Comparative genomics reveals insights into cyanobacterial evolution and habitat adaptation
1.
Tomitani A, Knoll AH, Cavanaugh CM, Ohno T. The evolutionary diversification of Cyanobacteria: molecular-phylogenetic and paleontological perspectives. Proc Natl Acad Sci USA. 2006;103:5442–7.
CAS PubMed Google Scholar
2.
Schirrmeister BE, Gugger M, Donoghue PCJ. Cyanobacteria and the Great Oxidation Event: evidence from genes and fossils. Palaeontology. 2015;58:769–85.
PubMed PubMed Central Google Scholar
3.
Fischer WW, Hemp J, Johnson JE. Evolution of oxygenic photosynthesis. Annu Rev Earth Planet Sci. 2016;44:647–83.
CAS Google Scholar
4.
Soo RM, Hemp J, Parks DH, Fischer WW, Hugenholtz P. On the origins of oxygenic photosynthesis and aerobic respiration in Cyanobacteria. Science. 2017;355:1436–40.
CAS PubMed Google Scholar
5.
Biller SJ, Berube PM, Lindell D, Chisholm SW. Prochlorococcus: the structure and function of collective diversity. Nat Rev Microbiol. 2015;13:13–27.
CAS PubMed Google Scholar
6.
Sánchez-Baracaldo P. Origin of marine planktonic Cyanobacteria. Sci Rep. 2015;5:14–17.
Google Scholar
7.
Shang JL, Chen M, Hou S, Li T, Yang YW, Li Q, et al. Genomic and transcriptomic insights into the survival of the subaerial cyanobacterium Nostoc flagelliforme in arid and exposed habitats. Environ Microbiol. 2019;21:845–63.
CAS PubMed Google Scholar
8.
Chrismas NAM, Anesio AM, Śanchez-Baracaldo P. The future of genomics in polar and alpine Cyanobacteria. FEMS Microbiol Ecol. 2018;94:fiy032.
PubMed Central Google Scholar
9.
Kashtan N, Roggensack SE, Rodrigue S, Thompson JW, Biller SJ, Coe A, et al. Single-cell genomics reveals hundreds of coexisting subpopulations in wild Prochlorococcus. Science. 2014;344:416–20.
CAS PubMed Google Scholar
10.
Larsson J, Celepli N, Ininbergs K, Dupont CL, Yooseph S, Bergman B, et al. Picocyanobacteria containing a novel pigment gene cluster dominate the brackish water Baltic Sea. ISME J. 2014;8:1892–903.
CAS PubMed PubMed Central Google Scholar
11.
Bankevich A, Nurk S, Antipov D, Gurevich AA, Dvorkin M, Kulikov AS, et al. SPAdes: a new genome assembly algorithm and its applications to single-cell sequencing. J Comput Biol. 2012;19:455–77.
CAS PubMed PubMed Central Google Scholar
12.
Parks DH, Imelfort M, Skennerton CT, Hugenholtz P, Tyson GW. CheckM: assessing the quality of microbial genomes recovered from isolates, single cells, and metagenomes. Genome Res. 2015;25:1043–55.
CAS PubMed PubMed Central Google Scholar
13.
Gurevich A, Saveliev V, Vyahhi N, Tesler G. QUAST: quality assessment tool for genome assemblies. Bioinformatics. 2013;29:1072–5.
CAS PubMed PubMed Central Google Scholar
14.
Seemann T. Prokka: rapid prokaryotic genome annotation. Bioinformatics. 2014;30:2068–9.
CAS Google Scholar
15.
Mistry J, Finn RD, Eddy SR, Bateman A, Punta M. Challenges in homology search: HMMER3 and convergent evolution of coiled-coil regions. Nucleic Acids Res. 2013;41:e121.
CAS PubMed PubMed Central Google Scholar
16.
Wu M, Scott AJ. Phylogenomic analysis of bacterial and archaeal sequences with AMPHORA2. Bioinformatics. 2012;28:1033–4.
