Visual mate preference evolution during butterfly speciation is linked to neural processing genes
1.
Coyne, J. A., Orr, H. A. Speciation (Sinauer, Sunderland, MA, 2004).
2.
Rosenthal, G. G. Mate Choice (Princeton University Press, 2017).
3.
Mayr, E. Animal Species and Evolution (Harvard University Press, 1963).
4.
Arguello, J. R. & Benton, R. Open questions: tackling Darwin’s “instincts”: the genetic basis of behavioural evolution. BMC Biol. 15, 8–10 (2017).
Google Scholar
5.
Bay, R. A. et al. Genetic coupling of female mate choice with polygenic ecological divergence facilitates stickleback speciation. Curr. Biol. 27, 3344–3349 (2017).
CAS PubMed PubMed Central Google Scholar
6.
Shahandeh, M. P., Pischedda, A., Rodriguez, J. M. & Turner, T. L. The genetics of male pheromone preference difference between Drosophila melanogaster and Drosophila simulans. G3 Genes Genomes Genet. 10, 401–415 (2020).
Google Scholar
7.
Gould, F. et al. Sexual isolation of male moths explained by a single pheromone response QTL containing four receptor genes. Proc. Natl Acad. Sci. USA. 107, 8660–8665 (2010).
ADS CAS PubMed Google Scholar
8.
Leary, G. P. et al. Single mutation to a sex pheromone receptor provides adaptive specificity between closely related moth species. Proc. Natl Acad. Sci. USA 109, 14081–14086 (2012).
ADS CAS PubMed Google Scholar
9.
Fan, P. et al. Genetic and neural mechanisms that inhibit Drosophila from mating with other species. Cell 154, 89–102 (2013).
CAS PubMed Google Scholar
10.
Brand, P. et al. The evolution of sexual signaling is linked to odorant receptor tuning in perfume-collecting orchid bees. Nat. Commun. 11, 1–11 (2020).
ADS Google Scholar
11.
Xu, M. & Shaw, K. L. Genetic coupling of signal and preference facilitates sexual isolation during rapid speciation. Proc. R. Soc. B 286, 20191607 (2019).
CAS PubMed Google Scholar
12.
Seehausen, O. et al. Speciation through sensory drive in cichlid fish. Nature 455, 620–626 (2008).
ADS CAS PubMed Google Scholar
13.
Hench, K., Vargas, M., Höppner, M. P., McMillan, W. O. & Puebla, O. Inter-chromosomal coupling between vision and pigmentation genes during genomic divergence. Nat. Ecol. Evol. 3, 657–667 (2019).
PubMed Google Scholar
14.
Merrill, R. M. et al. Disruptive ecological selection on a mating cue. Proc. R. Soc. B Biol. Sci. 279, 4907–4913 (2012).
Google Scholar
15.
Jiggins, C. D., Naisbit, R. E., Coe, R. L. & Mallet, J. Reproductive isolation caused by colour pattern mimicry. Nature 411, 302–305 (2001).
ADS CAS PubMed Google Scholar
16.
Servedio, M. R., Van Doorn, G. S., Kopp, M., Frame, A. M. & Nosil, P. Magic traits in speciation: ‘magic’ but not rare? Trends Ecol. Evol. 26, 389–397 (2011).
PubMed Google Scholar
17.
Jiggins, C. D. Ecological speciation in mimetic butterflies. Bioscience 58, 541–548 (2008).
Google Scholar
18.
Jiggins, C. D., Estrada, C. & Rodrigues, A. Mimicry and the evolution of premating isolation in Heliconius melpomene Linnaeus. J. Evol. Biol. 17, 680–691 (2004).
CAS PubMed Google Scholar
19.
Merrill, R. M. et al. Genetic dissection of assortative mating behaviour. PLoS Biol. 17, e2005902 (2018).
Google Scholar
20.
Reed, R. D. et al. Optix drives the repeated convergent evolution of butterfly wing pattern mimicry. Science 333, 1137–1141 (2011).
ADS CAS PubMed Google Scholar
21.
Martin, A. et al. Diversification of complex butterfly wing patterns by repeated regulatory evolution of a Wnt ligand. Proc. Natl Acad. Sci. USA 109, 12632–12637 (2012).
