1.
Dulac, J. Global land transport infrastructure requirements: estimating road and railway infrastructure capacity and costs to 2050. (International Energy Agency, Paris, France, 2013).
2.
D’Amico, M. et al. Bird on the wire: landscape planning considering costs and benefits for bird populations coexisting with power lines. AMBIO A J. Hum. Environ. 47, 650–656 (2018).
Google Scholar
3.
Morelli, F., Beim, M., Jerzak, L., Jones, D. & Tryjanowski, P. Can roads, railways and related structures have positive effects on birds? A review. Transp. Res. Part D Transp. Environ. 30, 21–31 (2014).
Google Scholar
4.
Laurance, W. F. et al. Reducing the global environmental impacts of rapid infrastructure expansion. Curr. Biol. 25, R259–R262 (2015).
CAS PubMed Google Scholar
5.
Ascensão, F. et al. Beware that the lack of wildlife mortality records can mask a serious impact of linear infrastructures. Glob. Ecol. Conserv. 19, e00661 (2019).
Google Scholar
6.
Bernardino, J. et al. Bird collisions with power lines: state of the art and priority areas for research. Biol. Conserv. 222, 1–13 (2018).
Google Scholar
7.
Loss, S. R., Will, T. & Marra, P. P. Estimation of bird-vehicle collision mortality on U.S. roads. J. Wildl. Manag. 78, 763–771 (2014).
Google Scholar
8.
Collinson, W. J., Parker, D. M., Bernard, R. T. F., Reilly, B. K. & Davies-Mostert, H. T. Wildlife road traffic accidents: a standardized protocol for counting flattened fauna. Ecol. Evol. 4, 3060–3071 (2014).
PubMed PubMed Central Google Scholar
9.
Barrientos, R., Alonso, J. C., Ponce, C. & Palacín, C. Meta-analysis of the effectiveness of marked wire in reducing avian collisions with power lines. Conserv. Biol. 25, 893–903 (2011).
PubMed Google Scholar
10.
Ponce, C., Alonso, J. C., Argandoña, G., García Fernández, A. & Carrasco, M. Carcass removal by scavengers and search accuracy affect bird mortality estimates at power lines. Anim. Conserv. 13, 603–612 (2010).
Google Scholar
11.
Borner, L. et al. Bird collision with power lines: estimating carcass persistence and detection associated with ground search surveys. Ecosphere 8, e01966 (2017).
Google Scholar
12.
Guinard, É, Julliard, R. & Barbraud, C. Motorways and bird traffic casualties: carcasses surveys and scavenging bias. Biol. Conserv. 147, 40–51 (2012).
Google Scholar
13.
Santos, S. M., Carvalho, F. & Mira, A. How long do the dead survive on the road? Carcass persistence probability and implications for road-kill monitoring surveys. PLoS ONE 6, e25383 (2011).
ADS CAS PubMed PubMed Central Google Scholar
14.
Barrientos, R. et al. A review of searcher efficiency and carcass persistence in infrastructure-driven mortality assessment studies. Biol. Conserv. 222, 146–153 (2018).
Google Scholar
15.
Huso, M., Dalthorp, D., Miller, T. J. & Bruns, D. Wind energy development: methods to assess bird and bat fatality rates post-construction. Hum. Wildl. Interact. 10, 62–70 (2016).
Google Scholar
16.
Smallwood, K. S. Estimating wind turbine-caused bird mortality. J. Wildl. Manag. 71, 2781–2791 (2007).
Google Scholar
17.
Costantini, D., Gustin, M., Ferrarini, A. & Dell’Omo, G. Estimates of avian collision with power lines and carcass disappearance across differing environments. Anim. Conserv. 20, 173–181 (2017).
Google Scholar
18.
Schutgens, M., Shaw, J. M. & Ryan, P. G. Estimating scavenger and search bias for collision fatality surveys of large birds on power lines in the Karoo, South Africa. Ostrich 85, 39–45 (2014).
