More stories

  • in

    Cutting out the middle clam: lucinid endosymbiotic bacteria are also associated with seagrass roots worldwide

    1.
    Orth RJ, Carruthers TJB, Dennison WC, Duarte CM, Fourqurean JW, Heck KL, et al. A global crisis for seagrass ecosystems. Bioscience. 2006;56:987–96.
    Article  Google Scholar 
    2.
    Lamers LPM, Govers LL, Janssen ICJM, Geurts JJM, Van der Welle MEW, Van Katwijk MM, et al. Sulfide as a soil phytotoxin-a review. Front Plant Sci. 2013;4:268.
    Article  Google Scholar 

    3.
    Hasler-Sheetal H, Holmer M. Sulfide intrusion and detoxification in the seagrass Zostera marina. PLoS One. 2015;10:1–19.
    Article  Google Scholar 

    4.
    Brodersen KE, Lichtenberg M, Paz LC, Kühl M Epiphyte-cover on seagrass (Zostera marina L.) leaves impedes plant performance and radial O2 loss from the below-ground tissue. Front Mar Sci. 2015;2:1–11.

    5.
    Fahimipour AK, Kardish MR, Lang JM, Green JL, Eisen JA, Stachowicz JJ. Global-scale structure of the eelgrass microbiome. Appl Environ Microbiol. 2017;83:1–12.
    Article  Google Scholar 

    6.
    Van der Heide T, Govers LL, de Fouw J, Olff H, Van der Geest M, Van Katwijk MM, et al. A three-stage symbiosis forms the foundation of seagrass ecosystems. Science. 2012;336:1432–4.
    Article  Google Scholar 

    7.
    Van Der Geest M, Van Der Heide T, Holmer M, De Wit R. First field-based evidence that the seagrass-lucinid mutualism can mitigate sulfide stress in seagrasses. Front Mar Sci. 2020;7:1–13.
    Article  Google Scholar 

    8.
    Lim SJ, Alexander L, Engel AS, Paterson AT, Anderson LC, Campbell BJ. Extensive thioautotrophic gill endosymbiont diversity within a single Ctena orbiculata (Bivalvia: Lucinidae) population and implications for defining host-symbiont specificity and species recognition. mSystems. 2019;4:1–19.
    Article  Google Scholar 

    9.
    Brissac T, Merçot H, Gros O. Lucinidae/sulfur-oxidizing bacteria: ancestral heritage or opportunistic association? Further insights from the Bohol Sea (the Philippines). FEMS Microbiol Ecol. 2011;75:63–76.
    CAS  Article  Google Scholar 

    10.
    Brodersen KE, Koren K, Moßhammer M, Ralph PJ, Kühl M, Santner J. Seagrass-mediated phosphorus and iron solubilization in tropical sediments. Environ Sci Technol. 2017;51:14155–63.
    CAS  Article  Google Scholar 

    11.
    Martin BC, Bougoure J, Ryan MH, Bennett WW, Colmer TD, Joyce NK, et al. Oxygen loss from seagrass roots coincides with colonisation of sulphide-oxidising cable bacteria and reduces sulphide stress. ISME J. 2019;13:707–19.
    CAS  Article  Google Scholar 

    12.
    Callahan BJ, McMurdie PJ, Rosen M, Han AW, Johnson AJA, Holmes S. DADA2: High resolution sample inference from Illumina amplicon data. Nat Methods. 2016;13:4–5.
    Article  Google Scholar 

    13.
    Quast C, Pruesse E, Yilmaz P, Gerken J, Schweer T, Yarza P, et al. The SILVA ribosomal RNA gene database project: Improved data processing and web-based tools. Nucleic Acids Res. 2013;41:590–6.
    Article  Google Scholar 

    14.
    Guindon S, Gascuel O. A simple, fast, and accurate algorithm to estimate large phylogenies by maximum likelihood. Syst Biol. 2003;52:696–704.
    Article  Google Scholar 

    15.
    Les DH, Cleland MA, Waycott M. Phylogenetic studies in alismatidae, II: evolution of marine angiosperms (Seagrasses) and hydrophily. Am Soc Plant Taxon. 1997;22:443–63.
    Google Scholar 

    16.
    Petersen JM, Kemper A, Gruber-Vodicka H, Cardini U, Van Der Geest M, Kleiner M, et al. Chemosynthetic symbionts of marine invertebrate animals are capable of nitrogen fixation. Nat Microbiol. 2016;2:1–11.
    Google Scholar 

    17.
    König S, Gros O, Heiden SE, Hinzke T, Thürmer A, Poehlein A, et al. Nitrogen fixation in a chemoautotrophic lucinid symbiosis. Nat Microbiol. 2016;2:16193.
    Article  Google Scholar 

    18.
    Lim SJ, Davis BG, Gill DE, Walton J, Nachman E, Engel AS, et al. Taxonomic and functional heterogeneity of the gill microbiome in a symbiotic coastal mangrove lucinid species. ISME J. 2019;13:902–20.
    CAS  Article  Google Scholar 

    19.
    Touchette BW, Burkholder JM. Review of nitrogen and phosphorus metabolism in seagrasses. J Exp Bot. 2000;250:133–67.
    CAS  Google Scholar 

    20.
    Gros O, Liberge M, Heddi A, Khatchadourian C, Felbeck H. Detection of the free-living forms of sulfide-oxidizing gill endosymbionts in the lucinid habitat (thalassia testudinum environment). Appl Environ Microbiol. 2003;69:6264–7.
    CAS  Article  Google Scholar  More

  • in

    Effectiveness of protected areas in conserving tropical forest birds

    Study areas: biodiversity hotspots
    We focused on eight biodiversity hotspots21: those with at least 25% of their extent within the “tropical and subtropical moist broadleaf forests” biome44 and for which we obtained at least 1000 checklists from eBird (after applying the data selection procedure described below): Atlantic Forest, Tropical Andes, Tumbes-Chocó-Magdalena, and Mesoamerica (Americas); Eastern Afromontane (Africa); Western Ghats and Sri Lanka, Indo-Burma and Sundaland (Asia). Within each hotspot, we analysed only areas overlapping the “tropical and subtropical moist broadleaf forests” biome44 (Fig. 1, Supplementary Figs. 1, 4, and 5), assumed to have been originally forested (see Supplementary Methods 4d).
    Data selection: eBird checklists
    We obtained bird sightings from the eBird citizen science database23. The reporting system is based on checklists, whereby the observer provides: list of birds detected; GPS location; sampling effort (whether or not all detected species are reported; sampling duration; sampling protocol, e.g., stationary point, travel, and banding; and distance travelled in case of travelling protocol); starting time of the sampling event; and number of observers.
    We used the eBird dataset released in December 201845, focusing on records from 2005 to 2018, as data collected prior to 2005 were too scarce for analysis. We filtered this dataset to obtain high-quality checklists comparable in protocol and effort: we selected complete checklists only (i.e. in which observers explicitly declare having reported all bird species detected and identified); following either the “stationary points” or the “travelling counts” protocol; with durations of continuous observation of 0.5–10 h; with observers travelling distances during the checklist 60% of the 1-km buffer around the point is forested47) versus non-forest ( More

  • in

    Drivers of farmer-managed natural regeneration in the Sahel. Lessons for restoration

    1.
    Chazdon, R. L. & Guariguata, M. R. Natural regeneration as a tool for large-scale forest restoration in the tropics: prospects and challenges. Biotropica 48, 716–730 (2016).
    Google Scholar 
    2.
    Poorter, L. et al. Biomass resilience of Neotropical secondary forests. Nature 530, 211–214 (2016).
    ADS  CAS  PubMed  Google Scholar 

    3.
    Rozendaal, D. M. A. et al. Biodiversity recovery of neotropical secondary forests. Sci. Adv. 5(3), eaau3114 (2019).
    ADS  PubMed  PubMed Central  Google Scholar 

    4.
    Lohbeck, M., Poorter, L., Martínez-Ramos, M. & Bongers, F. Biomass is the main driver of changes in ecosystem process rates during tropical forest succession. Ecology 96, 1242–1252 (2015).
    PubMed  Google Scholar 

    5.
    Chazdon, R. L. Second Growth. The Promise of Tropical Forest Regeneration in an Age of Deforestation (University of Chicago Press, Chicago, 2014).
    Google Scholar 

    6.
    Crossland, M., Ann, L., Pagella, T., Hadgu, K. & Sinclair, F. Implications of variation in local perception of degradation and restoration processes for implementing land degradation neutrality. Environ. Dev. 28, 42–54 (2018).
    Google Scholar 

    7.
    Rinaudo, T. The development of farmer managed natural regeneration. Leisa Mag. 23, 32–34 (2007).
    Google Scholar 

    8.
    Garrity, D. P. et al. Evergreen agriculture: a robust approach to sustainable food security in Africa. Food Secur. 2, 197–214 (2010).
    Google Scholar 

    9.
    Bayala, J. et al. Regenerated trees in farmers’ fields increase soil carbon across the Sahel. Agrofor. Syst. 94, 401–415 (2019).
    Google Scholar 

    10.
    Haglund, E., Ndjeunga, J., Snook, L. & Pasternak, D. Dry land tree management for improved household livelihoods: farmer managed natural regeneration in Niger. J Environ. Manag. 92, 1696–1705 (2011).
    Google Scholar 

    11.
    Weston, P., Hong, R., Kabore, C. & Kull, C. A. Farmer-managed natural regeneration enhances rural livelihoods in dryland west Africa. Environ. Manag. 55, 1402–1417 (2015).
    ADS  Google Scholar 

    12.
    Díaz, S. et al. Incorporating plant functional diversity effects in ecosystem service assessments. Proc. Natl. Acad. Sci. 104, 20684–20689 (2007).
    ADS  PubMed  Google Scholar 

    13.
    Lavorel, S. et al. Using plant functional traits to understand the landscape distribution of multiple ecosystem services. J. Ecol. 99, 135–147 (2010).
    Google Scholar 

    14.
    Myers, J. A. & Harms, K. E. Seed arrival, ecological filters, and plant species richness: a meta-analysis. Ecol. Lett. 12, 1250–1260 (2009).
    PubMed  Google Scholar 

