Extent, intensity and drivers of mammal defaunation: a continental-scale analysis across the Neotropics
1.
Simpson, G. G. History of the fauna of Latin America. Am. Sci. 38, 361–389 (1950).
Google Scholar
2.
Hershkovitz, P. A geographic classification of Neotropical mammals. Chicago natural history museum. Fieldiana Zool. 36, 581–620 (1958).
Google Scholar
3.
Feeley, K. J. & Stroud, J. T. Where on Earth are the “tropics”?. Front. Biogeogr. 10(2), e38649. https://doi.org/10.21425/F5101-238649 (2018).
Article Google Scholar
4.
Olson, D. M. et al. Terrestrial ecoregions of the world: a new map of life on Earth. Bioscience 51(11), 933–938 (2011).
Google Scholar
5.
Udvardy, M.D.F. A classification of the biogeographical provinces of the world. IUCN Occasional Papers n° 18 (1975).
6.
Canale, G. R., Peres, C. A., Guidorizzi, C. E., Gatto, C. A. F. & Kierulff, M. C. M. Pervasive defaunation of forest remnants in a tropical biodiversity hotspot. PLoS ONE 7, e41671 (2012).
ADS CAS PubMed PubMed Central Google Scholar
7.
Antunes, A. P. et al. Empty forest or empty rivers? A century of commercial hunting in Amazonia. Sci. Adv. 2, e1600936 (2016).
ADS PubMed PubMed Central Google Scholar
8.
Galetti, M. et al. Defaunation and biomass collapse of mammals in the largest Atlantic forest remnant. Anim. Conserv. https://doi.org/10.1111/acv.12311 (2016).
Article Google Scholar
9.
Peres, C. A., Emilio, T., Schietti, J., Desmoulière, S. J. M. & Levi, T. Dispersal limitation induces long-term biomass collapse in overhunted Amazonian forests. Proc. Natl. Acad. Sci. 113(4), 892–897 (2016).
ADS CAS PubMed Google Scholar
10.
Püttker, T. et al. Indirect effects of habitat loss via habitat fragmentation: a cross-taxa analysis of forest-dependent species. Biol. Conserv. 241, 108368 (2020).
Google Scholar
11.
Vilela, T. et al. A better Amazon road network for people and the environment. Proc. Natl. Acad. Sci. 117(13), 7095–7102 (2020).
ADS CAS PubMed Google Scholar
12.
Laurance, W. F. et al. Impacts of roads and hunting on central African rainforest mammals. Conserv. Biol. 20(4), 1251–1261 (2006).
PubMed Google Scholar
13.
Ceddia, M. G. et al. Governance, agricultural intensification, and land sparing in tropical South America. Proc. Natl. Acad. Sci. 111(2), 7242–7247 (2014).
ADS CAS PubMed Google Scholar
14.
Pastro, L. A., Dickman, C. R. & Letnic, M. Fire type and hemisphere determine the effects of fire on the alpha and beta diversity of vertebrates: a global meta-analysis. Glob. Ecol. Biogeogr. 23, 1146–1156 (2014).
Google Scholar
15.
Wilkie, D. S., Bennett, E. L., Peres, C. A. & Cunningham, A. A. The empty forest revisited. Ann. N. Y. Acad. Sci. 1223, 120–128 (2011).
ADS PubMed Google Scholar
16.
Brancalion, P. H. S. et al. Análise crítica da Lei de Proteção da Vegetação Nativa (2012), que substituiu o antigo Código Florestal: atualizações e ações em curso. Nat. Conserv. 14, e1–e16 (2016).
Google Scholar
17.
Young, H. S., McCauley, D. J., Galetti, M. & Dirzo, R. Patterns, Causes, and consequences of anthropocene defaunation. Annu. Rev. Ecol. Evol. Syst. 47, 333–358 (2016).
Google Scholar
18.
Redford, K. H. The empty forest. Bioscience 42, 412–422 (1992).
Google Scholar
19.
Terborgh, J. The big things that run the world: a sequel to E.O. Wilson. Conserv. Biol. 2(4), 402–403 (1988).
