More stories

  • in

    Tracking microbes in extreme environments

    In 2008, I was investigating the methane bubbling up on the beaches and in shallow waters of Mocha Island, off the coast of central Chile. I became intrigued by how microorganisms could thrive in methane-rich areas and changed my research focus from marine biology to extreme environments. I wanted to understand how methane acts as a source of energy and carbon for microbes.Since then, I have explored a number of bizarre environments. In 2010, I went in a submarine down to 200 metres in the Black Sea, one of the world’s largest anoxic water bodies. There, I found mats of filamentous bacteria that survive on sulfur compounds.In 2017, I studied the microbes in Canada’s tailing ponds, artificial lakes of water, sand and clay waste that are left behind after petroleum extraction. And I sampled the microorganisms living in 100 °C Antarctic hot springs in 2022.I came home to Chile in 2018 and began collaborating with an international team researching the geomicrobiology of thermal features, including hot springs, geysers and volcanoes. After travelling with the group to Argentina’s active volcanic region, I got funding to explore the microbial communities that exist beneath hydrothermal vents in southern Chile, where the oceanic crust is subducting beneath the continental plate.In this image, I am in the Atacama Desert in South America, the driest non-polar desert on the planet. I am measuring 80–100 °C steam released from a fumarole containing yellow sulfur, which crystallizes at its opening as the vapour cools. I also sampled sub-surface microbes that are flushed out with the fluids. We’ll sequence their DNA to assess the microbial communities and their biological interactions.My goal is to learn more about subsurface microbes in extreme environments. I want to understand how microbial forces shaped the planet and how these communities might shift in the future with climate change. More

  • in

    Genetic and ecological drivers of molt in a migratory bird

    Stefansson, S. O., Björnsson, B. T., Ebbesson, L. O. E. & McCormick, S. D. Smoltification. In Fish Larval Physiology (eds Finn, R. N. & Kapoor, B. G.) 639–681 (CRC Press, 2020).Chapter 

    Google Scholar 
    Kaleka, A. S., Kaur, N. & Bali, G. K. Larval development and molting. In Edible Insects (ed. Mikkola, H.) 17 (IntechOpen, 2019).
    Google Scholar 
    Butler, L. K. & Rohwer, V. G. Feathers and molt. in Ornithology: Foundation, Analysis, and Application (eds Morrison, M. L. et al.) 242–270 (JHU Press, 2018).
    Google Scholar 
    Swaddle, J. P., Witter, M. S., Cuthill, I. C., Budden, A. & McCowen, P. Plumage condition affects flight performance in common starlings: Implications for developmental homeostasis, abrasion and moult. J. Avian Biol. 27, 103–111 (1996).Article 

    Google Scholar 
    Norris, D. R., Marra, P. P., Montgomerie, R., Kyser, T. K. & Ratcliffe, L. M. Reproductive effort, molting latitude, and feather color in a migratory songbird. Science 306, 2249–2250 (2004).Article 
    ADS 
    CAS 

    Google Scholar 
    Delhey, K., Peters, A. & Kempenaers, B. Cosmetic coloration in birds: Occurrence, function, and evolution. Am. Nat. 169, S145–S158 (2007).Article 

    Google Scholar 
    Tomotani, B. M. & Muijres, F. T. A songbird compensates for wing molt during escape flights by reducing the molt gap and increasing angle of attack. J. Exp. Biol. 222, 195396 (2019).Article 

    Google Scholar 
    Galván, I., Negro, J. J., Rodriguez, A. & Carrascal, L. M. On showy dwarfs and sober giants: Body size as a constraint for the evolution of bird plumage colouration. Acta Ornithol. 48, 65–80 (2013).Article 

    Google Scholar 
    Speakman, J. R. & Król, E. Maximal heat dissipation capacity and hyperthermia risk: Neglected key factors in the ecology of endotherms. J. Anim. Ecol. 79, 726–746 (2010).
    Google Scholar 
    Wolf, B. O. & Walsberg, G. E. The role of the plumage in heat transfer processes of birds. Am. Zool. 40, 575–584 (2000).
    Google Scholar 
    Berthold, P. & Querner, U. Genetic basis of moult, wing length, and body weight in a migratory bird species, Sylvia atricapilla. Experientia 38, 801–802 (1982).Article 