ADS CAS PubMed Google Scholar
22.
Nadeau, N. J. et al. The gene cortex controls mimicry and crypsis in butterflies and moths. Nature 534, 106–110 (2016).
ADS CAS PubMed PubMed Central Google Scholar
23.
Felsenstein, J. Skepticism Towards Santa Rosalia, or why are there so few kinds of animals? Evolution 35, 124–138 (1981).
PubMed Google Scholar
24.
Massey, J. H., Chung, D., Siwanowicz, I., Stern, D. L. & Wittkopp, P. J. The yellow gene influences Drosophila male mating success through sex comb melanization. Elife 8, 1–20 (2019).
Google Scholar
25.
Merrill, R. M., Van Schooten, B., Scott, J. A. & Jiggins, C. D. Pervasive genetic associations between traits causing reproductive isolation in Heliconius butterflies. Proc. R. Soc. B Biol. Sci. 278, 511–518 (2011).
Google Scholar
26.
Van Schooten, B. et al. Divergence of chemosensing during the early stages of speciation. Proc. Natl. Acad. Sci. USA 117, 16348–16447 (2020).
Google Scholar
27.
Seeholzer, L. F., Seppo, M., Stern, D. L. & Ruta, V. Evolution of a central neural circuit underlies Drosophila mate preferences. Nature 559, 564–569 (2018).
ADS CAS PubMed PubMed Central Google Scholar
28.
Martin, S. H. et al. Genome-wide evidence for speciation with gene flow in Heliconius butterflies. Genome Res. 23, 1817–1828 (2013).
CAS PubMed PubMed Central Google Scholar
29.
Davey, J. et al. Major improvements to the Heliconius melpomene genome assembly used to confirm 10 chromosome fusion events in 6 million years of butterfly evolution. G3 6, 695–708 (2015).
Google Scholar
30.
Darragh, K. et al. A novel terpene synthase produces an anti-aphrodisiac pheromone in the butterfly Heliconius melpomene. Preprint at https://www.biorxiv.org/content/10.1101/779678v1 (2019).
31.
Pinharanda, A. et al. Sexually dimorphic gene expression and transcriptome evolution provide mixed evidence for a fast-Z effect in Heliconius. J. Evol. Biol. 32, 194–204 (2019).
CAS PubMed PubMed Central Google Scholar
32.
Roberts, A., Pimentel, H., Trapnell, C. & Pachter, L. Identification of novel transcripts in annotated genomes using RNA-seq. Bioinformatics 27, 2325–2329 (2011).
CAS PubMed Google Scholar
33.
Wittkopp, P. J., Haerum, B. K. & Clark, A. G. Evolutionary changes in cis and trans gene regulation. Nature 430, 85–88 (2004).
ADS CAS PubMed Google Scholar
34.
Thomas, P. D. et al. Applications for protein sequence-function evolution data: mRNA/protein expression analysis and coding SNP scoring tools. Nucleic Acids Res. 34, 645–650 (2006).
ADS Google Scholar
35.
Choi, Y., Sims, G. E., Murphy, S., Miller, J. R. & Chan, A. P. Predicting the functional effect of amino acid substitutions and indels. PLoS ONE 7, e46688 (2012).
ADS CAS PubMed PubMed Central Google Scholar
36.
Martin, S. H., Davey, J. W. & Jiggins, C. D. Evaluating the use of ABBA-BABA statistics to locate introgressed loci. Mol. Biol. Evol. 32, 244–257 (2015).
CAS PubMed Google Scholar
37.
Martin, S. H., Davey, J. W., Salazar, C. & Jiggins, C. D. Recombination rate variation shapes barriers to introgression across butterfly genomes. PLoS Biol. 17, 1–28 (2019).
Google Scholar
38.
Nosil, P. Ecological Speciation (Oxford University Press, 2012).
39.
Kopp, M. et al. Mechanisms of assortative mating in speciation with gene flow: connecting theory and empirical research. Am. Nat. 191, 1–20 (2018).
PubMed Google Scholar
40.
Butlin, R. K. & Smadja, C. M. Coupling, reinforcement, and speciation. Am. Nat. 191, 155–172 (2018).
PubMed Google Scholar
41.