Google Scholar
20.
Dirzo, R. et al. Defaunation in the anthropocene. Science 345, 401–406 (2014).
ADS CAS PubMed Google Scholar
21.
Levi, T. & Peres, C. A. Dispersal vaccum in the seedling recruitment of a primate-dispersed Amazonian tree. Biol. Conserv. 163, 99–106 (2013).
Google Scholar
22.
Bogoni, J. A., da Silva, P. G. & Peres, C. A. Co-declining mammal–dung beetle faunas throughout the Atlantic Forest biome of South America. Ecography 42, 1803–1818 (2019).
Google Scholar
23.
Lacher, T. E. et al. The functional roles of mammals in ecosystems. J. Mammal. 100(3), 942–964 (2019).
Google Scholar
24.
Kaufman, D. M. Diversity of new world mammals: universality of the latitudinal gradients of species and bauplans. J. Mammal. 76(2), 322–334 (1995).
MathSciNet Google Scholar
25.
Ceballos, G. & Ehrlich, P. R. Global mammal distributions, biodiversity hotspots, and conservation. Proc. Natl. Acad. Sci. 103(51), 19374–19379 (2006).
ADS CAS PubMed Google Scholar
26.
Ceballos, G., Ehrlich, P. R. & Dirzo, R. Biological annihilation via the ongoing sixth mass extinction signaled by vertebrate population losses and declines. Proc. Natl. Acad. Sci. 114, 6089–6096 (2017).
Google Scholar
27.
Lima, F. et al. ATLANTIC-CAMTRAPS: a dataset of medium and large terrestrial mammal communities in the Atlantic Forest of South America. Ecology 98(11), 2979 (2017).
PubMed Google Scholar
28.
Souza, Y. et al. ATLANTIC MAMMALS: a data set of assemblages of medium- and large-sized mammals of the Atlantic Forest of South America. Ecology 100(10), e02785 (2019).
PubMed Google Scholar
29.
Janzen, D. H. (ed.) Costa Rican Natural History (The University of Chicago Press, Chicago, 1983).
Google Scholar
30.
Gentry, A. H. (ed.) Four Neotropical Rainforest (Yale University Press, London, 1993).
Google Scholar
31.
Nadkarni, N.M. & Wheelwright, N.T. (eds.). Monteverde: Ecology and Conservation of a Tropical Cloud Forest—2014 Updated Chapters. Bowdoin Scholars Bookshelf (2014).
32.
Schipper, J. et al. The status of the world’s land and marine mammals: diversity, threat, and knowledge. Science 322, 225–230 (2008).
ADS CAS PubMed Google Scholar
33.
IUCN Spatial data download: mammals. https://www.iucnredlist.org/technicaldocuments/spatial-data#mammals. Accessed 11 June 2018. (2016).
34.
Rondinini, C. et al. Global habitat suitability models of terrestrial mammals. Philos Trans. R. Soc. Lond. B Biol. Sci. 366, 2633–2641 (2011).
PubMed PubMed Central Google Scholar
35.
González-Maya, J. F., Martínez-Meyer, E., Medellín, R. & Ceballos, G. Distribution of mammal functional diversity in the Neotropical realm: influence of land-use and exticton risk. PLoS ONE 12(4), e0175931 (2017).
PubMed PubMed Central Google Scholar
36.
Herkt, K. M. B., Skidmore, A. K. & Fahr, J. Macroecological conclusions based on IUCN expert maps: a call for caution. Glob. Ecol. Biogeogr. 2017, 1–12. https://doi.org/10.1111/geb.12601 (2017).
Article Google Scholar
37.
Jones, K. E. et al. PanTHERIA: a species-level database of life history, ecology, and geography of extant and recently extinct mammals. Ecology 90(9), 2648 (2009).
Google Scholar
38.
Wilman, H. et al. Elton traits 1.0: species-level foraging attributes of the world’s birds and mammals. Ecology 95(7), 2027–2027 (2014).
Google Scholar
39.
