More stories

  • in

    Visual mate preference evolution during butterfly speciation is linked to neural processing genes

    1.
    Coyne, J. A., Orr, H. A. Speciation (Sinauer, Sunderland, MA, 2004).
    2.
    Rosenthal, G. G. Mate Choice (Princeton University Press, 2017).

    3.
    Mayr, E. Animal Species and Evolution (Harvard University Press, 1963).

    4.
    Arguello, J. R. & Benton, R. Open questions: tackling Darwin’s “instincts”: the genetic basis of behavioural evolution. BMC Biol. 15, 8–10 (2017).
    Google Scholar 

    5.
    Bay, R. A. et al. Genetic coupling of female mate choice with polygenic ecological divergence facilitates stickleback speciation. Curr. Biol. 27, 3344–3349 (2017).
    CAS  PubMed  PubMed Central  Google Scholar 

    6.
    Shahandeh, M. P., Pischedda, A., Rodriguez, J. M. & Turner, T. L. The genetics of male pheromone preference difference between Drosophila melanogaster and Drosophila simulans. G3 Genes Genomes Genet. 10, 401–415 (2020).
    Google Scholar 

    7.
    Gould, F. et al. Sexual isolation of male moths explained by a single pheromone response QTL containing four receptor genes. Proc. Natl Acad. Sci. USA. 107, 8660–8665 (2010).
    ADS  CAS  PubMed  Google Scholar 

    8.
    Leary, G. P. et al. Single mutation to a sex pheromone receptor provides adaptive specificity between closely related moth species. Proc. Natl Acad. Sci. USA 109, 14081–14086 (2012).
    ADS  CAS  PubMed  Google Scholar 

    9.
    Fan, P. et al. Genetic and neural mechanisms that inhibit Drosophila from mating with other species. Cell 154, 89–102 (2013).
    CAS  PubMed  Google Scholar 

    10.
    Brand, P. et al. The evolution of sexual signaling is linked to odorant receptor tuning in perfume-collecting orchid bees. Nat. Commun. 11, 1–11 (2020).
    ADS  Google Scholar 

    11.
    Xu, M. & Shaw, K. L. Genetic coupling of signal and preference facilitates sexual isolation during rapid speciation. Proc. R. Soc. B 286, 20191607 (2019).
    CAS  PubMed  Google Scholar 

    12.
    Seehausen, O. et al. Speciation through sensory drive in cichlid fish. Nature 455, 620–626 (2008).
    ADS  CAS  PubMed  Google Scholar 

    13.
    Hench, K., Vargas, M., Höppner, M. P., McMillan, W. O. & Puebla, O. Inter-chromosomal coupling between vision and pigmentation genes during genomic divergence. Nat. Ecol. Evol. 3, 657–667 (2019).
    PubMed  Google Scholar 

    14.
    Merrill, R. M. et al. Disruptive ecological selection on a mating cue. Proc. R. Soc. B Biol. Sci. 279, 4907–4913 (2012).
    Google Scholar 

    15.
    Jiggins, C. D., Naisbit, R. E., Coe, R. L. & Mallet, J. Reproductive isolation caused by colour pattern mimicry. Nature 411, 302–305 (2001).
    ADS  CAS  PubMed  Google Scholar 

    16.
    Servedio, M. R., Van Doorn, G. S., Kopp, M., Frame, A. M. & Nosil, P. Magic traits in speciation: ‘magic’ but not rare? Trends Ecol. Evol. 26, 389–397 (2011).
    PubMed  Google Scholar 

    17.
    Jiggins, C. D. Ecological speciation in mimetic butterflies. Bioscience 58, 541–548 (2008).
    Google Scholar 

    18.
    Jiggins, C. D., Estrada, C. & Rodrigues, A. Mimicry and the evolution of premating isolation in Heliconius melpomene Linnaeus. J. Evol. Biol. 17, 680–691 (2004).
    CAS  PubMed  Google Scholar 

    19.
    Merrill, R. M. et al. Genetic dissection of assortative mating behaviour. PLoS Biol. 17, e2005902 (2018).
    Google Scholar 

    20.
    Reed, R. D. et al. Optix drives the repeated convergent evolution of butterfly wing pattern mimicry. Science 333, 1137–1141 (2011).
    ADS  CAS  PubMed  Google Scholar 

    21.
    Martin, A. et al. Diversification of complex butterfly wing patterns by repeated regulatory evolution of a Wnt ligand. Proc. Natl Acad. Sci. USA 109, 12632–12637 (2012).
    ADS  CAS  PubMed  Google Scholar 

    22.
    Nadeau, N. J. et al. The gene cortex controls mimicry and crypsis in butterflies and moths. Nature 534, 106–110 (2016).
    ADS  CAS  PubMed  PubMed Central  Google Scholar 

    23.
    Felsenstein, J. Skepticism Towards Santa Rosalia, or why are there so few kinds of animals? Evolution 35, 124–138 (1981).
    PubMed  Google Scholar 

    24.
    Massey, J. H., Chung, D., Siwanowicz, I., Stern, D. L. & Wittkopp, P. J. The yellow gene influences Drosophila male mating success through sex comb melanization. Elife 8, 1–20 (2019).
    Google Scholar 

    25.
    Merrill, R. M., Van Schooten, B., Scott, J. A. & Jiggins, C. D. Pervasive genetic associations between traits causing reproductive isolation in Heliconius butterflies. Proc. R. Soc. B Biol. Sci. 278, 511–518 (2011).
    Google Scholar 

    26.
    Van Schooten, B. et al. Divergence of chemosensing during the early stages of speciation. Proc. Natl. Acad. Sci. USA 117, 16348–16447 (2020).
    Google Scholar 

    27.
    Seeholzer, L. F., Seppo, M., Stern, D. L. & Ruta, V. Evolution of a central neural circuit underlies Drosophila mate preferences. Nature 559, 564–569 (2018).
    ADS  CAS  PubMed  PubMed Central  Google Scholar 

    28.
    Martin, S. H. et al. Genome-wide evidence for speciation with gene flow in Heliconius butterflies. Genome Res. 23, 1817–1828 (2013).
    CAS  PubMed  PubMed Central  Google Scholar 

    29.
    Davey, J. et al. Major improvements to the Heliconius melpomene genome assembly used to confirm 10 chromosome fusion events in 6 million years of butterfly evolution. G3 6, 695–708 (2015).
    Google Scholar 

    30.
    Darragh, K. et al. A novel terpene synthase produces an anti-aphrodisiac pheromone in the butterfly Heliconius melpomene. Preprint at https://www.biorxiv.org/content/10.1101/779678v1 (2019).

    31.
    Pinharanda, A. et al. Sexually dimorphic gene expression and transcriptome evolution provide mixed evidence for a fast-Z effect in Heliconius. J. Evol. Biol. 32, 194–204 (2019).
    CAS  PubMed  PubMed Central  Google Scholar 

    32.
    Roberts, A., Pimentel, H., Trapnell, C. & Pachter, L. Identification of novel transcripts in annotated genomes using RNA-seq. Bioinformatics 27, 2325–2329 (2011).
    CAS  PubMed  Google Scholar 

    33.
    Wittkopp, P. J., Haerum, B. K. & Clark, A. G. Evolutionary changes in cis and trans gene regulation. Nature 430, 85–88 (2004).
    ADS  CAS  PubMed  Google Scholar 

    34.
    Thomas, P. D. et al. Applications for protein sequence-function evolution data: mRNA/protein expression analysis and coding SNP scoring tools. Nucleic Acids Res. 34, 645–650 (2006).
    ADS  Google Scholar 

    35.
    Choi, Y., Sims, G. E., Murphy, S., Miller, J. R. & Chan, A. P. Predicting the functional effect of amino acid substitutions and indels. PLoS ONE 7, e46688 (2012).
    ADS  CAS  PubMed  PubMed Central  Google Scholar 

    36.
    Martin, S. H., Davey, J. W. & Jiggins, C. D. Evaluating the use of ABBA-BABA statistics to locate introgressed loci. Mol. Biol. Evol. 32, 244–257 (2015).
    CAS  PubMed  Google Scholar 

    37.
    Martin, S. H., Davey, J. W., Salazar, C. & Jiggins, C. D. Recombination rate variation shapes barriers to introgression across butterfly genomes. PLoS Biol. 17, 1–28 (2019).
    Google Scholar 

    38.
    Nosil, P. Ecological Speciation (Oxford University Press, 2012).

    39.
    Kopp, M. et al. Mechanisms of assortative mating in speciation with gene flow: connecting theory and empirical research. Am. Nat. 191, 1–20 (2018).
    PubMed  Google Scholar 

    40.
    Butlin, R. K. & Smadja, C. M. Coupling, reinforcement, and speciation. Am. Nat. 191, 155–172 (2018).
    PubMed  Google Scholar 

    41.
    Westerman, E. L. et al. Aristaless controls butterfly wing color variation used in mimicry and mate choice. Curr. Biol. 28, 3469–3474 (2018).
    CAS  PubMed  PubMed Central  Google Scholar 

    42.
    Kronfrost, M. R. et al. Linkage of butterfly mate preference and wing color preference cue at the genomic location of wingless. Proc. Natl Acad. Sci. USA 103, 6575–6580 (2006).
    ADS  Google Scholar 

    43.
    Chamberlain, N. L., Hill, R. I., Kapan, D. D., Gilbert, L. E. & Kronforst, M. R. Polymorphic butterfly reveals the missing link in ecological speciation. Science 326, 847–850 (2009).
    ADS  CAS  PubMed  PubMed Central  Google Scholar 

    44.
    McCulloch, K. J. et al. Sexual dimorphism and retinal mosaic diversification following the evolution of a violet receptor in butterflies. Mol. Biol. Evol. 34, 2271–2284 (2017).
    CAS  PubMed  Google Scholar 

    45.
    Zaccardi, G., Kelber, A., Sison-Mangus, M. P. & Briscoe, A. D. Colour discrimination in the red range with only one long-wavelength sensitive opsin. J. Exp. Biol. 209, 1944–1955 (2006).
    PubMed  Google Scholar 

    46.
    Monteiro, A. Gene regulatory networks reused to build novel traits. BioEssays 34, 181–186 (2012).
    CAS  PubMed  Google Scholar 

    47.
    Martin, A. et al. Multiple recent co-options of optix associated with novel traits in adaptive butterfly wing radiations. Evodevo 5, 7 (2014).
    PubMed  PubMed Central  Google Scholar 

    48.
    Kandel, E. R., Schwartz, J. H., Jessell, T. M., Siegelbaum, S. A. & Hudspeth. A. J. Principles of Neural Science, 2012th edn. (McGraw Hill, New York, 2000).

    49.
    Ramsey, M. E., Vu, W. & Cummings, M. E. Testing synaptic plasticity in dynamic mate choice decisions: N-methyl d-aspartate receptor blockade disrupts female preference. Proc. R. Soc. B Biol. Sci. 281, 20140047 (2014).
    Google Scholar 

    50.
    Bloch, N. I. et al. Early neurogenomic response associated with variation in guppy female mate preference. Nat. Ecol. Evol. 2, 1772–1781 (2018).
    PubMed  PubMed Central  Google Scholar 

    51.
    Delclos, P. J., Forero, S. A. & Rosenthal, G. G. Divergent neurogenomic responses shape social learning of both personality and mate preference. J. Evol. Biol. 223 (2020)

    52.
    Yamaguchi, M. Role of regucalcin in brain calcium signaling. Integr. Biol. 4, 825–837 (2012).
    CAS  Google Scholar 

    53.
    Berridge, M. J. Neuronal calcium signaling. Neuron 21, 13–26 (1998).
    CAS  PubMed  Google Scholar 

    54.
    Bashaw, G. J. & Klein, R. Signaling from axon guidance receptors. Cold Spring Harb. Perspect. Biol. 2, 1–17 (2010).
    Google Scholar 

    55.
    Prud’homme, B., Gompel, N. & Carroll, S. B. Emerging principles of regulatory evolution. Proc. Natl Acad. Sci. USA 104, 8605–8612 (2007).
    ADS  PubMed  Google Scholar 

    56.
    Preger-Ben Noon, E. et al. Comprehensive analysis of a cis-regulatory region reveals pleiotropy in enhancer function. Cell Rep. 22, 3021–3031 (2018).
    CAS  PubMed  Google Scholar 

    57.
    Lewis, J. et al. Parallel evolution of ancient, pleiotropic enhancers underlies butterfly wing pattern mimicry. Proc. Natl Acad. Sci. USA. 116, 24174–24183 (2019).
    CAS  PubMed  Google Scholar 

    58.
    Chouteau, M., Llaurens, V., Piron-Prunier, F. & Joron, M. Polymorphism at a mimicry supergene maintained by opposing frequency-dependent selection pressures. Proc. Natl Acad. Sci. USA 114, 8325–8329 (2017).
    CAS  PubMed  Google Scholar 

    59.
    Southcott, L. & Kronforst, M. R. Female mate choice is a reproductive isolating barrier in Heliconius butterflies. Ethology 124, 862–869 (2018).
    PubMed  PubMed Central  Google Scholar 

    60.
    González-Rojas, M. F. et al. Chemical signals act as the main reproductive barrier between sister and mimetic Heliconius butterflies. Proc. R. Soc. B Biol. 287, 20200587 (2020).
    Google Scholar 

    61.
    Zhang, W. et al. Comparative transcriptomics provides insights into reticulate and adaptive evolution of a butterfly radiation. Genome Biol. Evol. 11, 2963–2975 (2019).
    PubMed  PubMed Central  Google Scholar 

    62.
    Weber, J. N., Peterson, B. K. & Hoekstra, H. E. Discrete genetic modules are responsible for complex burrow evolution in Peromyscus mice. Nature 493, 402–405 (2013).
    ADS  CAS  PubMed  Google Scholar 

    63.
    Cande, J., Andolfatto, P., Prud’homme, B., Stern, D. L. & Gompel, N. Evolution of multiple additive loci caused divergence between Drosophila yakuba and D. santomea in wing rowing during male courtship. PLoS ONE 7, 1–10 (2012).
    Google Scholar 

    64.
    McBride, C. S. et al. Evolution of mosquito preference for humans linked to an odorant receptor. Nature 515, 222–227 (2014).
    ADS  CAS  PubMed  PubMed Central  Google Scholar 

    65.
    Ding, Y., Berrocal, A., Morita, T., Longden, K. D. & Stern, D. L. Natural courtship song variation caused by an intronic retroelement in an ion channel gene. Nature 536, 329–332 (2016).
    ADS  CAS  PubMed  Google Scholar 

    66.
    Bendesky, A. et al. The genetic basis of parental care evolution in monogamous mice. Nature 544, 434–439 (2017).
    ADS  CAS  PubMed  PubMed Central  Google Scholar 

    67.
    Auer, T. O. et al. Olfactory receptor and circuit evolution promote host specialization. Nature 579, 402–408 (2020).
    ADS  CAS  PubMed  PubMed Central  Google Scholar 

    68.
    Vehtari, A., Gelman, A. & Gabry, J. Practical Bayesian model evaluation using leave-one-out cross-validation and WAIC. Stat. Comput. 27, 1413–1432 (2017).
    MathSciNet  MATH  Google Scholar 

    69.
    Jiggins, C. D. The Ecology and Evolution of Heliconius Butterflies (Oxford University Press, 2016).

    70.
    Dobin, A. et al. STAR: ultrafast universal RNA-seq aligner. Bioinformatics 29, 15–21 (2013).
    CAS  Google Scholar 

    71.
    Li, H. et al. The sequence alignment/map format and SAMtools. Bioinformatics 25, 2078–2079 (2009).
    PubMed  PubMed Central  Google Scholar 