Google Scholar
19.
Loss, S. R., Will, T. & Marra, P. P. Direct human-caused mortality of birds: improving quantification of magnitude and assessment of population impact. Front. Ecol. Environ. 10, 357–364 (2012).
Google Scholar
20.
Smallwood, K. S., Bell, D. A., Snyder, S. A. & DiDonato, J. E. Novel scavenger removal trials increase wind turbine—caused avian fatality estimates. J. Wildl. Manag. 74, 1089–1096 (2010).
Google Scholar
21.
Farfán, M. A., Duarte, J., Fa, J. E., Real, R. & Vargas, J. M. Testing for errors in estimating bird mortality rates at wind farms and power lines. Bird Conserv. Int. 27, 431–439 (2017).
Google Scholar
22.
Flint, P. L., Lance, E. W., Sowl, K. M. & Donnelly, T. F. Estimating carcass persistence and scavenging bias in a human-influenced landscape in western Alaska. J. F. Ornithol. 81, 206–214 (2010).
Google Scholar
23.
Paula, J. et al. Camera-trapping as a methodology to assess the persistence of wildlife carcasses resulting from collisions with human-made structures. Wildl. Res. 41, 717–725 (2015).
Google Scholar
24.
Shaw, J. M., van der Merwe, R., van der Merwe, E. & Ryan, P. G. Winter scavenging rates under power lines in the Karoo, South Africa. Afr. J. Wildl. Res. 45, 122–126 (2015).
Google Scholar
25.
Stevens, B. S., Reese, K. P. & Connelly, J. W. Survival and detectability bias of avian fence collision surveys in sagebrush steppe. J. Wildl. Manag. 75, 437–449 (2011).
Google Scholar
26.
Turner, K. L., Abernethy, E. F., Conner, L. M., Rhodes, O. E. Jr. & Beasley, J. C. Abiotic and biotic factors modulate carrion fate and vertebrate scavenging communities. Ecology 98, 2413–2424 (2017).
PubMed Google Scholar
27.
Riding, C. S. & Loss, S. R. Factors influencing experimental estimation of scavenger removal and observer detection in bird-window collision surveys. Ecol. Appl. 28, 2119–2129 (2018).
PubMed Google Scholar
28.
Rosene, W. & Lay, D. W. Disappearance and visibility of quail remains. J. Wildl. Manag. 27, 139–142 (1963).
Google Scholar
29.
Lambertucci, S. A., Speziale, K. L., Rogers, T. E. & Morales, J. M. How do roads affect the habitat use of an assemblage of scavenging raptors?. Biodivers. Conserv. 18, 2063–2074 (2009).
Google Scholar
30.
Donázar, J. A., Ceballos, O. & Cortes-Avizanda, A. Tourism in protected areas: disentangling road and traffic effects on intra-guild scavenging processes. Sci. Total Environ. 630, 600–608 (2018).
ADS PubMed Google Scholar
31.
Hill, J. E., DeVault, T. L., Beasley, J. C., Rhodes, O. E. & Belant, J. L. Roads do not increase carrion use by a vertebrate scavenging community. Sci. Rep. 8, 16331 (2018).
ADS PubMed PubMed Central Google Scholar
32.
Huijbers, C. M. et al. Limited functional redundancy in vertebrate scavenger guilds fails to compensate for the loss of raptors from urbanized sandy beaches. Divers. Distrib. 21, 55–63 (2015).
Google Scholar
33.
Olson, Z. H., Beasley, J. C. & Rhodes, O. E. Jr. Carcass type affects local scavenger guilds more than habitat connectivity. PLoS ONE 11, e0147798 (2016).
PubMed PubMed Central Google Scholar
34.
Smith, J. B., Laatsch, L. J. & Beasley, J. C. Spatial complexity of carcass location influences vertebrate scavenger efficiency and species composition. Sci. Rep. 7, 10250 (2017).