Westerman, E. L. et al. Aristaless controls butterfly wing color variation used in mimicry and mate choice. Curr. Biol. 28, 3469–3474 (2018).
CAS PubMed PubMed Central Google Scholar
42.
Kronfrost, M. R. et al. Linkage of butterfly mate preference and wing color preference cue at the genomic location of wingless. Proc. Natl Acad. Sci. USA 103, 6575–6580 (2006).
ADS Google Scholar
43.
Chamberlain, N. L., Hill, R. I., Kapan, D. D., Gilbert, L. E. & Kronforst, M. R. Polymorphic butterfly reveals the missing link in ecological speciation. Science 326, 847–850 (2009).
ADS CAS PubMed PubMed Central Google Scholar
44.
McCulloch, K. J. et al. Sexual dimorphism and retinal mosaic diversification following the evolution of a violet receptor in butterflies. Mol. Biol. Evol. 34, 2271–2284 (2017).
CAS PubMed Google Scholar
45.
Zaccardi, G., Kelber, A., Sison-Mangus, M. P. & Briscoe, A. D. Colour discrimination in the red range with only one long-wavelength sensitive opsin. J. Exp. Biol. 209, 1944–1955 (2006).
PubMed Google Scholar
46.
Monteiro, A. Gene regulatory networks reused to build novel traits. BioEssays 34, 181–186 (2012).
CAS PubMed Google Scholar
47.
Martin, A. et al. Multiple recent co-options of optix associated with novel traits in adaptive butterfly wing radiations. Evodevo 5, 7 (2014).
PubMed PubMed Central Google Scholar
48.
Kandel, E. R., Schwartz, J. H., Jessell, T. M., Siegelbaum, S. A. & Hudspeth. A. J. Principles of Neural Science, 2012th edn. (McGraw Hill, New York, 2000).
49.
Ramsey, M. E., Vu, W. & Cummings, M. E. Testing synaptic plasticity in dynamic mate choice decisions: N-methyl d-aspartate receptor blockade disrupts female preference. Proc. R. Soc. B Biol. Sci. 281, 20140047 (2014).
Google Scholar
50.
Bloch, N. I. et al. Early neurogenomic response associated with variation in guppy female mate preference. Nat. Ecol. Evol. 2, 1772–1781 (2018).
PubMed PubMed Central Google Scholar
51.
Delclos, P. J., Forero, S. A. & Rosenthal, G. G. Divergent neurogenomic responses shape social learning of both personality and mate preference. J. Evol. Biol. 223 (2020)
52.
Yamaguchi, M. Role of regucalcin in brain calcium signaling. Integr. Biol. 4, 825–837 (2012).
CAS Google Scholar
53.
Berridge, M. J. Neuronal calcium signaling. Neuron 21, 13–26 (1998).
CAS PubMed Google Scholar
54.
Bashaw, G. J. & Klein, R. Signaling from axon guidance receptors. Cold Spring Harb. Perspect. Biol. 2, 1–17 (2010).
Google Scholar
55.
Prud’homme, B., Gompel, N. & Carroll, S. B. Emerging principles of regulatory evolution. Proc. Natl Acad. Sci. USA 104, 8605–8612 (2007).
ADS PubMed Google Scholar
56.
Preger-Ben Noon, E. et al. Comprehensive analysis of a cis-regulatory region reveals pleiotropy in enhancer function. Cell Rep. 22, 3021–3031 (2018).
CAS PubMed Google Scholar
57.
Lewis, J. et al. Parallel evolution of ancient, pleiotropic enhancers underlies butterfly wing pattern mimicry. Proc. Natl Acad. Sci. USA. 116, 24174–24183 (2019).
CAS PubMed Google Scholar
58.
Chouteau, M., Llaurens, V., Piron-Prunier, F. & Joron, M. Polymorphism at a mimicry supergene maintained by opposing frequency-dependent selection pressures. Proc. Natl Acad. Sci. USA 114, 8325–8329 (2017).
CAS PubMed Google Scholar
59.
Southcott, L. & Kronforst, M. R. Female mate choice is a reproductive isolating barrier in Heliconius butterflies. Ethology 124, 862–869 (2018).
PubMed PubMed Central Google Scholar
60.