Wildlife Conservation Society (WCS), and Center for International Earth Science Information Network (CIESIN), Columbia University. Last of the Wild Project, Version 2, 2005 (LWP-2): Global Human Footprint Dataset (Geographic). (NASA Socioeconomic Data and Applications Center (SEDAC), Palisades, NY, 2005). https://doi.org/10.7927/H4M61H5F.
40.
Kobayashi, T. et al. Production of global land cover data—GLCNMO2013. J. Geogr. Geol. 9(3), 1–15 (2017).
Google Scholar
41.
NASA Earth Observatory. Maps created by Jesse Allen and Reto Stockli, NASA Earth Observatory, using data courtesy the MODIS Land Science Team at NASA Goddard Space Flight Center (2020). https://neo.sci.gsfc.nasa.gov/view.php?datasetId=MOD14A1_M_FIRE&year=2018.
42.
Bogoni, J. A. et al. What would be the diversity patterns of medium- to large-bodied mammals if the fragmented Atlantic Forest was a large metacommunity?. Biol. Conserv. 211, 85–94 (2017).
Google Scholar
43.
Morrone, J. J. Biogeographical regionalisation of the Neotropical region. Zootaxa 3782(1), 1–110 (2014).
PubMed Google Scholar
44.
Google Earth. KML gallery: explore the earth on Google (2020). https://earth.google.com/gallery/index.html.
45.
Bayes, T. An essay toward solving a problem in the doctrine of chances. Philos. Trans. R. Soc. Lond. 53, 370–418 (1764).
MathSciNet MATH Google Scholar
46.
Cressie, N. A. C. Statistics for Spatial Data Revised. (Wiley, Hoboken, 1993).
Google Scholar
47.
Rabinowitz, D. Seven forms of rarity. In The Biological Aspects of Rare Plant Conservation (ed. Synge, H.) 205–217 (Wiley, Hoboken, 1981).
Google Scholar
48.
Yu, J. & Dobson, F. S. Seven forms of rarity in mammals. J. Biogeogr. 27, 131–139 (2000).
Google Scholar
49.
Tobler, M. W., Carrillo-Percastegui, S. E., Pitman, R. L., Mares, R. & Powell, G. An evaluation of camera traps for inventorying large- and medium-sized terrestrial rainforest mammals. Anim. Conserv. 11(3), 169–178 (2008).
Google Scholar
50.
Bogoni, J. A., Pires, J. S. R., Graipel, M. E., Peroni, N. & Peres, C. A. Wish you were here: how defaunated is the Atlantic Forest biome of its medium- to large bodied mammal fauna?. PLoS ONE 13(9), e0204515 (2018).
PubMed PubMed Central Google Scholar
51.
Kuhn, M. Building predictive models in R using the caret package. J. Stat. Soft. 28(5), 1–26. https://doi.org/10.18637/jss.v028.i05 (2008).
Article Google Scholar
52.
R Core Team. R: a language and environment for statistical computing. R Foundation for Statistical Computing (2020).
53.
Moran, P. A. P. Notes on continuous stochastic phenomena. Biometrika 37(1), 17–23 (1950).
MathSciNet CAS PubMed MATH Google Scholar
54.
Grace, J. B. Structural Equation Modeling and Natural Systems (Cambridge University Press, Cambridge, 2006).
Google Scholar
55.
Kamata, A. & Bauer, D. J. A note on the relation between factor analytic and item response theory models. Struct. Equ. Model. 15(1), 136–153 (2008).
MathSciNet Google Scholar
56.
Shipley, B. Confirmatory path analysis in a generalized multilevel context. Ecology 90, 363–368 (2009).
PubMed Google Scholar
57.
Rosseel, Y. lavaan: an R package for structural equation modeling. J. Stat. Soft. 48(2), 1–36 (2012).
Google Scholar
58.
Maxwell, S., Fuller, R. A., Brooks, T. M. & Watson, J. E. Biodiversity: the ravages of guns, nets and bulldozers. Nature 536, 143–145 (2016).
ADS CAS PubMed Google Scholar
59.
Wen, Z. et al. Using completeness and defaunation indices to understand nature reserve’s key attributes in preserving medium- and large-bodied mammals. Biol. Conserv. 241, 108273 (2020).