    Google Scholar 
    Gwinner, E., Neusser, V., Engl, D., Schmidl, D. & Bals, L. Haltung, Zucht und Eiaufzucht afrikanischer und europäischer Schwarzkehlchen Saxicola torquata. Gefied. Welt 111, 118–120 (1987).
    Google Scholar 
    Berthold, P. & Querner, U. Microevolutionary aspects of bird migration based on experimental results. Isr. J. Ecol. Evol. 41, 377–385 (1995).
    Google Scholar 
    Helm, B. & Gwinner, E. Timing of postjuvenal molt in African (Saxicola torquata axillaris) and European (Saxicola torquata rubicola) stonechats: Effects of genetic and environmental factors. Auk 116, 589–603 (1999).Article 

    Google Scholar 
    Helm, B. & Gwinner, E. Timing of molt as a buffer in the avian annual cycle. Acta Zool. Sin. 52, 703–706 (2006).
    Google Scholar 
    Rohwer, S., Ricklefs, R. E., Rohwer, V. G. & Copple, M. M. Allometry of the duration of flight feather molt in birds. PLoS Biol. 7, e1000132 (2009).Article 

    Google Scholar 
    Jenni, L. & Winkler, R. The Biology of Moult in Birds (Bloomsbury Publishing, 2020).
    Google Scholar 
    Tonra, C. M. & Reudink, M. W. Expanding the traditional definition of molt-migration. Auk Ornithol. Adv. 135, 1123–1132 (2018).
    Google Scholar 
    Rohwer, S., Butler, L. K., Froehlich, D. R., Greenberg, R. & Marra, P. P. Ecology and demography of east–west differences in molt scheduling of Neotropical migrant passerines. Birds Two Worlds Ecol. Evol. Migr. (R. Greenb. PP Marra, Eds.). Johns Hopkins Univ. Press. Balt. Maryl., 87–105 (2005).Bensch, S., Åkesson, S. & Irwin, D. E. The use of AFLP to find an informative SNP: Genetic differences across a migratory divide in willow warblers. Mol. Ecol. 11, 2359–2366 (2002).Article 
    CAS 

    Google Scholar 
    Ruegg, K. Genetic, morphological, and ecological characterization of a hybrid zone that spans a migratory divide. Evol. Int. J. Org. Evol. 62, 452–466 (2008).Article 

    Google Scholar 
    Delmore, K. E., Fox, J. W. & Irwin, D. E. Dramatic intraspecific differences in migratory routes, stopover sites and wintering areas, revealed using light-level geolocators. Proc. R. Soc. B Biol. Sci. 279, 4582–4589 (2012).Article 

    Google Scholar 
    Delmore, K. E. et al. Individual variability and versatility in an eco-evolutionary model of avian migration. Proc. R. Soc. B 287, 20201339 (2020).Article 

    Google Scholar 
    Procházka, P. et al. Across a migratory divide: divergent migration directions and non-breeding grounds of Eurasian reed warblers revealed by geolocators and stable isotopes. J. Avian Biol. 49, 012516 (2018).Article 

    Google Scholar 
    Bensch, S., Grahn, M., Müller, N., Gay, L. & Åkesson, S. Genetic, morphological, and feather isotope variation of migratory willow warblers show gradual divergence in a ring. Mol. Ecol. 18, 3087–3096 (2009).Article 

    Google Scholar 
    Rohwer, S. & Irwin, D. E. Molt, orientation, and avian speciation. Auk 128, 419–425 (2011).Article 

    Google Scholar 
    Pageau, C., Sonnleitner, J., Tonra, C. M., Shaikh, M. & Reudink, M. W. Evolution of winter molting strategies in European and North American migratory passerines. Ecol. Evol. 11, 13247–13258 (2021).Article 

    Google Scholar 
    Butler, L. K., Rohwer, S. & Rogers, M. Prebasic molt and molt-related movements in Ash-throated Flycatchers. Condor 108, 647–660 (2006).Article 

