1.
Steeman, M. E. et al. Radiation of extant cetaceans driven by restructuring of the oceans. Syst. Biol. 58, 573–585 (2009).
PubMed PubMed Central Google Scholar
2.
Tolley, K. A. & Rosel, P. E. Population structure and historical demography of eastern North Atlantic harbour porpoises inferred through mtDNA sequences. Mar. Ecol. Prog. Ser. 327, 297–308 (2006).
ADS CAS Google Scholar
3.
Banguera-Hinestroza, E., Bjørge, A., Reid, R. J., Jepson, P. & Hoelzel, A. R. The influence of glacial epochs and habitat dependence on the diversity and phylogeography of a coastal dolphin species: Lagenorhynchus albirostris. Conserv. Genet. 11, 1823–1836 (2010).
Google Scholar
4.
Taguchi, M., Chivers, S. J., Rosel, P. E., Matsuishi, T. & Abe, S. Mitochondrial DNA phylogeography of the harbour porpoise Phocoena phocoena in the North Pacific. Mar. Biol. 157, 1489–1498 (2010).
CAS Google Scholar
5.
Amaral, A. R. et al. Influences of past climatic changes on historical population structure and demography of a cosmopolitan marine predator, the common dolphin (genus Delphinus). Mol. Ecol. 21, 4854–4871 (2012).
PubMed Google Scholar
6.
Moura, A. E. et al. Recent diversification of a Marine Genus (Tursiops spp.) tracks habitat preference and environmental change. Syst. Biol. 62, 865–877 (2013).
PubMed Google Scholar
7.
Whitehead, H. Cultural selection and genetic diversity in matrilineal whales. Science 282, 1708–1711 (1998).
ADS CAS PubMed Google Scholar
8.
Fontaine, M. C. et al. Postglacial climate changes and rise of three ecotypes of harbour porpoises, Phocoena phocoena, in western Palearctic waters. Mol. Ecol. 23, 3306–3321 (2014).
CAS PubMed Google Scholar
9.
Louis, M. et al. Ecological opportunities and specializations shaped genetic divergence in a highly mobile marine top predator. Proc. Biol. Sci. 281, 20141558–20141558 (2014).
PubMed PubMed Central Google Scholar
10.
Foote, A. D. et al. Genome-culture coevolution promotes rapid divergence of killer whale ecotypes. Nat. Commun. 7, 11693 (2016).
ADS CAS PubMed PubMed Central Google Scholar
11.
Hare, M. P., Cipriano, F. & Palumbi, S. R. Genetic evidence on the demography of speciation in allopatric dolphin species. Evolution 56, 804–816 (2002).
PubMed Google Scholar
12.
Pastene, L. A. et al. Radiation and speciation of pelagic organisms during periods of global warming: The case of the common minke whale, Balaenoptera acutorostrata. Mol. Ecol. 16, 1481–1495 (2007).
CAS PubMed Google Scholar
13.
Barnes, L. G. Evolution, taxonomy and antitropical distributions of the porpoises (Phocoenidae, Mammalia). Mar. Mammal Sci. 1, 149–165 (1985).
Google Scholar
14.
Burridge, C. P. Antitropicality of Pacific fishes: Molecular insights. Environ. Biol. Fishes 65, 151–164 (2002).
15.
Banguera-Hinestroza, E., Hayano, A., Crespo, E. & Hoelzel, A. R. Delphinid systematics and biogeography with a focus on the current genus Lagenorhynchus: Multiple pathways for antitropical and trans-oceanic radiation. Mol. Phylogenet. Evol. 80, 217–230 (2014).
PubMed Google Scholar
16.
Marx, F. G. & Uhen, M. D. Climate, critters, and cetaceans: Cenozoic drivers of the evolution of modern whales. Science 327, 993–996 (2010).
ADS CAS PubMed Google Scholar
17.
McGowen, M. R., Spaulding, M. & Gatesy, J. Divergence date estimation and a comprehensive molecular tree of extant cetaceans. Mol. Phylogenet. Evol. 53, 891–906 (2009).
CAS PubMed Google Scholar
18.
Gaskin, D. E. The ecology of whales and dolphins (Heinemann, London, 1982).
Google Scholar
19.
Zhou, X. et al. Population genomics of finless porpoises reveal an incipient cetacean species adapted to freshwater. Nat. Commun. 9, 1276 (2018).