ADS PubMed PubMed Central Google Scholar
35.
DeVault, T. L., Rhodes Olin, E. & Shivik, J. A. Scavenging by vertebrates: behavioral, ecological, and evolutionary perspectives on an important energy transfer pathway in terrestrial ecosystems. Oikos 102, 225–234 (2003).
Google Scholar
36.
Joseph, G. S., Seymour, C. L. & Foord, S. H. The effect of infrastructure on the invasion of a generalist predator: pied crows in southern Africa as a case-study. Biol. Conserv. 205, 11–15 (2017).
Google Scholar
37.
Dean, W. R. J., Milton, S. J. & Anderson, M. D. Use of road kills and roadside vegetation by Pied and Cape Crows in semi-arid South Africa. Ostrich 77, 102–104 (2006).
Google Scholar
38.
Slater, F. M. An assessment of wildlife road casualties—the potential discrepancy between numbers counted and numbers killed. Web Ecol. 3, 33–42 (2002).
Google Scholar
39.
Knight, R. L. & Kawashima, J. Y. Responses of raven and red-tailed hawk populations to linear right-of-ways. J. Wildl. Manag. 57, 266–271 (1993).
Google Scholar
40.
Meunier, F. D., Verheyden, C. & Jouventin, P. Use of roadsides by diurnal raptors in agricultural landscapes. Biol. Conserv. 92, 291–298 (2000).
Google Scholar
41.
Andersen, G. E., Johnson, C. N., Barmuta, L. A. & Jones, M. E. Use of anthropogenic linear features by two medium-sized carnivores in reserved and agricultural landscapes. Sci. Rep. 7, 11624 (2017).
ADS PubMed PubMed Central Google Scholar
42.
Frey, S. N. & Conover, M. R. Habitat use by meso-predators in a corridor environment. J. Wildl. Manag. 70, 1111–1118 (2006).
Google Scholar
43.
Raiter, K. G., Hobbs, R. J., Possingham, H. P., Valentine, L. E. & Prober, S. M. Vehicle tracks are predator highways in intact landscapes. Biol. Conserv. 228, 281–290 (2018).
Google Scholar
44.
Silva, C., Simões, M. P., Mira, A. & Santos, S. M. Factors influencing predator roadkills: the availability of prey in road verges. J. Environ. Manag. 247, 644–650 (2019).
Google Scholar
45.
Bautista, L. M. et al. Effect of weekend road traffic on the use of space by raptors. Conserv. Biol. 18, 726–732 (2004).
Google Scholar
46.
Benítez-López, A., Alkemade, R. & Verweij, P. A. The impacts of roads and other infrastructure on mammal and bird populations: a meta-analysis. Biol. Conserv. 143, 1307–1316 (2010).
Google Scholar
47.
Tyler, N. et al. Ultraviolet vision and avoidance of power lines in birds and mammals. Conserv. Biol. 28, 630–631 (2014).
PubMed PubMed Central Google Scholar
48.
IPMA. Boletins Climatológicos Mensais (Portugal Continental). Instituto Português do Mar e da Atmosfera, I. P. (IPMA, I. P.). https://www.ipma.pt/pt/publicacoes/ (2017).
49.
IPMA. Boletins Climatológicos Mensais (Portugal Continental). Instituto Português do Mar e da Atmosfera, I. P. (IPMA, I. P.). https://www.ipma.pt/pt/publicacoes/ (2018).
50.
E.P. Recenseamento de tráfego (2005)—distrito de Évora (Estradas de Portugal, S.A., 2005).
51.
R Development Core Team. R: a language and environment for statistical computing, version 3.6.1 (2019).
52.
Therneau, T. M. A Package for Survival Analysis in S. version 2.44-1.1 (2019).
53.
Bispo, R., Bernardino, J., Marques, T. A. & Pestana, D. Discrimination between parametric survival models for removal times of bird carcasses in scavenger removal trials at wind turbines sites BT. In Advances in Regression, Survival Analysis, Extreme Values, Markov Processes and Other Statistical Applications (eds LitadaSilva, J. et al.) 65–72 (Springer, Berlin, 2013).