    Google Scholar 
    Barry, J. H., Butler, L. K., Rohwer, S. & Rohwer, V. G. Documenting molt-migration in Western Kingbird (Tyrannus verticalis) using two measures of collecting effort. Auk 126, 260–267 (2009).Article 

    Google Scholar 
    Hobson, K. A. & Wassenaar, L. I. Linking breeding and wintering grounds of neotropical migrant songbirds using stable hydrogen isotopic analysis of feathers. Oecologia 109, 142–148 (1996).Article 
    ADS 
    CAS 

    Google Scholar 
    Hobson, K. A. & Wassenaar, L. I. Tracking Animal Migration with Stable Isotopes (Academic Press, 2018).
    Google Scholar 
    Rubenstein, D. R. & Hobson, K. A. From birds to butterflies: Animal movement patterns and stable isotopes. Trends Ecol. Evol. 19, 256–263 (2004).Article 

    Google Scholar 
    Bearhop, S. et al. Assortative mating as a mechanism for rapid evolution of a migratory divide. Science 310, 502–504 (2005).Article 
    ADS 
    CAS 

    Google Scholar 
    Eppig, J. T. et al. The mouse genome database (MGD): Comprehensive resource for genetics and genomics of the laboratory mouse. Nucleic Acids Res. 40, D881–D886 (2012).Article 
    CAS 

    Google Scholar 
    Contina, A., Bridge, E. S. & Kelly, J. F. Exploring novel candidate genes from the mouse genome informatics database: Potential implications for avian migration research. Integr. Zool. 11, 240 (2016).Article 

    Google Scholar 
    Yang, J. et al. Common SNPs explain a large proportion of the heritability for human height. Nat. Genet. 42, 565–569 (2010).Article 
    CAS 

    Google Scholar 
    Thompson, C. W. Is the Painted Bunting actually two species? Problems determining species limits between allopatric populations. Condor 93, 987–1000 (1991).Article 

    Google Scholar 
    Contina, A., Bridge, E. S., Seavy, N. E., Duckles, J. M. & Kelly, J. F. Using geologgers to investigate bimodal isotope patterns in Painted Buntings (Passerina ciris). Auk 130, 265 (2013).Article 

    Google Scholar 
    Besozzi, E., Chew, B., Allen, D. C. & Contina, A. Stable isotope analysis of an aberrant Painted Bunting (Passerina ciris) feather suggests post-molt movements. Wilson J. Ornithol. 133, 151 (2021).Article 

    Google Scholar 
    Sharp, A. et al. Spatial and Temporal Scale-Dependence of the Strength of Migratory Connectivity in a North American Passerine. https://assets.researchsquare.com/files/rs-1483049/v1/72236b63-952d-4870-89e7-461056b8625b.pdf?c=1648893558 (2022).Pyle, P. et al. Temporal, spatial, and annual variation in the occurrence of molt-migrant passerines in the Mexican monsoon region. Condor 111, 583–590 (2009).Article 

    Google Scholar 
    Bridge, E. S., Fudickar, A. M., Kelly, J. F., Contina, A. & Rohwer, S. Causes of bimodal stable isotope signatures in the feathers of a molt-migrant songbird. Can. J. Zool. 89, 951 (2011).Article 
    CAS 

    Google Scholar 
    Seutin, G., White, B. N. & Boag, P. T. Preservation of avian blood and tissue samples for DNA analyses. Can. J. Zool. 69, 82–90 (1991).Article 
    CAS 

    Google Scholar 
    Ali, O. A. et al. RAD capture rapture: Flexible and efficient sequence-based genotyping. Genetics 202, 389–400 (2016).Article 
    CAS 

    Google Scholar 
    Contina, A. et al. Characterization of SNP markers for the Painted Bunting (Passerina ciris) and their relevance in population differentiation and genome evolution studies. Conserv. Genet. Resour. 11, 5–10 (2019).Article 
    ADS 

    Google Scholar 
    Catchen, J., Hohenlohe, P. A., Bassham, S., Amores, A. & Cresko, W. A. Stacks: An analysis tool set for population genomics. Mol. Ecol. 22, 3124–3140 (2013).Article 