    15.
    Martínez-Garza, C., Bongers, F. & Poorter, L. Are functional traits good predictors of species performance in restoration plantings in tropical abandoned pastures?. For. Ecol. Manag. 303, 35–45 (2013).
    Google Scholar 

    16.
    Sinclair, F. & Coe, R. I. C. The options by context approach: a paradigm shift in agronomy. Exp. Agric. 55, 1–13 (2019).
    Google Scholar 

    17.
    Foster, S. & Janson, C. H. The relationship between seed size and establishment conditions in tropical woody plants. Ecology 66, 773–780 (1985).
    Google Scholar 

    18.
    Moles, A. T. & Westoby, M. Seedling survival and seed size: a synthesis of the literature. J. Ecol. 92, 372–383 (2004).
    Google Scholar 

    19.
    Bond, W. J. & Midgley, J. J. Ecology of sprouting in woody plants: the persistence niche. Trends Ecol. Evol. 16, 45–51 (2001).
    CAS  PubMed  Google Scholar 

    20.
    Grover, H. D. & Musick, H. B. Shrubland encroachment in Southern New Mexico, USA: an analysis of desertification processes in the American Southwest. Clim. Change 17, 305–330 (1990).
    ADS  Google Scholar 

    21.
    Lohbeck, M., Winowiecki, L., Aynekulu, E., Okia, C. & Vågen, T.-G. Trait-based approaches for guiding the restoration of degraded agricultural landscapes in East Africa. J. Appl. Ecol. 55, 59–68 (2018).
    Google Scholar 

    22.
    Giller, K. E. & Cadisch, G. Future benefits from biological nitrogen fixation: an ecological approach to agriculture. Plant Soil 174, 255–277 (1995).
    CAS  Google Scholar 

    23.
    Poorter, L. & Markesteijn, L. Seedling traits determine drought tolerance of tropical tree species. Biotropica 40, 321–331 (2008).
    Google Scholar 

    24.
    Poorter, L. & Bongers, F. Leaf traits are good predictors of plant performance across 53 rain forest species. Ecology 87, 1733–1743 (2006).
    PubMed  Google Scholar 

    25.
    MacDougall, A. S. & Wilson, S. D. Herbivory limits recruitment in an old-field seed addition experiment. Ecology 88, 1105–1111 (2007).
    PubMed  Google Scholar 

    26.
    Gijsbers, H. J. M., Kessler, J. J. & Knevel, M. K. Dynamics and natural regeneration of woody species in farmed parklands in the Sahel region (Province of Passore, Burkina Faso). For. Ecol. Manag. 64, 1–12 (1994).
    Google Scholar 

    27.
    Bellefontaine, R. Synthèse des espèces des domaines sahélien et soudanien qui se multiplient naturellement par voie végétative. In Fonctionnement et gestion des écosystèmes forestiers contractés sahéliens (eds D’Herbès, L. et al.) (John Libbey Eurotext, Paris, 1997).
    Google Scholar 

    28.
    Hooper, E., Legendre, P. & Condit, R. Barriers to forest regeneration of deforested and abandoned land in Panama. J. Appl. Ecol. 42, 1165–1174 (2005).
    Google Scholar 

    29.
    Zida, D., Sawadogo, L., Tigabu, M., Tiveau, D. & Odén, P. C. Dynamics of sapling population in savanna woodlands of Burkina Faso subjected to grazing, early fire and selective tree cutting for a decade. For. Ecol. Manag. 243, 102–115 (2007).
    Google Scholar 

    30.
    Sawadogo, L., Nygård, R. & Pallo, F. Effects of livestock and prescribed fire on coppice growth after selective cutting of Sudanian savannah in Burkina Faso. Ann. For. Sci. 59, 185–195 (2002).
    Google Scholar 

    31.
    Louppe, D., Ouattara, N. & Coulibaly, A. Effect des feux de brousse sur la vegetation. Bois Forets des Trop. 245, 59–74 (1995).
    Google Scholar 

    32.
    Dey, D. C. & Hartman, G. Returning fire to Ozark Highland forest ecosystems: effects on advance regeneration. For. Ecol. Manag. 217, 37–53 (2005).
    Google Scholar 

    33.
    Jackson, G. Cryptogeal germination and other seedling adaptations to the burning of vegetation in savanna regions: the origin of the pyrophytic habit. New Phytol. 73, 771–780 (1974).
    ADS  Google Scholar 

    34.
    Haq, N. & Lovett, P. N. Evidence for anthropic selection in Sheanut tree (Vitellaria paradoxa). Agrofor. Syst. 48, 273–288 (2000).
    Google Scholar 

    35.
    Ndakidemi, P. A. & Semoka, J. M. R. Soil fertility survey in Western Usambara Mountains, northern Tanzania. Pedosphere 16, 237–244 (2006).
    Google Scholar 

    36.
    Winowiecki, L. A., Vågen, T.-G. & Huising, J. Effects of land cover on ecosystem services in Tanzania: a spatial assessment of soil organic carbon. Geoderma 263, 274–283 (2016).
    ADS  CAS  Google Scholar 

    37.
    FAO-EC-ISRIC. World Soil Resources Map. ftp://ftp.fao.org/agl/agll/faomwsr/wsavcl.jpg.

    38.
    Aide, T. M. & Cavelier, J. Barriers to lowland tropical forest restoration in the Sierra Nevada de Santa Marta, Colombia. Restor. Ecol. 2, 219–229 (1994).
    Google Scholar 

    39.
    Sawadogo, L. Adapter les approches de l’amenagement durable des forets seches aux aptitudes sociales, economiques et technologiques en Afrique: le cas du Burkina Faso (Center for International Forestry Research (CIFOR), Bogor, 2006). https://doi.org/10.17528/cifor/002145.
    Google Scholar 

    40.
    Kelly, B. A., Bouvet, J.-M. & Picard, N. Size class distribution and spatial pattern of Vitellaria paradoxa in relation to farmers’ practices in Mali Bokary. Agrofor. Syst. 60, 3–11 (2004).
    Google Scholar 

    41.
    Cornelissen, J. H. C. et al. A handbook of protocols for standardised and easy measurement of plant functional traits worldwide. Aust. J. Bot. 51, 335–380 (2003).
    Google Scholar 

    42.
    Ribeiro, E. M. S. et al. Functional diversity and composition of Caatinga woody flora are negatively impacted by chronic anthropogenic disturbance. J. Ecol. 107, 2291–2302 (2019).
    Google Scholar 

    43.
    Cingolani, A. M., Posse, G. & Collantes, M. B. Plant functional traits, herbivore selectivity and response to sheep grazing in Patagonian steppe grasslands. J. Appl. Ecol. 42, 50–59 (2005).
    Google Scholar 

    44.
    Augustine and McNaughton. Ungulate effects on the functional species composition of plant communities : herbivore selectivity and plant tolerance. J. Wildl. Manag. 62, 1165–1183 (1998).
    Google Scholar 

    45.
    Gurvich, D. E., Enrico, L. & Cingolani, A. M. Linking plant functional traits with post-fire sprouting vigour in woody species in central Argentina. Aust. Ecol. 30, 789–796 (2005).
    Google Scholar 

    46.
    Bellingham, P. J. & Sparrow, A. D. Resprouting as a life history strategy in woody plant communities. Oikos 89, 409–416 (2000).
    Google Scholar 

    47.
    Albers, P. Linking Household Strategies to Natural Regeneration in West African Parklands (MSc thesis Wageningen University, 2019).

    48.
    Birch, J., Weston, P., Rinaudo, T. & Francis, R. Chapter 2.7 – Releasing the underground forest: case studies and preconditions for human movements that restore land with the farmer-managed natural regeneration (FMNR) method, in Land Restoration (edsChabay, I., Frick, M., & Helgeson, J.) 183–207 (Academic Press, Boston, 2016).
    Google Scholar 

    49.
    Augusseau, X., Nikiéma, P. & Torquebiau, E. Tree biodiversity, land dynamics and farmers’ strategies on the agricultural frontier of southwestern Burkina Faso. Biodivers. Conserv. 15, 613–630 (2006).
    Google Scholar 

    50.
    Boffa, J. M. Agroforestry Parklands in Sub-Saharan Africa. FAO Conservation Guide, Vol. 34 (1999).

    51.
    Vågen, T.-G., Winowiecki, L. A., Tamene Desta, L. & Tondoh, J. E. The Land Degradation Surveillance Framework (LDSF) Field Guide v3 (World Agroforestry Centre, Nairobi, 2013).
    Google Scholar 

    52.
    Winowiecki, L. A. et al. Landscape-scale variability of soil health indicators: effects of cultivation on soil organic carbon in the Usambara Mountains of Tanzania. Nutr. Cycl. Agroecosyst. 105, 263–274 (2016).
    CAS  Google Scholar 

    53.
    Bivand, R. & Rundel, C. rgeos: Interface to Geometry Engine—Open Source (‘GEOS’). R package version 0.5-1 (2019).

    54.
    Vågen, T.-G., Winowiecki, L. A., Abegaz, A. & Hadgu, K. M. Landsat-based approaches for mapping of land degradation prevalence and soil functional properties in Ethiopia. Remote Sens. Environ. 134, 266–275 (2013).
    ADS  Google Scholar 

    55.
    Vågen, T.-G., Winowiecki, L. A., Tondoh, J. E., Desta, L. T. & Gumbricht, T. Mapping of soil properties and land degradation risk in Africa using MODIS reflectance. Geoderma 263, 216–225 (2016).
    ADS  Google Scholar 

    56.
    Breiman, L. Random forests. Mach. Learn. 45, 5–32 (2001).
    MATH  Google Scholar 

    57.
    Wand, M. KernSmooth: Functions for Kernel Smoothing Supporting. R package version 2 (1995).

    58.
    Terhoeven-Urselmans, T., Vågen, T.-G., Spaargaren, O. & Shepherd, K. D. Prediction of soil fertility properties from a globally distributed soil mid-Infrared spectral library. Soil Sci. Soc. Am. J. 74, 1792 (2010).
    ADS  CAS  Google Scholar 

    59.
    Madari, B. E. et al. Mid- and near-infrared spectroscopic assessment of soil compositional parameters and structural indices in two Ferralsols. Geoderma 136, 245–259 (2006).
    ADS  CAS  Google Scholar 

    60.
    Reeves, J. B. III., Follett, R. F., McCarty, G. W. & Kimble, J. M. Can near or mid-infrared diffuse reflectance spectroscopy be used to determine soil carbon pools?. Commun. Soil Sci. Plant Anal. 37, 2307–2325 (2006).
    CAS  Google Scholar 

    61.
    Viscarra Rossel, R. A., Walvoort, D. J. J., McBratney, A. B., Janik, L. J. & Skjemstad, J. O. Visible, near infrared, mid infrared or combined diffuse reflectance spectroscopy for simultaneous assessment of various soil properties. Geoderma 131, 59–75 (2006).
    ADS  CAS  Google Scholar 

    62.
    Pakeman, R. J. & Quested, H. M. Sampling plant functional traits: what proportion of the species need to be measured?. Appl. Veg. Sci. 10, 91–96 (2007).
    Google Scholar 

    63.
    Laliberté, E., Legendre, P., & Shipley, B. FD: measuring functional diversity from multiple traits, and other tools for functional ecology. R package version 1.0-12. (2014).