    72.
    Anders, S., Pyl, P. T. & Huber, W. HTSeq- a Python framework to work with high-throughput sequencing data. Bioinformatics 31, 166–169 (2015).
    CAS  Google Scholar 

    73.
    Love, M. I., Huber, W. & Anders, S. Moderated estimation of fold change and dispersion for RNA-seq data with DESeq2. Genome Biol. 15, 1–21 (2014).
    Google Scholar 

    74.
    Montgomery, S. H. & Mank, J. E. Inferring regulatory change from gene expression: the confounding effects of tissue scaling. Mol. Ecol. 25, 5114–5128 (2016).
    CAS  PubMed  Google Scholar 

    75.
    Montgomery, S. H., Rossi, M., McMillan, W. O. & Merrill, R. Neural divergence and hybrid disruption between ecologically isolated Heliconius butterflies. Preprint at https://www.biorxiv.org/content/10.1101/2020.07.01.182337v1 (2020)

    76.
    McKenna, A. et al. The genome analysis toolkit: a MapReduce framework for analyzing next-generation DNA sequencing data. Genome Res. 20, 1297–1303 (2010).
    CAS  PubMed  PubMed Central  Google Scholar 

    77.
    Finn, R. D. et al. InterPro in 2017-beyond protein family and domain annotations. Nucleic Acids Res. 45, D190–D199 (2017).
    CAS  PubMed  Google Scholar 

    78.
    York, R. A. et al. Behaviour-dependent cis regulation reveals genes and pathways associated with bower building in cichlid fishes. Proc. Natl Acad. Sci. USA 115, 1081–1090 (2018).
    Google Scholar 

    79.
    Cingolani, P. et al. A program for annotating and predicting the effects of single nucleotide polymorphisms, SnpEff. Fly 6, 80–92 (2012).
    CAS  PubMed  PubMed Central  Google Scholar  More

  • in

    Small-scale population divergence is driven by local larval environment in a temperate amphibian

    Aguillon SM, Fitzpatrick JW, Bowman R, Schoech SJ, Clark AG, Coop G et al. (2017) Deconstructing isolation-by-distance: the genomic consequences of limited dispersal. PLOS Genet 13:e1006911
    PubMed  PubMed Central  Article  CAS  Google Scholar 

    Arens P, van der Sluis T, van’t Westende WPC, Vosman B, Vos CC, Smulders MJM (2007) Genetic population differentiation and connectivity among fragmented Moor frog (Rana arvalis) populations in The Netherlands. Landsc Ecol 22:1489–1500
    Article  Google Scholar 

    Bachmann JC, van Rensburg AJ, Cortazar-Chinarro M, Laurila A, Buskirk JV (2020) Gene Flow Limits Adaptation along Steep Environmental Gradients. The American Naturalist 195:E67–E86
    PubMed  Article  PubMed Central  Google Scholar 

    Balkau BJ, Feldman MW (1973) Selection for migration modification. Genetics 74:171–174
    CAS  PubMed  PubMed Central  Google Scholar 

    Barrett RDH, Schluter D (2008) Adaptation from standing genetic variation. Trends Ecol Evol 23:38–44
    PubMed  Article  PubMed Central  Google Scholar 

    Bates D, Mächler M, Bolker B, Walker S (2015) Fitting linear mixed-effects models using lme4. J Stat Softw 67:1–48.
    Article  Google Scholar 

    Becker CG, Rodriguez D, Longo AV, Talaba AL, Zamudio KR (2012) Disease risk in temperate amphibian populations is higher at closed-canopy sites. PLOS ONE 7:e48205
    CAS  PubMed  PubMed Central  Article  Google Scholar 

    Bolnick D, Otto S (2013) The magnitude of local adaptation under genotype-dependent dispersal. Ecol Evol 3:4722–4735
    PubMed  PubMed Central  Article  Google Scholar 

    Bolnick DI, Snowberg LK, Patenia C, Stutz WE, Ingram T, Lau OL (2009) Phenotype-dependent native habitat preference facilitates divergence between parapatric lake and stream stickleback. Evolution 63:2004–2016
    PubMed  Article  PubMed Central  Google Scholar 

    Brown PS, Frye BE (1969) Effects of prolactin and growth hormone on growth and metamorphosis of tadpoles of the frog, Rana pipiens. Gen Comp Endocrinol 13:126–138
    CAS  PubMed  Article  PubMed Central  Google Scholar 

    Buxton VL, Ward MP, Sperry JH (2017) Frog breeding pond selection in response to predators and conspecific cues. Ethology 123:397–404
    Article  Google Scholar 

    Campbell-Staton SC, Cheviron ZA, Rochette N, Catchen J, Losos JB, Edwards SV (2017) Winter storms drive rapid phenotypic, regulatory, and genomic shifts in the green anole lizard. Science 357:495–498
    CAS  PubMed  Article  PubMed Central  Google Scholar 

    Capblancq T, Luu K, Blum MGB, Bazin E (2018) Evaluation of redundancy analysis to identify signatures of local adaptation. Mol Ecol Resour 18:1223–1233
    CAS  PubMed  Article  PubMed Central  Google Scholar 

    Catchen J, Hohenlohe PA, Bassham S, Amores A, Cresko WA (2013) Stacks: an analysis tool set for population genomics. Mol Ecol 22:3124–3140
    PubMed  PubMed Central  Article  Google Scholar 

    Caye K, Jay F, Michel O, François O (2018) Fast inference of individual admixture coefficients using geographic data. Ann Appl Stat 12:586–608
    Article  Google Scholar 

    Clarke RT, Rothery P, Raybould AF (2002) Confidence limits for regression relationships between distance matrices: estimating gene flow with distance. JABES 7:361
    Article  Google Scholar 

    Conesa A, Götz S, García-Gómez JM, Terol J, Talón M, Robles M (2005) Blast2GO: a universal tool for annotation, visualization and analysis in functional genomics research. Bioinformatics 21:3674–3676
    CAS  Article  Google Scholar 

    Delph LF (2018) The study of local adaptation: a thriving field of research. J Heredity 1:1–2
    Article  Google Scholar 

    Denver RJ (1997) Proximate mechanisms of phenotypic plasticity in amphibian metamorphosis. Integr Comp Biol 37:172–184
    CAS  Google Scholar 

    Dyer RJ, Chan DM, Gardiakos VA, Meadows CA (2012) Pollination graphs: Quantifying pollen pool covariance networks and the influence of intervening landscapes on genetic connectivity in the North American understory tree, Cornus florida. Landsc Ecol 27:239–251
    Article  Google Scholar 

    Forester BR, Lasky JR, Wagner HH, Urban DL (2018) Comparing methods for detecting multilocus adaptation with multivariate genotype–environment associations. Mol Ecol 27:2215–2233
    CAS  PubMed  Article  PubMed Central  Google Scholar 

    Fox F, Weisberg S (2019) An R Companion to Applied Regression, Third Edition. Sage, Thousand Oaks CA, https://socialsciences.mcmaster.ca/jfox/Books/Companion/

    Fraser DJ, Weir L, Bernatchez L, Hansen MM, Taylor EB (2011) Extent and scale of local adaptation in salmonid fishes: review and meta-analysis. Heredity 106:4040–4420
    Article  Google Scholar 

    Frichot E, François O (2015) LEA: An R package for landscape and ecological association studies. Methods Ecol Evol 6:925–929
    Article  Google Scholar 

    Frichot E, Schoville SD, Bouchard G, François O (2013) Testing for associations between loci and environmental gradients using latent factor mixed models. Mol Biol Evol 30:1687–1699
    CAS  PubMed  PubMed Central  Article  Google Scholar 

    Galas L, Raoult E, Tonon M-C, Okada R, Jenks BG, Castaño JP et al. (2009) TRH acts as a multifunctional hypophysiotropic factor in vertebrates. Gen Comp Endocrinol 164:40–50

    Gjertsen AK (2007) Accuracy of forest mapping based on Landsat TM data and a kNN-based method. Remote Sens Environ 110:420–430
    Article  Google Scholar 

    Gosselin T (2018) grur: an R package tailored for RADseq data imputations. R package version 0.0.10. https://github.com/thierrygosselin/grur. https://doi.org/10.5281/zenodo.496176

    Gosselin T, Anderson EC, Bradbury I (2016) assigner: Assignment Analysis with GBS/RAD Data using R. R package version 0.4.1. https://github.com/thierrygosselin/assigner. https://doi.org/10.5281/zenodo.51453

    Gosner KL (1960) A simplified table for staging anuran embryos and larvae with notes on identification. Herpetologica 16:183–190
    Google Scholar 

    Graham LJ, Haines-Young RH, Field R (2017) Metapopulation modeling of long-term urban habitat-loss scenarios. Landsc Ecol 32:989–1003
    PubMed  PubMed Central  Article  Google Scholar 

    Haldane JBS (1930) A mathematical theory of natural and artificial selection. (Part VI, Isolation.). Math Proc Camb Philos Soc 26:220–230
    Article  Google Scholar 

    Hammond SA, Warren RL, Vandervalk BP, Kucuk E, Khan H, Gibb EA et al. (2017) The North American bullfrog draft genome provides insight into hormonal regulation of long noncoding RNA. Nature. Communications 8:1433
    Google Scholar 

    Hangartner S, Laurila A, Räsänen K (2012) Adaptive divergence in Moor Frog (Rana arvalis) populations along an acidification gradient: inferences from Qst–Fst correlations. Evolution 66:867–881
    PubMed  Article  PubMed Central  Google Scholar 

    Hanski I, Mononen T, Ovaskainen O (2011) Eco-evolutionary metapopulation dynamics ant the spatial scale of adaptation. Am Naturalist 177:29–43
    Article  Google Scholar 

    Hedrick PW (2013) Adaptive introgression in animals: examples and comparison to new mutation and standing variation as sources of adaptive variation. Mol Ecol 22:4606–4618
    PubMed  Article  PubMed Central  Google Scholar 

    Hellsten U, Harland RM, Gilchrist MJ, Hendrix D, Jurka J, Kapitonov V et al. (2010) The genome of the western clawed frog Xenopus tropicalis. Science 328:633–636
    CAS  PubMed  PubMed Central  Article  Google Scholar 

    Hemmer-Hansen J, Nielsen EE, Therkidsen NO, Taylor MI, Ogden R, Geffen AJ et al. (2013) A genomic island linked to ecotype divergence in Atlantic cod. Mol Ecol 22:2653–2667
    PubMed  Article  PubMed Central  Google Scholar 

    Hendry AP, Day T (2005) Population structure attributable to reproductive time: isolation by time and adaptation by time. Mol Ecol 14:901–916
    CAS  PubMed  Article  PubMed Central  Google Scholar 

    Hoban S, Kelley JL, Lottherhos KE, Antolin MF, Bradburd G, Lowry DB et al. (2016) Finding the genomic basis of local adaptation: pitfalls, practical solutions, and future directions. Am Naturalist 188:379–397
    Article  Google Scholar 

    Holt RD, Roy M (2007) Predation Can increase the prevalence of infectious disease. Am Naturalist 169:690–699
    Article  Google Scholar 

    Homola JJ, Loftin CS, Kinnison MT (2019) Landscape genetics reveals unique and shared effects of urbanization for sympatric pool-breeding amphibians. Ecol Evol 9:17799–17823
    Article  Google Scholar 

    Ishwaran H, Kogalur UB (2018) Fast unified random forests for survival, regression, and classification (RF-SRC), R package version 2.7.0

    Ismail SA, Kokko H (2019) An analysis of mating biases in trees. Mol Ecol 29:1–15
    Google Scholar 

    Jenkins DG, Carey M, Czerniewska J, Fletchet J, Hether T, Jones A et al. (2010) A meta-analysis of isolation by distance: relic or reference standard for landscape genetics? Ecography 33:315–320
    Google Scholar 

    Johansson F, Halvarsson P, Mikolajewski DJ, Höglund J (2017) Genetic differentiation in the boreal dragonfly Leucorrhinia dubia in the Palearctic region. Biol J Linn Soc 121:294–304
    Article  Google Scholar 

    Johansson M, Primmer CR, Sahlsten J, Merila J (2005) The influence of landscape structure on occurrence, abundance and genetic diversity of the common frog, Rana temporaria. Global Change Biol 11:1664–1679
    Article  Google Scholar 

    Jombart T (2008) adegenet: a R package for the multivariate analysis of genetic markers. Bioinformatics 24:1403–1405
    CAS  PubMed  Article  PubMed Central  Google Scholar 

    Jombart T, Ahmed I (2011) adegenet 1.3-1: new tools for the analysis of genome-wide SNP data. Bioinformatics 27:3070–3071
    CAS  PubMed  PubMed Central  Article  Google Scholar 

    Kawecki TJ, Ebert D (2004) Conceptual issues in local adaptation. Ecol Lett 7:1225–1241
    Article  Google Scholar 

    Korhonen L, Korhonen K, Rautiainen M, Stenberg P (2006) Estimation of forest canopy cover: a comparison of field measurement techniques. Silva Fennica 40:577–588
    Article  Google Scholar 

    Legendre L, Legendre P (1998) Numerical ecology. Second English edition. Elsevier Science BV, Amsterdam, The Netherlands

    Legendre P, Oksanen J, ter Braak CJF (2011) Testing the significance of canonical axes in redundancy analysis. Methods Ecol Evol 2:269–277
    Article  Google Scholar 

    Leinonen T, McCairns RJS, O’Hara RB, Merilä J (2013) QST–FST comparisons: evolutionary and ecological insights from genomic heterogeneity. Nat Rev Genet 14:179–190
    CAS  PubMed  Article  PubMed Central  Google Scholar 

    Leimu R, Fischer M (2008) A meta-analysis of local adaptation in plants. PLoS ONE 3:e4010
    PubMed  PubMed Central  Article  CAS  Google Scholar 

    Lenormand T (2002) Gene flow and the limits to natural selection. Trends Ecol Evol 17:183–189
    Article  Google Scholar 

    Lenhardt PP, Brühl CA, Leeb C, Theissinger K (2017) Amphibian population genetics in agricultural landscapes: does viniculture drive the population structuring of the European common frog (Rana temporaria)? PeerL 5:e3520
    Article  CAS  Google Scholar 

    Lind MI, Johansson F (2007) The degree of adaptive phenotypic plasticity is correlated with the spatial environmental heterogeneity experienced by island populations of Rana temporaria. J Evolut Biol 20:1288–1297
    CAS  Article  Google Scholar 

    Lüdecke D, Makowski D, Waggoner P, Patil I (2020) performance: Assessment of regression models performance. R package version 0.4.6. https://CRAN.R-project.org/package=performance

    Luquet E, Mörch PR, Cortázar‐Chinarro M, Meyer‐Lucht Y, Höglund J, Laurila A (2019) Post‐glacial colonization routes coincide with a life‐history breakpoint along a latitudinal gradient. J Evol Biol 32:356–368
    PubMed  Article  PubMed Central  Google Scholar 

    Luu K, Bazin E, Blum MGB (2017) pcadapt: an R package to perform genome scans for selection based on principal component analysis. Mol Ecol Resour 17:67–77
    CAS  PubMed  Article  PubMed Central  Google Scholar 

    Maes GE, Pujolar JM, Hellemans B, Volkaert FA (2006) Evidence for isolation by time in the European eel (Anguilla anguilla). Mol Ecol 15:2095–2107
    CAS  PubMed  Article  PubMed Central  Google Scholar 

    Mastretta‐Yanes A, Arrigo N, Alvarez N, Jorgensen TH, Piñero D, Emerson BC (2015) Restriction site-associated DNA sequencing, genotyping error estimation and de novo assembly optimization for population genetic inference. Mol Ecol Resour 15:28–41
    PubMed  Article  CAS  PubMed Central  Google Scholar 

    McRae BH (2006) Isolation by Resistance. Evolution 60:1551–1561
    PubMed  Article  PubMed Central  Google Scholar 

    Meirmans PG (2015) Seven common mistakes in population genetics and how to avoid them. Mol Ecol 24:3223–3231
    PubMed  Article  PubMed Central  Google Scholar 

    Meurling S, Kärvemo S, Chondrelli N, Cortazar-Chinarro M, Åhlén D, Brookes L et al. (2020) Occurrence of Batrachochytrium dendrobatidis in Sweden: higher infection prevalence in southern species. Dis Aquat Organ in press.