ADS PubMed PubMed Central Google Scholar
20.
Teilmann, J. & Sveegaard, S. Porpoises the World over: Diversity in behavior and ecology. in Ethology and Behavioral Ecology of Odontocetes (ed. Würsig, B). Vol. 54, 449–464 (Springer International Publishing, New York, 2019).
21.
Ridgway, S. H. & Johnston, D. G. Blood oxygen and ecology of porpoises of three genera. Science 151, 456–458 (1966).
ADS CAS PubMed Google Scholar
22.
Morell, V. World’s most endangered marine mammal down to 30. Science 355, 558–559 (2017).
ADS CAS PubMed Google Scholar
23.
Amante, C. & Eatkins, B. W. ETOPO1 1 Arc-Minute Global Relief Model: Procedures, Data Sources and Analysis. NOAA Technical Memorandum NESDIS NGDC. https://doi.org/10.7289/V5C8276M.
24.
Berta, A., Sumich, J. L. & Kovacs, K. M. Chapter 6 – Evolution and geography. in Marine Mammals: Evolutionary Biology 131–166 (Elsevier, Amsterdam, 2015). https://doi.org/10.1016/B978-0-12-397002-2.00006-5.
25.
Chen, M. et al. Genetic footprint of population fragmentation and contemporary collapse in a freshwater cetacean. Sci. Rep. 7, 14449 (2017).
ADS PubMed PubMed Central Google Scholar
26.
Hayano, A., Amano, M. & Miyazaki, N. Phylogeography and population structure of the Dall’s porpoise, Phocoenoides dalli, in Japanese waters revealed by mitochondrial DNA. Genes Genet. Syst. 78, 81–91 (2003).
CAS PubMed Google Scholar
27.
Rosa, S. et al. Population structure of nuclear and mitochondrial DNA variation among South American Burmeister’s porpoises (Phocoena spinipinnis). Conserv. Genet. 6, 431–443 (2005).
CAS Google Scholar
28.
Méndez-Fernandez, P. et al. Ecological niche segregation among five toothed whale species off the NW Iberian Peninsula using ecological tracers as multi-approach. Mar. Biol. 160, 2825–2840 (2013).
Google Scholar
29.
Galatius, A., Kinze, C. C. & Teilmann, J. Population structure of harbour porpoises in the Baltic region: Evidence of separation based on geometric morphometric comparisons. J. Mar. Biol. Ass. 92, 1669–1676 (2012).
Google Scholar
30.
Fontaine, M. C. Harbour porpoises, Phocoena phocoena, in the Mediterranean Sea and adjacent regions: Biogeographic relicts of the Last Glacial Period. Adv. Mar. Biol. 75, 333–358 (2016).
CAS PubMed Google Scholar
31.
Tezanos-Pinto, G. et al. A worldwide perspective on the population structure and genetic diversity of bottlenose dolphins (Tursiops truncatus) in New Zealand. J. Hered. 100, 11–24 (2009).
CAS PubMed Google Scholar
32.
Thomas, L. et al. Last call: Passive acoustic monitoring shows continued rapid decline of critically endangered vaquita. J. Acoust. Society Am. 142, EL512–EL517 (2017).
Google Scholar
33.
Jaramillo Legorreta, A. M. et al. Decline towards extinction of Mexico’s vaquita porpoise (Phocoena sinus). R. Soc. Open Sci. 6, 190598 (2019).
ADS PubMed PubMed Central Google Scholar
34.
Wang, J. Y. & Reeves, R. R. Neophocaena phocaenoides. The IUCN Red List of Threatened Species. e.T198920A50386795. https://doi.org/10.2305/IUCN.UK.2017-3.RLTS.T198920A50386795.en. Downloaded on 04 April 2019 (2017).
35.
Wang, D., Turvey, S. T., Zhao, X. & Mei, Z. Neophocaena asiaeorientalis ssp. asiaeorientalis. The IUCN Red List of Threatened Species. e.T43205774A45893487. https://doi.org/10.2305/IUCN.UK.2013-1.RLTS.T43205774A45893487.en. Downloaded on 04 April 2019. (2013).
36.