    64.
    R Core Team. R: A Language and Environment for Statistical Computing (R Foundation for Statistical Computing, Vienna, Austria, 2014). More

  • in

    Population genetic analysis in old Montenegrin vineyards reveals ancient ways currently active to generate diversity in Vitis vinifera

    1.
    Myles, S. et al. Genetic structure and domestication history of the grape. Proc. Nat. Acad. Sci. USA 108, 3457–3458 (2011).
    Google Scholar 
    2.
    This, P., Lacombe, T. & Thomas, M. R. Historical origins and genetic diversity of wine grapes. Trends Genet. 22, 511–519 (2006).
    CAS  PubMed  Google Scholar 

    3.
    Cvijić, J. The zones of civilization of the Balkan Peninsula. Geogr. Rev. 5, 470–482 (1918).
    Google Scholar 

    4.
    Ramos-Madrigal, J. et al. Palaeogenomic insights into the origins of French grapevine diversity. Nat. Plants 5, 595–603 (2019).
    PubMed  Google Scholar 

    5.
    Garnier, N. & Valamoti, S. M. Prehistoric wine-making at Dikili Tash (Northern Greece): integrating residue analysis and archaeobotany. J. Archaeol. Sci. 74, 195–206 (2016).
    CAS  Google Scholar 

    6.
    Štajner, N. et al. Microsatellite inferred genetic diversity and structure of Western Balkan grapevines (Vitis vinifera L.). Tree Genet. Genomes 10, 127–140 (2014).
    Google Scholar 

    7.
    Pilipovic, S. Wine and the vine in Upper Moesia. Archeological and epigraphic evidence. Balcanica 44, 21–34 (2013).
    Google Scholar 

    8.
    Marković, Č. Antićka Budva Nekropole Istraživanja 1980–1981 (Matica Crnogorska, Podgorica, 2012).

    9.
    Ljubić, S. Statuta et leges civitatis Buduae, civitatis Scardonae, et civitatis et insulae Lesinae. Opera prof. Simeonis Ljubić. (Officina Societatis Typographicae, Zagreb, 1882-3).

    10.
    Maraš, V. et al. Origin and characterization of Montenegrin grapevine varieties. Vitis 54, 135–137 (2015).
    Google Scholar 

    11.
    Tello, J., Mammerler, R., Cajic, M. & Forneck, A. Major outbreaks in the nineteenth century shaped grape phylloxera contemporary genetic structure in Europe. Sci. Rep. 9, 1–11 (2019).
    CAS  Google Scholar 

    12.
    Carka, F., Maul, E. & Sevo, R. Study and parentage analysis of old Albanian grapevine cultivars by ampelography and microsatellite markers. Vitis 54, 127–131 (2015).
    Google Scholar 

    13.
    Štajner, N., Angelova, E., Bozinovic, Z., Petkov, M. & Javornik, B. Microsatellite marker analysis of Macedonian grapevines (Vitis vinifera L.) compared to Bulgarian and Greek cultivars. J. Int. Sci. Vigne Vin. 43, 29–34 (2009).
    Google Scholar 

    14.
    Maraš, V., Bozovic, V., Giannetto, S. & Crespan, M. SSR molecular marker analysis of the grapevine germplasm of Montenegro. J. Int. Sci. Vigne Vin. 48, 87–97 (2014).
    Google Scholar 

    15.
    Maraš, V. Ampelographic and genetic characterization of Montenegrin grapevine varieties. In Advances in Grape and Wine Biotechnology, Ch. 4 (ed. Morata, A.) 239–245 (IntechOpen, London, 2019).
    Google Scholar 

    16.
    FAO. FAOSTAT. https://www.fao.org/faostat/en/#data/QC (2019).

    17.
    Pajović-Šćepanović, R., Wendelin, S. & Eder, R. Phenolic composition and varietal discrimination of Montenegrin red wines (Vitis vinifera var. Vranac, Kratošija, and Cabernet Sauvignon). Eur. Food Res. Technol. 12, 2243–2254 (2018).
    Google Scholar 

    18.
    Zulj-Mihaljevic, M. et al. Cultivar identity, intravarietal variation, and health status of native grapevine varieties in Croatia and Montenegro. Am. J. Enol. Vitic. 66, 531–541 (2015).
    Google Scholar 

    19.
    Wolkovich, E. M., García de Cortázar-Atauri, I., Morales-Castilla, I., Nicholas, K. A. & Lacombe, T. From Pinot to Xinomavro in the world’s future wine-growing regions. Nat. Clim. Change 8, 29–37 (2018).
    ADS  Google Scholar 

    20.
    Drori, E. et al. Collection and characterization of grapevine genetic resources (Vitis vinifera) in the Holy Land, towards the renewal of ancient winemaking practices. Sci. Rep. 7, 44463 (2017).
    ADS  CAS  PubMed  PubMed Central  Google Scholar 

    21.
    Beslic, Z. et al. Genetic characterization and relationships of traditional grape cultivars from Serbia. Vitis 51, 183–189 (2012).
    Google Scholar 

    22.
    Sladonja, B., Poljuha, D., Plavsa, T., Persuric, D. & Crespan, M. Autochthonous Croatian grapevine cultivar ‘Jarbola’—molecular, morphological and oenological characterization. Vitis 46, 99–100 (2007).
    Google Scholar 

    23.
    Štajner, N. et al. Genetic clustering and parentage analysis of Western Balkan grapevines (Vitis vinifera L.). Vitis 54, 67–72 (2015).
    Google Scholar 

    24.
    Boccacci, P., Torello-Marinoni, D., Gambino, G., Botta, R. & Schneider, A. Genetic characterization of endangered grape cultivars of Reggio Emilia province. Am. J. Enol. Vitic. 56, 411–416 (2005).
    CAS  Google Scholar 

    25.
    Vouillamoz, J. F. et al. Genetic characterization and relationships of traditional grape cultivars from Transcaucasia and Anatolia. Plant Gen. Resour. 4, 144–158 (2007).
    Google Scholar 

    26.
    De Lorenzis, G. et al. SNP genotyping elucidates the genetic diversity of Magna Graecia grapevine germplasm and its historical origin and dissemination. BMC Plant Biol. 19, 7 (2019).
    PubMed  PubMed Central  Google Scholar 

    27.
    Sefc, K. M., Regner, F., Turetschek, E., Glössl, J. & Steinkellner, H. Identification of microsatellite sequences in Vitis riparia and their applicability for genotyping of different Vitis species. Genome 42, 367–373 (1999).
    CAS  PubMed  Google Scholar 

    28.
    This, P. et al. Development of a standard set of microsatellite reference alleles for identification of grape cultivars. Theor. Appl. Genet. 109, 1448–1458 (2004).
    CAS  PubMed  Google Scholar 

    29.
    Cabezas, J. A. et al. A 48 SNP set for grapevine cultivar identification. BMC Plant Biol. 11, 153 (2011).
    CAS  PubMed  PubMed Central  Google Scholar 

    30.
    Vélez, M. D. & Ibáñez, J. Assessment of the uniformity and stability of grapevine cultivars using a set of microsatellite markers. Euphytica 184, 419–432 (2012).
    Google Scholar 

    31.
    Ibáñez, J., Vélez, M., de Andrés, M. T. & Borrego, J. Molecular markers for establishing distinctness in vegetatively propagated crops: a case study in grapevine. Theor. Appl. Genet. 119, 1213–1222 (2009).
    PubMed  Google Scholar 

    32.
    Calò, A., Costacurta, A., Maraš, V., Meneghetti, S. & Crespan, M. Molecular correlation of Zinfandel (Primitivo) with Austrian, Croatian, and Hungarian cultivars and Kratošija, an additional synonym. Am. J. Enol. Vitic. 59, 205–209 (2008).
    Google Scholar 

    33.
    Cipriani, G. et al. The SSR-based molecular profile of 1005 grapevine (Vitis vinifera L.) accessions uncovers new synonymy and parentages, and reveals a large admixture amongst varieties of different geographic origin. Theor. Appl. Genet. 121(8), 1569–1585 (2010).
    PubMed  Google Scholar 

    34.
    Emanuelli, F. et al. Genetic diversity and population structure assessed by SSR and SNP markers in a large germplasm collection of grape. BMC Plant Biol. 13, 1–17 (2013).
    Google Scholar 

    35.
    Bacilieri, R. et al. Genetic structure in cultivated grapevine is linked to geography and human selection. BMC Plant Biol. 13, 25 (2013).
    PubMed  PubMed Central  Google Scholar 

    36.
    Arroyo-García, R. et al. Chloroplast microsatellite polymorphisms in Vitis species. Genome 45, 1142–1149 (2002).
    PubMed  Google Scholar 

    37.
    Arroyo-García, R. et al. Multiple origins of cultivated grapevine (Vitis vinifera L. ssp sativa) based on chloroplast DNA polymorphisms. Mol. Ecol. 15, 3707–3714 (2006).
    PubMed  Google Scholar 