    Michel MJ (2011) Spatial dependence of phenotype-environment associations for tadpoles in natural ponds. Evolut Ecol 25:915–932
    Article  Google Scholar 

    Montero-Mendieta S, Tan K, Christmas MJ, Olsson A, Vilà C, Wallberg A et al. (2019) The genomic basis of adaptation to high-altitude habitats in the eastern honey bee (Apis cerana). Mol Ecol 28:746–760.
    PubMed  PubMed Central  Google Scholar 

    Nakajima K, Fujimoto K, Yaoita Y (2005) Programmed cell death during amphibian metamorphosis. Semin Cell Dev Biol 16:271–280
    CAS  PubMed  Article  PubMed Central  Google Scholar 

    Nunes AL, Orizaola G, Laurila A, Rebelo R (2014) Rapid evolution of constitutive and inducible defenses against an invasive predator. Ecology 95:1520–1530
    PubMed  Article  PubMed Central  Google Scholar 

    Oksanen J, Guillaume-Blanchet F, Friendly M, Kindt R, Legendre P, McGlinn D et al. (2019) vegan:Community Ecology Package. R package version 2:5–5. https://CRAN.R-project.org/package=vegan

    Palik B, Batzer DP, Buech R, Nichols D, Cease K, Egeland L et al. (2001) Seasonal pond characteristics across a chronosequence of adjacent forest ages in northern Minnesota, USA. Wetlands 21:532–542
    Article  Google Scholar 

    Papaïx J, David O, Lannou C, Monod H (2013) Dynamics of adaptation in spatially heterogeneous metapopulations. PLoS ONE 8:e54697. https://doi.org/10.1371/journal.pone.0054697
    CAS  Article  PubMed  PubMed Central  Google Scholar 

    Paxton RJ, Thorén PA, Tengö J, Estoup A, Pamilo P (1996) Mating structure and nestmate relatedness in a communal bee, Andrena jacobi (Hymenoptera, Andrenidae), using microsatellites. Mol Ecol 5:511–519
    CAS  PubMed  Article  PubMed Central  Google Scholar 

    Peterson BK, Weber JN, Kay EH, Fisher HS, Hoekstra HE (2012) Double Digest RADseq: an inexpensive method for de novo SNP discovery and genotyping in model and non-model species. PLOS ONE 7:e37135
    CAS  PubMed  PubMed Central  Article  Google Scholar 

    R Core Team (2019) R: A language and environment for statistical computing. R Foundation for Statistical Computing, Vienna, Austria, https://www.R-project.org/

    Rašić G, Filipović I, Weeks AR, Hoffmann AA (2014) Genome-wide SNPs lead to strong signals of geographic structure and relatedness patterns in the major arbovirus vector, Aedes aegypti. BMC Genomics 15:275
    PubMed  PubMed Central  Article  Google Scholar 

    Reese H, Nilsson M, Pahén TG, Hagner O, Joyce S, Tingelöf U et al. (2003) Countrywide estimates of forest variables using satellite data and field data from the National Forest Inventory. Ambio 32:542–548
    PubMed  Article  PubMed Central  Google Scholar 

    Ribolli J, Hoeinghaus DJ, Johnson JA, Zaniboni-Filho E, de Freitas PD, Galetti PM (2017) Isolation-by-time population structure in potamodromous Dourado Salminus brasiliensis in southern Brazil. Conserv Genet 18:67–76
    Article  Google Scholar 

    Richardson JL, Urban MC, Bolnick DI, Skelly DK (2014) Microgeographic adaptation and the spatial scale of evolution. Trends Ecol Evol 29:165–176
    PubMed  Article  PubMed Central  Google Scholar 

    Richter-Boix A, Katzenberger M, Duarte H, Quintela M, Tejedo M, Laurila A (2015) Local divergence of thermal reaction norms among amphibian populations is affected by pond temperature variation. Evolution 69:2210–2226
    PubMed  Article  PubMed Central  Google Scholar 

    Richter-Boix A, Quintela M, Kierczak M, Franch M, Laurila A (2013) Fine-grained adaptive divergence in an amphibian: genetic basis of phenotypic divergence and the role of nonrandom gene flow in restricting effective migration among wetlands. Mol Ecol 22:1322–1340
    CAS  PubMed  Article  PubMed Central  Google Scholar 

    Rödin-Mörch P (2019) Population divergence at different spatial scales in a wide-spread amphibian. PhD thesis. Uppsala University, Sweden
    Google Scholar 

    Rödin-Mörch P, Luquet E, Meyer-Lucht Y, Richter‐Boix A, Höglund J, Laurila A (2019) Latitudinal divergence in a widespread amphibian: contrasting patterns of neutral and adaptive genomic variation. Mol Ecol 28:2996–3011
    PubMed  Article  PubMed Central  Google Scholar 

    Rollins-Smith LA (2009) The role of amphibian antimicrobial peptides in protection of amphibians from pathogens linked to global amphibian declines. Biochim et Biophys Acta 1788:1593–1599
    CAS  Article  Google Scholar 

    Rollins-Smith LA, Conlon JM (2005) Antimicrobial peptide defenses against chytridiomycosis, an emerging infectious disease of amphibian populations. Dev Comp Immunol 29:589–598
    CAS  PubMed  Article  PubMed Central  Google Scholar 

    Row JR, Knick ST, Oyler‐McCance SJ, Lougheed SC, Fedy BC (2017) Developing approaches for linear mixed modeling in landscape genetics through landscape-directed dispersal simulations. Ecol Evol 7:3751–3761
    PubMed  PubMed Central  Article  Google Scholar 

    Rundle HD, Nosil P (2005) Ecological speciation. Ecol Lett 8:336–352
    Article  Google Scholar 

    Safner T, Miaud C, Gaggiotti O, Decout S, Rioux D, Zundel S et al. (2011) Combining demography and genetic analysis to asses the population structure of an amphibian in a human-dominated landscape. Conserv Genet 12:161–173
    Article  Google Scholar 

    Santos H, Rousselet J, Magnoux E, Paiva MR, Branco M, Kerdelhué C (2007) Genetic isolation though time: allochronic differentiation of a phonologically atypical population of the pine processionary moth. Proc R Soc B 274:935–941
    CAS  PubMed  Article  PubMed Central  Google Scholar 

    Savolainen O, Lascoux M, Merilä J (2013) Ecological genomics of local adaptation. Nat Rev Genet 14:807–820
    CAS  PubMed  Article  PubMed Central  Google Scholar 

    Savolainen O, Pyhäjärvi T, Knürr T (2007) Gene flow and local adaptation in trees. Annu Rev Ecol Evol Syst 38:595–619
    Article  Google Scholar 

    Semlitsch RD (2008) Differentiating migration and dispersal processes for pond-breeding amphibians. J Wildl Manag 72:260–267
    Article  Google Scholar 

    Session AM, Uno Y, Kwon T, Chapman JA, Toyoda A, Takahashi S et al. (2016) Genome evolution in the allotetraploid frog Xenopus laevis. Nature 538:336–343
    CAS  PubMed  PubMed Central  Article  Google Scholar 

    Sexton JP, Hangartner SB, Hoffmann AA (2014) Genetic isolation by environment or distance: which pattern of gene flow is most common? Evolution 68:1–15
    CAS  PubMed  Article  PubMed Central  Google Scholar 

    Shafer ABA, Wolf JBW (2013) Widespread evidence for incipient ecological speciation: a meta-analysis of isolation-by-ecology. Ecol Lett 16:940–950
    PubMed  Article  PubMed Central  Google Scholar 

    Sillero N, Campos J, Bonardi A, Corti C, Creemers R, Crochet P-A et al. (2014) Updated distribution and biogeography of amphibians and reptiles of Europe. Amphib Reptilia 35:1–31
    Article  Google Scholar 

    Skelly DK (2004) Microgeographic countergradient variation in the wood frog, Rana Sylvatica. Evolution 58:160–165
    PubMed  Article  PubMed Central  Google Scholar 

    Smith MA, Green DM (2005) Dispersal and the metapopulation paradigm in amphibian ecology and conservation: are all amphibian populations metapopulations? Ecography 28:110–128
    Article  Google Scholar 

    Storey JD, Bass AJ, Dabney A, Robinson D (2019) qvalue: Q-value estimation for false discovery rate control. R package version 2.16.0. http://github.com/jdstorey/qvalue

    Storfer A, Murphy MA, Evans JS, Goldberg CS, Robinson S, Spear SF et al. (2007) Putting the ‘landscape’ in landscape genetics. Heredity 98:128–142
    CAS  PubMed  Article  PubMed Central  Google Scholar 

    Sun Y-B, Xiong Z-J, Xiang X-Y, Liu S-P, Zhou W-W, Tu X-L et al. (2015) Whole-genome sequence of the Tibetan frog Nanorana parkeri and the comparative evolution of tetrapod genomes. Proc Natl Acad Sci USA 112:E1257–E1262
    CAS  PubMed  Article  PubMed Central  Google Scholar 

    Tang F, Ishwaran H (2017) Random forest missing data algorithms. Stat Anal Data Min 10:363–377
    PubMed  PubMed Central  Article  Google Scholar 

    Tigano A, Friesen VL (2016) Genomics of local adaptation with gene flow. Mol Ecol 25:2144–2164
    PubMed  Article  PubMed Central  Google Scholar 

    Van Buskirk J (2014) Incipient habitat race formation in an amphibian. J Evolut Biol 27:585–592
    Article  Google Scholar 

    Van Strien MJ, Holderegger R, van Heck HJ (2015) Isolation-by-distance in landscapes: considerations for landscape genetics. Heredity 114:27–37
    PubMed  Article  PubMed Central  Google Scholar 

    Vasemägi A (2006) The adaptive hypothesis of clinal variation revisited: single-locus clines as a result of spatially restricted gene flow. Genetics 173:2411–2414
    PubMed  PubMed Central  Article  CAS  Google Scholar 

    Vendrami DLJ, Telesca L, Weigand H, Weiss M, Fawcett K, Lehman K et al. (2017) RAD sequencing resolves fine-scale population structure in a benthic invertebrate: implications for understanding phenotypic plasticity. R Soc Open Sci 4:160548
    PubMed  PubMed Central  Article  Google Scholar 

    Vincent B, Dionne M, Kent MP, Lien S, Bernatchez L (2013) Landscape genomics in atlantic salmon (salmo salar): searching for gene–environment interactions driving local adaptation. Evolution 67:3469–3487
    PubMed  Article  PubMed Central  Google Scholar 

    Vinogradov AE (1998) Genome size and GC-percent in vertebrates as determined by flow cytometry: the triangular relationship. Cytometry 31:100–109
    CAS  PubMed  Article  PubMed Central  Google Scholar 

    Vos CC, Jong AGA-D, Goedhart PW, Smulders MJM (2001) Genetic similarity as a measure for connectivity between fragmented populations of the moor frog (Rana arvalis). Heredity 86:598–608
    CAS  PubMed  Article  PubMed Central  Google Scholar 

    Wang IJ, Bradburd GS (2014) Isolation by environment. Mol Ecol 23:5649–5662
    PubMed  Article  PubMed Central  Google Scholar 

    Watanabe K, Kazama S, Omura T, Monaghan MT (2014) Adaptive genetic divergence along narrow environmental gradients in four stream insects. PLoS ONE 9:e93055
    PubMed  PubMed Central  Article  CAS  Google Scholar 

    Weir BS, Cockerham CC (1984) Estimating F-statistics for the analysis of population structure. Evolution 38:1358–1370
    CAS  Google Scholar 

    Whelan NV, Galaska MP, Sipley BN, Weber JM, Johnson PD, Halanych KM et al. (2019) Riverscape genetic variation, migration patterns, and morphological variation of the threatened Round Rocksnail, Leptoxis ampla. Mol Ecol 28:1593–1610
    PubMed  Article  PubMed Central  Google Scholar 

    Whitlock MC, McCauley DE (1999) Indirect measures of gene flow and migration: FST ≠ 1/(4 Nm +1). Heredity 82:117
    PubMed  Article  PubMed Central  Google Scholar 

    Wright S (1943) Isolation by distance. Genetics 28:114–138
    CAS  PubMed  PubMed Central  Google Scholar 

    Yandell M, Ence D (2012) A beginner’s guide to eukaryotic genome annotation. Nat Rev Genet 13:329–342
    CAS  PubMed  Article  PubMed Central  Google Scholar 

    Yeaman S, Otto SP (2011) Establishment and maintenance of adaptive genetic divergence under migration, selection, and drift. Evolution 65:2123–2129
    PubMed  Article  PubMed Central  Google Scholar 

    Youngquist M, Inoue K, Berg D, Boone MD (2017) Effects of land use on population presence and genetic structure of an amphibian in an agricultural landscape. Landsc Ecol 32:147–162
    Article  Google Scholar 

    Yu L, Wang G-D, Ruan J, Chen Y-B, Yang C-P, Cao X et al. (2016) Genomic analysis of snub-nosed monkeys (Rhinopithecus) identifies genes and processes related to high-altitude adaptation. Nat Genet 48:947–952
    CAS  PubMed  Article  PubMed Central  Google Scholar 

    Zamudio KR, Wieczorek AM (2007) Fine-scale spatial genetic structure and dispersal among spotted salamander (Ambystoma maculatum) breeding populations. Mol Ecol 16:257–274
    PubMed  Article  PubMed Central  Google Scholar 

    Zellmer AJ (2018) Microgeographic morphological variation across larval wood frog populations associated with environment despite gene flow. Ecol Evol 8:2504–2517
    PubMed  PubMed Central  Article  Google Scholar 

    Zhang H, Xu Q, Krajewski S, Krajewska M, Xie Z, Fuess S et al. (2000) BAR: An apoptosis regulator at the intersection of caspases and Bcl-2 family proteins. Proc Natl Acad Sci USA 97:2597–2602
    CAS  PubMed  Article  PubMed Central  Google Scholar  More