    Google Scholar 
    Parker, P., Li, B., Li, H. & Wang, J. The genome of Darwin’s Finch (Geospiza fortis). Gigascience 10, 100040 (2012).
    Google Scholar 
    Langmead, B. & Salzberg, S. L. Fast gapped-read alignment with Bowtie 2. Nat. Methods 9, 357–359 (2012).Article 
    CAS 

    Google Scholar 
    Van der Auwera, G. A. et al. From FastQ data to high-confidence variant calls: The genome analysis toolkit best practices pipeline. Curr. Protoc. Bioinform. 43, 1–33 (2013).
    Google Scholar 
    McKenna, A. et al. The genome analysis toolkit: A MapReduce framework for analyzing next-generation DNA sequencing data. Genome Res. 20, 1297–1303 (2010).Article 
    CAS 

    Google Scholar 
    Danecek, P. et al. The variant call format and VCFtools. Bioinformatics 27, 2156–2158 (2011).Article 
    CAS 

    Google Scholar 
    Anderson, E. genoscapeRtools: Tools for Building Migratory Bird Genoscapes (2019).Purcell, S. et al. PLINK: A tool set for whole-genome association and population-based linkage analyses. Am. J. Hum. Genet. 81, 559–575 (2007).Article 
    CAS 

    Google Scholar 
    Alexander, D. H., Novembre, J. & Lange, K. Fast model-based estimation of ancestry in unrelated individuals. Genome Res. 19, 1655–1664 (2009).Article 
    CAS 

    Google Scholar 
    Alexander, D. H. & Lange, K. Enhancements to the ADMIXTURE algorithm for individual ancestry estimation. BMC Bioinform. 12, 246 (2011).Article 

    Google Scholar 
    Francis, R. M. pophelper: An R package and web app to analyse and visualize population structure. Mol. Ecol. Resour. 17, 27–32 (2017).Article 
    CAS 

    Google Scholar 
    Chew, B., Kelly, J. & Contina, A. Stable isotopes in avian research: a step by step protocol to feather sample preparation for stable isotope analysis of carbon (δ13C), nitrogen (δ15N), and hydrogen (δ2H). Version 1.1. https://doi.org/10.17504/protocols.io.z2uf8ew (2019).Wassenaar, L. I. & Hobson, K. A. Comparative equilibration and online technique for determination of non-exchangeable hydrogen of keratins for use in animal migration studies. Isotopes Environ. Health Stud. 39(3), 211–217 (2003).Article 
    CAS 

    Google Scholar 
    Bowen, G. J., Wassenaar, L. I. & Hobson, K. A. Global application of stable hydrogen and oxygen isotopes to wildlife forensics. Oecologia 143, 337–348 (2005).Article 
    ADS 

    Google Scholar 
    R Core Team: A Language and Environment for Statistical Computing (R Foundation for Statistical Computing, 2021).Wassenaar, L. I. & Hobson, K. A. Stable-hydrogen isotope heterogeneity in keratinous materials: Mass spectrometry and migratory wildlife tissue subsampling strategies. Rapid Commun. Mass Spectrom. 20, 2505–2510 (2006).Article 
    ADS 
    CAS 

    Google Scholar 
    Zhou, X., Carbonetto, P. & Stephens, M. Polygenic modeling with Bayesian sparse linear mixed models. PLoS Genet. 9, e1003264 (2013).Article 
    CAS 

    Google Scholar 
    Guan, Y. & Stephens, M. Bayesian variable selection regression for genome-wide association studies and other large-scale problems. Ann. Appl. Stat. 5, 455 (2011).Article 
    MathSciNet 
    MATH 

    Google Scholar 
    Marchini, J., Cardon, L. R., Phillips, M. S. & Donnelly, P. The effects of human population structure on large genetic association studies. Nat. Genet. 36, 512–517 (2004).Article 
    CAS 