Birkun, A. A., Jr & Frantzis, A. Phocoena phocoena ssp. relicta. The IUCN Red List of Threatened Species. e.T17030A6737111. https://doi.org/10.2305/IUCN.UK.2008.RLTS.T17030A6737111.en. Downloaded on 04 April 2019 (2008).
37.
Read, F. L., Santos, M. B. & González, A. F. Understanding Harbour Porpoise (Phocoena phocoena) and Fishery Interactions in the North-West Iberian Peninsula. (Final report to ASCOBANS, 2012).
38.
Dufresnes, C. et al. Conservation phylogeography: Does historical diversity contribute to regional vulnerability in European tree frogs (Hyla arborea)?. Mol. Ecol. 22, 5669–5684 (2013).
PubMed Google Scholar
39.
Malaney, J. L. & Cook, J. A. Using biogeographical history to inform conservation: The case of Preble’s meadow jumping mouse. Mol. Ecol. 22, 6000–6017 (2013).
PubMed Google Scholar
40.
Moritz, C. C. & Potter, S. The importance of an evolutionary perspective in conservation policy planning. Mol. Ecol. 22, 5969–5971 (2013).
PubMed Google Scholar
41.
Fajardo-Mellor, L. et al. The phylogenetic relationships and biogeography of true porpoises (Mammalia: Phocoenidae) based on morphological data. Mar. Mammal Sci. 22, 910–932 (2006).
Google Scholar
42.
Rosel, P. E., Haygood, M. G. & Perrin, W. F. Phylogenetic relationships among the true porpoises (Cetacea: Phocoenidae). Mol. Phylogenet. Evol. 4, 463–474 (1995).
CAS PubMed Google Scholar
43.
Torroni, A., Achilli, A., Macaulay, V., Richards, M. & Bandelt, H.-J. Harvesting the fruit of the human mtDNA tree. Trends Genet. 22, 339–345 (2006).
CAS PubMed Google Scholar
44.
Viricel, A. & Rosel, P. E. Evaluating the utility of cox1 for cetacean species identification. Mar. Mammal Sci. 28, 37–62 (2011).
Google Scholar
45.
Andrews, S. FastQC: A quality control tool for high throughput sequence data. https://www.bioinformatics.babraham.ac.uk/projects/fastqc (2010).
46.
Bolger, A. M., Lohse, M. & Usadel, B. Trimmomatic: A flexible trimmer for Illumina sequence data. Bioinformatics 30, 2114–2120 (2014).
CAS PubMed PubMed Central Google Scholar
47.
Kearse, M. et al. Geneious Basic: An integrated and extendable desktop software platform for the organization and analysis of sequence data. Bioinformatics 28, 1647–1649 (2012).
PubMed PubMed Central Google Scholar
48.
Arnason, U., Gullberg, A. & Janke, A. Mitogenomic analyses provide new insights into cetacean origin and evolution. Gene 333, 27–34 (2004).
CAS PubMed Google Scholar
49.
Hahn, C., Bachmann, L. & Chevreux, B. Reconstructing mitochondrial genomes directly from genomic next-generation sequencing reads—A baiting and iterative mapping approach. Nucleic Acids Res. 41, e129–e129 (2013).
CAS PubMed PubMed Central Google Scholar
50.
Morin, P. A. et al. Complete mitochondrial genome phylogeographic analysis of killer whales (Orcinus orca) indicates multiple species. Genome Res. 20, 908–916 (2010).
CAS PubMed PubMed Central Google Scholar
51.
Edgar, R. C. MUSCLE: Multiple sequence alignment with high accuracy and high throughput. Nucleic Acids Res. 32, 1792–1797 (2004).
CAS PubMed PubMed Central Google Scholar
52.
Clayton, D. A. Transcription and replication of mitochondrial DNA. Hum. Reprod. 15(Suppl 2), 11–17 (2000).
PubMed Google Scholar
53.
Guindon, S. et al. New algorithms and methods to estimate maximum-likelihood phylogenies: Assessing the performance of PhyML 3.0. Syst. Biol. 59, 307–321 (2010).
CAS Google Scholar
54.
Ronquist, F. et al. MrBayes 3.2: Efficient Bayesian phylogenetic inference and model choice across a large model space. Syst. Biol. 61, 539–542 (2012).
PubMed PubMed Central Google Scholar
55.