Google Scholar
60.
Camargo-Sanabria, A. A., Mendoza, E., Guevara, R., Martinez-Ramos, M. & Dirzo, R. Experimental defaunation of terrestrial mammalian herbivores alters tropical rainforest understorey diversity. Philos. Trans. R. Soc. Lond. B Biol. Sci. 282, 2580 (2015).
Google Scholar
61.
Osuri, A. M. et al. Contrasting effects of defaunation on aboveground carbon storage across the global tropics. Nat. Commun. 7, 11351 (2016).
ADS CAS PubMed PubMed Central Google Scholar
62.
Ripple, W. J. et al. Collapse of the world’s largest herbivores. Sci. Adv. 1, e1400103 (2015).
ADS PubMed PubMed Central Google Scholar
63.
Dean, W. With Broadax and Firebrand: The Destruction of the Brazilian Atlantic Forest (University of California Press, Berkeley, 1996).
Google Scholar
64.
Galetti, M. et al. Priority areas for the conservation of Atlantic forest large mammals. Biol. Conserv. 142(6), 1229–1241 (2009).
Google Scholar
65.
Leal, I. R., Silva, J. M. C., Tabarelli, M. & Lacher, T. Changing the course of biodiversity conservation in the Caatinga of Northeastern Brazil. Conserv. Biol. 19(3), 701–706 (2005).
Google Scholar
66.
Chesser, T. & Hackett, S. J. Mammalian diversity in South America. Science 256, 1502–1504 (1992).
ADS Google Scholar
67.
Ojeda, R. A. Diversity and Conservation of Neotropical Mammals. Encyclopedia of Biodiversity 2nd edn. (Academic Press, Waltham, 2013).
Google Scholar
68.
Hansen, M. C. et al. High resolution global maps of 21st-century forest cover change. Science 342, 850–853 (2013).
ADS CAS PubMed Google Scholar
69.
Lapola, D. M. et al. Pervasive transition of the Brazilian land-use system. Nat. Clim. Change 4, 27–35 (2014).
ADS Google Scholar
70.
Ceddia, M. G. The super-rich and cropland expansion via direct investments in agriculture. Nat. Sustain. 3(4), 312–318 (2020).
Google Scholar
71.
Chape, S., Harrison, J., Spalding, M. D. & Lysenko, I. Measuring the extent and effectiveness of protected areas as an indicator for meeting global biodiversity targets. Philos. Trans. R. Soc. Lond. B Biol. Sci. 360, 443–455 (2005).
CAS PubMed PubMed Central Google Scholar
72.
Joppa, L. N., Loarle, S. R. & Pimm, S. L. On the protection of ‘“protected areas”’. Proc. Natl. Acad. Sci. 105(18), 6673–6678 (2008).
ADS CAS PubMed Google Scholar
73.
Gray, C. L. et al. Local biodiversity is higher inside than outside terrestrial protected areas worldwide. Nat. Commun. 7, 12306 (2016).
ADS CAS PubMed PubMed Central Google Scholar
74.
Oliveira, U. et al. Biodiversity conservation gaps in the Brazilian protected areas. Sci. Rep. 7, 9141 (2017).
ADS PubMed PubMed Central Google Scholar
75.
Schleicher, J., Peres, C. A., Amano, T., Llactayo, W. & Leader-Williams, N. Conservation performance of different conservation governance regimes in the Peruvian Amazon. Sci. Rep. 7, 11318 (2017).
ADS PubMed PubMed Central Google Scholar
76.
Begotti, R.A. & Peres, C.A. Rapidly escalating threats to the biodiversity and ethnocultural capital of Brazilian Indigenous Lands. Land Use Policy (2020) (in press).
77.
Levi, T., Shepard, G. H., Ohl-Schacherer, J. & Peres, C. A. Modelling the long-term sustainability of indigenous hunting in Manu National Park, Peru: landscape-scale management implications for Amazonia. J. Appl. Ecol. 46, 804–814 (2009).
Google Scholar
78.