  • in

    Macroecological laws describe variation and diversity in microbial communities

    Data
    All the data sets analyzed in this work have been previously published and were obtained from EBI Metagenomics69. Previous publications (Supplementart Table 1) report the original experiments and corresponding analysis. In order to test the robustness of the macroecological laws and the modeling framework presented in this work, we considered 7 data sets that differ not only for the biome considered, but also for the sequencing techniques and the pipeline used to process the data. Data sets were selected to represent a wide set of biomes. We considered only data sets with at least 50 samples with more than 104 reads. No data set was excluded a-posteriori.
    Sampling and compositional data
    In order to study how (relative) abundance varies across communities and species, one needs to remove the effect of sampling noise, as it is not a biologically informative source of variation. By explicitly modeling sampling (Supplementary Note 2), one finds that the probability of observing n reads of species i in a sample with N total number of reads, is given by

    $${P}_{i}(n| N)=int_{0}^{1}dx,{rho }_{i}(x),left(begin{array}{*{20}{c}} {n} \ {N} end{array}right){x}^{n}{(1-x)}^{N-n},,$$
    (6)

    where ρi(x) is the AFD, i.e., the probability (over communities or times) that the relative abundance of i is equal to x. Note that this equation does not assume anything about independence across species or communities. It only assumes the sampling process is carried independently across communities.
    Since the random variable xi, whose distribution is ρi(x), is a relative abundance, one has that ∑ixi = 1 (i.e., the data are compositional70). As discussed in Supplementary Note 2, given the range of variation of the empirical relative abundances, one can substitute Eq. (6) with

    $${P}_{i}(n| N)=int_{0}^{infty }dx,{rho }_{i}(x)frac{{(xN)}^{n}}{n!}{e}^{-xN},,$$
    (7)

    and the condition (sum)ixi = 1 to ({sum }_{i}{bar{x}}_{i}=1), where ({bar{x}}_{i}=mathop{int}nolimits_{0}^{infty }dx,{rho }_{i}(x)x) is the mean value of xi. Under this assumption, one can also take the limits of the integration from 0 to ∞, instead of considering them from 0 to 1, as the contribution of the integrand from 1 to ∞ is negligible.
    Note that, because of sampling, the average of a function f(x) over the pdf ρ(x) differs in general from the average of f(n/N) over P(n∣N)

    $$int_{0}^{1}dx,rho (x)f(x), ne, sum _{n = 0}^{N}P(n| N)fleft(frac{n}{N}right)=int_{0}^{1}dx,rho (x)sum _{n = 0}^{N}fleft(frac{n}{N}right)frac{{(xN)}^{n}}{n!}{e}^{-xN},,$$
    (8)

    and the inequality becomes equality only if f(x) is linear. The important difference between the right- and the left-hand side is often neglected in the literature. In fact, the right-hand side is a good approximation of the left-hand size only in the limit xN ≫ 1, which is far from being realized in the data for most of the species. Supplementary Note 2 introduces a method to reconstruct the moments of ρ(x) from the moments of P(n∣N). More generally, I show that it is possible to infer the moment generating function of ρ(x) from the data, which allow to reconstruct the shape of the empirical ρ(x).
    Excluding competitive exclusion
    A Gamma-distributed AFD implies that all the species present in a community of a biome are present in all the communities from that biome. Therefore, when a species is not observed is because it is undetected due to sampling errors. I test this claim in two different ways. First, it is shown that one can in fact predict the occupancy of a species from its abundance fluctuations. Secondly, I show that a model without true absences is statistically more supported than a model where species are allowed to be absent.
    The first way to test this hypothesis is to directly test its immediate prediction: if the absence is a consequence of sampling, one should be able to predict occupancy of a species (the probability that a species is present) simply from its average and variance of abundance (together with the total number of reads of each sample). In particular, assuming a Gamma AFD, the occupancy of species i is given by

    $$langle {o}_{i}rangle =1-frac{1}{T}sum _{s}P(0| {N}_{s})=1-frac{1}{T}sum _{s = 1}^{T}{left(1+frac{{bar{x}}_{i}{N}_{s}}{{beta }_{i}}right)}^{-{beta }_{i}},,$$
    (9)

    where Ns is the total number of reads in sample s, T is the total number of samples, and ({beta }_{i}={bar{x}}_{i}^{2}/{sigma }_{{x}_{i}}^{2}). As shown in Fig. 2 and in Supplementary Fig. 3, this prediction well reproduces the observed occupancy across species. The prediction of Eq. (12) also matches the occupancy of temporal (longitudinal) data Supplementary Fig. 20.
    The second, more rigorous, way to test the hypothesis that (most) species are always present is to use model selection. In this context we want to compare two (or more) models that aim at describing the observed number of reads of each species starting from alternative hypothesis. In particular I compare a purely Gamma AFD with a zero-inflated Gamma, which reads

    $${varrho }_{i}(x| {vartheta }_{i},{beta }_{i},{bar{x}}_{i})={vartheta }_{i}delta (x)+(1-{vartheta }_{i})frac{1}{Gamma ({beta }_{i})}{left(frac{{beta }_{i}}{{bar{x}}_{i}}right)}^{{beta }_{i}}{x}^{{beta }_{i}-1}exp left(-{beta }_{i}frac{x}{{bar{x}}_{i}}right),,$$
    (10)

    where ϑi is the probability that a species is truly absent in a community and δ( ⋅ ) is the Dirac delta distribution. Our goal is to test whether the ϑis are significantly different from zero. Since the two models are nested, one can compare the maximum likelihood estimator in the case ϑi = 0 with the (maximum) likelihood marginalized over ϑ (which has prior μ(ϑ)). Given the number of reads ({n}_{i}^{s}) of species i in community s, with Ns total number of reads, one can compute the ratio (Supplementary Note 4)

    $${ell }_{i}=frac{mathop{max }nolimits_{bar{x},beta }{prod }_{s}int dx{varrho }_{i}(x| 0,beta ,bar{x})frac{{(x{N}_{s})}^{{n}_{i}^{s}}}{{n}_{i}^{s}!}{e}^{-x{N}_{s}}}{int dvartheta ,mu (vartheta )left(mathop{max }nolimits_{bar{x},beta }{prod }_{s}int dx{varrho }_{i}(x| vartheta ,beta ,bar{x})frac{{(x{N}_{s})}^{{n}_{i}^{s}}}{{n}_{i}^{s}!}{e}^{-x{N}_{s}}right)},,$$
    (11)

    where μ(ϑ) is a prior over ϑ. If ℓi  > 1, the model with ϑi = 0 is more strongly supported than the model with ϑ ≠ 0. Under Beta prior with parameters 0.25 and 8, one obtains that ℓi  > 1 in 98.8% of the cases (averaged across data sets, ranging from 94.4 to 99.7%) and ℓi  > 100 in 97.5% cases (ranging from 92.8 to 99.2%). See Supplementary Note 4 for a more detailed description of the methodology and Supplementary Fig. 6 for results obtained with other priors.
    Prediction of macroecological patterns
    Given laws #1, #2, and #3, the probability to observe n reads of a randomly chosen species in a sample with N total reads is

    $$P(n| N)=int_{-infty }^{infty }deta ,frac{Gamma (beta +n)}{n!Gamma (beta )}{left(frac{{e}^{eta }N}{beta +{e}^{eta }N}right)}^{n}{left(frac{beta }{beta +{e}^{eta }N}right)}^{beta }frac{exp left(-frac{{(eta -mu )}^{2}}{2{sigma }^{2}}right)}{sqrt{2pi {sigma }^{2}}},,$$
    (12)

    where (eta ={mathrm{log}},(bar{x})). All the properties of species are fully specified by its mean abundance (bar{x}={e}^{eta }). The probability of observing n reads of species with average abundance (bar{x}) in a sample with N total number of reads is therefore

    $$P(n| N,bar{x})=frac{Gamma (beta +n)}{n!Gamma (beta )}{left(frac{bar{x}N}{beta +bar{x}N}right)}^{n}{left(frac{beta }{beta +bar{x}N}right)}^{beta },.$$
    (13)

    The predictions for the patterns shown in Fig. 3 are reported here. The full derivation of this and other patterns is presented in Supplementary Note 8.
    The total number of observed species in a sample with N total number of reads can be easily calculated using Eq. (12). The probability of not observing a species is simply P(0∣N). The expected number of distinct species 〈s(N)〉 in a sample with N reads is therefore

    $$langle s(N)rangle ={s}_{tot}left(1-P(0| N)right)={s}_{tot}left(1-int_{-infty }^{infty }deta ,frac{exp left(-frac{{(eta -mu )}^{2}}{2{sigma }^{2}}right)}{sqrt{2pi {sigma }^{2}}},{left(frac{beta }{beta +{e}^{eta }N}right)}^{beta }right),,$$
    (14)

    where stot is the total number of species in the biome (including unobserved ones, see Supplementary Note 7). Note that stot is (substantially) larger than sobs, the number of different species observed in the union of all the communities, which can instead be written as

    $$langle {s}_{obs}rangle ={s}_{tot}left(1-int_{-infty }^{infty }deta ,frac{exp left(-frac{{(eta -mu )}^{2}}{2{sigma }^{2}}right)}{sqrt{2pi {sigma }^{2}}},{left(prod _{s = 1}^{T}frac{beta }{beta +{e}^{eta }{N}_{s}}right)}^{beta }right),.$$
    (15)

    Figure 3a shows that the prediction of Eq. (14) correctly matches the data (Supplementary Fig. 13).
    The SAD, one of the most studied patterns in ecology and directly related to the Relative Species Abundance35, is defined as the fraction of species with a given abundance. According to our model, the expected SAD is given by

    $$langle {Phi }_{n}(N)rangle := frac{langle {s}_{n}(N)rangle }{langle s(N)rangle }=frac{P(n| N)}{1-P(0,N)}=frac{int_{-infty }^{infty }deta ,frac{Gamma (beta +n)}{n!Gamma (beta )}{left(frac{{e}^{eta }N}{beta +{e}^{eta }N}right)}^{n}{left(frac{beta }{beta +{e}^{eta }N}right)}^{beta }frac{exp left(-frac{{(eta -mu )}^{2}}{2{sigma }^{2}}right)}{sqrt{2pi {sigma }^{2}}}}{1-int_{-infty }^{infty }deta ,{left(frac{beta }{beta +{e}^{eta }N}right)}^{beta },frac{exp left(-frac{{(eta -mu )}^{2}}{2{sigma }^{2}}right)}{sqrt{2pi {sigma }^{2}}}},,$$
    (16)

    where 〈sn(N)〉 is the number of species with n reads in a sample with N total number of reads. The cumulative SAD is defined as

    $$langle {Phi }_{n}^{ ,{ > },}(N)rangle := sum _{m = n}^{infty }langle {Phi }_{m}(N)rangle =frac{int mathop{int}nolimits_{-infty }^{infty },{I}_{frac{{e}^{eta }N}{beta +{e}^{eta }N}}(n,beta )frac{exp left(-frac{{(eta -mu )}^{2}}{2{sigma }^{2}}right)}{sqrt{2pi {sigma }^{2}}}}{1-mathop{int}nolimits_{-infty }^{infty }eta ,{left(frac{beta }{beta +{e}^{eta }N}right)}^{beta },frac{exp left(-frac{{(eta -mu )}^{2}}{2{sigma }^{2}}right)}{sqrt{2pi {sigma }^{2}}}},,$$
    (17)

    where Ip(n, β) is the regularized incomplete Beta function. Figure 3b shows that the Eq. (17) captures the empirical cumulative SAD (Supplementary Fig. 17).
    The occupancy probability is defined as the probability that a species is present in a given fraction of communities. This quantity has been extensively studied in a variety of contexts (from genomics71 to Lego sets and texts72) and has been more recently considered in microbial ecology37. The three macroecological laws predict (see derivation in Supplementary Note 8)

    $${p}_{obs}(o)=frac{mathop{int}nolimits_{-infty }^{infty }deta ,sum_{t = 1}^{T}delta left(o-1+frac{1}{T}mathop{sum }nolimits_{s = 1}^{T}{left(frac{beta }{beta +{e}^{eta }{N}_{s}}right)}^{beta }right)frac{exp left(-frac{{(eta -mu )}^{2}}{2{sigma }^{2}}right)}{sqrt{2pi {sigma }^{2}}}mathop{prod }nolimits_{s = 1}^{T}left(1-{left(frac{beta }{beta +{e}^{eta }{N}_{s}}right)}^{beta }right)}{mathop{int}nolimits_{-infty }^{infty }deta ,frac{exp left(-frac{{(eta -mu )}^{2}}{2{sigma }^{2}}right)}{sqrt{2pi {sigma }^{2}}},mathop{prod }nolimits_{s = 1}^{T}left(1-{left(frac{beta }{beta +{e}^{eta }{N}_{s}}right)}^{beta }right)},,$$
    (18)

    where δ( ⋅ ) is a Dirac delta function. Figure 3c compares the prediction of Eq. (18) with the data (Supplementary Fig. 15).
    Occupancy (the fraction of communities where a species is found) and abundance are not independent properties, and their relative dependence is often referred to as occupancy-abundance relationship21 Given an average (relative) abundance (bar{x}=exp (eta )), the expected occurrence is

    $${langle orangle }_{eta }=1-frac{1}{T}sum _{s = 1}^{T}P(0| {N}_{s},bar{x})=1-frac{1}{T}sum _{s = 1}^{T}{left(frac{beta }{beta +bar{x}{N}_{s}}right)}^{beta },,$$
    (19)

    Figure 3d shows the comparison between data and predictions (Supplementary Fig. 16). These predictions are also tested for temporal (longitudinal) data in Supplementary Figs. 22–24.
    Transition probabilities in longitudinal data
    For longitudinal data, in addition to the stationary AFD, one can study the probability ({rho }_{i}(x^{prime} ,t+Delta t| x,t)) that a species i has abundance (x^{prime}) at time t + Δt conditioned on having abundance x at time t. Instead of focusing on the full distribution, we study its first two (conditional) central moments, i.e. the average and variance of the abundance at t + Δt conditioned to abundance x at time t. In the analysis of the data stationarity is assumed (the distribution ({rho }_{i}(x^{prime} ,t+Delta t| x,t)) depends on Δt but not on t). I also assume that the dynamics of different species are governed by similar equations that only differ in their parameters. One would like therefore to average over species, by properly rescaling their abundances. The average over species is potentially problematic, as it could add a spurious effect to the conditional averages. For instance, only species with larger fluctuations would appear for extreme values of the initial abundance. In order to avoid these problems, instead of consider the actual abundance, its cumulative probability distribution value (calculated using the empirical AFD of each species) was used, that is referred as “quantile abundance”. This is equivalent to rank the abundances of each species over communities and use the (relative) ranking of each community instead of the abundance. A value equal to 0 corresponds to the lowest observed abundance, and a value equal to 1 to the highest. By definition, the quantile abundance is always uniformly distributed.
    Ruling out demographic stochasticity
    Demographic stochasticity can reproduce a Gamma AFD. A birth, death, and immigration process has a Gamma as stationary distribution35. In the limit of large populations sizes, it corresponds to the following equation35

    $$frac{dx}{dt}=m-(d-b)x+sqrt{(b+d)x}xi (t),,$$
    (20)

    where m is the migration rate, while b and d are the per-capita birth and death rate. The Gaussian white noise term ξ(t) has mean zero and time-correlation (langle xi (t)xi (t^{prime} )rangle =delta (t-t^{prime} )). The stationary distribution of this process turns out to be

    $$rho (x)=frac{1}{Gamma left(2frac{m}{b+d}right)}{left(frac{b+d}{2(d-b)}right)}^{-2frac{m}{b+d}}{x}^{2frac{m}{b+d}-1}exp left(-2frac{d-b}{b+d}xright),.$$
    (21)