    Google Scholar 
    Browning, S. R. & Browning, B. L. Rapid and accurate haplotype phasing and missing-data inference for whole-genome association studies by use of localized haplotype clustering. Am. J. Hum. Genet. 81, 1084–1097 (2007).Article 
    CAS 

    Google Scholar 
    Chaves, J. A. et al. Genomic variation at the tips of the adaptive radiation of Darwin’s finches. Mol. Ecol. 25, 5282–5295 (2016).Article 
    CAS 

    Google Scholar 
    Zhang, Y.-W. et al. mrMLM v4.0.2: An R platform for multi-locus genome-wide association studies. Genom. Proteom. Bioinform. 18, 481–487 (2020).Article 

    Google Scholar 
    Grabherr, M. G. et al. Genome-wide synteny through highly sensitive sequence alignment: Satsuma. Bioinformatics 26, 1145–1151 (2010).Article 
    CAS 

    Google Scholar 
    Quinlan, A. R. & Hall, I. M. BEDTools: A flexible suite of utilities for comparing genomic features. Bioinformatics 26, 841–842 (2010).Article 
    CAS 

    Google Scholar 
    Ellis, N., Smith, S. J. & Pitcher, C. R. Gradient forests: Calculating importance gradients on physical predictors. Ecology 93, 156–168 (2012).Article 

    Google Scholar 
    Hijmans, R. J., Cameron, S. E., Parra, J. L., Jones, P. G. & Jarvis, A. Very high resolution interpolated climate surfaces for global land areas. Int. J. Climatol. 25, 1965–1978 (2005).Article 

    Google Scholar 
    Anderson, E. C. snps2assays: Prepare SNP Assay Orders from ddRAD or RAD Loci (2015).Li, H. & Durbin, R. Fast and accurate short read alignment with Burrows-Wheeler transform. Bioinformatics 25, 1754–1760 (2009).Article 
    CAS 

    Google Scholar 
    Patterson, N., Price, A. L. & Reich, D. Population structure and eigenanalysis. PLoS Genet. 2, e190 (2006).Article 

    Google Scholar 
    Price, A. L. et al. Principal components analysis corrects for stratification in genome-wide association studies. Nat. Genet. 38, 904–909 (2006).Article 
    CAS 

    Google Scholar 
    Ruegg, K. et al. Ecological genomics predicts climate vulnerability in an endangered southwestern songbird. Ecol. Lett. 21, 1085–1096 (2018).Article 

    Google Scholar 
    Bay, R. A. et al. Genomic signals of selection predict climate-driven population declines in a migratory bird. Science 359, 83–86 (2018).Article 
    ADS 
    CAS 

    Google Scholar 
    Hedenström, A. Adaptations to migration in birds: Behavioural strategies, morphology and scaling effects. Philos. Trans. R. Soc. B Biol. Sci. 363, 287–299 (2008).Article 

    Google Scholar 
    Buehler, D. M. & Piersma, T. Travelling on a budget: Predictions and ecological evidence for bottlenecks in the annual cycle of long-distance migrants. Philos. Trans. R. Soc. B Biol. Sci. 363, 247–266 (2008).Article 

    Google Scholar 
    Schieltz, P. C. & Murphy, M. E. The contribution of insulation changes to the energy cost of avian molt. Can. J. Zool. 75, 396–400 (1997).Article 

    Google Scholar 
    Carling, M. D. & Thomassen, H. A. The role of environmental heterogeneity in maintaining reproductive isolation between hybridizing Passerina (Aves: Cardinalidae) buntings. Int. J. Ecol. 2012, 1–11 (2012).Article 

    Google Scholar 
    Irwin, D. E. Incipient ring speciation revealed by a migratory divide. Mol. Ecol. 18, 2923–2925 (2009).Article 

    Google Scholar 
    Thomas, D. W., Blondel, J., Perret, P., Lambrechts, M. M. & Speakman, J. R. Energetic and fitness costs of mismatching resource supply and demand in seasonally breeding birds. Science 291, 2598–2600 (2001).Article 
    ADS 
    CAS 