    38.
    Cunha, J. et al. Genetic relationships among Portugueses cultivated and wild Vitis vinifera L. germplasm. Front Plant Sci. 11, 127 (2020).
    PubMed  PubMed Central  Google Scholar 

    39.
    Maul, E. et al. The European Vitis Database (www.eu-vitis.de): a technical innovation through an online uploading and interactive modification system. Vitis 51, 79–85 (2012).
    Google Scholar 

    40.
    Maul, E. & Töpfer R. Vitis international variety catalogue: www.vivc.de. Accessed February 2020 (2020).

    41.
    D’Onofrio, C. Introgression among cultivated and wild grapevine in Tuscany. Front Plant Sci 11, 202 (2020).
    PubMed  PubMed Central  Google Scholar 

    42.
    Lacombe, T. et al. Large-scale parentage analysis in an extended set of grapevine cultivars (Vitis vinifera L.). Theor. Appl. Genet. 126, 401–414 (2013).
    PubMed  Google Scholar 

    43.
    Tomic, L., Stajner, N., Jovanovic-Cvetkovic, T., Cvetkovic, M. & Javornik, B. Identity and genetic relatedness of Bosnia and Herzegovina grapevine germplasm. Sci. Hort. 143, 122–126 (2012).
    CAS  Google Scholar 

    44.
    Bowers, J. E. et al. Historical genetics: the parentage of Chardonnay, Gamay, and other wine grapes of northeastern France. Science 285, 1562–1565 (1999).
    CAS  PubMed  Google Scholar 

    45.
    Bowers, J. E. & Meredith, C. P. The parentage of a classic wine grape Cabernet Sauvignon. Nat. Genet. 16, 84–87 (1997).
    CAS  PubMed  Google Scholar 

    46.
    Cunha, J. et al. Grapevine cultivar “Alfrocheiro” or “Bruñal” plays a primary role in the relationship among Iberian grapevines. Vitis 54, 59–65 (2015).
    Google Scholar 

    47.
    Zinelabidine, L. H. et al. Pedigree analysis of the Spanish grapevine cultivar ‘Heben’. Vitis 54, 81–86 (2015).
    Google Scholar 

    48.
    Crespan, M. et al. ‘Sangiovese’ and ‘Garganega’ are two key varieties of the Italian grapevine assortment evolution. Vitis 47, 97–104 (2008).
    Google Scholar 

    49.
    Bowers, J. E., Bandman, E. B. & Meredith, C. P. DNA fingerprint characterization of some wine grape cultivars. Am. J. Enol. Vitic. 44, 266–274 (1993).
    CAS  Google Scholar 

    50.
    Maletic, E. et al. Zinfandel, Dobricic, and Plavac mali: the genetic relationship among three cultivars of the Dalmatian Coast of Croatia. Am. J. Enol. Vitic. 55, 174–180 (2004).
    CAS  Google Scholar 

    51.
    Scienza, A. & Imazio, S. La stirpe del vino (Sperling & Kupfer, Milan, 2018).
    Google Scholar 

    52.
    Viala, P. & Vermorel, V. Tome VII. In: Traité général de viticulture: Ampelographie (ed Masson et Cie) (Librairies de L’Acadêmie de Médecine, 1909).

    53.
    Miller, A. J. & Gross, B. L. From forest to field: perennial fruit crop domestication. Am. J. Bot. 98, 1389–1414 (2011).
    PubMed  Google Scholar 

    54.
    Riaz, S. et al. Genetic diversity analysis of cultivated and wild grapevine (Vitis vinifera L.) accessions around the Mediterranean basin and Central Asia. BMC Plant Biol. 18, 137 (2018).
    PubMed  PubMed Central  Google Scholar 

    55.
    Grassi, F. et al. Evidence of a secondary grapevine domestication centre detected by SSR analysis. Theor. Appl. Genet. 107, 1315–1320 (2003).
    CAS  PubMed  Google Scholar 

    56.
    Zhou, Y., Muyle, A. & Gaut, B. S. Evolutionary genomics and the domestication of grapes. In The Grape Genome (eds Cantu, D. & Walker, M. A.) 39–55 (Springer, Berlin, 2019).
    Google Scholar 

    57.
    Meléndez, E. et al. Evolution of wild and feral vines from the Ega river gallery forest (Basque Country and Navarra, Spain) from 1995 to 2015. J. Int. Sci. Vigne Vin. 50, 65–75 (2016).
    Google Scholar 

    58.
    Arrigo, N. & Arnold, C. Naturalised Vitis rootstocks in Europe and consequences to native wild grapevine. PLoS ONE 2, e521 (2007).
    ADS  PubMed  PubMed Central  Google Scholar 

    59.
    Tello, J., Torres-Pérez, R., Grimplet, J. & Ibáñez, J. Association analysis of grapevine bunch traits using a comprehensive approach. Theor. Appl. Genet. 129, 227–242 (2016).
    CAS  PubMed  Google Scholar 

    60.
    Lijavetzky, D., Cabezas, J. A., Ibáñez, A., Rodriguez, V. & Martínez-Zapater, J. M. High throughput SNP discovery and genotyping in grapevine (Vitis vinifera L.) by combining a re-sequencing approach and SNPlex technology. BMC Genom. 8, 424 (2007).
    Google Scholar 

    61.
    Ghaffari, S. et al. Genetic diversity and parentage of Tunisian wild and cultivated grapevines (Vitis vinifera L.) as revealed by single nucleotide polymorphism (SNP) markers. Tree Genet. Genomes 10, 1103–1113 (2014).
    Google Scholar 

    62.
    Ibáñez, J. et al. Genetic origin of the grapevine cultivar Tempranillo. Am. J. Enol. Vitic. 63, 549–553 (2012).
    Google Scholar 

    63.
    Perrier, X. & Jacquemond-Collet, J. P. DARwin software. https://darwin.cirad.fr (2006).

    64.
    Pritchard, J. K., Stephens, M. & Donnely, P. Inference of population structure using multilocus genotype data. Genetics 155, 945–959 (2000).
    CAS  PubMed  PubMed Central  Google Scholar 

    65.
    Evanno, G., Regnaut, S. & Goudet, J. Detecting the number of clusters of individuals using the software STRUCTURE: a simulation study. Mol. Ecol. 14, 2611–2620 (2005).
    CAS  PubMed  PubMed Central  Google Scholar 

    66.
    Earl, D. & vonHoldt, B. M. STRUCTURE HARVESTER: a website and program for visualizing STRUCTURE output and implementing the Evanno method. Conserv. Gen. Resour. 4, 359–361 (2012).
    Google Scholar 

    67.
    Jakobsson, M. & Rosenberg, N. A. CLUMPP: a cluster matching and permutation program for dealing with label switching and multimodality in analysis of population structure. Bioinformatics 23, 1801–1806 (2007).
    CAS  Google Scholar 

    68.
    Ramasamy, R. K., Ramasamy, S., Bindroo, B. B. & Naik, V. G. STRUCTURE PLOT: a program for drawing elegant STRUCTURE bar plots in user friendly interface. SpringerPlus 3, 1–3 (2014).
    Google Scholar 

    69.
    Peakall, R. & Smouse, P. E. GenAlEx: genetic analysis in Excel. Population genetic software for teaching and research—an update. Bioinformatics 28, 2537–2539 (2012).
    CAS  PubMed  PubMed Central  Google Scholar 

    70.
    Vähä, J.-P., Erkinaro, J., Niemelä, E. & Primmer, C. R. Life-history and habitat features influence the within-river genetic structure of Atlantic salmon. Mol. Ecol. 16, 2638–2654 (2007).
    PubMed  Google Scholar 

    71.
    Kalinowski, S. T., Taper, M. L. & Marshall, T. C. Revising how the computer program CERVUS accommodates genotyping error increases success in paternity assignment. Mol. Ecol. 16, 1099–1106 (2007).
    PubMed  Google Scholar  More

  • in

    Spatial structure, parameter nonlinearity, and intelligent algorithms in constructing pedotransfer functions from large-scale soil legacy data

    1.
    Greiner, L., Keller, A., Grêt-Regamey, A. & Papritz, A. Soil function assessment: review of methods for quantifying the contributions of soils to ecosystem services. Land Use Policy 69, 224–237 (2017).
    Article  Google Scholar 
    2.
    Banwart, S. A., Nikolaidis, N. P., Zhu, Y. G., Peacock, C. L. & Sparks, D. L. Soil functions: connecting earth’s critical zone. Annu. Rev. Earth Pl. Sc. 47, 333–359 (2019).
    ADS  CAS  Article  Google Scholar 

    3.
    Keesstra, S. D. et al. The significance of soils and soil science towards realization of the United Nations Sustainable Development Goals. Soil 2, 111–128 (2016).
    Article  Google Scholar 

    4.
    Nemes, A., Schaap, M. G., Leij, F. J. & Wösten, J. H. M. Description of the unsaturated soil hydraulic database UNSODA version 2.0. J. Hydrol. 251(3–4), 151–162 (2001).
    ADS  Article  Google Scholar 

    5.
    Wösten, J. H. M. The HYPRES database of hydraulic properties of European soils. Adv. Geo Ecol. 32, 135–143 (2000).
    Google Scholar 

    6.
    Orgiazzi, A., Ballabio, C., Panagos, P., Jones, A. & Fernández-Ugalde, O. LUCAS Soil, the largest expandable soil dataset for Europe: a review. Eur. J. Soil Sci. 69(1), 140–153 (2018).
    Article  Google Scholar 

    7.
    Reimann, C. et al. GEMAS: Establishing geochemical background and threshold for 53 chemical elements in European agricultural soil. Appl. Geochem. 88, 302–318 (2018).
    CAS  Article  Google Scholar 

    8.
    Batjes, N. H., Ribeiro, E. & Van Oostrum, A. Standardised soil profile data to support global mapping and modelling (WoSIS snapshot 2019). Earth Syst. Sci. Data. 12, 299–320 (2020).
    ADS  Article  Google Scholar 

    9.
    Filippi, P., Minasny, B., Cattle, S. R. & Bishop, T. F. A. Monitoring and modeling soil change: the influence of human activity and climatic shifts on aspects of soil spatiotemporally. Adv. Agron. 139, 153–214 (2016).
    Article  Google Scholar 