    The average abundance is equal to (bar{x}=m/(d-b)), while the variance turns out to be ({sigma }_{x}^{2}=(m/2)(b+d)/{(b-d)}^{2}). The square of the coefficient of variation would therefore be equal to (b + d)/(2m).
    More generally, one can assume that all the parameters are species dependent, and the population of species i is described by

    $$frac{d{x}_{i}}{dt}={m}_{i}-({d}_{i}-{b}_{i}){x}_{i}+sqrt{({b}_{i}+{d}_{i}){x}_{i}}{xi }_{i}(t),,$$
    (22)

    where (langle {xi }_{i}(t){xi }_{j}(t^{prime} )rangle ={delta }_{ij}delta (t-t^{prime} )) was assumed.
    Taylor’s Law and the wide variation of average abundance together imply that mi/(bi + di) is constant while mi/(di − bi) varies across species on several orders of magnitudes. This imposes a constraint on the variation of parameter values across species.
    For instance, one can consider the scenario where species migrate to local communities from a common species pool (metacommunity). As abundance in the metacommunity varies across species the migration rate is a species-dependent quantity. Under neutrality, the per-capita birth and death rates in the local communities are constant and independent of the identity of the species. In this case mi depends on the species, while b and d do not. One could recover the Lognormal MAD by imposing that mi is Lognormally distributed. On the other hand, this model would fail in reproducing Taylor’s law with exponent 2, as it would predict and exponent 1.
    More in general, the condition imposed on the parameters corresponds to an unnatural fine-tuned relationship between migration, birth, and death rates. Variation of the average abundance is observed across, at least, 7 orders of magnitudes. In order to reproduce this variation across species and Taylor’s law with exponent 2, the range of variability of (bi − di)/(bi +  di) should be of the same order. It is unrealistic that the relative difference between birth and death rates, which have strong and direct connection to fundamental biological processes, vary so much across bacterial species. It is important to underline however, that the model of Eq. (22) can, in fact, for a proper parameterization, explain the observed variation of the data. But the choice of parameters explaining the empirical variation require for achieving this goal requires careful and unrealistic fine-tuning of the microscopic parameters.
    Stochastic logistic model
    The SLM is defined as

    $$frac{d{x}_{i}}{dt}=frac{{x}_{i}}{{tau }_{i}}left(1-frac{{x}_{i}}{{K}_{i}}right)+sqrt{frac{{sigma }_{i}}{{tau }_{i}}}{x}_{i}{xi }_{i}(t),,$$
    (23)

    where ξ(t) is a Gaussian white noise term with mean zero and correlation (langle {xi }_{i}(t){xi }_{j}(t^{prime} )rangle ={delta }_{ij}delta (t-t^{prime} )). Taylor’s Law and the observed Lognormal MAD constraints the parameter value. The parameters 1/τi, Ki and σi are the intrinsic growth rate, the carrying capacity and the coefficient of variation of the growth-rate fluctuations. Taylor’s Law requires σi = σ (independently of i). Since the average abundance of the SLM is ({bar{x}}_{i}={K}_{i}(1-{sigma }_{i}/2)), if σi = σ, the average abundance and the carrying capacity turn out to be proportional to each other. The lognormal MAD implies therefore that the Kis are lognormally distributed. The stationary distribution corresponding to Eq. (23) reads

    $${rho }_{i}(x)=frac{1}{Gamma (2{sigma }_{i}^{-1}-1)}{left(frac{2}{{K}_{i}{sigma }_{i}}right)}^{2{sigma }_{i}^{-1}-1}exp left(-frac{2}{{K}_{i}{sigma }_{i}}xright){x}^{2{sigma }_{i}^{-1}-2},.$$
    (24)

    The parameter τi does not affect stationary properties, but determines the timescale of relaxation to the stationary distribution. For small deviation of abundance from the average and for large times, the conditional expected abundance behaves as

    $${langle {x}_{i}(t+Delta t)rangle }_{{x}_{i}(t)}={bar{x}}_{i}+left({x}_{i}(t)-{bar{x}}_{i}right){e}^{-frac{Delta t}{{tau }_{i}}},.$$
    (25)

    From the slopes of Fig. 4g one can then determine the timescales τi, which turn out to be approximately equal to 19 h. In Fig. 4 it was assumed τi = 19 h for all species.
    Equation (23) can emerge as effective description of more complicated coupled equations. For instance, it is possible to show that a Lotka-Volterra system of equation with random interactions reduces to Eq. (23) (with colored noise to be self-consistently determined)42. If the coefficient of variation of the interaction coefficient does not increase with the number of species (e.g., if it is constant) then the Lotka-Volterra equations can be effectively approximated with Eq. (23).
    The noise term in Eq. (23) can be interpreted as corresponding to environmental fluctuations. These fluctuations are typically known to have a characteristic timescale and are not white40,41. Supplementary Note 13 and Supplementary Fig. 25 show that colored noise in Eq. (23) does not affect significantly the predictions obtained with the SLM with white noise.
    Reporting summary
    Further information on research design is available in the Nature Research Reporting Summary linked to this article. More

  • in

    A multi-scale eco-evolutionary model of cooperation reveals how microbial adaptation influences soil decomposition

    Construction of the five-compartment model
    Here we explain the construction of the five-compartment model (Fig. 1a). This is step 1 among the four steps described in “Results” section (subsection “Ecosystem dynamics at microsite scale”). We use upper bars in our initial notations to indicate parameters prior to rescaling.
    The five-compartment model captures the stochastic processes acting at the level of C, D, M, Z, X entities (molecules, cells) (Fig. 1a) within a microsite. Dynamics of C, D, M, Z, X occur in continuous time. Mt is the number of cells at time t. Ct, Dt, Zt are the numbers of SOC molecules, DOC molecules, and enzyme molecules respectively. Xt is the number of complexes formed by an enzyme molecule binding a SOC molecule. There are constant external sources of SOC and DOC. When a cell dies, a fraction p of the molecules released are recycled into SOC, while the rest is recycled into DOC. A fraction l of dead microbes and deactivated enzymes may be lost due to leaching.
    We denote by α the structural cost of a cell, which is the equivalent in number of DOC molecules of one cell (without storage). We denote by (alpha ^{prime}) the energetic cost of a cell, which is the number of DOC molecules consumed to produce the energy needed for the synthesis reactions involved in the production of one cell. We denote by β the equivalent in number of DOC molecules of one SOC molecule, and the structural and energetic cost of producing one molecule of enzyme by ρ and (rho ^{prime}), respectively. We assume that the energetic costs are carbon released by cells as CO2 (cell respiration) that diffuses out of the system instantly. We define the biomass production fraction and enzyme allocation fraction as

    $${bar{gamma }}_{M}:=frac{1}{alpha +alpha ^{prime} },quad {bar{gamma }}_{Z}:=frac{1}{rho +rho ^{prime} }.$$
    (1)

    The event times are given by independent exponential random variables whose parameters are defined by event rates (Supplementary Tables 2–4). These event rates give an approximation of the average frequency of each event. The rates of cell growth and enzyme production depend on the trait φ. Once a cell has doubled its initial size, reproduction occurs by releasing the mother cell at its initial size, and the daughter cell at its same size. The cell must therefore take up and store its structural and energetic cost, ((alpha +alpha ^{prime} )), in DOC molecules in order to reproduce. We denote N the number of uptake events before reproduction. The number of DOC molecules taken up at each uptake event is then ((alpha +alpha ^{prime} )/N), hence the notation ({{bf{1}}}_{{Dge (alpha +alpha ^{prime} )/N}}) which equals 1 if (Dge (alpha +alpha ^{prime} )/N), and 0 otherwise. The same notation, ({{bf{1}}}_{{Dge rho +rho ^{prime} }}), is used for the production event of an enzyme molecule. Uptake is stochastic, but reproduction is deterministic, which means that when a cell has performed N uptake events, it reproduces with probability 1. A larger N means a larger number of uptake events between 2 reproduction events, which also means less DOC molecules taken up at each uptake event. The model tracks the dynamics of the number of cells, SOC, DOC, enzyme molecules, and also of the DOC stored in each cell.
    Enzyme–substrate complexes form at rate ({bar{lambda }}^{k}) as one enzyme molecule (e.g. cellulase) bind one SOC molecule (e.g. cellulose). A complex may either dissociate (with no decomposition) at rate ({bar{lambda }}_{-1}^{varepsilon }), or react at rate ({bar{mu }}^{varepsilon }) and convert the molecule of SOC into β molecule of DOC while the enzyme is released and free again to react with new molecules of SOC (Supplementary Table 3).
    System size k does not appear in this system of equations, yet it enters the volume-dependent parameters of the model, IC, ID, θ, and Km. We denote V the unit volume of soil that contains on average one microbial cell and the corresponding equilibrium of carbon mass of SOC, DOC and enzymes. The system size k is the number of well-mixed unit volumes in one microsite, which determines the number of cells sharing SOC, DOC, and enzymes. The volume of one microsite is therefore k × V. Increasing k amounts to increasing microsite volume, the number of cells sharing resources in one microsite, the amount of resources per microsite, and the volume-dependent parameters, such as the amount of SOC entering a microsite per unit of time, IC. In our analysis, the unit volume V is fixed, and we vary k to investigate the effect of microsite volume on the system’s eco-evolutionary dynamics. With very large k, the hybrid model can be approximated by a fully deterministic model which takes the form of a system of four ordinary differential equations (see Supplementary Information 3.3 and Supplementary Fig. 1), similar to the microbial decomposition model first introduced by Allison et al.53. However, empirical data suggest that k is of the order of 10–10054. When k = 1, there is only one cell in the microsite, which volume is V defined as the unit soil volume expected to contain a single cell. A value of k greater than 1 means that each microsite contains k cells and k times the amount of SOC, DOC and enzyme molecules of 1 cell; thus, the microsite volume is k × V, and volume-dependent parameters are rescaled by k. Specifically, there are four volume-dependent parameters: the external input of C, ({bar{I}}_{C}^{k}), the external input of D, ({bar{I}}_{D}^{k}), the half-saturation constant of DOC uptake, ({bar{K}}_{m}^{k}), and the encounter intensity of two given SOC and enzyme molecules, ({bar{lambda }}^{k}). The external inputs increase proportionally with the volume of the microsite, while the encounter intensity of two given molecules in a microsite decreases as its volume increases. The half-saturation is inversely proportional to the affinity between a given cell M and a given DOC molecule d, which decreases with increasing microsite volume. We thus obtain the following scaling relationships:

    $${bar{I}}_{C}^{k}=k{bar{I}}_{C}, {bar{I}}_{D}^{k}=k{bar{I}}_{D}, {bar{lambda }}^{k}=frac{lambda }{k} {rm{and}} {bar{K}}_{m}^{k}=k{bar{K}}_{m}.$$
    (2)

    In our simulations, we generally assume that k is equal to 10, to match the empirical observation that (cells) in soil habitat tend to interact with 10 to 100 other cells at all time54.
    Derivation of the hybrid model
    In Supplementary Information 3, we present the next two steps (2 and 3 in “Ecosystem dynamics at microsite scale” of “Results” section) to derive the hybrid model on which all our results are based. In Supplementary Information 3.1, we explain how the dynamics generated by the five-compartment model can be captured with a reduced model with four-state variables (step 2). In Supplementary Information 3.2, we explain how the stochastic-deterministic PDMP model can be derived from the stochastic four-state variable model (step 3). In the hybrid model (step 4), only cell death remains stochastic, and cell dynamics is measured in unit of number of individuals (M), while other entities are now in carbon mass unit. The rescaled SOC, DOC and enzyme abundances are denoted with lower case letters c, d, and z.
    Simulation algorithm for the hybrid spatial model
    One technical benefit of the hybrid model is its much greater computational tractability. Here we describe the algorithm used to perform simulations of the hybrid model. We ran the model on single microsite to produce the simulations reported in Fig. 2. We ran the model on a 10 × 10 lattice of microsites for the subsequent figures. The algorithm is based on the Gillepsie algorithm55 as used in Champagnat et al.37, Fournier and Méléard56, which straightforwardly extends to the simulation of PDMPs.
    To couple PDMP models across microsites, we account for the DOC and dispersal of cells between adjacent microsites. The DOC diffusion between microsites is modeled by approximating a continuous diffusion with a Euler scheme in which time is discretized with a fixed time step interval, τdiff. τdiff is chosen sufficiently small to provide a fine enough discretization of the DOC diffusion.
    A simulation starts with a given amount of M, z, c, and d in each microsite at time t = 0, while the initial amount of DOC stored within each cell is determined uniformly at random. Two stochastic events (death of a cell) may not occur at the same time. Assume that the process has been computed until time ti; to continue the computation to time ti+1, we proceed as follows.
    First, we simulate T, an exponential random variable with parameter r(ti) = dMM(ti), which corresponds to the death rate of the total cell population at time ti (M(ti) being the total number of cells on the entire lattice). We then compute

    $${t}_{i+1}:={t}_{i}+min left(T,{tau }_{{rm{diff}}}right).$$

    To obtain c(ti+1), d(ti+1), and z(ti+1) in each microsite at time ti+1, and the variation in amount of DOC stored within a cell in the corresponding microsite, we use a Euler scheme that solves the dynamical system

    $$left{begin{array}{l}hskip -136pt dot{c}(t)={I}_{C}-{l}_{C}c-theta zc,\ dot{d}(t)={I}_{D}-{l}_{D}d+theta zc+(1-l){d}_{Z}z-{V}_{max }frac{d}{{K}_{m}{,}+{,}d}{omega }_{M}M,\ hskip -84pt dot{z}(t)=varphi {gamma }_{Z}{V}_{max }frac{d}{{K}_{m}{,}+{,}d}{omega }_{M}M-{d}_{Z}z,\ hskip -93pt dot{Delta }(t)=(1-varphi ){gamma }_{M}{V}_{max }frac{d}{{K}_{m}{,}+{,}d}{omega }_{M},end{array}right.$$

    in each microsite between ti and ti+1, where M is the number of cells in the microsite at time ti, Δ gives the amount variation of DOC stored within a cell, Δ(ti) = 0 and the other initial conditions are the biomass of c, d, z in the corresponding microsite at time ti.
    Note that, within a microsite, the variation of stored DOC is the same for all cells and corresponds to Δ(ti+1). Hence, this amount is added to the amount of DOC stored within each cell living in the corresponding microsite. If, for a cell j, the resulting amount Sj(Ti) + Δ(ti+1) is over ωM, a new cell appears. The amount of stored DOC within the new cell and the mother cell is then updated: Sj(ti+1) = (Sj(Ti) + Δ(ti+1) − ωM)/2. Otherwise, Sj(ti+1) = Sj(Ti) + Δ(ti+1). To determine the position of the new cell, the following steps are taken:

    A uniform random variable ϑ1 in [0, 1] is simulated.