    Google Scholar 
    Rohwer, V. G., Rohwer, S. & Ortiz-Ramirez, M. F. Molt biology of resident and migrant birds of the monsoon region of west Mexico. Ornitol. Neotrop. 20, 565–584 (2009).
    Google Scholar 
    Bensch, S., Andersson, T. & Åkesson, S. Morphological and molecular variation across a migratory divide in willow warblers, Phylloscopus trochilus. Evolution 53, 1925–1935 (1999).Article 

    Google Scholar 
    Turbek, S. P., Scordato, E. S. C. & Safran, R. J. The role of seasonal migration in population divergence and reproductive isolation. Trends Ecol. Evol. 33, 164–175 (2018).Article 

    Google Scholar 
    Scordato, E. S. C. et al. Migratory divides coincide with reproductive barriers across replicated avian hybrid zones above the Tibetan Plateau. Ecol. Lett. 23, 231–241 (2020).Article 

    Google Scholar 
    Battey, C. J. et al. A migratory divide in the Painted Bunting (Passerina ciris). Am. Nat. 191, 259–268 (2018).Article 
    CAS 

    Google Scholar 
    Contina, A. et al. Genetic structure of the Painted Bunting and its implications for conservation of migratory populations. Ibis 161, 372 (2019).Article 

    Google Scholar 
    Butler, L. K. The grass is always greener: Do monsoon rains matter for molt of the Vermilion Flycatcher (Pyrocephalus rubinus)? Auk 130, 297–307 (2013).Article 

    Google Scholar 
    Turbek, S. P. et al. A migratory divide spanning two continents is associated with genomic and ecological divergence. Evolution 76, 722 (2022).Article 

    Google Scholar 
    Dietz, M. W., Daan, S. & Masman, D. Energy requirements for molt in the kestrel Falco tinnunculus. Physiol. Zool. 65, 1217–1235 (1992).Article 

    Google Scholar 
    Vézina, F., Gustowska, A., Jalvingh, K. M., Chastel, O. & Piersma, T. Hormonal correlates and thermoregulatory consequences of molting on metabolic rate in a northerly wintering shorebird. Physiol. Biochem. Zool. 82, 129–142 (2009).Article 

    Google Scholar 
    Bazzi, G. et al. Candidate genes have sex-specific effects on timing of spring migration and moult speed in a long-distance migratory bird. Curr. Zool. 63, 479–486 (2017).CAS 

    Google Scholar 
    Busby, L. et al. Sonic hedgehog specifies flight feather positional information in avian wings. Development 147, 188821 (2020).Article 

    Google Scholar 
    Eichberger, T. et al. GLI2-specific transcriptional activation of the bone morphogenetic protein/Activin antagonist Follistatin in human epidermal cells. J. Biol. Chem. 283, 12426–12437 (2008).Article 
    CAS 

    Google Scholar 
    Matzuk, M. M. et al. Multiple defects and perinatal death in mice deficient in follistatin. Nature 374, 360–363 (1995).Article 
    ADS 
    CAS 

    Google Scholar 
    Patel, K., Makarenkova, H. & Jung, H.-S. The role of long range, local and direct signalling molecules during chick feather bud development involving the BMPs, follistatin and the Eph receptor tyrosine kinase Eph-A4. Mech. Dev. 86, 51–62 (1999).Article 
    CAS 

    Google Scholar 
    Nakamura, M. et al. Control of pelage hair follicle development and cycling by complex interactions between follistatin and activin. FASEB J. 17, 1–22 (2003).Article 
    MathSciNet 

    Google Scholar 
    Pays, L., Charvet, I., Hemming, F. J. & Saxod, R. Close link between cutaneous nerve pattern development and feather morphogenesis demonstrated by experimental production of neo-apteria and ectopic feathers: Implication of chondroitin sulphate proteoglycans and other matrix molecules. Anat. Embryol. 195, 457–466 (1997).Article 
    CAS 

    Google Scholar 
    Pyle, P., Saracco, J. F. & DeSante, D. F. Evidence of widespread movements from breeding to molting grounds by North American landbirds. Auk Ornithol. Adv. 135, 506–520 (2018).
    Google Scholar 
    De Mita, S. et al. Detecting selection along environmental gradients: Analysis of eight methods and their effectiveness for outbreeding and selfing populations. Mol. Ecol. 22, 1383–1399 (2013).Article 