Darriba, D., Taboada, G. L., Doallo, R. & Posada, D. jModelTest 2: More models, new heuristics and parallel computing. Nat. Methods 9, 772–772 (2012).
CAS PubMed PubMed Central Google Scholar
56.
Rambaut, A., Suchard, M. A., Xie, D. & Drummond, A. J. Tracer v.1.6. (2014). https://tree.bio.ed.ac.uk/software/tracer/. Accessed 26 Feb 2017.
57.
Yu, G., Lam, T.T.-Y., Zhu, H. & Guan, Y. Two methods for mapping and visualizing associated data on phylogeny using Ggtree. Mol. Biol. Evol. 35, 3041–3043 (2018).
CAS PubMed PubMed Central Google Scholar
58.
Bouckaert, R. et al. BEAST 2: A software platform for bayesian evolutionary analysis. PLoS Comput. Biol. 10, e1003537–e1003546 (2014).
PubMed PubMed Central Google Scholar
59.
Nabholz, B., Glemin, S. & Galtier, N. Strong variations of mitochondrial mutation rate across mammals—The longevity hypothesis. Mol. Biol. Evol. 25, 120–130 (2007).
PubMed Google Scholar
60.
Fontaine, M. C. et al. Genetic and historic evidence for climate-driven population fragmentation in a top cetacean predator: The harbour porpoises in European water. Proc. Biol. Sci. 277, 2829–2837 (2010).
PubMed PubMed Central Google Scholar
61.
Rambaut, A. & Drummond, A. J. FigTree version 1.4.3. (tree.bio.ed.ac.uk/software/figtree, 2012).
62.
Librado, P. & Rozas, J. DnaSP v5: A software for comprehensive analysis of DNA polymorphism data. Bioinformatics 25, 1451–1452 (2009).
CAS PubMed Google Scholar
63.
Sanders, H. L. Marine benthic diversity: A comparative study. Am. Nat. 102, 243–282 (1968).
Google Scholar
64.
McDonald, J. H. & Kreitman, M. Adaptive protein evolution at the Adh locus in Drosophila. Nature 351, 652–654 (1991).
ADS CAS PubMed Google Scholar
65.
Hervé, M. RVAideMemoire: Testing and plotting procedures for biostatistics. https://cran.r-project.org/web/packages/RVAideMemoire/index.html (2019).
66.
Benjamini, Y. & Hochberg, Y. Controlling the false discovery rate: A practical and powerful approach to multiple testing. J. Roy. Stat. Soc. Ser. B (Methodol.) 57, 289–300 (1995).
MathSciNet MATH Google Scholar
67.
Kimura, M. The Neutral Theory of Molecular Evolution (Cambridge University Press, Cambridge, 1983). https://doi.org/10.1017/CBO9780511623486.
Google Scholar
68.
Hughes, A. L. Near neutrality: Leading edge of the neutral theory of molecular evolution. Ann. N. Y. Acad. Sci. 1133, 162–179 (2008).
ADS PubMed PubMed Central Google Scholar
69.
Phifer-Rixey, M. et al. Adaptive evolution and effective population size in wild house mice. Mol. Biol. Evol. 29, 2949–2955 (2012).
CAS PubMed PubMed Central Google Scholar
70.
Eyre-Walker, A. Changing effective population size and the McDonald–Kreitman test. Genetics 162, 2017–2024 (2002).
PubMed PubMed Central Google Scholar
71.
Parsch, J., Zhang, Z. & Baines, J. F. The influence of demography and weak selection on the McDonald-Kreitman test: An empirical study in Drosophila. Mol. Biol. Evol. 26, 691–698 (2009).
CAS PubMed Google Scholar
72.
Romiguier, J. et al. Fast and robust characterization of time-heterogeneous sequence evolutionary processes using substitution mapping. PLoS ONE 7, e33852 (2012).
ADS CAS PubMed PubMed Central Google Scholar
73.
Dutheil, J. & Boussau, B. Non-homogeneous models of sequence evolution in the Bio++ suite of libraries and programs. BMC Evol. Biol. 8, 255 (2008).
PubMed PubMed Central Google Scholar
74.
Dutheil, J. Y. et al. Efficient selection of branch-specific models of sequence evolution. Mol. Biol. Evol. 29, 1861–1874 (2012).
CAS PubMed Google Scholar
75.