Benítez-López, A., Santini, L., Schipper, A. M., Busana, M. & Huijbregts, M. A. Patterns of hunting-induced mammal defaunation in the tropics. PLoS Biol. 17(5), e3000247 (2019).
PubMed PubMed Central Google Scholar
79.
Sanderson, E. S. et al. The human footprint and the last of the wild. Bioscience 52(10), 891–904 (2002).
Google Scholar
80.
Venter, O. et al. Sixteen years of change in the global terrestrial human footprint and implications for biodiversity conservation. Nat. Commun. 7, 12558 (2016).
ADS CAS PubMed PubMed Central Google Scholar
81.
Belote, R. T. et al. Mammal species composition reveals new insights into Earth’s remaining wilderness. Front. Ecol. Environ. https://doi.org/10.1002/fee.2192 (2020).
Article Google Scholar
82.
Rodrigues, A. et al. Effectiveness of the global protected area network in representing species diversity. Nature 428, 640–643 (2004).
ADS CAS PubMed Google Scholar
83.
Phillips, H. R. P., Newbold, T. & Purvis, A. Land-use effects on local biodiversity in tropical forests vary between continents. Biodivers. Conserv. 26, 2251–2270 (2017).
PubMed PubMed Central Google Scholar
84.
Abra, F. D. et al. Pay or prevent? Human safety, costs to society and legal perspectives on animal-vehicle collisions in São Paulo state, Brazil. PLoS ONE 14(4), e0215152 (2019).
CAS PubMed PubMed Central Google Scholar
85.
Magioli, M. M. et al. Human-modified landscapes alter mammal resource and habitat use and trophic structure. Proc. Natl. Acad. Sci. 116(37), 18466–18472 (2019).
CAS PubMed Google Scholar
86.
Barlow, J. & Peres, C. A. Fire-mediated dieback and compositional cascade in an Amazonian forest. Philos. Trans. R. Soc. Lond. B Biol. Sci. 363, 1787 (2008).
PubMed PubMed Central Google Scholar
87.
Aragão, L. E. O. C. & Shimabukuro, Y. E. The incidence of fire in Amazonian Forests with implications for REDD. Science 328, 1275–1278 (2010).
ADS PubMed Google Scholar
88.
Martin, P. S. Discovery of America. Science 179, 969–974 (1973).
ADS CAS PubMed Google Scholar
89.
Simpson, G. G. Splendid Isolation: The Curious History of South American Mammals (Yale University Press, New Haven, 1980).
Google Scholar
90.
Peters, R. H. The Ecological Implications of Body Size (Cambridge University Press, Cambridge, 1986).
Google Scholar
91.
Brown, J. H. & Sibly, R. M. Life-history evolution under a production constraint. Proc. Natl. Acad. Sci. 103(47), 17595–17599 (2006).
ADS CAS PubMed Google Scholar
92.
Hone, D. W. & Benton, M. J. The evolution of large size: how does Cope’s Rule work?. Trends Ecol. Evol. 20(1), 4–6 (2005).
PubMed Google Scholar
93.
Cardillo, M. et al. Multiple causes of high extinction risk in large mammal species. Science 309, 1239–1241 (2005).
ADS CAS PubMed Google Scholar
94.
Cardillo, M. et al. The predictability of extinction- biological and external correlates of decline in mammals. Philos. Trans. R. Soc. Lond. B Biol. Sci. 275, 1441–1448 (2008).
Google Scholar
95.
Beca, G. et al. High mammal species turnover in forest patches immersed in biofuel plantations. Biol. Conserv. 210, 352–359 (2017).
Google Scholar
96.
Crooks, K. R. et al. Quantification of habitat fragmentation reveals extinction risk in terrestrial mammals. Proc. Natl. Acad. Sci. 114(29), 7635–7640 (2017).
CAS PubMed Google Scholar
97.
Santini, L. et al. One strategy does not fit all: determinants of urban adaptation in mammals. Ecol. Lett. 22, 365–376 (2019).
PubMed Google Scholar
98.
Barnosky, A. D. et al. Variable impact of late-Quaternary megafaunal extinction in causing ecological state shifts in North and South America. Proc. Natl. Acad. Sci. 113(4), 856–861 (2016).