González-Rojas, M. F. et al. Chemical signals act as the main reproductive barrier between sister and mimetic Heliconius butterflies. Proc. R. Soc. B Biol. 287, 20200587 (2020).
Google Scholar
61.
Zhang, W. et al. Comparative transcriptomics provides insights into reticulate and adaptive evolution of a butterfly radiation. Genome Biol. Evol. 11, 2963–2975 (2019).
PubMed PubMed Central Google Scholar
62.
Weber, J. N., Peterson, B. K. & Hoekstra, H. E. Discrete genetic modules are responsible for complex burrow evolution in Peromyscus mice. Nature 493, 402–405 (2013).
ADS CAS PubMed Google Scholar
63.
Cande, J., Andolfatto, P., Prud’homme, B., Stern, D. L. & Gompel, N. Evolution of multiple additive loci caused divergence between Drosophila yakuba and D. santomea in wing rowing during male courtship. PLoS ONE 7, 1–10 (2012).
Google Scholar
64.
McBride, C. S. et al. Evolution of mosquito preference for humans linked to an odorant receptor. Nature 515, 222–227 (2014).
ADS CAS PubMed PubMed Central Google Scholar
65.
Ding, Y., Berrocal, A., Morita, T., Longden, K. D. & Stern, D. L. Natural courtship song variation caused by an intronic retroelement in an ion channel gene. Nature 536, 329–332 (2016).
ADS CAS PubMed Google Scholar
66.
Bendesky, A. et al. The genetic basis of parental care evolution in monogamous mice. Nature 544, 434–439 (2017).
ADS CAS PubMed PubMed Central Google Scholar
67.
Auer, T. O. et al. Olfactory receptor and circuit evolution promote host specialization. Nature 579, 402–408 (2020).
ADS CAS PubMed PubMed Central Google Scholar
68.
Vehtari, A., Gelman, A. & Gabry, J. Practical Bayesian model evaluation using leave-one-out cross-validation and WAIC. Stat. Comput. 27, 1413–1432 (2017).
MathSciNet MATH Google Scholar
69.
Jiggins, C. D. The Ecology and Evolution of Heliconius Butterflies (Oxford University Press, 2016).
70.
Dobin, A. et al. STAR: ultrafast universal RNA-seq aligner. Bioinformatics 29, 15–21 (2013).
CAS Google Scholar
71.
Li, H. et al. The sequence alignment/map format and SAMtools. Bioinformatics 25, 2078–2079 (2009).
PubMed PubMed Central Google Scholar
72.
Anders, S., Pyl, P. T. & Huber, W. HTSeq- a Python framework to work with high-throughput sequencing data. Bioinformatics 31, 166–169 (2015).
CAS Google Scholar
73.
Love, M. I., Huber, W. & Anders, S. Moderated estimation of fold change and dispersion for RNA-seq data with DESeq2. Genome Biol. 15, 1–21 (2014).
Google Scholar
74.
Montgomery, S. H. & Mank, J. E. Inferring regulatory change from gene expression: the confounding effects of tissue scaling. Mol. Ecol. 25, 5114–5128 (2016).
CAS PubMed Google Scholar
75.
Montgomery, S. H., Rossi, M., McMillan, W. O. & Merrill, R. Neural divergence and hybrid disruption between ecologically isolated Heliconius butterflies. Preprint at https://www.biorxiv.org/content/10.1101/2020.07.01.182337v1 (2020)
76.
McKenna, A. et al. The genome analysis toolkit: a MapReduce framework for analyzing next-generation DNA sequencing data. Genome Res. 20, 1297–1303 (2010).
CAS PubMed PubMed Central Google Scholar
77.
Finn, R. D. et al. InterPro in 2017-beyond protein family and domain annotations. Nucleic Acids Res. 45, D190–D199 (2017).
CAS PubMed Google Scholar
78.
York, R. A. et al. Behaviour-dependent cis regulation reveals genes and pathways associated with bower building in cichlid fishes. Proc. Natl Acad. Sci. USA 115, 1081–1090 (2018).
Google Scholar
79.
Cingolani, P. et al. A program for annotating and predicting the effects of single nucleotide polymorphisms, SnpEff. Fly 6, 80–92 (2012).
CAS PubMed PubMed Central Google Scholar More