed Central  Article  Google Scholar 

    Sexton JP, Hangartner SB, Hoffmann AA (2014) Genetic isolation by environment or distance: which pattern of gene flow is most common? Evolution 68:1–15
    CAS  PubMed  Article  PubMed Central  Google Scholar 

    Shafer ABA, Wolf JBW (2013) Widespread evidence for incipient ecological speciation: a meta-analysis of isolation-by-ecology. Ecol Lett 16:940–950
    PubMed  Article  PubMed Central  Google Scholar 

    Sillero N, Campos J, Bonardi A, Corti C, Creemers R, Crochet P-A et al. (2014) Updated distribution and biogeography of amphibians and reptiles of Europe. Amphib Reptilia 35:1–31
    Article  Google Scholar 

    Skelly DK (2004) Microgeographic countergradient variation in the wood frog, Rana Sylvatica. Evolution 58:160–165
    PubMed  Article  PubMed Central  Google Scholar 

    Smith MA, Green DM (2005) Dispersal and the metapopulation paradigm in amphibian ecology and conservation: are all amphibian populations metapopulations? Ecography 28:110–128
    Article  Google Scholar 

    Storey JD, Bass AJ, Dabney A, Robinson D (2019) qvalue: Q-value estimation for false discovery rate control. R package version 2.16.0. http://github.com/jdstorey/qvalue

    Storfer A, Murphy MA, Evans JS, Goldberg CS, Robinson S, Spear SF et al. (2007) Putting the ‘landscape’ in landscape genetics. Heredity 98:128–142
    CAS  PubMed  Article  PubMed Central  Google Scholar 

    Sun Y-B, Xiong Z-J, Xiang X-Y, Liu S-P, Zhou W-W, Tu X-L et al. (2015) Whole-genome sequence of the Tibetan frog Nanorana parkeri and the comparative evolution of tetrapod genomes. Proc Natl Acad Sci USA 112:E1257–E1262
    CAS  PubMed  Article  PubMed Central  Google Scholar 

    Tang F, Ishwaran H (2017) Random forest missing data algorithms. Stat Anal Data Min 10:363–377
    PubMed  PubMed Central  Article  Google Scholar 

    Tigano A, Friesen VL (2016) Genomics of local adaptation with gene flow. Mol Ecol 25:2144–2164
    PubMed  Article  PubMed Central  Google Scholar 

    Van Buskirk J (2014) Incipient habitat race formation in an amphibian. J Evolut Biol 27:585–592
    Article  Google Scholar 

    Van Strien MJ, Holderegger R, van Heck HJ (2015) Isolation-by-distance in landscapes: considerations for landscape genetics. Heredity 114:27–37
    PubMed  Article  PubMed Central  Google Scholar 

    Vasemägi A (2006) The adaptive hypothesis of clinal variation revisited: single-locus clines as a result of spatially restricted gene flow. Genetics 173:2411–2414
    PubMed  PubMed Central  Article  CAS  Google Scholar 

    Vendrami DLJ, Telesca L, Weigand H, Weiss M, Fawcett K, Lehman K et al. (2017) RAD sequencing resolves fine-scale population structure in a benthic invertebrate: implications for understanding phenotypic plasticity. R Soc Open Sci 4:160548
    PubMed  PubMed Central  Article  Google Scholar 

    Vincent B, Dionne M, Kent MP, Lien S, Bernatchez L (2013) Landscape genomics in atlantic salmon (salmo salar): searching for gene–environment interactions driving local adaptation. Evolution 67:3469–3487
    PubMed  Article  PubMed Central  Google Scholar 

    Vinogradov AE (1998) Genome size and GC-percent in vertebrates as determined by flow cytometry: the triangular relationship. Cytometry 31:100–109
    CAS  PubMed  Article  PubMed Central  Google Scholar 

    Vos CC, Jong AGA-D, Goedhart PW, Smulders MJM (2001) Genetic similarity as a measure for connectivity between fragmented populations of the moor frog (Rana arvalis). Heredity 86:598–608
    CAS  PubMed  Article  PubMed Central  Google Scholar 

    Wang IJ, Bradburd GS (2014) Isolation by environment. Mol Ecol 23:5649–5662
    PubMed  Article  PubMed Central  Google Scholar 

    Watanabe K, Kazama S, Omura T, Monaghan MT (2014) Adaptive genetic divergence along narrow environmental gradients in four stream insects. PLoS ONE 9:e93055
    PubMed  PubMed Central  Article  CAS  Google Scholar 

    Weir BS, Cockerham CC (1984) Estimating F-statistics for the analysis of population structure. Evolution 38:1358–1370
    CAS  Google Scholar 

    Whelan NV, Galaska MP, Sipley BN, Weber JM, Johnson PD, Halanych KM et al. (2019) Riverscape genetic variation, migration patterns, and morphological variation of the threatened Round Rocksnail, Leptoxis ampla. Mol Ecol 28:1593–1610
    PubMed  Article  PubMed Central  Google Scholar 

    Whitlock MC, McCauley DE (1999) Indirect measures of gene flow and migration: FST ≠ 1/(4 Nm +1). Heredity 82:117
    PubMed  Article  PubMed Central  Google Scholar 

    Wright S (1943) Isolation by distance. Genetics 28:114–138
    CAS  PubMed  PubMed Central  Google Scholar 

    Yandell M, Ence D (2012) A beginner’s guide to eukaryotic genome annotation. Nat Rev Genet 13:329–342
    CAS  PubMed  Article  PubMed Central  Google Scholar 

    Yeaman S, Otto SP (2011) Establishment and maintenance of adaptive genetic divergence under migration, selection, and drift. Evolution 65:2123–2129
    PubMed  Article  PubMed Central  Google Scholar 

    Youngquist M, Inoue K, Berg D, Boone MD (2017) Effects of land use on population presence and genetic structure of an amphibian in an agricultural landscape. Landsc Ecol 32:147–162
    Article  Google Scholar 

    Yu L, Wang G-D, Ruan J, Chen Y-B, Yang C-P, Cao X et al. (2016) Genomic analysis of snub-nosed monkeys (Rhinopithecus) identifies genes and processes related to high-altitude adaptation. Nat Genet 48:947–952
    CAS  PubMed  Article  PubMed Central  Google Scholar 

    Zamudio KR, Wieczorek AM (2007) Fine-scale spatial genetic structure and dispersal among spotted salamander (Ambystoma maculatum) breeding populations. Mol Ecol 16:257–274
    PubMed  Article  PubMed Central  Google Scholar 

    Zellmer AJ (2018) Microgeographic morphological variation across larval wood frog populations associated with environment despite gene flow. Ecol Evol 8:2504–2517
    PubMed  PubMed Central  Article  Google Scholar 

    Zhang H, Xu Q, Krajewski S, Krajewska M, Xie Z, Fuess S et al. (2000) BAR: An apoptosis regulator at the intersection of caspases and Bcl-2 family proteins. Proc Natl Acad Sci USA 97:2597–2602
    CAS  PubMed  Article  PubMed Central  Google Scholar  More