    If ϑ1  More

  • in

    Quorum sensing controls persistence, resuscitation, and virulence of Legionella subpopulations in biofilms

    1.
    Newton HJ, Ang DK, van Driel IR, Hartland EL. Molecular pathogenesis of infections caused by Legionella pneumophila. Clin Microbiol Rev. 2010;23:274–98.
    CAS  PubMed  PubMed Central  Google Scholar 
    2.
    Hilbi H, Hoffmann C, Harrison CF. Legionella spp. outdoors: colonization, communication and persistence. Environ Microbiol Rep. 2011;3:286–96.
    CAS  PubMed  Google Scholar 

    3.
    Fields BS. The molecular ecology of Legionella. Trends Microbiol. 1996;4:286–90.
    CAS  PubMed  Google Scholar 

    4.
    Greub G, Raoult D. Microorganisms resistant to free-living amoebae. Clin Microbiol Rev. 2004;17:413–33.
    PubMed  PubMed Central  Google Scholar 

    5.
    Hoffmann C, Harrison CF, Hilbi H. The natural alternative: protozoa as cellular models for Legionella infection. Cell Microbiol. 2014;16:15–26.
    CAS  PubMed  Google Scholar 

    6.
    Boamah DK, Zhou G, Ensminger AW, O’Connor TJ. From many hosts, one accidental pathogen: The diverse protozoan hosts of Legionella. Front Cell Infect Microbiol. 2017;7:477.
    PubMed  PubMed Central  Google Scholar 

    7.
    Swart AL, Harrison CF, Eichinger L, Steinert M, Hilbi H. Acanthamoeba and Dictyostelium as cellular models for Legionella infection. Front Cell Infect Microbiol. 2018;8:61.
    PubMed  PubMed Central  Google Scholar 

    8.
    Sherwood RK, Roy CR. A Rab-centric perspective of bacterial pathogen-occupied vacuoles. Cell Host Microbe. 2013;14:256–68.
    CAS  PubMed  Google Scholar 

    9.
    Asrat S, de Jesus DA, Hempstead AD, Ramabhadran V, Isberg RR. Bacterial pathogen manipulation of host membrane trafficking. Annu Rev Cell Dev Biol. 2014;30:79–109.
    CAS  PubMed  Google Scholar 

    10.
    Finsel I, Hilbi H. Formation of a pathogen vacuole according to Legionella pneumophila: how to kill one bird with many stones. Cell Microbiol. 2015;17:935–50.
    CAS  PubMed  Google Scholar 

    11.
    Qiu J, Luo ZQ. Legionella and Coxiella effectors: strength in diversity and activity. Nat Rev Microbiol. 2017;15:591–605.
    CAS  PubMed  Google Scholar 

    12.
    Personnic N, Bärlocher K, Finsel I, Hilbi H. Subversion of retrograde trafficking by translocated pathogen effectors. Trends Microbiol. 2016;24:450–62.
    CAS  PubMed  Google Scholar 

    13.
    Steiner B, Weber S, Hilbi H. Formation of the Legionella-containing vacuole: phosphoinositide conversion, GTPase modulation and ER dynamics. Int J Med Microbiol. 2018;308:49–57.
    CAS  PubMed  Google Scholar 

    14.
    Declerck P. Biofilms: the environmental playground of Legionella pneumophila. Environ Microbiol. 2010;12:557–66.
    CAS  PubMed  Google Scholar 

    15.
    Abdel-Nour M, Duncan C, Low DE, Guyard C. Biofilms: the stronghold of Legionella pneumophila. Int J Mol Sci. 2013;14:21660–75.
    PubMed  PubMed Central  Google Scholar 

    16.
    Pécastaings S, Allombert J, Lajoie B, Doublet P, Roques C, Vianney A. New insights into Legionella pneumophila biofilm regulation by c-di-GMP signaling. Biofouling. 2016;32:935–48.
    PubMed  Google Scholar 

    17.
    Hochstrasser R, Hilbi H. Intra-species and inter-kingdom signaling of Legionella pneumophila. Front Microbiol. 2017;8:79.
    PubMed  PubMed Central  Google Scholar 

    18.
    Mampel J, Spirig T, Weber SS, Haagensen JAJ, Molin S, Hilbi H. Planktonic replication is essential for biofilm formation by Legionella pneumophila in a complex medium under static and dynamic flow conditions. Appl Environ Microbiol. 2006;72:2885–95.
    CAS  PubMed  PubMed Central  Google Scholar 

    19.
    Hindré T, Brüggemann H, Buchrieser C, Héchard Y. Transcriptional profiling of Legionella pneumophila biofilm cells and the influence of iron on biofilm formation. Microbiology. 2008;154:30–41.
    PubMed  Google Scholar 

    20.
    Pécastaings S, Berge M, Dubourg KM, Roques C. Sessile Legionella pneumophila is able to grow on surfaces and generate structured monospecies biofilms. Biofouling. 2010;26:809–19.
    PubMed  Google Scholar 

    21.
    Wai SN, Mizunoe Y, Yoshida S. How Vibrio cholerae survive during starvation. FEMS Microbiol Lett. 1999;180:123–31.
    CAS  PubMed  Google Scholar 

    22.
    Balaban NQ, Merrin J, Chait R, Kowalik L, Leibler S. Bacterial persistence as a phenotypic switch. Science. 2004;305:1622–5.
    CAS  PubMed  Google Scholar 

    23.
    Harms A, Maisonneuve E, Gerdes K. Mechanisms of bacterial persistence during stress and antibiotic exposure. Science. 2016;354:aaf4268.
    PubMed  Google Scholar 

    24.
    Claudi B, Sprote P, Chirkova A, Personnic N, Zankl J, Schurmann N, et al. Phenotypic variation of Salmonella in host tissues delays eradication by antimicrobial chemotherapy. Cell. 2014;158:722–33.
    CAS  PubMed  Google Scholar 

    25.
    Hélaine S, Cheverton AM, Watson KG, Faure LM, Matthews SA, Holden DW. Internalization of Salmonella by macrophages induces formation of nonreplicating persisters. Science. 2014;343:204–8.
    PubMed  PubMed Central  Google Scholar 

    26.
    Conlon BP, Rowe SE, Gandt AB, Nuxoll AS, Donegan NP, Zalis EA, et al. Persister formation in Staphylococcus aureus is associated with ATP depletion. Nat Microbiol. 2016;1:16051.
    CAS  PubMed  PubMed Central  Google Scholar 

    27.
    Personnic N, Striednig B, Lezan E, Manske C, Welin A, Schmidt A, et al. Quorum sensing modulates the formation of virulent Legionella persisters within infected cells. Nat Commun. 2019;10:5216.
    PubMed  PubMed Central  Google Scholar 

    28.
    Molofsky AB, Swanson MS. Differentiate to thrive: lessons from the Legionella pneumophila life cycle. Mol Microbiol. 2004;53:29–40.
    CAS  PubMed  Google Scholar 

    29.
    Hammer BK, Swanson MS. Co-ordination of Legionella pneumophila virulence with entry into stationary phase by ppGpp. Mol Microbiol. 1999;33:721–31.
    CAS  PubMed  Google Scholar 

    30.
    Dalebroux ZD, Yagi BF, Sahr T, Buchrieser C, Swanson MS. Distinct roles of ppGpp and DksA in Legionella pneumophila differentiation. Mol Microbiol. 2010;76:200–19.
    CAS  PubMed  PubMed Central  Google Scholar 

    31.
    Tiaden A, Spirig T, Hilbi H. Bacterial gene regulation by α-hydroxyketone signaling. Trends Microbiol. 2010;18:288–97.
    CAS  PubMed  Google Scholar 

    32.
    Personnic N, Striednig B, Hilbi H. Legionella quorum sensing and its role in pathogen-host interactions. Curr Opin Microbiol. 2018;41:29–35.
    CAS  PubMed  Google Scholar 

    33.
    Spirig T, Tiaden A, Kiefer P, Buchrieser C, Vorholt JA, Hilbi H. The Legionella autoinducer synthase LqsA produces an α-hydroxyketone signaling molecule. J Biol Chem. 2008;283:18113–23.
    CAS  PubMed  PubMed Central  Google Scholar 

    34.
    Tiaden A, Spirig T, Sahr T, Wälti MA, Boucke K, Buchrieser C, et al. The autoinducer synthase LqsA and putative sensor kinase LqsS regulate phagocyte interactions, extracellular filaments and a genomic island of Legionella pneumophila. Environ Microbiol. 2010;12:1243–59.
    CAS  PubMed  Google Scholar 

    35.
    Kessler A, Schell U, Sahr T, Tiaden A, Harrison C, Buchrieser C, et al. The Legionella pneumophila orphan sensor kinase LqsT regulates competence and pathogen-host interactions as a component of the LAI-1 circuit. Environ Microbiol. 2013;15:646–62.
    CAS  PubMed  Google Scholar 

    36.
    Tiaden A, Spirig T, Weber SS, Brüggemann H, Bosshard R, Buchrieser C, et al. The Legionella pneumophila response regulator LqsR promotes host cell interactions as an element of the virulence regulatory network controlled by RpoS and LetA. Cell Microbiol. 2007;9:2903–20.
    CAS  PubMed  Google Scholar 

    37.
    Tiaden A, Spirig T, Carranza P, Brüggemann H, Riedel K, Eberl L, et al. Synergistic contribution of the Legionella pneumophila lqs genes to pathogen-host interactions. J Bacteriol. 2008;190:7532–47.
    CAS  PubMed  PubMed Central  Google Scholar 

    38.
    Schell U, Simon S, Sahr T, Hager D, Albers MF, Kessler A, et al. The α-hydroxyketone LAI-1 regulates motility, Lqs-dependent phosphorylation signalling and gene expression of Legionella pneumophila. Mol Microbiol. 2016;99:778–93.
    CAS  PubMed  Google Scholar 

    39.
    Hochstrasser R, Hutter CAJ, Arnold FM, Bärlocher K, Seeger MA, Hilbi H. The structure of the Legionella response regulator LqsR reveals amino acids critical for phosphorylation and dimerization. Mol Microbiol. 2020;113:1070–84.
    CAS  PubMed  Google Scholar 

    40.
    Hochstrasser R, Kessler A, Sahr T, Simon S, Schell U, Gomez-Valero L, et al. The pleiotropic Legionella transcription factor LvbR links the Lqs and c-di-GMP regulatory networks to control biofilm architecture and virulence. Environ Microbiol. 2019;21:1035–53.
    CAS  PubMed  Google Scholar 

    41.
    Hochstrasser R, Hilbi H. Legionella quorum sensing meets cyclic-di-GMP signaling. Curr Opin Microbiol. 2020;55:9–16.
    CAS  PubMed  Google Scholar 

    42.
    Simon S, Schell U, Heuer N, Hager D, Albers MF, Matthias J, et al. Inter-kingdom signaling by the Legionella quorum sensing molecule LAI-1 modulates cell migration through an IQGAP1-Cdc42-ARHGEF9-dependent pathway. PLoS Pathog. 2015;11:e1005307.
    PubMed  PubMed Central  Google Scholar 

    43.
    Faucher SP, Friedlander G, Livny J, Margalit H, Shuman HA. Legionella pneumophila 6S RNA optimizes intracellular multiplication. Proc Natl Acad Sci USA. 2010;107:7533–8.
    CAS  PubMed  Google Scholar 

    44.
    Faucher SP, Shuman HA. Small regulatory RNA and Legionella pneumophila. Front Microbiol. 2011;2:98.
    CAS  PubMed  PubMed Central  Google Scholar 

    45.
    Balaban NQ, Hélaine S, Lewis K, Ackermann M, Aldridge B, Andersson DI, et al. Definitions and guidelines for research on antibiotic persistence. Nat Rev Microbiol. 2019;17:441–8.
    CAS  PubMed  PubMed Central  Google Scholar 

    46.
    Brauner A, Fridman O, Gefen O, Balaban NQ. Distinguishing between resistance, tolerance and persistence to antibiotic treatment. Nat Rev Microbiol. 2016;14:320–30.
    CAS  PubMed  Google Scholar 

    47.
    Personnic N, Striednig B, Hilbi H. Single cell analysis of Legionella and Legionella-infected Acanthamoeba by agarose embedment. Methods Mol Biol. 2019;1921:191–204.
    CAS  PubMed  Google Scholar 

    48.
    Byrne B, Swanson MS. Expression of Legionella pneumophila virulence traits in response to growth conditions. Infect Immun. 1998;66:3029–34.
    CAS  PubMed  PubMed Central  Google Scholar 

    49.
    Lewis K. Persister cells, dormancy and infectious disease. Nat Rev Microbiol. 2007;5:48–56.
    CAS  PubMed  Google Scholar 

    50.
    Lewis K. Multidrug tolerance of biofilms and persister cells. Curr Top Microbiol Immunol. 2008;322:107–31.
    CAS  PubMed  Google Scholar 

    51.
    Hall CW, Mah TF. Molecular mechanisms of biofilm-based antibiotic resistance and tolerance in pathogenic bacteria. FEMS Microbiol Rev. 2017;41:276–301.
    CAS  PubMed  Google Scholar 

    52.
    Brenzinger S, van der Aart LT, van Wezel GP, Lacroix JM, Glatter T, Briegel A. Structural and proteomic changes in viable but non-culturable Vibrio cholerae. Front Microbiol. 2019;10:793.
    PubMed  PubMed Central  Google Scholar 

    53.
    Defraine V, Fauvart M, Michiels J. Fighting bacterial persistence: current and emerging anti-persister strategies and therapeutics. Drug Resist Updates. 2018;38:12–26.
    Google Scholar 

    54.
    Wu B, Liang W, Kan B. Growth phase, oxygen, temperature, and starvation affect the development of viable but non-culturable state of Vibrio cholerae. Front Microbiol. 2016;7:404.
    PubMed  PubMed Central  Google Scholar 

    55.
    Ackermann M. A functional perspective on phenotypic heterogeneity in microorganisms. Nat Rev Microbiol. 2015;13:497–508.
    CAS  PubMed  Google Scholar 

    56.
    Epstein SS. Microbial awakenings. Nature 2009;457:1083.
    CAS  PubMed  Google Scholar 

    57.
    Sturm A, Dworkin J. Phenotypic diversity as a mechanism to exit cellular dormancy. Curr Biol. 2015;25:2272–7.
    CAS  PubMed  PubMed Central  Google Scholar 

    58.
    Carlson HK, Vance RE, Marletta MA. H-NOX regulation of c-di-GMP metabolism and biofilm formation in Legionella pneumophila. Mol Microbiol. 2010;77:930–42.
    CAS  PubMed  PubMed Central  Google Scholar 

    59.
    Loh E, Righetti F, Eichner H, Twittenhoff C, Narberhaus F. RNA thermometers in bacterial pathogens. Microbiol Spectr. 2018;6.

    60.
    Terskikh A, Fradkov A, Ermakova G, Zaraisky A, Tan P, Kajava AV, et al. “Fluorescent timer”: protein that changes color with time. Science. 2000;290:1585–8.
    CAS  PubMed  Google Scholar  More

  • in

    Linking microbial Sphagnum degradation and acetate mineralization in acidic peat bogs: from global insights to a genome-centric case study

    1.
    Amesbury MJ, Gallego-Sala A, Loisel J. Peatlands as prolific carbon sinks. Nat Geosci. 2019;12:880–1.
    CAS  Google Scholar 
    2.
    Rydin H, Jeglum J. The biology of peatlands. 2nd ed. New York: Oxford University Press; 2013.