    10.
    Ghehi, N. G. et al. Nonparametric techniques for predicting soil bulk density of tropical rainforest top soils in Rwanda. Soil Sci. Soc. Am. J. 76, 1172–1183 (2012).
    ADS  CAS  Article  Google Scholar 

    11.
    Haghverdi, A., Cornelis, W. M. & Ghahraman, B. A. Pseudo-continuous neural network approach for developing water retention pedotransfer functions with limited data. J. Hydrol. 442, 46–54 (2012).
    ADS  Article  Google Scholar 

    12.
    Aimrun, W. & Amin, M. S. M. Pedo-transfer function for saturated hydraulic conductivity of lowland paddy soils. Paddy Water Environ. 7(3), 217–225 (2009).
    Article  Google Scholar 

    13.
    Savvides, A., Corstanje, R., Baxter, S. J., Rawlins, B. G. & Lark, R. M. The relationship between diffuse spectral reflectance of the soil and its cation exchange capacity is scale-dependent. Geoderma 154(3–4), 353–358 (2010).
    ADS  CAS  Article  Google Scholar 

    14.
    Akpa, S. I. C., Ugbaje, S. U., Bishop, T. F. A. & Odeh, I. O. Enhancing pedotransfer functions with environmental data for estimating bulk density and effective cation exchange capacity in a data-sparse situation. Soil Use Manage 32(4), 644–658 (2016).
    Article  Google Scholar 

    15.
    McBratney, A. B., Minasny, B., Cattle, S. R. & Vervoort, R. W. From pedotransfer functions to soil inference systems. Geoderma 109(1–2), 41–73 (2002).
    ADS  Article  Google Scholar 

    16.
    Minasny, B., McBratney, A. B. & Bristow, K. L. Comparison of different approaches to the development of pedotransfer functions for water-retention curves. Geoderma 93(3–4), 225–253 (1999).
    ADS  Article  Google Scholar 

    17.
    Hodnett, M. G. & Tomasella, J. Marked differences between van Genuchten soil water-retention parameters for temperate and tropical soils: a new water-retention pedo-transfer functions developed for tropical soils. Geoderma 108(3–4), 155–180 (2002).
    ADS  CAS  Article  Google Scholar 

    18.
    Santra, P. & Das, B. S. Pedotransfer functions for soil hydraulic properties developed from a hilly watershed of Eastern India. Geoderma 146(3–4), 439–448 (2008).
    ADS  Article  Google Scholar 

    19.
    Santra, P. et al. Pedotransfer functions to estimate soil water content at field capacity and permanent wilting point in hot Arid Western India. J. Earth Syst. Sci. 127(3), 35 (2018).
    ADS  Article  Google Scholar 

    20.
    Nemes, A. Why do they keep rejecting my manuscript—do’s and don’ts and new horizons in pedotransfer studies. Agrokémiaéstalajtan 64(2), 361–371 (2015).
    Google Scholar 

    21.
    Looy, V. et al. Pedotransfer functions in Earth system science: challenges and perspectives. Rev. Geophys. 55(4), 1199–1256 (2017).
    ADS  Article  Google Scholar 

    22.
    McBratney, A. B. & Minasny, B. Spacebender . Spat Stat. 4, 57–67 (2013).
    Article  Google Scholar 

    23.
    Schillaci, C., Acutis, M., Vesely, F. & Saia, S. A simple pipeline for the assessment of legacy soil datasets: An example and test with soil organic carbon from a highly variable area. CATENA 175, 110–122 (2019).
    CAS  Article  Google Scholar 

    24.
    Batjes, N. H. et al. WoSIS: providing standardised soil profile data for the world. Earth Syst. Sci. Data 9, 1–14 (2017).
    ADS  Google Scholar 

    25.
    Mohanty, B., Gupta, A. & Das, B. S. Estimation of weathering indices using spectral reflectance over visible to mid-infrared region. Geoderma 266, 111–119 (2016).
    ADS  Article  Google Scholar 

    26.
    Vasava, H. B., Gupta, A., Arora, R. & Das, B. S. Assessment of soil texture from spectral reflectance data of bulk soil samples and their dry-sieved aggregate size fractions. Geoderma 337, 914–926 (2019).
    ADS  Article  Google Scholar 

    27.
    Lal, R. Biochar and soil carbon sequestration. Agricultural and environmental applications of biochar: advances and barriers (SSSA Spec. Pub. 63), 175–198 (2016).

    28.
    Chen, T., He, T., Benesty, M., Khotilovich, V. &Tang, Y. Xgboost: extreme gradient boosting. R Package Ver. 0.4–2, 1–4 (2015).

    29.
    Reddy, R. S., Budihal, S. L., Kumar, S. C. R. & Naidu, L.G. K. Benchmark soils of Andhra Pradesh (NBSS Publ. No. 128, NBSS&LUP, Nagpur, 2005).

    30.
    Sahoo, A. K., Sarkar, D. & Gajbhiye, K. S. Soil Series of Bihar (NBSS Publ. No. 98, NBSS&LUP, Nagpur, 2002).

    31.
    Shyampura, R. L., Singh, S. K., Singh, R. S., Jain, B. L. & Gajbhiye, K. S. Soil Series of Rajasthan (NBSS Publ. No. 95, NBSS&LUP, Nagpur, 2002).

    32.
    Nayak D. C., Sarkar D. & Velayutham M. Soil series of West Bengal (NBSS Publ. No. 89, NBSS&LUP, Nagpur, 2001).

    33.
    Tamgadge, D. B., Gajbhiye, K. S., Velayutham, M. & Kaushal, G. S. Soil Series of Madhya Pradesh(NBSS Publ. No. 78, NBSS&LUP, Nagpur, 1999).

    34.
    Sarkar, D., Sah, K. D., Sahoo, A. K., & Gajbhiye, K. S. Soil Series of Orissa (NBSS Publ. No. 119, NBSS&LUP, Nagpur, 254p.2005).

    35.
    Challa, O., Gajbhiye, K. S., & Velayutham, M. Soil Series of Maharashtra (NBSS Publ. No. 79, NBSS&LUP, Nagpur, 1999).

    36.
    Sharma, J. P. Soil Series of Gujarat, NBSS Publ. No. 120 (NBSS&LUP, Nagpur, 2006).

    37.
    NBSS&LUP Staff. Soil Series of Kerala (NBSS Publ. No. 136, NBSS&LUP, Nagpur, 2006).

    38.
    De, S. et al. Sedimentation history of the Paleoproterozoic Singhbhum Group of rocks, eastern India and its implications. Earth-Sci. Rev. 163, 141–161 (2016).
    ADS  CAS  Article  Google Scholar 

    39.
    Ghosh, S. K., Sahu, S. S. & Das, S. C. Clay mineralogy of alluvial, red and lateritic soil profiles from West Bengal. Proc. Ind. Natl. Sci. Acad. 40, 200–208 (1974).
    CAS  Google Scholar 

    40.
    Bhattacharyya, T., et al. Soils of India: historical perspective, classification and recent advances. Curr. Sci. 1308–1323 (2013).

    41.
    Singh, S. K., Baser, B. L. & Shyampura, R. L. Chemical composition and charge behaviour of smectites in Vertisols of Rajasthan. J. Ind. Soc. Soil Sci. 50(1), 106–111 (2002).
    CAS  Google Scholar 

    42.
    Singh, L. P., Parkash, B. & Singhvi, A. K. Evolution of the lower Gangetic Plain landforms and soils in West Bengal, India. CATENA 33(2), 75–104 (1998).
    CAS  Article  Google Scholar 

    43.
    Bandopadhyay, P. C., Eriksson, P. G. & Roberts, R. J. A verticpaleosol at the Archean-Proterozoic contact from the Singhbhum-Orissa craton, eastern India. Precambrian Res. 177(3–4), 277–290 (2010).
    ADS  CAS  Article  Google Scholar 

    44.
    Bayat, H., Davatgar, N. & Jalali, M. Prediction of CEC using fractal parameters by artificial neural networks. Int. Agrophys. 28(2), 143–152 (2014).
    Article  Google Scholar 

    45.
    Nielson, D. R. & Wendroth, O. Spatial and temporal statistics: sampling field soils and their vegetation. GeoEcol. textbook, ISBN 3-923381-46-6, US-ISBN 1-593262-59-0 (2003).

    46.
    Padarian, J., Minasny, B. & McBratney, A. B. Transfer learning to localise a continental soil vis-NIR calibration model. Geoderma 340, 279–288 (2019).
    ADS  CAS  Article  Google Scholar 

    47.
    Walkley, A. & Black, I. A. An examination of the Degtjareff method for determining soil organic matter, and a proposed modification of the chromic acid titration method. Soil Sci. 37(1), 29–38 (1934).
    ADS  CAS  Article  Google Scholar 

    48.
    Gee, G. W., & Bauder, J. W. Particle-size analysis. Methods of soil analysis: Part 1—Physical and mineralogical methods, (methods of soil an1), 383–411 (1986).

    49.
    Hendershot, W. H., Lalande, H., & Duquette, M. Soil reaction and exchangeable acidity. Soil Sampl. Methods Anal., 2 (1993).

    50.
    Soil Survey Staff. Soil Survey Manual. U.S. Department of Agriculture Handbook No. 18 U.S. Government Printing Office, Washington, DC, 437–1036 (1993).

    51.
    R Core Team. R: A language and environment for statistical computing. R Foundation forStatistical Computing, Vienna, Austria. ISBN 3-900051-07-0. https://www.R-project.org/ (2013).