CAS PubMed Google Scholar
17.
Capella-Gutierrez S, Silla-Martinez JM, Gabaldon T. trimAl: a tool for automated alignment trimming in large-scale phylogenetic analyses. Bioinformatics. 2009;25:1972–3.
CAS PubMed PubMed Central Google Scholar
18.
Waterhouse RM, Seppey M, Simão FA, Manni M, Ioannidis P, Klioutchnikov G, et al. BUSCO applications from quality assessments to gene prediction and phylogenomics. Mol Biol Evol. 2018;35:543–8.
CAS PubMed Google Scholar
19.
Katoh K, Standley DM. MAFFT multiple sequence alignment software version 7: improvements in performance and usability. Mol Biol Evol. 2013;30:772–80.
CAS PubMed PubMed Central Google Scholar
20.
Miller MA, Pfeiffer W, Schwartz T. Creating the CIPRES Science Gateway for inference of large phylogenetic trees. In: Proceedings of the Gateway Computing Environments Workshop (GCE). New Orleans (LA): IEEE; 2010. pp 1–8.
21.
Nguyen L-T, Schmidt HA, von Haeseler A, Minh BQ. IQ-TREE: a fast and effective stochastic algorithm for estimating maximum-likelihood phylogenies. Mol Biol Evol. 2015;32:268–74.
CAS Google Scholar
22.
Di Rienzi SC, Sharon I, Wrighton KC, Koren O, Hug LA, Thomas BC, et al. The human gut and groundwater harbor non-photosynthetic bacteria belonging to a new candidate phylum sibling to Cyanobacteria. Elife. 2013;2:e01102.
PubMed PubMed Central Google Scholar
23.
Matheus Carnevali PB, Schulz F, Castelle CJ, Kantor RS, Shih PM, Sharon I, et al. Hydrogen-based metabolism as an ancestral trait in lineages sibling to the Cyanobacteria. Nat Commun. 2019;10:1–16.
CAS Google Scholar
24.
Letunic I, Bork P. Interactive Tree Of Life (iTOL) v4: recent updates and new developments. Nucleic Acids Res. 2019;47:W256–9.
CAS PubMed PubMed Central Google Scholar
25.
Tung HoLS, Ané C. A linear-time algorithm for Gaussian and non-Gaussian trait evolution models. Syst Biol. 2014;63:397–408.
Google Scholar
26.
Benjamini Y, Hochberg Y. Controlling the false discovery rate: a practical and powerful approach to multiple testing. J R Stat Soc Ser B. 1995;57:289–300.
Google Scholar
27.
Gan F, Bryant DA. Adaptive and acclimative responses of Cyanobacteria to far-red light. Environ Microbiol. 2015;17:3450–65.
CAS PubMed Google Scholar
28.
Revell LJ. phytools: an R package for phylogenetic comparative biology (and other things). Methods Ecol Evol. 2012;3:217–23.
Google Scholar
29.
Levy A, Salas Gonzalez I, Mittelviefhaus M, Clingenpeel S, Herrera Paredes S, Miao J, et al. Genomic features of bacterial adaptation to plants. Nat Genet. 2018;50:138–50.
CAS Google Scholar
30.
Zhu Q, Kosoy M, Dittmar K. HGTector: an automated method facilitating genome-wide discovery of putative horizontal gene transfers. BMC Genom. 2014;15:717.
Google Scholar
31.
Buchfink B, Xie C, Huson DH. Fast and sensitive protein alignment using DIAMOND. Nat Methods. 2014;12:59–60.
PubMed Google Scholar
32.
Csurös M. Count: evolutionary analysis of phylogenetic profiles with parsimony and likelihood. Bioinformatics. 2010;26:1910–2.
PubMed Google Scholar
33.
Enright AJ. An efficient algorithm for large-scale detection of protein families. Nucleic Acids Res. 2002;30:1575–84.