R Core Team. R: A language and environment for statistical computing. Vienna, Austria. https://www.R-project.org/ (2018).
76.
Figuet, E., Romiguier, J., Dutheil, J. Y. & Galtier, N. Mitochondrial DNA as a tool for reconstructing past life-history traits in mammals. J. Evol. Biol. 27, 899–910 (2014).
CAS PubMed Google Scholar
77.
Tajima, F. Statistical method for testing the neutral mutation hypothesis by DNA polymorphism. Genetics 123, 585–595 (1989).
CAS PubMed PubMed Central Google Scholar
78.
Fu, Y. X. & Li, W. H. Statistical tests of neutrality of mutations. Genetics 133, 693–709 (1993).
CAS PubMed PubMed Central Google Scholar
79.
Excoffier, L. & Lischer, H. E. L. Arlequin suite ver 3.5: A new series of programs to perform population genetics analyses under Linux and Windows. Mol. Ecol. Res. 10, 564–567 (2010).
Google Scholar
80.
Schneider, S. & Excoffier, L. Estimation of past demographic parameters from the distribution of pairwise differences when the mutation rates vary among sites: application to human mitochondrial DNA. Genetics 152, 1079–1089 (1999).
CAS PubMed PubMed Central Google Scholar
81.
Drummond, A. J., Rambaut, A., Shapiro, B. & Pybus, O. G. Bayesian coalescent inference of past population dynamics from molecular sequences. Mol. Biol. Evol. 22, 1185–1192 (2005).
CAS PubMed Google Scholar
82.
Kingman, J. F. C. The coalescent. Stochastic Process. Appl. 13, 235–248 (1982).
MathSciNet MATH Google Scholar
83.
Kass, R. E. & Raftery, A. E. Bayes factors. J. Am. Stat. Assoc. 90, 773–795 (1995).
MathSciNet MATH Google Scholar
84.
Moura, A. E. et al. Phylogenomics of the genus Tursiops and closely related Delphininae reveals extensive reticulation among lineages and provides inference about eco-evolutionary drivers. Mol. Phylogenet. Evol. 146, 106756 (2020).
PubMed Google Scholar
85.
Slater, G. J., Price, S. A., Santini, F. & Alfaro, M. E. Diversity versus disparity and the radiation of modern cetaceans. Proc. Biol. Sci. 277, 3097–3104 (2010).
PubMed PubMed Central Google Scholar
86.
McGowen, M. R. et al. Phylogenomic resolution of the cetacean tree of life using target sequence capture. Syst. Biol. 31, 2553 (2019).
Google Scholar
87.
Ho, S. Y. W., Saarma, U., Barnett, R., Haile, J. & Shapiro, B. The effect of inappropriate calibration: Three case studies in molecular ecology. PLoS ONE 3, e1615 (2008).
ADS PubMed PubMed Central Google Scholar
88.
Zheng, Y. & Wiens, J. J. Do missing data influence the accuracy of divergence-time estimation with BEAST? Mol. Phylogenet. Evol. 85, 41–49 (2015).
PubMed Google Scholar
89.
Lindberg, D. R. Marine biotic interchange between the northern and southern hemispheres. Paleobiology 17, 308–324 (1991).
Google Scholar
90.
Perrin, W. F. Coloration. in Encyclopedia of Marine Mammals (eds. Würsig, B., Perrin, W. & Thewissen, J. G. M.) 243–249 (Elsevier, 2009). https://doi.org/10.1016/B978-0-12-373553-9.00061-4.
91.
Koopman, H. N., Pabst, D. A., McLellan, W. A., Dillaman, R. M. & Read, A. J. Changes in blubber distribution and morphology associated with starvation in the harbor porpoise (Phocoena phocoena): Evidence for regional differences in blubber structure and function. Physiol. Biochem. Zool. 75, 498–512 (2002).
CAS PubMed Google Scholar
92.
Hoekendijk, J. P. A., Spitz, J., Read, A. J., Leopold, M. F. & Fontaine, M. C. Resilience of harbor porpoises to anthropogenic disturbance: Must they really feed continuously? Mar. Mammal Sci. 34, 258–264 (2018).
Google Scholar
93.
Escorza-Treviño, S. & Dizon, A. E. Phylogeography, intraspecific structure and sex-biased dispersal of Dall’s porpoise, Phocoenoides dalli, revealed by mitochondrial and microsatellite DNA analyses. Mol. Ecol. 9, 1049–1060 (2000).