    52.
    Hastie, T. J. & Tibshirani, R. J. Generalized additive models. Monogr. Stat. Appl. Probab. 43, 335 (1990).
    MathSciNet  MATH  Google Scholar 

    53.
    Székely, G. J., Rizzo, M. L. & Bakirov, N. K. Measuring and testing dependence by correlation of distances. Ann. Stat. 35(6), 2769–2794 (2007).
    MathSciNet  MATH  Article  Google Scholar 

    54.
    Sajan, K. S., Kumar, V. & Tyagi, B. Genetic algorithm based support vector machine for on-line voltage stability monitoring. Int. J. Elec. Power 73, 200–208 (2015).
    Article  Google Scholar  More

  • in

    Male-lure type, lure dosage, and fly age at feeding all influence male mating success in Jarvis’ fruit fly

    1.
    Clarke, A. R. Biology and Management of Bactrocera and Related Fruit Flies (CAB International, Wallingford, 2019).
    Google Scholar 
    2.
    Shelly, T. E. Effects of methyl eugenol and raspberry ketone/cue lure on the sexual behavior of Bactrocera species (Diptera: Tephritidae). Appl. Entomol. Zool. 45, 349–361 (2010).
    CAS  Article  Google Scholar 

    3.
    Tan, K. H., Nishida, R., Jang, J. B. & Shelly, T. E. In Trapping and the Detection, Control, and Regulation of Tephritid Fruit Flies (Springer, Berlin, 2014).
    Google Scholar 

    4.
    Weldon, C. W., Perez-Staples, D. & Taylor, P. W. Feeding on yeast hydrolysate enhances attraction to cue-lure in Queensland fruit flies, (Bactrocera tryoni). Entomol. Exp. Appl. 129, 200–209 (2008).
    Article  Google Scholar 

    5.
    Steiner, L. F. et al. Eradication of the oriental fruit fly from the Mariana Islands by the methods of male annihilation and sterile insect release. J. Econ. Entomol. 63, 131–135 (1970).
    Article  Google Scholar 

    6.
    Vargas, R. I., Mau, R. F. L., Stark, J. D. & Pinêro, J. C. Evaluation of methyl eugenol and cue-lure traps with solid lure and insecticide dispensers for fruit fly monitoring and male annihilation in the Hawaii areawide pest management program. J. Econ. Entomol. 103, 409–415 (2010).
    CAS  Article  Google Scholar 

    7.
    Wong, T. T. Y., McInnis, D. O. & Nishimoto, J. I. Relationship of sexual maturation rate to response of oriental fruit fly strains (Diptera: Tephritidae) to methyl eugenol. J. Chem. Ecol. 15, 1399–1405 (1989).
    CAS  Article  Google Scholar 

    8.
    Wee, S. L. & Tan, K. H. Sexual maturity and intraspecific mating success of the two siblings of the Bactrocera dorsalis complex. Entomol. Exp. Appl. 94, 133–139 (2000).
    Article  Google Scholar 

    9.
    Wee, S. L., Abdul Munir, M. Z. & Hee, A. K. W. Attraction and consumption of methyl eugenol by male Bactrocera umbrosa Fabricius (Diptera: Tephritidae) promotes conspecific sexual communication and mating performance. Bull. Entomol. Res. 108, 116–124 (2018).
    CAS  Article  Google Scholar 

    10.
    Wee, S. L., Chinvinijkul, S., Tan, K. H. & Nishida, R. A new and highly selective male lure for the guava fruit fly Bactrocera correcta. J. Pest Sci. 91, 691–698 (2018).
    Article  Google Scholar 

    11.
    Wee, S. L., Peek, T. & Clarke, A. R. The responsiveness of Bactrocera jarvisi (Diptera: Tephritidae) to two naturally occurring phenylbutaonids, zingerone and raspberry ketone. J. Insect Physiol. 109, 41–46 (2018).
    CAS  Article  Google Scholar 

    12.
    Shelly, T. E. & Dewire, A. M. Chemically mediated mating success in male oriental fruit flies (Diptera: Tephritidae). Ann. Entomol. Soc. Am. 87, 375–382 (1994).
    Article  Google Scholar 

    13.
    Tan, K. H. & Nishida, R. In Fruit Fly Pests: A World Assessment of Their Biology and Management 147–153 (St. Lucie Press, Boca Raton, 1996).
    Google Scholar 

    14.
    Kumaran, N., Balagawi, S., Schutze, M. & Clarke, A. R. Evolution of lure response in tephritid fruit flies: Phytochemicals as drivers of sexual selection. Anim. Behav. 85, 781–789 (2013).
    Article  Google Scholar 

    15.
    Wee, S. L., Tan, K. H. & Nishida, R. Pharmacophagy of methyl eugenol by males enhances sexual selection of Bactrocera carambolae. J. Chem. Ecol. 33, 1272–1282 (2007).
    CAS  Article  Google Scholar 

    16.
    Rabiatul, A. S. & Wee, S. L. Zingerone improves mating performance of Zeugodacus tau (Diptera: Tephritidae) through enhancement of male courtship activity and sexual signaling. J. Insect Physiol. 119, 103949 (2019).
    Article  Google Scholar 

    17.
    McInnis, D. O. et al. Prerelease exposure to methyl eugenol increases the mating competitiveness of sterile males of the oriental fruit fly (Diptera: Tephritidae) in a Hawaiian orchard. J. Econ. Entomol. 104, 1969–1978 (2011).
    CAS  Article  Google Scholar 

    18.
    Orankanok, W., Chinvinijkul, S., Sawatwangkhoung, A., Pinkaew, S. & Orankano, S. Methyl eugenol and pre-release diet improve mating performance of young Bactrocera dorsalis and Bactrocera correcta males. J. Appl. Entomol. 137(Suppl. 1), 200–209 (2013).
    CAS  Article  Google Scholar 

    19.
    Kumaran, N., Hayes, R. A. & Clarke, A. R. Cuelure but not zingerone make the sex pheromone of male Bactrocera tryoni (Tephritidae: Diptera) more attractive to females. J. Insect Physiol. 68, 36–43 (2014).
    CAS  Article  Google Scholar 

    20.
    Raghu, S. & Clarke, A. R. Sexual selection in a tropical fruit fly: Role of a plant derived chemical in mate choice. Entomol. Exp. Appl. 108, 53–58 (2003).
    CAS  Article  Google Scholar 

    21.
    Inskeep, J. R., Shelly, T. E., Vargas, R. I. & Spafford, H. Zingerone feeding affects mate choice but not fecundity or fertility in the melon fly, Zeugodacus cucurbitae (Diptera: Tephritidae). Fla. Entomol. 102, 161–167 (2018).
    Google Scholar 

    22.
    Akter, H., Mendez, V., Morelli, R., Perez, J. & Taylor, P. W. Raspberry ketone supplement promotes early sexual maturation in male Queensland fruit fly, Bactrocera tryoni (Diptera: Tephritidae). Pest Manag. Sci. 73, 1764–1770 (2017).
    CAS  Article  Google Scholar 

    23.
    Plant Health Australia. The Australian Handbook for the Identification of Fruit Flies. Version 3.1 (Plant Health Australia, Canberra, 2018).
    Google Scholar 

    24.
    Fay, H. A. C. A highly effective and selective male lure for Bactrocera jarvisi (Tryon) (Diptera: Tephritidae). Aust. J. Entomol. 51, 189–197 (2012).
    Article  Google Scholar 

    25.
    Hanssen, B. L. et al. Systematic modification of zingerone reveals structural requirements for attraction of Jarvis’s fruit fly. Sci. Rep. 9, 19332 (2019).
    ADS  CAS  Article  Google Scholar 

    26.
    Tan, K. H. & Nishida, R. Mutual reproductive benefits between a wild orchid, Bulbophyllum patens, and Bactrocera fruit flies via a floral synomone. J. Chem. Ecol. 26, 533–546 (2000).
    CAS  Article  Google Scholar 

    27.
    Tan, K. H. & Nishida, R. Zingerone in the floral synomone of Bulbophyllum baileyi (Orchidaceae) attracts Bactrocera fruit flies during pollination. Biochem. Syst. Ecol. 35, 334–341 (2007).
    CAS  Article  Google Scholar 

    28.
    Shin, S. G., Ji, Y. K., Hae, Y. C. & Jeong, J. C. Zingerone as an antioxidant against peroxynitrite. J. Agric. Food Chem. 53, 7617–7622 (2005).
    CAS  Article  Google Scholar 

    29.
    Chang, Y. P. et al. Dietary administration of zingerone to enhance growth, non-specific immune response, and resistance to Vibrio alginolyticus in Pacific white shrimp Litopenaeus vannamei juveniles. Fish Shellfish Immun. 32, 284–290 (2012).
    ADS  CAS  Article  Google Scholar 

    30.
    Kumaran, N., Prentis, P. J., Mangalam, K. P., Schutze, M. K. & Clarke, A. R. Sexual selection in true fruit flies (Diptera: Tephritidae): Transcriptome and experimental evidences for phytochemicals increasing male competitive ability. Mol. Ecol. 23, 4645–4657 (2014).
    CAS  Article  Google Scholar 

    31.
    Venkatramalingam, K., Christopher, J. G. & Citarasu, T. Zingiber officinalis an herbal appetizer in the tiger shrimp Penaeus monodon (Fabricius) larviculture. Aqua. Nutr. 13, 439–443 (2007).
    Article  Google Scholar 

    32.
    Shelly, T. E. Zingerone and the mating success and field attraction of male melon flies (Diptera: Tephritidae). J. Asia-Pac. Entomol. 20, 175–178 (2017).
    Article  Google Scholar 

    33.
    Raghu, S. & Clarke, A. R. Spatial and temporal partitioning of behaviour by adult dacines: Direct evidence for methyl eugenol as a mate rendezvous cue for Bactrocera cacuminata. Physiol. Entomol. 28, 175–184 (2003).
    CAS  Article  Google Scholar 

    34.
    Lloyd, A. C. et al. Area-wide management of fruit flies (Diptera: Tephritidae) in the Central Burnett district of Queensland, Australia. Crop Prot. 29, 462–469 (2010).
    ADS  CAS  Article  Google Scholar 

    35.
    Shelly, T. E. Effects of raspberry ketone on the mating success of male melon flies (Diptera: Tephritidae). Proc. Hawaii. Entomol. Soc. 34, 163–167 (2000).
    Google Scholar  More

  • in

    Effects of water stress on spectral reflectance of bermudagrass

    Figure 1 shows the reflectance spectra collected over turfgrass at three different levels of water stress, specifically turfgrass at 16 days without watering, the intermediate situation at 7 days and at the end of the trial with the saturated cores (0 days without water), which serves as control. The differences across the curves are well evident. The major difference is the increase of reflectance at all wavelengths at 16 days without watering, where LRWC was at about 18% (Fig. 2), with respect to the other two spectral reflectance curves. It is so evident from the three different curves that in the Near-infrared (NIR 750–1,300 nm) and Short-wavelength infrared (SWIR 1,300–2,500 nm) four major absorption troughs are present. These strong reflectance troughs, located approximately in the NIR at 970 and 1,175, in the SWIR at 1,450 and 1,950 nm, are due to the absorption by water11. The troughs around 1,450 and 1,950 nm are less accentuated in the turf with high degree of desiccation (16 days without watering). Also González-Fernández et al.47 recommend calculating the band area for 1,450 nm and for 1,950 nm because of its link to equivalent water thickness, thus to estimate vine water status. Rallo et al.48 observed typical spectral responses in the SWIR region, where at leaf scale, absorbance bands near 1,450 and 1,900 nm could be related to the leaf water content of an olive grove.
    Figure 2

    Decline in volumetric soil water content (SWC) (%) and leaf relative water content (LRWC) (%) after watering ceased. Each point is the mean of six replications. Bars indicate one standard deviation error.