    Google Scholar 
    Lotterhos, K. E. & Whitlock, M. C. Evaluation of demographic history and neutral parameterization on the performance of FST outlier tests. Mol. Ecol. 23, 2178–2192 (2014).Article 

    Google Scholar 
    Frichot, E., Schoville, S. D., de Villemereuil, P., Gaggiotti, O. E. & François, O. Detecting adaptive evolution based on association with ecological gradients: Orientation matters!. Heredity (Edinb.) 115, 22–28 (2015).Article 
    CAS 

    Google Scholar 
    Trivedi, A. K. et al. Temperature alters the hypothalamic transcription of photoperiod responsive genes in induction of seasonal response in migratory redheaded buntings. Mol. Cell. Endocrinol. 493, 110454 (2019).Article 
    CAS 

    Google Scholar  More

  • in

    Carcass traits and meat quality of goats fed with cactus pear (Opuntia ficus-indica Mill) silage subjected to an intermittent water supply

    Morphometric measurements are subjective and used to assess the carcass development and quantitatively measure the muscular distribution in the carcass with estimates of its conformation. In the present study there were not significative differences observed for these parameters or for carcass compactness index (CCI), inferring that the use of cactus pear silage as well as intermittent water supply combined or alone did not alter animal growth and/or carcass conformation, maintaining the muscle pattern achieved by the control diet (usual) and demonstrating body and carcass uniformity. Since animals used in this study were homogeneous and had similar age and body performance, as indicated by the carcass morphometric measurements and by the difference between the empty carcass and hot carcass weights, which resulted in the sum of head + limb with an average of 8.2 ± 0.13 kg between treatments, giving an idea that the animals were similar in chronological age, since the allometric growth of the body occurs from the extremities to the interior of the body.The significant difference between treatments with inclusion of cactus pear silage for hot carcass yield (HCY) and cold carcass yield (CCY) may be related to the weight of the full gastrointestinal tract, which showed higher values for animals fed with a higher proportion of Tifton 85 grass hay in the diet (0% CPS). Increasing the NDF content of the diet reduces the passage rate of digesta, and the emptying of the gastrointestinal tract (GT) that cause a distension of the rumen-reticulum and increase the weight of the gastrointestinal tract, resulting in lower HCY and consequently lower CCY. While the diets with inclusion of CPS increase NFC content, such as pectin, which have higher rates of rumen degradability and, higher rates of passage7,8,9.Measurements and evaluations carried out on the carcass, such as the carcass compactness index and loin eye area (LEA), are parameters that quantitatively measure the muscle distribution in the carcass, an edible part of greater financial return, which indicates the conformation of these animals3, while the body condition score (BCS) and the measure C, which are highly correlated, measure the distribution of fat on the carcass, giving an idea of the carcass finish, in which the higher these variables, the greater the proportion of fat that allows for less water loss due to carcass cooling10. These variables in the present study were also not influenced by the levels of cactus pear silage and water restrictions, presenting an overall mean of 0.17 kg/cm, 7.68 cm, 2.42 points and 0.7 mm respectively, and consequently did not influence the losses due to cooling, which presented an average loss of 1.48%.The main cuts of the goat carcass are the neck, leg, shoulder, loin, and rib. Their economic values differ, and their proportions become an important index to evaluate the carcass quality9. The cuts of greatest importance and commercial values are the leg and the loin, called noble cuts because they present greater yield and muscle tenderness, being interesting that they present a good proportion in the carcass, for providing greater edible tissue content, mainly muscle.Carcasses with similar weight tend to have equivalent proportions of cuts, as they exhibit isogonic growth. As the cold carcass weight (CCW) and the conformation of the animals were similar, with similar morphometric measurements, they had a direct relationship in the absence of an effect on commercial cuts.The commercial value of the carcass, whether through carcass yield and/or the proportions of the cuts, is also linked to tissue composition, thus the dissection of the leg represents an estimate of measuring the tissue composition of the carcass, in which is sought a greater proportion of muscle, intermediate proportion of fat and less bone in carcasses11. In this way, diets with cactus pear silage and the different levels of intermittent water supply resulted in the constancy in the amount of muscle, fat, and