PubMed Google Scholar
94.
Wang, J. Y., Frasier, T. R., Yang, S. C. & White, B. N. Detecting recent speciation events: The case of the finless porpoise (genus Neophocaena). Heredity (Edinb) 101, 145–155 (2008).
CAS Google Scholar
95.
Lin, W. et al. Phylogeography of the finless porpoise (genus Neophocaena): Testing the stepwise divergence hypothesis in the northwestern Pacific. Sci. Rep. 4, 6572 (2014).
CAS PubMed PubMed Central Google Scholar
96.
Rosel, P. E., Dizon, A. E. & Haygood, M. G. Variability of the mitochondrial control region in populations of the harbour porpoise, Phocoena, on interoceanic and regional scales. Can. J. Fish. Aquat. Sci. 52, 1210–1219 (1995).
CAS Google Scholar
97.
Harris, S. A. Thermal history of the Arctic Ocean environs adjacent to North America during the last 3.5 Ma and a possible mechanism for the cause of the cold events (major glaciations and permafrost events). Progress Phys. Geogr. Earth Environ. 29, 218–237 (2005).
Google Scholar
98.
Chivers, S. J., Dizon, A. E. & Gearin, P. J. Small-scale population structure of eastern North Pacific harbour porpoises (Phocoena phocoena) indicated by molecular genetic analyses. J. Cetacean Res. Manag. 4, 111–122 (2002).
Google Scholar
99.
Pimper, L. E., Goodall, R. N. P. & Remis, M. I. First mitochondrial DNA analysis of the spectacled porpoise (Phocoena dioptrica) from Tierra del Fuego, Argentina. Mamm. Biol. Zeitschrift für Säugetierkunde 77, 459–462 (2012).
Google Scholar
100.
Lundmark, C. Science sings the blues: Other words for Nothin’ left to lose. Bioscience 57, 208–208 (2007).
Google Scholar
101.
Ehlers, J. R. & Gibbard, P. Quaternary glaciation. in Encyclopedia of Snow, Ice and Glaciers 873–882 (Springer, Dordrecht, 2014). https://doi.org/10.1007/978-90-481-2642-2_423
102.
Norris, K. S. & McFarland, W. N. A new harbor porpoise of the genus Phocoena from the Gulf of California. J. Mammal. 39, 22 (1958).
Google Scholar
103.
Rosel, P. E. & Rojas-Bracho, L. Mitochondrial DNA variation in the critically endangered Vaquita Phocoena Sinus Norris and Macfarland, 1958. Mar. Mammal Sci. 15, 990–1003 (1999).
Google Scholar
104.
Allendorf, F. W., Luikart, G. H. & Aitken, S. N. Conservation and the Genetics of Populations (Wiley, New York, 2012).
Google Scholar
105.
Moritz, C. Defining ‘Evolutionarily Significant Units’ for conservation. Trends Ecol. Evol. 9, 373–375 (1994).
CAS PubMed Google Scholar
106.
Nabholz, B., Mauffrey, J.-F., Bazin, E., Galtier, N. & Glemin, S. Determination of mitochondrial genetic diversity in mammals. Genetics 178, 351–361 (2008).
PubMed PubMed Central Google Scholar
107.
Bazin, E., Glemin, S. & Galtier, N. Population size does not influence mitochondrial genetic diversity in animals. Science 312, 570–572 (2006).
ADS CAS PubMed Google Scholar
108.
Degnan, J. H. & Rosenberg, N. A. Gene tree discordance, phylogenetic inference and the multispecies coalescent. Trends Ecol. Evol. 24, 332–340 (2009).
PubMed Google Scholar
109.
Fontaine, M. C. et al. Mosquito genomics. Extensive introgression in a malaria vector species complex revealed by phylogenomics. Science 347, 1258524 (2015).
PubMed Google Scholar
110.
Heliconius Genome Consortium. Butterfly genome reveals promiscuous exchange of mimicry adaptations among species. Nature 487, 94–98 (2012).
ADS Google Scholar
111.
Miles, A. et al. Genetic diversity of the African malaria vector Anopheles gambiae. Nature 552, 96–100 (2017).
ADS Google Scholar More