    3.
    Kremer C, Pettolino F, Bacic A, Drinnan A. Distribution of cell wall components in Sphagnum hyaline cells and in liverwort and hornwort elaters. Planta. 2004;219:1023–35.
    CAS  PubMed  Google Scholar 

    4.
    Theander O. Studies on Sphagnum peat. III. A quantitative study on the carbohydrate constituents of Sphagnum mosses and Sphagnum peat. Acta Chem Scand. 1954;8:989–1000.
    CAS  Google Scholar 

    5.
    Ballance S, Borsheim KY, Inngjerdingen K, Paulsen BS, Christensen BE. A re-examination and partial characterisation of polysaccharides released by mild acid hydrolysis from the chlorite-treated leaves of Sphagnum papillosum. Carbohydr Polym. 2007;67:104–15.
    CAS  Google Scholar 

    6.
    Painter TJ. Residues of D-lyxo-5-hexosulopyranuronic acid in Sphagnum holocellulose, and their role in cross-linking. Carbohydr Res. 1983;124:C18–C21.
    CAS  Google Scholar 

    7.
    Bartels D, Baumann A, Maeder M, Geske T, Heise EM, von Schwartzenberg K, et al. Evolution of plant cell wall: arabinogalactan-proteins from three moss genera show structural differences compared to seed plants. Carbohydr Polym. 2017;163:227–35.
    CAS  PubMed  Google Scholar 

    8.
    Woodcroft BJ, Singleton CM, Boyd JA, Evans PN, Emerson JB, Zayed AAF, et al. Genome-centric view of carbon processing in thawing permafrost. Nature. 2018;560:49–54.
    CAS  PubMed  Google Scholar 

    9.
    Ivanova AA, Wegner C-E, Kim Y, Liesack W, Dedysh SN. Identification of microbial populations driving biopolymer degradation in acidic peatlands by metatranscriptomic analysis. Mol Ecol. 2016;25:4818–35.
    CAS  PubMed  Google Scholar 

    10.
    Duddleston KN, Kinney MA, Kiene RP, Hines ME. Anaerobic microbial biogeochemistry in a northern bog: acetate as a dominant metabolic end product. Glob Biogeochem Cycles. 2002;16:11–1-11–9.
    Google Scholar 

    11.
    Ye R, Jin Q, Bohannan B, Keller JK, McAllister SA, Bridgham SD. pH controls over anaerobic carbon mineralization, the efficiency of methane production, and methanogenic pathways in peatlands across an ombrotrophic-minerotrophic gradient. Soil Biol Biochem. 2012;54:36–47.
    CAS  Google Scholar 

    12.
    van Beelen P, Wouterse MJ, Masselink MJ, Spijker J, Mesman M. The application of a simplified method to map the aerobic acetate mineralization rates at the groundwater table of the Netherlands. J Contam Hydrol. 2011;122:86–95.
    PubMed  Google Scholar 

    13.
    Conrad R. Importance of hydrogenotrophic, aceticlastic and methylotrophic methanogenesis for methane production in terrestrial, aquatic and other anoxic environments: a mini review. Pedosphere. 2020;30:25–39.
    Google Scholar 

    14.
    Walpen N, Getzinger GJ, Schroth MH, Sander M. Electron-donating phenolic and electron-accepting quinone moieties in peat dissolved organic matter: quantities and redox transformations in the context of peat biogeochemistry. Environ Sci Technol. 2018;52:5236–45.
    CAS  PubMed  Google Scholar 

    15.
    Dettling MD, Yavitt J, Zinder S. Control of organic carbon mineralization by alternative electron acceptors in four peatlands, central New York State, USA. Wetlands. 2006;26:917–27.
    Google Scholar 

    16.
    Keller JK, Bridgham SD. Pathways of anaerobic carbon cycling across an ombrotrophic-minerotrophic peatland gradient. Limnol Oceanogr. 2007;52:96–107.
    CAS  Google Scholar 

    17.
    Keller JK, Takagi KK. Solid-phase organic matter reduction regulates anaerobic decomposition in bog soil. Ecosphere. 2013;4:1–12.
    Google Scholar 

    18.
    Keller JK, Weisenhorn PB, Megonigal JP. Humic acids as electron acceptors in wetland decomposition. Soil Biol Biochem. 2009;41:1518–22.
    CAS  Google Scholar 

    19.
    Yavitt JB, Seidman-Zager M. Methanogenic conditions in northern peat soils. Geomicrobiol J. 2006;23:119–27.
    CAS  Google Scholar 

    20.
    He S, Lau MP, Linz AM, Roden EE, McMahon KD. Extracellular electron transfer may be an overlooked contribution to pelagic respiration in humic-rich freshwater lakes. mSphere. 2019;4:1–8.
    Google Scholar 

    21.
    Lovley DR, Coates JD, Blunt-Harris EL, Phillips EJ, Woodward JC. Humic substances as electron acceptors for microbial respiration. Nature. 1996;382:445–8.
    CAS  Google Scholar 

    22.
    Stams AJM, De Bok FAM, Plugge CM, Van Eekert MHA, Dolfing J, Schraa G. Exocellular electron transfer in anaerobic microbial communities. Environ Microbiol. 2006;8:371–82.
    CAS  PubMed  Google Scholar 

    23.
    Klupfel L, Piepenbrock A, Kappler A, Sander M. Humic substances as fully regenerable electron acceptors in recurrently anoxic environments. Nat Geosci. 2014;7:195–200.
    Google Scholar 

    24.
    Bräuer SL, Yavitt JB, Zinder SH. Methanogenesis in McLean Bog, an acidic peat bog in upstate New York: stimulation by H2/CO2 in the presence of rifampicin, or by low concentrations of acetate. Geomicrobiol J. 2004;21:433–43.
    Google Scholar 

    25.
    Cadillo-Quiroz H, Brauer S, Yashiro E, Sun C, Yavitt J, Zinder S. Vertical profiles of methanogenesis and methanogens in two contrasting acidic peatlands in central New York State, USA. Environ Microbiol. 2006;8:1428–40.
    CAS  PubMed  Google Scholar 

    26.
    Kotsyurbenko O, Chin K, Glagolev M, Stubner S, Simankova M, Nozhevnikova A, et al. Acetoclastic and hydrogenotrophic methane production and methanogenic populations in an acidic West-Siberian pear bog. Environ Microbiol. 2004;6:1159–73.
    CAS  PubMed  Google Scholar 

    27.
    Lai DYF. Methane dynamics in northern peatlands: a review. Pedosphere. 2009;19:409–21.
    CAS  Google Scholar 

    28.
    Xu XF, Elias DA, Graham DE, Phelps TJ, Carroll SL, Wullschleger SD, et al. A microbial functional group-based module for simulating methane production and consumption: application to an inbucated permafrost soil. J Geophys Res Biogeosci. 2015;120:1315–33.
    CAS  Google Scholar 

    29.
    Chen I-MA, Markowitz VM, Chu K, Palaniappan K, Szeto E, Pillay M, et al. IMG/M: integrated genome and metagenome comparative data analysis system. Nucleic Acids Res. 2017;45:D507–16.
    CAS  PubMed  Google Scholar 

    30.
    Langfelder P, Horvath S. WGCNA: an R package for weighted correlation network analysis. BMC Bioinformat. 2008;9:559.
    Google Scholar 

    31.
    Langfelder P, Horvath S. Eigengene networks for studying the relationships between co-expression modules. BMC Syst Biol. 2007;1:54.
    PubMed  PubMed Central  Google Scholar 

    32.
    Sun CL, Brauer SL, Cadillo-Quiroz H, Zinder SH, Yavitt JB. Seasonal changes in methanogenesis and methanogenic community in three peatlands, New York State. Front Microbiol. 2012;3:81.
    CAS  PubMed  PubMed Central  Google Scholar 

    33.
    Osvald H. Vegetation and stratigraphy of peatlands in North America. Uppsala: Acta Universitatis Upsaliensis; 1970.

    34.
    Pepe-Ranney C, Campbell AN, Koechli CN, Berthrong S, Buckley DH. Unearthing the ecology of soil microorganisms using a high resolution DNA-SIP approach to explore cellulose and xylose metabolism in soil. Front Microbiol. 2016;7:703.
    PubMed  PubMed Central  Google Scholar 

    35.
    Nurk S, Meleshko D, Korobeynikov A, Pevzner PA. metaSPAdes: a new versatile metagenomic assembler. Genome Res. 2017;27:824–34.
    CAS  PubMed  PubMed Central  Google Scholar 

    36.
    Ondov BD, Treangen TJ, Melsted P, Mallonee AB, Bergman NH, Koren S, et al. Mash: fast genome and metagenome distance estimation using MinHash. Genome Biol. 2016;17:132.
    PubMed  PubMed Central  Google Scholar 

    37.
    Kang D, Froula J, Egan R, Wang Z. MetaBAT, an efficient tool for accurately reconstructing single genomes from complex microbial communities. PeerJ. 2015;3:e1165.
    PubMed  PubMed Central  Google Scholar 

    38.
    Parks DH, Imelfort M, Skennerton CT, Hugenholtz P, Tyson GW. CheckM: assessing the quality of microbial genomes recovered from isolates, single cells, and metagenomes. Genome Res. 2015;25:1043–55.
    CAS  PubMed  PubMed Central  Google Scholar 

    39.
    Bowers RM, Kyrpides NC, Stepanauskas R, Harmon-Smith M, Doud D, Reddy TBK, et al. Minimum information about a single amplified genome (MISAG) and a metagenome-assembled genome (MIMAG) of bacteria and archaea. Nat Biotechnol. 2017;35:725.
    CAS  PubMed  PubMed Central  Google Scholar 

    40.
    Segata N, Börnigen D, Morgan XC, Huttenhower C. PhyloPhlAn is a new method for improved phylogenetic and taxonomic placement of microbes. Nat Commun. 2013;4:2304.
    PubMed  PubMed Central  Google Scholar 

    41.
    Buchfink B, Xie C, Huson DH. Fast and sensitive protein alignment using DIAMOND. Nat Methods. 2014;12:59.
    PubMed  Google Scholar 

    42.
    Parks DH, Chuvochina M, Waite DW, Rinke C, Skarshewski A, Chaumeil P-A, et al. A standardized bacterial taxonomy based on genome phylogeny substantially revises the tree of life. Nat Biotechnol. 2018;36:996–1004.
    CAS  PubMed  Google Scholar 

    43.
    Rodriguez-R LM, Tsementzi D, Luo C, Konstantinidis KT. Iterative substractive binning of freshwater chronoseries metagenomes identifies over 400 novel species and their ecologic preferences. Environ Microbiol. 2020;22:3394–412.
    CAS  PubMed  Google Scholar 

    44.
    Langmead B, Salzberg SL. Fast gapped-read alignment with Bowtie 2. Nat Methods. 2012;9:357–9.
    CAS  PubMed  PubMed Central  Google Scholar 

    45.
    Quinlan AR, Hall IM. BEDTools: a flexible suite of utilities for comparing genomic features. Bioinformatics. 2010;26:841–2.
    CAS  PubMed  PubMed Central  Google Scholar 

    46.
    Rodriguez-R LM, Konstantinidis KT. The enveomics collection: a toolbox for specialized analyses of microbial genomes and metagenomes. PeerJ Prepr. 2016;4:e1900v1.
    Google Scholar 

    47.
    Nayfach S, Pollard KS. Average genome size estimation improves comparative metagenomics and sheds light on the functional ecology of the human microbiome. Genome Biol. 2015;16:51.
    PubMed  PubMed Central  Google Scholar 

    48.
    Zalman C, Keller JK, Tfaily M, Kolton M, Pfeifer-Meister L, Wilson RM, et al. Small differences in ombrotrophy control regional-scale variation in methane cycling among Sphagnum-dominated peatlands. Biogeochemistry. 2018;139:155–77.
    CAS  Google Scholar 

    49.
    Williams CJ, Yavitt JB. Botanical composition of peat and degree of peat decomposition in three temperate peatlands. Ecoscience. 2003;10:85–95.
    Google Scholar 

    50.
    Dedysh SN. Cultivating uncultured bacteria from northern wetlands: knowledge gained and remaining gaps. Front Microbiol. 2011;2:184.
    PubMed  PubMed Central  Google Scholar 

    51.
    Hattori S. Syntrophic acetate-oxidizing microbes in methanogenic environments. Microbes Environ. 2008;23:118–27.
    PubMed  Google Scholar 

    52.
    Hines ME, Duddleson KN, Kiene RP. Carbon flow to acetate and C1 compounds in northern wetlands. Geophys Res Lett. 2001;28:4251–4.
    CAS  Google Scholar 

    53.
    Karakashev D, Batstone DJ, Trably E, Angelidaki I. Acetate oxidation is the dominant methanogenic pathway from acetate in the absence of Methanosaetaceae. Appl Environ Microbiol. 2006;72:5138–41.
    CAS  PubMed  PubMed Central  Google Scholar 

    54.
    Cervantes FJ, van der Velde S, Lettinga G, Field JA. Competition between methanogenesis and quinone respiration for ecologically important substrates in anaerobic consortia. FEMS Microbiol Ecol. 2000;34:161–71.
    CAS  PubMed  Google Scholar 

    55.
    Cervantes FJ, Gutierrez CH, Lopez KY, Estrada-Alvarado MI, Meza-Escalante AC, Texier AC, et al. Contribution of quinone-reducing microorganisms to the anaerobic biodegradation of organic compounds under different redox conditions. Biodegradation. 2008;19:235–46.
    CAS  PubMed  Google Scholar 

    56.
    Lokshina LY, Vavilin VA, Kettunen RH, Rintala JA, Holliger C, Nozhevnikova AN. Evaluation of kinetic coefficients using integrated monod and haldane models for low-temperature acetoclastic methanogenesis. Water Res. 2001;35:2913–22.
    CAS  PubMed  Google Scholar 

    57.
    Kotsyurbenko OR, Friedrich MW, Simankova MV, Nozhevnikova AN, Golyshin PN, Timmis KN, et al. Shift from acetoclastic to H2-dependent methanogenesis in a West Siberain peat bog at low pH values and isolation of an acidophilic Methanobacterium strain. Appl Environ Microbiol. 2007;73:2344–8.
    CAS  PubMed  PubMed Central  Google Scholar 

    58.
    Schmidt O, Hink L, Horn M, Drake H. Peat: home to novel syntrophic species that feed acetate- and hydrogen-scavenging methanogens. ISME J. 2016;10:1954–66.
    CAS  PubMed  PubMed Central  Google Scholar 

    59.
    Wolfe AJ. The acetate switch. Microbiol Mol Biol Rev. 2005;69:12–50.
    CAS  PubMed  PubMed Central  Google Scholar 

    60.
    Starai VJ, Escalante-Semerena JC. Acetyl-coenzyme A synthetase (AMP forming). Cell Mol Life Sci. 2004;61:2020–30.
    CAS  PubMed  Google Scholar 

    61.
    Pankratov TA, Dedysh SN, Zavarzin GA. The leading role of Actinobacteria in aerobic cellulose degradation in Sphagnum peat bogs. Dokl Biol Sci. 2006;410:428–30.
    CAS  PubMed  Google Scholar 

    62.
    Mannisto M, Ganzert L, Tjirola M, Haggblom MM, Stark S. Do shifts in life strategies explain microbial community responses to increasing nitrogen in tundra soil? Soil Biol Biochem. 2016;96:216–28.
    CAS  Google Scholar 

    63.
    Kang H, Kwon MJ, Kim S, Lee S, Jones TG, Johncock AC, et al. Biologically driven DOC release from peatlands during recovery from acidification. Nat Commun. 2018;9:3807.
    PubMed  PubMed Central  Google Scholar 

    64.
    Dedysh SN, Dunfield PF. Beijerinckiaceae. In: Whitman WB, editor. Bergey’s manual of systematics of archaea and bacteria. Hoboken, NJ: John Wiley & Sons, Inc.; 2016. p. 1–4. More

  • in

    Light intensity regulates flower visitation in Neotropical nocturnal bees

    1.
    Michener, C. D. The Bees of the World (The Johns Hopkins University Press, Baltimore, 2007).
    Google Scholar 
    2.
    Wcislo, W. T. & Tierney, S. M. Behavioural environments and niche construction: The evolution of dim-light foraging in bees. Biol. Rev. 84, 19–37 (2009).
    PubMed  Google Scholar 

    3.
    Warrant, E. J. Nocturnal bees. Curr. Biol. 17, 991–992 (2007).
    Google Scholar 

    4.
    Warrant, E. J. Seeing in the dark: Vision and visual behaviour in nocturnal bees and wasps. J. Exp. Biol. 211, 1737–1746 (2008).
    PubMed  Google Scholar 

    5.
    Somanathan, H., Borges, R. M., Warrant, E. J. & Kelber, A. Visual ecology of Indian carpenter bees I: Light intensities and flight activity. J. Comp. Physiol. A Neuroethol. Sensory Neural Behav. Physiol. 194, 97–107 (2008).
    Google Scholar 

    6.
    Somanathan, H., Saryan, P. & Balamurali, G. S. Foraging strategies and physiological adaptations in large carpenter bees. J. Comp. Physiol. A Neuroethol. Sensory Neural Behav. Physiol. 205, 387–398 (2019).
    Google Scholar 

    7.
    Engel, M. S. Classification of the bee tribe Augochlorini (Hymenoptera: Halictidae). Bull. Am. Museum Nat. Hist. 250, 1–90 (2000).
    Google Scholar 

    8.
    Silveira, F. A., Melo, G. A. R. & Almeida, E. A. B. Abelhas Brasileiras: Sistemática e Identificação (Fundação Araucária, Belo Horizonte, 2002).
    Google Scholar 