Google Scholar
54.
Dalthorp, D. et al. GenEst statistical models—A generalized estimator of mortality. Techniques and Methods (2018). https://pubs.er.usgs.gov/publication/tm7A2. https://doi.org/10.3133/tm7A2.
55.
Gutierrez, R. G. Parametric frailty and shared frailty survival models. Stata J. 2, 22–44 (2002).
Google Scholar
56.
Kaplan, E. L. & Meier, P. Nonparametric estimation from incomplete observations. J. Am. Stat. Assoc. 53, 457–481 (1958).
MathSciNet MATH Google Scholar
57.
Linz, G. M., Bergman, D. L. & Bleier, W. J. Estimating survival of song bird carcasses in crops and woodlots. Prairie Nat. 29, 7–13 (1997).
Google Scholar
58.
Lourenço, P. M. Rice field use by raptors in two Portuguese wetlands. Airo 19, 13–18 (2009).
Google Scholar
59.
Simmons, R. E. Harriers of the World: Their Behaviour and Ecology (Oxford University Press, Oxford, 2000).
Google Scholar
60.
DeGregorio, B. A., Weatherhead, P. J. & Sperry, J. H. Power lines, roads, and avian nest survival: effects on predator identity and predation intensity. Ecol. Evol. 4, 1589–1600 (2014).
PubMed PubMed Central Google Scholar
61.
Beasley, J. C., Olson, Z. H. & DeVault, T. L. Ecological role of vertebrate scavengers. In Carrion Ecology, Evolution and Their Applications (eds Benbow, M. E. et al.) 107–127 (CRC Press, Boca Raton, 2015).
Google Scholar
62.
Peisley, R. K., Saunders, M. E., Robinson, W. A. & Luck, G. W. The role of avian scavengers in the breakdown of carcasses in pastoral landscapes. EMU Austral. Ornithol. 117, 68–77 (2017).
Google Scholar
63.
DeVault, T. L. & Rhodes, O. E. Identification of vertebrate scavengers of small mammal carcasses in a forested landscape. Acta Theriol. (Warsz) 47, 185–192 (2002).
Google Scholar
64.
Hiraldo, F., Blanco, J. C. & Bustamante, J. Unspecialized exploitation of small carcasses by birds. Bird Study 38, 200–207 (1991).
Google Scholar
65.
Hager, S. B., Cosentino, B. J. & McKay, K. J. Scavenging affects persistence of avian carcasses resulting from window collisions in an urban landscape. J. F. Ornithol. 83, 203–211 (2012).
Google Scholar
66.
Prosser, P., Nattrass, C. & Prosser, C. Rate of removal of bird carcasses in arable farmland by predators and scavengers. Ecotoxicol. Environ. Saf. 71, 601–608 (2008).
CAS PubMed Google Scholar
67.
DeVault, T. L., Olson, Z. H., Beasley, J. C. & Rhodes, O. E. Mesopredators dominate competition for carrion in an agricultural landscape. Basic Appl. Ecol. 12, 268–274 (2011).
Google Scholar
68.
Ratton, P., Secco, H. & da Rosa, C. A. Carcass permanency time and its implications to the roadkill data. Eur. J. Wildl. Res. 60, 543–546 (2014).
Google Scholar
69.
Santos, R. A. L. et al. Carcass persistence and detectability: reducing the uncertainty surrounding wildlife-vehicle collision surveys. PLoS ONE 11, e0165608 (2016).
PubMed PubMed Central Google Scholar
70.
Linz, G. M., Davis, J. E., Engeman, R. M., Otis, D. L. & Avery, M. L. Estimating survival of bird carcasses in Cattail Marshes. Wildl. Soc. Bull. 19, 195–199 (1991).
Google Scholar More