ADS CAS PubMed Google Scholar
99.
Rees, J. D., Kingsford, R. T. & Letnic, M. In the absence of an apex predator, irruptive herbivores suppress grass seed production: implications for small granivores. Biol. Conserv. 213, 13–18 (2017).
Google Scholar
100.
Berzaghi, F. et al. Assessing the role of megafauna in tropical forest ecosystems and biogeochemical cycles—the potential of vegetation models. Ecography 41, 1–21 (2018).
Google Scholar
101.
Bufalo, F. S., Galetti, M. & Culot, L. Seed dispersal by primates and implications for the conservation of a biodiversity hotspot, the Atlantic Forest of South America. Int. J. Primatol. https://doi.org/10.1007/s10764-016-9903-3 (2016).
Article Google Scholar
102.
Estrada, A. et al. Impending extinction crisis of the world’s primates: why primates matter. Sci. Adv. 3(1), e1600946 (2017).
ADS MathSciNet PubMed PubMed Central Google Scholar
103.
Almeida-Rocha, J. M., Peres, C. A. & Oliveira, L. C. Primate responses to anthropogenic habitat disturbance: a pantropical meta-analysis. Biol. Conserv. 215, 30–38 (2017).
Google Scholar
104.
Paviolo, A. et al. A biodiversity hotspot losing its top predator: the challenge of jaguar conservation in the Atlantic Forest of South America. Sci. Rep. 6(1), 1–16 (2016).
Google Scholar
105.
Ji, Y. et al. Reliable, verifiable and efficient monitoring of biodiversity via metabarcoding. Ecol. Lett. 16(10), 1245–1257 (2013).
PubMed Google Scholar
106.
Hortal, J. et al. Seven shortfalls that beset large-scale knowledge of biodiversity. Annu. Rev. Ecol. Evol. Syst. 46, 523–549 (2015).
Google Scholar
107.
Janson, C. H. & Emmons, L. Ecological structure of the nonflying mammal community at Cocha Cashu Biological Station, Manu National Park, Peru. In Four Neotropical Rainforests (ed. Gentry, A. H.) 314–338 (Yale University Press, New Haven, 1990).
Google Scholar
108.
Peres, C. A. Structure of nonvolant mammal communities in different Amazonian Forest types. In Mammals of the Neotropics: The Central Neotropics (eds Eisenberg, J. F. & Redford, K. H.) 564–581 (University of Chicago, Chicago, 1999).
Google Scholar
109.
Carbone, C., Cowlishaw, G., Isaac, N. J. B. & Rowcliffe, J. M. How far do animals go? Determinants of day range in mammals. Am. Nat. 165, 290–297 (2005).
PubMed Google Scholar
110.
Ferreira, A. S., Peres, C. A., Bogoni, J. A. & Cassano, C. G. Use of agroecosystem matrix habitats by mammalian carnivores (Carnivora): a global-scale analysis. Mammal Rev. https://doi.org/10.1111/mam.12137 (2018).
Article Google Scholar
111.
Lomolino, M. V. Elevation gradients of species-density: historical and prospective views. Glob. Ecol. Biogeogr. 10, 3–13 (2001).
Google Scholar
112.
Gaynor, K. M., Hojnowski, C. E., Carter, N. H. & Brashares, J. S. The influence of human disturbance on wildlife nocturnality. Science 360, 1232–1235 (2018).
ADS CAS PubMed Google Scholar
113.
Waide, R. B. et al. The relationship between productivity and species richness. Annu. Rev. Ecol. Evol. Syst. 30, 257–300 (1999).
Google Scholar
114.
Oliveira, L. E. C. & Begossi, A. Last trip return rate influence patch choice decisions of small-scale shrimp trawlers: optimal foraging in São Francisco, Coastal Brazil. Hum. Ecol. 39, 323–332 (2011).
Google Scholar
115.
Cardillo, M. The life-history basis of latitudinal diversity gradients: how do species traits vary from the poles to the equator?. J. Anim. Ecol. 71, 79–87 (2002).
Google Scholar More