CAS PubMed PubMed Central Google Scholar
34.
Komárek J. A polyphasic approach for the taxonomy of Cyanobacteria: principles and applications. Eur J Phycol. 2016;51:346–53.
Google Scholar
35.
Komárek J, Kaštovský J, Mareš J, Johansen JR. Taxonomic classification of cyanoprokaryotes (Cyanobacterial genera) 2014, using a polyphasic approach. Preslia. 2014;86:295–335.
Google Scholar
36.
Ponce-Toledo RI, Deschamps P, López-García P, Zivanovic Y, Benzerara K, Moreira D. An early-branching freshwater Cyanobacterium at the origin of plastids. Curr Biol. 2017;27:386–91.
CAS PubMed PubMed Central Google Scholar
37.
de Vries J, Archibald JM. Endosymbiosis: did plastids evolve from a freshwater Cyanobacterium? Curr Biol. 2017;27:R103–5.
PubMed Google Scholar
38.
Dagan T, Roettger M, Stucken K, Landan G, Koch R, Major P, et al. Genomes of stigonematalean Cyanobacteria (subsection V) and the evolution of oxygenic photosynthesis from prokaryotes to plastids. Genome Biol Evol. 2013;5:31–44.
PubMed Google Scholar
39.
Shih PM, Wu D, Latifi A, Axen SD, Fewer DP, Talla E, et al. Improving the coverage of the cyanobacterial phylum using diversity-driven genome sequencing. Proc Natl Acad Sci USA. 2013;110:1053–8.
CAS PubMed Google Scholar
40.
Sánchez-Baracaldo P, Raven JA, Pisani D, Knoll AH. Early photosynthetic eukaryotes inhabited low-salinity habitats. Proc Natl Acad Sci USA. 2017;114:E7737–45.
PubMed Google Scholar
41.
FitzJohn RG, Maddison WP, Otto SP. Estimating trait-dependent speciation and extinction rates from incompletely resolved phylogenies. Syst Biol. 2009;58:595–611.
PubMed Google Scholar
42.
Monk JM, Charusanti P, Aziz RK, Lerman JA, Premyodhin N, Orth JD, et al. Genome-scale metabolic reconstructions of multiple Escherichia coli strains highlight strain-specific adaptations to nutritional environments. Proc Natl Acad Sci USA. 2013;110:20338–43.
CAS PubMed Google Scholar
43.
Tripp HJ, Bench SR, Turk KA, Foster RA, Desany BA, Niazi F, et al. Metabolic streamlining in an open-ocean nitrogen-fixing cyanobacterium. Nature. 2010;464:90–4.
CAS PubMed Google Scholar
44.
Scanlan DJ, Ostrowski M, Mazard S, Dufresne A, Garczarek L, Hess WR, et al. Ecological genomics of marine Picocyanobacteria. Microbiol Mol Biol Rev. 2009;73:249–99.
CAS PubMed PubMed Central Google Scholar
45.
Poulton NJ, Acinas SG, Lauro FM, Cavicchioli R, Swan BK, Hanson NW, et al. Prevalent genome streamlining and latitudinal divergence of planktonic bacteria in the surface ocean. Proc Natl Acad Sci USA. 2013;110:11463–8.
PubMed Google Scholar
46.
Bentkowski P, Van Oosterhout C, Ashby B, Mock T. The effect of extrinsic mortality on genome size evolution in prokaryotes. ISME J. 2017;11:1011–8.
CAS PubMed Google Scholar
47.
Steele JH, Brink KH, Scott BE. Comparison of marine and terrestrial ecosystems: suggestions of an evolutionary perspective influenced by environmental variation. ICES J Mar Sci. 2019;76:50–9.
Google Scholar
48.
Philippot L, Andersson SGE, Battin TJ, Prosser JI, Schimel JP, Whitman WB, et al. The ecological coherence of high bacterial taxonomic ranks. Nat Rev Microbiol. 2010;8:523–9.