    9.
    Wcislo, W. T. et al. The evolution of nocturnal behaviour in sweat bees, Megalopta genalis and M. ecuadoria (Hymenoptera: Halictidae): An escape from competitors and enemies?. Biol. J. Linn. Soc. 83, 377–387 (2004).
    Google Scholar 

    10.
    Carvalho, A. T., Maia, A. C. D., Ojima, P. Y., dos Santos, A. A. & Schlindwein, C. Nocturnal bees are attracted by widespread floral scents. J. Chem. Ecol. 38, 315–318 (2012).
    CAS  PubMed  Google Scholar 

    11.
    Janzen, D. Notes on nesting and foraging behavior of Megalopta (Hymenoptera: Halictidae) in Costa Rica. J. Kansas Entomol. Soc. 41, 342–350 (1968).
    Google Scholar 

    12.
    Roberts, R. B. Biology of the crepuscular bee Ptiloglossa guinnae N. sp. with notes on associated bees, mites, and yeasts. J. Kansas Entomol. Soc. 44, 283–294 (1971).
    Google Scholar 

    13.
    Rozen, J. G. Nesting biology of Diphaglossine bees (Hymenoptera, Colletidae). Am. Museum Novit. 2786, 1–33 (1984).
    Google Scholar 

    14.
    Santos, L. M., Tierney, S. M. & Wcislo, W. T. Nest descriptions of Megalopta aegis (Vachal) and M. guimaraesi Santos & Silveira (Hymenoptera, Halictidae) from the Brazilian Cerrado. Rev. Bras. Entomol. 54, 332–334 (2010).
    Google Scholar 

    15.
    Sarzetti, L., Genise, J., Sanchez, M. V., Farina, J. & Molina, A. Nesting behavior and ecological preferences of five Diphaglossinae species (Hymenoptera, Apoidea, Colletidae) from Argentina and Chile. J. Hymenopt. Res. 33, 63–82 (2013).
    Google Scholar 

    16.
    Wolda, H. & Roubik, D. W. Nocturnal bee abundance and seasonal bee activity in a Panamanian forest. Ecology 67, 426–433 (1986).
    Google Scholar 

    17.
    Linsley, E. G. & Cazier, M. A. Some competitive relationships among matinal and late afternoon foraging activities of Caupolicanine bees in Southeastern Arizona (Hymenoptera, Colletidae). J. Kansas Entomol. Soc. 43, 251–261 (1970).
    Google Scholar 

    18.
    Roulston, T. H. Hourly capture of two species of Megalopta (Hymenoptera: Apoidea; Halictidae) at black lights in Panama with notes on nocturnal foraging by bees. J. Kansas Entomol. Soc. 70, 189–196 (1997).
    Google Scholar 

    19.
    Smith, A. R., López Quintero, I. J., Moreno Patiño, J. E., Roubik, D. W. & Wcislo, W. T. Pollen use by Megalopta sweat bees in relation to resource availability in a tropical forest. Ecol. Entomol. 37, 309–317 (2012).
    Google Scholar 

    20.
    Dafni, A., Kevan, P. G. & Husband, B. C. Practical Pollination Biology (Enviroquest Ltd., Cambridge, 2005).
    Google Scholar 

    21.
    Somanathan, H. & Borges, R. M. Nocturnal pollination by the carpenter bee Xylocopa tenuiscapa (Apidae) and the effect of floral display on fruit set of Heterophragma quadriloculare (Bignoniaceae) in India. Biotropica 33, 78–89 (2001).
    Google Scholar 

    22.
    Contrera, F. A. L. & Nieh, J. C. The effect of ambient temperature on forager sound production and thoracic temperature in the stingless bee, Melipona panamica. Behav. Ecol. Sociobiol. 61, 887–897 (2007).
    Google Scholar 

    23.
    Willmer, P. G. Thermal constraints on activity patterns in nectar-feeding insects. Ecol. Entomol. 8, 455–469 (1983).
    Google Scholar 

    24.
    Linsley, E. G. The ecology of solitary bee. Hilgardia 27, 543–599 (1958).
    Google Scholar 

    25.
    Figueiredo-Mecca, G., Bego, L. R. & Nascimento, F. S. Foraging behavior of Scaptotrigona depilis (Hymenoptera, Apidae, Meliponini) and its relationship with temporal and abiotic factors. Sociobiology 60, 277–282 (2013).
    Google Scholar 

    26.
    Streinzer, M., Huber, W. & Spaethe, J. Body size limits dim-light foraging activity in stingless bees (Apidae: Meliponini). J. Comp. Physiol. A 202, 643–655 (2016).
    Google Scholar 

    27.
    Linsley, E. G. Temporal patterns of flower visitation by solitary bees, with particular reference to the southwestern United States. J. Kansas Entomol. Soc. 51, 531–546 (1978).
    Google Scholar 

    28.
    Borges, R. M., Somanathan, H. & Kelber, A. Patterns and processes in nocturnal and crepuscular pollination services. Q. Rev. Biol. 91, 389–418 (2016).
    PubMed  Google Scholar 

    29.
    Warrant, E. J. Seeing better at night: Life style, eye design and the optimum strategy of spatial and temporal summation. Vis. Res. 39, 1611–1630 (1999).
    CAS  PubMed  Google Scholar 

    30.
    Warrant, E. J. et al. Nocturnal vision and landmark orientation in a tropical halictid bee. Curr. Biol. 14, 1309–1318 (2004).
    CAS  PubMed  Google Scholar 

    31.
    Warrant, E. Vision in the dimmest habitats on Earth. J. Comp. Physiol. A Neuroethol. Sensory Neural Behav. Physiol. 190, 765–789 (2004).
    Google Scholar 

    32.
    Warrant, E. & Dacke, M. Vision and visual navigation in nocturnal insects. Annu. Rev. Entomol. 56, 239–254 (2011).
    CAS  PubMed  Google Scholar 

    33.
    Rozenberg, G. V. Twilight (Springer, New York, 1966).
    Google Scholar 

    34.
    O’Carroll, D. C. & Warrant, E. J. Vision in dim light: Highlights and challenges. Philos. Trans. R. Soc. B Biol. Sci. 372, 20160062 (2017).
    Google Scholar 

    35.
    Smith, A. R., Kitchen, S. M., Toney, R. M. & Ziegler, C. Is nocturnal foraging in a tropical bee an escape from interference competition?. J. Insect Sci. 17, 1–7 (2017).
    CAS  Google Scholar 

    36.
    Kapustjanskij, A., Streinzer, M., Paulus, H. F. & Spaethe, J. Bigger is better: implications of body size for flight ability under different light conditions and the evolution of alloethism in bumblebees. Funct. Ecol. 21, 1130–1136 (2007).
    Google Scholar 

    37.
    Lorenzi, H. Brazilian Trees: A Guide to the Identification and Cultivation of Brazilian Native Trees (Instituto Plantarum de Estudos da Flora, Nova Odessa, 2002).
    Google Scholar 

    38.
    Cordeiro, G. D., Pinheiro, M., Dötterl, S. & Alves-dos-Santos, I. Pollination of Campomanesia phaea (Myrtaceae) by night-active bees: A new nocturnal pollination system mediated by floral scent. Plant Biol. 19, 132–139 (2017).
    CAS  PubMed  Google Scholar 

    39.
    Kelber, A. et al. Light intensity limits foraging activity in nocturnal and crepuscular bees. Behav. Ecol. 17, 63–72 (2006).
    Google Scholar 

    40.
    Polatto, L. P., Chaud-Netto, J. & Alves-Junior, V. V. Influence of abiotic factors and floral resource availability on daily foraging activity of bees. J. Insect Behav. 27, 593–612 (2014).
    Google Scholar 

    41.
    Willis, D. S. & Kevan, P. G. Foraging dynamics of Peponapis pruinosa (Hymenoptera: Anthophoridae) on pumpkin (Cucurbita pepo) in Southern Ontario. Can. Entomol. 127, 167–175 (1995).
    Google Scholar 

    42.
    Wcislo, W. T. & Cane, J. H. Floral resource utilization by solitary bees (Hymenoptera: Apoidea) and exploitation of their stored foods by natural enemies. Annu. Rev. Entomol. 41, 257–286 (1996).
    CAS  PubMed  Google Scholar 

    43.
    Bellusci, S. & Marques, M. D. Circadian activity rhythm of the foragers of a eusocial bee (Scaptotrigona aff depilis, Hymenoptera, Apidae, Meliponinae) outside the nest. Biol. Rhythm Res. 32, 117–124 (2001).
    Google Scholar 

    44.
    Bloch, G., Bar-Shai, N., Cytter, Y. & Green, R. Time is honey: Circadian clocks of bees and flowers and how their interactions may influence ecological communities. Philos. Trans. R. Soc. B Biol. Sci. 372, 20160256 (2017).
    Google Scholar 

    45.
    Enright, J. T. Ecological aspects of endogenous rhythmicity. Annu. Rev. Ecol. Evol. Syst. 1, 221–238 (1970).
    Google Scholar 

    46.
    Shelly, T. E., Villalobos, E. M., Buchmann, S. L. & Cane, J. H. Temporal patterns of floral visitation for two bee species foraging on Solanum. J. Kansas Entomol. Soc. 66, 319–327 (1993).
    Google Scholar 

    47.
    Gottlieb, D., Keasar, T., Shmida, A. & Motro, U. Possible foraging benefits of bimodal daily activity in Proxylocopa olivieri (Lepeletier) (Hymenoptera: Anthophoridae). Environ. Entomol. 34, 417–424 (2005).
    Google Scholar 

    48.
    Franco, E. L. & Gimenes, M. Pollination of Cambessedesia wurdackii in Brazilian campo rupestre vegetation, with special reference to crepuscular bees. J. Insect Sci. 11, 1–13 (2011).
    Google Scholar 

    49.
    Oliveira, F. S., Ribeiro, M. H. M., Nunez, C. V. & de Albuquerque, M. C. Flowering phenology of Mouriri guianensis (Melastomataceae) and its interaction with the crepuscular bee Megalopta amoena (Halictidae) in the restinga of Lençóis Maranhenses National Park, Brazil. Acta Amaz. 46, 281–290 (2016).
    Google Scholar 

    50.
    Willmer, P. & Stone, G. Temperature and water relations in desert bees. J. Therm. Biol. 22, 453–465 (1997).
    Google Scholar 

    51.
    Krug, C. et al. Nocturnal bee pollinators are attracted to guarana flowers by their scents. Front. Plant Sci. 9, 1072 (2018).
    PubMed  PubMed Central  Google Scholar 

    52.
    Siqueira, E. et al. Pollination of Machaerium opacum (Fabaceae) by nocturnal and diurnal bees. Arthropod. Plant. Interact. 12, 633–645 (2018).
    Google Scholar 

    53.
    Orbán, L. L. & Plowright, C. M. S. Getting to the start line: How bumblebees and honeybees are visually guided towards their first floral contact. Insectes Soc. 61, 325–336 (2014).
    PubMed  PubMed Central  Google Scholar 

    54.
    Burger, H., Dotterl, S. & Ayasse, M. Host-plant finding and recognition by visual and olfactory floral cues in an oligolectic bee. Funct. Ecol. 24, 1234–1240 (2010).
    Google Scholar 

    55.
    Milet-Pinheiro, P., Ayasse, M., Schlindwein, C., Dobson, H. E. M. & Dötterl, S. Host location by visual and olfactory floral cues in an oligolectic bee: Innate and learned behavior. Behav. Ecol. 23, 531–538 (2012).
    Google Scholar 

    56.
    Kantsa, A. et al. Community-wide integration of floral colour and scent in a Mediterranean scrubland. Nat. Ecol. Evol. 1, 1502–1510 (2017).
    PubMed  Google Scholar 

    57.
    Peel, M. C., Finlayson, B. L. & McMahon, T. A. Updated world map of the Koppen-Geiger climate classification. Hydrol. Earth Syst. Sci. 11, 1633–1644 (2007).
    ADS  Google Scholar 

    58.
    Michener, C. D. & Lange, R. B. Observations on the behavior of Brasilian halictid bees, III. Univ. Kansas Sci. Bull. 39, 473–505 (1958).
    Google Scholar 

    59.
    Meinel, A. B. & Meinel, M. P. Sunsets, Twilights, and Evening Skies (Cambridge University, Cambridge, 1991).
    Google Scholar 

    60.
    R Core Team, R. R: A language and environment for statistical computing. R Found. Stat. Comput. Vienna, Austria. www.R-project.org (2017). Accessed 15 Dec 2017.

    61.
    Bolker, B. & R Core Team, R. bbmle: Tools for general maximum likelihood estimation. R Packag. version 1.0.20. https://CRAN.R-project.org/package=bbmle (2017). Accessed 15 Dec 2017.

    62.
    Hartig, F. DHARMa: Residual diagnostics for hierarchical (multi-level/mixed) regression models. R Packag. version 0.1.5. https://CRAN.R-project.org/package=DHARMa (2017). Accessed 15 Dec 2017.

    63.
    Wickham, H., Francois, R., Henry, L. & Müller, K. dplyr: A grammar of data manipulation. R Packag. version 0.7.4. https://CRAN.R-project.org/package=dplyr (2017). Accessed 15 Dec 2017.

    64.
    Wickham, H. ggplot2: Elegant Graphics for Data Analysis (Springer, New York, 2009).
    Google Scholar 

    65.
    Sarkar, D. Lattice: Multivariate data visualization with R. R Packag. version 0.20–38. https://CRAN.R-project.org/package=lattice (2008). Accessed 15 Dec 2017.

    66.
    Sarkar, D. & Andrews, F. latticeExtra: Extra graphical utilities based on lattice. R Packag. version 0.6-28. https://CRAN.R-project.org/package=latticeExtra (2016). Accessed 15 Dec 2017.

    67.
    Bates, D., Maechler, M., Bolker, B. & Walker, S. Fitting linear mixed-effects models using lme4. J. Stat. Softw. 67, 1–48 (2015).
    Google Scholar 

    68.
    Kelley, D. & Richards, C. oce: Analysis of oceanographic data. R Packag. version 0.9-22. https://CRAN.R-project.org/package=oce (2017). Accessed 15 Dec 2017.

    69.
    Wickham, H. & Henry, L. tidyr: Easily tidy data with ‘spread()’ and ‘gather()’ functions. R Packag. version 0.8.0. https://CRAN.R-project.org/package=tidyr (2018). Accessed 15 Dec 2017.

    70.
    Zuur, A. F., Ieno, E. N., Walker, N. J., Saveliev, A. A. & Smith, G. M. Mixed Effects Models and Extensions in Ecology with R (Springer, New York, 2009).
    Google Scholar  More

  • in

    The influence of soil age on ecosystem structure and function across biomes

    Cross-biome field survey and soil sample collection
    Soil and vegetation data were collected using standardized protocols between 2016 and 2017 from 16 soil chronosequences (also known as substrate age gradients) located in nine countries and six continents (Fig. 1 and Supplementary Table 1). Soil chronosequences are often used to evaluate the changes in ecosystem structure and function over millennia because soil age for these locations is frequently known from geological surveys, models, and isotopic dating techniques (Fig. 1 and Supplementary Table 1). In these soil chronosequences, all other soil-forming factors except substrate age are kept relatively constant (i.e., current climate, vegetation, topography, and parent material), which permits the separation of the effects of time on ecosystem development from other ecosystem development state factors1,2,3.
    Field surveys were conducted according to a standardized sampling protocol. We surveyed a 50 m × 50 m plot within each chronosequence stage, and within each quadrat, collected five composite surface soil samples from the surface 10 cm soil under the dominant vegetation types (e.g., trees, shrubs, grasses, etc.). Given the cross-biome nature of our study, we do not expect the timing (season) of sample collection to affect our results. Following field sampling, soils were sieved ( More