    Full size image

    However, in the regions of 1,350–1,480, 1,800–2,000 and 2,350–2,500 nm measurements of spectral reflectance of crop leaves are not possible in nature, also with fully sun-light conditions, because of the strong atmospheric absorption of light due to water vapor14,32,49 and are generally not exploited for landscape level studies. Consequently, to correctly measure these regions of wavelengths, a portable spectroradiometer system with an artificial light source must be chosen49. In fact, in our experiment an artificial light source was used, thus 1,430 and 1,950 can be considered key wavelengths for the measurements under artificial light source.
    In the NIR spectral region there is a more commonly exploited troughs around 970 nm and in the region of 1,150–1,260, which are the most studied spectral ranges for estimation of vegetation water content14. It was interesting to note that the troughs of reflectance spectra underwent a gradual reduction in depth as the turfgrass desiccation increased, up to almost disappear in most cases, as showed in the 16 days without water curve. Some of the wavelengths associated with these troughs are, in fact, exploited by the spectral indices used in this study (see Table 1).
    Figure 2 shows SWC and LRWC values, averaged over each set of six replicates with one standard deviation error bars, plotted with respect to the number of days without watering. Volumetric SWC declined as the days without watering increased. Starting from a value of 43.78% for the control cores with 0 days without watering, it decreased reaching a much lower value of 5.19% after two weeks without watering. Similarly, also LRWC declined as the number of days without watering increased. LRWC rate of decline was smaller than SWC as the days without watering were 4 or less (LRWC equal to 98.7%, 94.3% and 94.2% for 0, 1 and 4 days without watering, respectively). Then LRWC steeply decreased as the number of days without watering increased above 4. Observing the two parameters it is interesting to note that, with the exception of data collected in cores at 4 days without water, the trend of SWC and LRWC is similar (Fig. 2). In fact, from 1 to 4 days without water, turfgrass leaves try to preserve more water even if the soil water content decreases.
    Figure 3 plots bar graphs of the selected indices in Table 1, where the indices are averaged over each set of six replicates of turfgrass at same water stress condition. One standard deviation error bars are also plotted. As is evident, all selected indices correlate with water stress level (Fig. 3).
    Figure 3

    Bar graphs of spectral indices averaged over each set of six replicates at same water stress condition, with one standard deviation error bar. (a) NDVI, (b) WI, (c) NDWI2130, (d) NDWI1240, (e) WI/NDVI.

    Full size image

    A quantitative analysis of these correlations, and specifically with respect to SWC, LRWC and SM, is reported in Table 2, which reports the Pearson product-moment correlation coefficients evaluated among the various parameters and indexes studied in this work.
    Table 2 Pearson product-moment correlation coefficients (r) among volumetric soil water content (%) (SWC) measured using a time domain reflectometry (TDR); leaf relative water content (%) (LRWC); soil moisture (%) (SM) and vegetation indices selected for the study.
    Full size table

    Volumetric soil water content (SWC)
    As expected, SWC was found to be highly correlated with SM (r = 0.98, p  More

  • in

    Response of vertebrate scavengers to power line and road rights-of-way and its implications for bird fatality estimates

    1.
    Dulac, J. Global land transport infrastructure requirements: estimating road and railway infrastructure capacity and costs to 2050. (International Energy Agency, Paris, France, 2013).
    2.
    D’Amico, M. et al. Bird on the wire: landscape planning considering costs and benefits for bird populations coexisting with power lines. AMBIO A J. Hum. Environ. 47, 650–656 (2018).
    Google Scholar 

    3.
    Morelli, F., Beim, M., Jerzak, L., Jones, D. & Tryjanowski, P. Can roads, railways and related structures have positive effects on birds? A review. Transp. Res. Part D Transp. Environ. 30, 21–31 (2014).
    Google Scholar 

    4.
    Laurance, W. F. et al. Reducing the global environmental impacts of rapid infrastructure expansion. Curr. Biol. 25, R259–R262 (2015).
    CAS  PubMed  Google Scholar 

    5.
    Ascensão, F. et al. Beware that the lack of wildlife mortality records can mask a serious impact of linear infrastructures. Glob. Ecol. Conserv. 19, e00661 (2019).
    Google Scholar 

    6.
    Bernardino, J. et al. Bird collisions with power lines: state of the art and priority areas for research. Biol. Conserv. 222, 1–13 (2018).
    Google Scholar 

    7.
    Loss, S. R., Will, T. & Marra, P. P. Estimation of bird-vehicle collision mortality on U.S. roads. J. Wildl. Manag. 78, 763–771 (2014).
    Google Scholar 

    8.
    Collinson, W. J., Parker, D. M., Bernard, R. T. F., Reilly, B. K. & Davies-Mostert, H. T. Wildlife road traffic accidents: a standardized protocol for counting flattened fauna. Ecol. Evol. 4, 3060–3071 (2014).
    PubMed  PubMed Central  Google Scholar 

    9.
    Barrientos, R., Alonso, J. C., Ponce, C. & Palacín, C. Meta-analysis of the effectiveness of marked wire in reducing avian collisions with power lines. Conserv. Biol. 25, 893–903 (2011).
    PubMed  Google Scholar 

    10.
    Ponce, C., Alonso, J. C., Argandoña, G., García Fernández, A. & Carrasco, M. Carcass removal by scavengers and search accuracy affect bird mortality estimates at power lines. Anim. Conserv. 13, 603–612 (2010).
    Google Scholar 

    11.
    Borner, L. et al. Bird collision with power lines: estimating carcass persistence and detection associated with ground search surveys. Ecosphere 8, e01966 (2017).
    Google Scholar 

    12.
    Guinard, É, Julliard, R. & Barbraud, C. Motorways and bird traffic casualties: carcasses surveys and scavenging bias. Biol. Conserv. 147, 40–51 (2012).
    Google Scholar 

    13.
    Santos, S. M., Carvalho, F. & Mira, A. How long do the dead survive on the road? Carcass persistence probability and implications for road-kill monitoring surveys. PLoS ONE 6, e25383 (2011).
    ADS  CAS  PubMed  PubMed Central  Google Scholar 

    14.
    Barrientos, R. et al. A review of searcher efficiency and carcass persistence in infrastructure-driven mortality assessment studies. Biol. Conserv. 222, 146–153 (2018).
    Google Scholar 

    15.
    Huso, M., Dalthorp, D., Miller, T. J. & Bruns, D. Wind energy development: methods to assess bird and bat fatality rates post-construction. Hum. Wildl. Interact. 10, 62–70 (2016).
    Google Scholar 

    16.
    Smallwood, K. S. Estimating wind turbine-caused bird mortality. J. Wildl. Manag. 71, 2781–2791 (2007).
    Google Scholar 

    17.
    Costantini, D., Gustin, M., Ferrarini, A. & Dell’Omo, G. Estimates of avian collision with power lines and carcass disappearance across differing environments. Anim. Conserv. 20, 173–181 (2017).
    Google Scholar 

    18.
    Schutgens, M., Shaw, J. M. & Ryan, P. G. Estimating scavenger and search bias for collision fatality surveys of large birds on power lines in the Karoo, South Africa. Ostrich 85, 39–45 (2014).
    Google Scholar 

    19.
    Loss, S. R., Will, T. & Marra, P. P. Direct human-caused mortality of birds: improving quantification of magnitude and assessment of population impact. Front. Ecol. Environ. 10, 357–364 (2012).
    Google Scholar 

    20.
    Smallwood, K. S., Bell, D. A., Snyder, S. A. & DiDonato, J. E. Novel scavenger removal trials increase wind turbine—caused avian fatality estimates. J. Wildl. Manag. 74, 1089–1096 (2010).
    Google Scholar 

    21.
    Farfán, M. A., Duarte, J., Fa, J. E., Real, R. & Vargas, J. M. Testing for errors in estimating bird mortality rates at wind farms and power lines. Bird Conserv. Int. 27, 431–439 (2017).
    Google Scholar 

    22.
    Flint, P. L., Lance, E. W., Sowl, K. M. & Donnelly, T. F. Estimating carcass persistence and scavenging bias in a human-influenced landscape in western Alaska. J. F. Ornithol. 81, 206–214 (2010).
    Google Scholar 

    23.
    Paula, J. et al. Camera-trapping as a methodology to assess the persistence of wildlife carcasses resulting from collisions with human-made structures. Wildl. Res. 41, 717–725 (2015).
    Google Scholar 

    24.
    Shaw, J. M., van der Merwe, R., van der Merwe, E. & Ryan, P. G. Winter scavenging rates under power lines in the Karoo, South Africa. Afr. J. Wildl. Res. 45, 122–126 (2015).
    Google Scholar 

    25.
    Stevens, B. S., Reese, K. P. & Connelly, J. W. Survival and detectability bias of avian fence collision surveys in sagebrush steppe. J. Wildl. Manag. 75, 437–449 (2011).
    Google Scholar 