CAS PubMed Google Scholar
49.
Luo H, Csűros M, Hughes AL, Moran MA. Evolution of divergent life history strategies in marine Alphaproteobacteria. MBio. 2013;4:1–8.
Google Scholar
50.
Whitton BA (editor). Ecology of Cyanobacteria II. Dordrecht, Netherlands: Springer; 2012.
51.
Yoshihara S, Katayama M, Geng X, Ikeuchi M. Cyanobacterial phytochrome-like PixJ1 holoprotein shows novel reversible photoconversion between blue- and green-absorbing forms. Plant Cell Physiol. 2004;45:1729–37.
CAS PubMed Google Scholar
52.
Bhaya D, Takahashi A, Grossman AR. Light regulation of type IV pilus-dependent motility by chemosensor-like elements in Synechocystis PCC6803. Proc Natl Acad Sci USA. 2001;98:7540–5.
CAS PubMed Google Scholar
53.
Yang Y, Lam V, Adomako M, Simkovsky R, Jakob A, Rockwell NC, et al. Phototaxis in a wild isolate of the cyanobacterium Synechococcus elongatus. Proc Natl Acad Sci USA. 2018;115:E12378–87.
CAS PubMed Google Scholar
54.
Kehoe DM, Gutu A. Responding to color: the regulation of complementary chromatic adaptation. Annu Rev Plant Biol. 2006;57:127–50.
CAS PubMed Google Scholar
55.
Sánchez-Baracaldo P, Bianchini G, Di Cesare A, Callieri C, Chrismas NAM. Insights Into the evolution of Picocyanobacteria and Phycoerythrin Genes (mpeBA and cpeBA). Front Microbiol. 2019;10:45.
PubMed PubMed Central Google Scholar
56.
Ting CS, Rocap G, King J, Chisholm SW. Cyanobacterial photosynthesis in the oceans: the origins and significance of divergent light-harvesting strategies. Trends Microbiol. 2002;10:134–42.
CAS PubMed Google Scholar
57.
Gan F, Zhang S, Rockwell NC, Martin SS, Lagarias JC, Bryant DA. Extensive remodeling of a cyanobacterial photosynthetic apparatus in far-red light. Science. 2014;345:1312–7.
CAS PubMed Google Scholar
58.
Thiel V, Tank M, Bryant DA. Diversity of chlorophototrophic bacteria revealed in the Omics Era. Annu Rev Plant Biol. 2018;69:21–49.
CAS PubMed Google Scholar
59.
Kühl M, Trampe E, Mosshammer M, Johnson M, Larkum AWD, Frigaard N-U, et al. Substantial near-infrared radiation-driven photosynthesis of chlorophyll f-containing Cyanobacteria in a natural habitat. Elife. 2020;9:e50871.
PubMed PubMed Central Google Scholar
60.
Oren A. Microbial life at high salt concentrations: phylogenetic and metabolic diversity. Saline Syst. 2008;4:1–13.
Google Scholar
61.
Sääf A, Baars L, von Heijne G. The internal repeats in the Na+/Ca 2+ exchanger-related Escherichia coli protein YrbG have opposite membrane topologies. J Biol Chem. 2001;276:18905–7.
PubMed Google Scholar
62.
Price GD, Woodger FJ, Badger MR, Howitt SM, Tucker L. Identification of a SulP-type bicarbonate transporter in marine Cyanobacteria. Proc Natl Acad Sci USA. 2004;101:18228–33.
CAS PubMed Google Scholar
63.
Sakamoto T, Inoue-Sakamoto K, Bryant DA. A novel nitrate/nitrite permease in the marine cyanobacterium Synechococcus sp. strain PCC 7002. J Bacteriol. 1999;181:7363–72.
CAS PubMed PubMed Central Google Scholar
64.