    26.
    Turner, K. L., Abernethy, E. F., Conner, L. M., Rhodes, O. E. Jr. & Beasley, J. C. Abiotic and biotic factors modulate carrion fate and vertebrate scavenging communities. Ecology 98, 2413–2424 (2017).
    PubMed  Google Scholar 

    27.
    Riding, C. S. & Loss, S. R. Factors influencing experimental estimation of scavenger removal and observer detection in bird-window collision surveys. Ecol. Appl. 28, 2119–2129 (2018).
    PubMed  Google Scholar 

    28.
    Rosene, W. & Lay, D. W. Disappearance and visibility of quail remains. J. Wildl. Manag. 27, 139–142 (1963).
    Google Scholar 

    29.
    Lambertucci, S. A., Speziale, K. L., Rogers, T. E. & Morales, J. M. How do roads affect the habitat use of an assemblage of scavenging raptors?. Biodivers. Conserv. 18, 2063–2074 (2009).
    Google Scholar 

    30.
    Donázar, J. A., Ceballos, O. & Cortes-Avizanda, A. Tourism in protected areas: disentangling road and traffic effects on intra-guild scavenging processes. Sci. Total Environ. 630, 600–608 (2018).
    ADS  PubMed  Google Scholar 

    31.
    Hill, J. E., DeVault, T. L., Beasley, J. C., Rhodes, O. E. & Belant, J. L. Roads do not increase carrion use by a vertebrate scavenging community. Sci. Rep. 8, 16331 (2018).
    ADS  PubMed  PubMed Central  Google Scholar 

    32.
    Huijbers, C. M. et al. Limited functional redundancy in vertebrate scavenger guilds fails to compensate for the loss of raptors from urbanized sandy beaches. Divers. Distrib. 21, 55–63 (2015).
    Google Scholar 

    33.
    Olson, Z. H., Beasley, J. C. & Rhodes, O. E. Jr. Carcass type affects local scavenger guilds more than habitat connectivity. PLoS ONE 11, e0147798 (2016).
    PubMed  PubMed Central  Google Scholar 

    34.
    Smith, J. B., Laatsch, L. J. & Beasley, J. C. Spatial complexity of carcass location influences vertebrate scavenger efficiency and species composition. Sci. Rep. 7, 10250 (2017).
    ADS  PubMed  PubMed Central  Google Scholar 

    35.
    DeVault, T. L., Rhodes Olin, E. & Shivik, J. A. Scavenging by vertebrates: behavioral, ecological, and evolutionary perspectives on an important energy transfer pathway in terrestrial ecosystems. Oikos 102, 225–234 (2003).
    Google Scholar 

    36.
    Joseph, G. S., Seymour, C. L. & Foord, S. H. The effect of infrastructure on the invasion of a generalist predator: pied crows in southern Africa as a case-study. Biol. Conserv. 205, 11–15 (2017).
    Google Scholar 

    37.
    Dean, W. R. J., Milton, S. J. & Anderson, M. D. Use of road kills and roadside vegetation by Pied and Cape Crows in semi-arid South Africa. Ostrich 77, 102–104 (2006).
    Google Scholar 

    38.
    Slater, F. M. An assessment of wildlife road casualties—the potential discrepancy between numbers counted and numbers killed. Web Ecol. 3, 33–42 (2002).
    Google Scholar 

    39.
    Knight, R. L. & Kawashima, J. Y. Responses of raven and red-tailed hawk populations to linear right-of-ways. J. Wildl. Manag. 57, 266–271 (1993).
    Google Scholar 

    40.
    Meunier, F. D., Verheyden, C. & Jouventin, P. Use of roadsides by diurnal raptors in agricultural landscapes. Biol. Conserv. 92, 291–298 (2000).
    Google Scholar 

    41.
    Andersen, G. E., Johnson, C. N., Barmuta, L. A. & Jones, M. E. Use of anthropogenic linear features by two medium-sized carnivores in reserved and agricultural landscapes. Sci. Rep. 7, 11624 (2017).
    ADS  PubMed  PubMed Central  Google Scholar 

    42.
    Frey, S. N. & Conover, M. R. Habitat use by meso-predators in a corridor environment. J. Wildl. Manag. 70, 1111–1118 (2006).
    Google Scholar 

    43.
    Raiter, K. G., Hobbs, R. J., Possingham, H. P., Valentine, L. E. & Prober, S. M. Vehicle tracks are predator highways in intact landscapes. Biol. Conserv. 228, 281–290 (2018).
    Google Scholar 

    44.
    Silva, C., Simões, M. P., Mira, A. & Santos, S. M. Factors influencing predator roadkills: the availability of prey in road verges. J. Environ. Manag. 247, 644–650 (2019).
    Google Scholar 

    45.
    Bautista, L. M. et al. Effect of weekend road traffic on the use of space by raptors. Conserv. Biol. 18, 726–732 (2004).
    Google Scholar 

    46.
    Benítez-López, A., Alkemade, R. & Verweij, P. A. The impacts of roads and other infrastructure on mammal and bird populations: a meta-analysis. Biol. Conserv. 143, 1307–1316 (2010).
    Google Scholar 

    47.
    Tyler, N. et al. Ultraviolet vision and avoidance of power lines in birds and mammals. Conserv. Biol. 28, 630–631 (2014).
    PubMed  PubMed Central  Google Scholar 

    48.
    IPMA. Boletins Climatológicos Mensais (Portugal Continental). Instituto Português do Mar e da Atmosfera, I. P. (IPMA, I. P.). https://www.ipma.pt/pt/publicacoes/ (2017).

    49.
    IPMA. Boletins Climatológicos Mensais (Portugal Continental). Instituto Português do Mar e da Atmosfera, I. P. (IPMA, I. P.). https://www.ipma.pt/pt/publicacoes/ (2018).

    50.
    E.P. Recenseamento de tráfego (2005)—distrito de Évora (Estradas de Portugal, S.A., 2005).

    51.
    R Development Core Team. R: a language and environment for statistical computing, version 3.6.1 (2019).

    52.
    Therneau, T. M. A Package for Survival Analysis in S. version 2.44-1.1 (2019).

    53.
    Bispo, R., Bernardino, J., Marques, T. A. & Pestana, D. Discrimination between parametric survival models for removal times of bird carcasses in scavenger removal trials at wind turbines sites BT. In Advances in Regression, Survival Analysis, Extreme Values, Markov Processes and Other Statistical Applications (eds LitadaSilva, J. et al.) 65–72 (Springer, Berlin, 2013).
    Google Scholar 

    54.
    Dalthorp, D. et al. GenEst statistical models—A generalized estimator of mortality. Techniques and Methods (2018). https://pubs.er.usgs.gov/publication/tm7A2. https://doi.org/10.3133/tm7A2.

    55.
    Gutierrez, R. G. Parametric frailty and shared frailty survival models. Stata J. 2, 22–44 (2002).
    Google Scholar 

    56.
    Kaplan, E. L. & Meier, P. Nonparametric estimation from incomplete observations. J. Am. Stat. Assoc. 53, 457–481 (1958).
    MathSciNet  MATH  Google Scholar 

    57.
    Linz, G. M., Bergman, D. L. & Bleier, W. J. Estimating survival of song bird carcasses in crops and woodlots. Prairie Nat. 29, 7–13 (1997).
    Google Scholar 

    58.
    Lourenço, P. M. Rice field use by raptors in two Portuguese wetlands. Airo 19, 13–18 (2009).
    Google Scholar 

    59.
    Simmons, R. E. Harriers of the World: Their Behaviour and Ecology (Oxford University Press, Oxford, 2000).
    Google Scholar 

    60.
    DeGregorio, B. A., Weatherhead, P. J. & Sperry, J. H. Power lines, roads, and avian nest survival: effects on predator identity and predation intensity. Ecol. Evol. 4, 1589–1600 (2014).
    PubMed  PubMed Central  Google Scholar 

    61.
    Beasley, J. C., Olson, Z. H. & DeVault, T. L. Ecological role of vertebrate scavengers. In Carrion Ecology, Evolution and Their Applications (eds Benbow, M. E. et al.) 107–127 (CRC Press, Boca Raton, 2015).
    Google Scholar 

    62.
    Peisley, R. K., Saunders, M. E., Robinson, W. A. & Luck, G. W. The role of avian scavengers in the breakdown of carcasses in pastoral landscapes. EMU Austral. Ornithol. 117, 68–77 (2017).
    Google Scholar 

    63.
    DeVault, T. L. & Rhodes, O. E. Identification of vertebrate scavengers of small mammal carcasses in a forested landscape. Acta Theriol. (Warsz) 47, 185–192 (2002).
    Google Scholar 

    64.
    Hiraldo, F., Blanco, J. C. & Bustamante, J. Unspecialized exploitation of small carcasses by birds. Bird Study 38, 200–207 (1991).
    Google Scholar 

    65.
    Hager, S. B., Cosentino, B. J. & McKay, K. J. Scavenging affects persistence of avian carcasses resulting from window collisions in an urban landscape. J. F. Ornithol. 83, 203–211 (2012).
    Google Scholar 

    66.
    Prosser, P., Nattrass, C. & Prosser, C. Rate of removal of bird carcasses in arable farmland by predators and scavengers. Ecotoxicol. Environ. Saf. 71, 601–608 (2008).
    CAS  PubMed  Google Scholar 

    67.
    DeVault, T. L., Olson, Z. H., Beasley, J. C. & Rhodes, O. E. Mesopredators dominate competition for carrion in an agricultural landscape. Basic Appl. Ecol. 12, 268–274 (2011).
    Google Scholar 

    68.
    Ratton, P., Secco, H. & da Rosa, C. A. Carcass permanency time and its implications to the roadkill data. Eur. J. Wildl. Res. 60, 543–546 (2014).
    Google Scholar 

    69.
    Santos, R. A. L. et al. Carcass persistence and detectability: reducing the uncertainty surrounding wildlife-vehicle collision surveys. PLoS ONE 11, e0165608 (2016).
    PubMed  PubMed Central  Google Scholar 

    70.
    Linz, G. M., Davis, J. E., Engeman, R. M., Otis, D. L. & Avery, M. L. Estimating survival of bird carcasses in Cattail Marshes. Wildl. Soc. Bull. 19, 195–199 (1991).
    Google Scholar  More