Carrieri D, Wawrousek K, Eckert C, Yu J, Maness PC. The role of the bidirectional hydrogenase in Cyanobacteria. Bioresour Technol. 2011;102:8368–77.
CAS PubMed Google Scholar
65.
Tamagnini P, Axelsson R, Lindberg P, Oxelfelt F, Wunschiers R, Lindblad P. Hydrogenases and hydrogen metabolism of Cyanobacteria. Microbiol Mol Biol Rev. 2002;66:1–20.
CAS PubMed PubMed Central Google Scholar
66.
Huisman J, Codd GA, Paerl HW, Ibelings BW, Verspagen JMH, Visser PM. Cyanobacterial blooms. Nat Rev Microbiol. 2018;16:471–83.
CAS PubMed Google Scholar
67.
Ben Fekih I, Zhang C, Li YP, Zhao Y, Alwathnani HA, Saquib Q, et al. Distribution of arsenic resistance genes in prokaryotes. Front Microbiol. 2018;9:2473.
PubMed PubMed Central Google Scholar
68.
Fürst-Jansen JMR, de Vries S, de Vries J. Evo-physio: on stress responses and the earliest land plants. J Exp Bot. 2020;71:3254–69.
PubMed PubMed Central Google Scholar
69.
Murik O, Oren N, Shotland Y, Raanan H, Treves H, Kedem I, et al. What distinguishes Cyanobacteria able to revive after desiccation from those that cannot: the genome aspect. Environ Microbiol. 2017;19:535–50.
CAS PubMed Google Scholar
70.
Gul N, Poolman B. Functional reconstitution and osmoregulatory properties of the ProU ABC transporter from Escherichia coli. Mol Membr Biol. 2013;30:138–48.
PubMed Google Scholar
71.
Pathak J, Ahmed H, Singh PR, Singh SP, Häder D-P, Sinha RP. Mechanisms of photoprotection in Cyanobacteria. In: Mishra AK, Tiwari DN, Rai AN. editors. Cyanobacteria. Cambridge: Academic Press; 2019. pp. 145–171.
72.
Meulenbroek EM, Peron Cane C, Jala I, Iwai S, Moolenaar GF, Goosen N, et al. UV damage endonuclease employs a novel dual-dinucleotide flipping mechanism to recognize different DNA lesions. Nucleic Acids Res. 2013;41:1363–71.
CAS PubMed Google Scholar
73.
Richardson EJ, Bacigalupe R, Harrison EM, Weinert LA, Lycett S, Vrieling M, et al. Gene exchange drives the ecological success of a multi-host bacterial pathogen. Nat Ecol Evol. 2018;2:1468–78.
PubMed Google Scholar
74.
Wiedenbeck J, Cohan FM. Origins of bacterial diversity through horizontal genetic transfer and adaptation to new ecological niches. FEMS Microbiol Rev. 2011;35:957–76.
CAS PubMed Google Scholar
75.
Smillie CS, Smith MB, Friedman J, Cordero OX, David LA, Alm EJ. Ecology drives a global network of gene exchange connecting the human microbiome. Nature. 2011;480:241–4.
CAS PubMed Google Scholar
76.
Sheppard SK, Guttman DS, Fitzgerald JR. Population genomics of bacterial host adaptation. Nat Rev Genet. 2018;19:1–17.
Google Scholar
77.
Oliveira PH, Touchon M, Rocha EPC. Regulation of genetic flux between bacteria by restriction-modification systems. Proc Natl Acad Sci USA. 2016;113:5658–63.
CAS PubMed Google Scholar
78.
Jain R, Rivera MC, Lake JA. Horizontal gene transfer among genomes: the complexity hypothesis. Proc Natl Acad Sci USA. 1999;96:3801–6.
CAS PubMed Google Scholar
79.
Pál C, Papp B, Lercher MJ. Adaptive evolution of bacterial metabolic networks by horizontal gene transfer. Nat Genet. 2005;37:1372–5.
PubMed Google Scholar More