bone in legs of goats. The similarity in muscle proportion is related to the lack of effects on slaughter weight and CCW, as the weight of muscles is highly correlated to carcass weight. The average muscle yield was above 60% in all treatments, confirming that the animals showed good efficiency to the diets and adapted well to the water supply levels. Although the diets with cactus silage had high amounts of metabolizable energy (ME) and no difference in DM intake, the energy input was similar that not influencing carcass weights and carcass compactness index. That is, it did not influence muscle deposition in the carcass, probably due to synchronicity of energy and protein.As for the weight and proportion of bone tissue, it is believed that because this is a tissue with early development in relation to muscle and fat2, diets in the final stages of growth (average of 8 months) would hardly change their participation in the tissue composition, where the relationship of this tissue with the others is usually only increased when there are changes in the proportion of muscle and/or fat.Water restriction, as long as it is moderate and acute, mainly affects the loss of body water and not tissues, which does not cause deleterious effects on animal productivity and growth.The muscle:fat ratio indicates the state of leg fattening, while the muscle:bone ratio estimates the carcass muscularity, both being attributes of quality3. The similarity previously reported in the weight of fat, bone and muscle corroborates that these relationships also do not have differences. The same occurs for the leg muscularity index (LMI), due to the weight of the five muscles used to determine the index and the length of the femur which had been similar between the animals.Nevertheless, when considering fat as a percentage of participation in leg weight, it is possible to observe that the intermittency in water supply in both intervals (24 and 48 h) reduced the proportion of fat in the leg. Although in this research, the water supply levels did not affect the daily intake of dry matter from animals, with average intake of 650.67 g/kg DM, ranging from 599 to 682 g/kg DM between treatments7, during days of water deprivation, fat mobilization for energy availability may occur, possibly offsetting water stress and influencing not only feed intake, on these days of deprivation but also affecting energy metabolism, which results in the mobilization of energy reserves2.When the physicochemical composition of the meat was evaluated, it was observed that the diets and water supply levels probably did not affect the reserves of muscle glycogen during the pre-slaughter management as can be seen through pHinitial and pHfinal. The pHinitial right after slaughter should be close to neutrality, as well as in the live animal, indicating that the animal did not suffer from stress during the pre-slaughter period. The pHfinal, on the other hand, is expected to show a considerable variation, between 5.55 and 6.2 for goat meat; and due be inversely proportional to the concentration of muscle glycogen at the time of slaughter, that is, a more intense expenditure of glycogen stores results in less lactic acid production and higher pHfinal10,12,13. In this research, the pHfinal had an average of 5.74, a pH higher than the isoelectric point of muscle proteins (5.2–5.3). This result is favorable, since it is above the neutral charge and presenting an excessive negative charge that provides the repulsion of filaments, which allows water molecules to bind and improve the organoleptic characteristics of the meat, through succulence and texture of meat13 evaluated by cooking loss, moisture, and shear force, principally. The cooking loss (CL), moisture and shear force (SF) were within the values recommended (20–35% CL, moisture above 70% and SF up to 44.13 Newton (N) for goat meat) to classify the meat as soft and tender14. Statistically, interactions were found between the supply of silage and intermittent water supply, in which goats on a diet without cactus pear silage and without intermittent water supply showed higher values of cooking losses and shear force.Higher concentrations of collagen content and/or greater activities of calpastatin (which inhibit the action of calpains), as well as larger fascicles and greater number of fibers present in each muscle fascicle, as was visually observed in the meat of the animals in this research, can lead to reductions in meat tenderness15. Because goat carcasses are generally small, with low marbling degree and a thin layer of subcutaneous fat, there is rapid heat dissipation at the beginning of the post-mortem period, which can lead to cold shortening, muscle hardening, and less tender meats16.pHfinal of the meat has a high correlation with color parameters (L*—lightness, a*—redness, b*—yellowness and Chroma), as the pHfinal can affect the reaction of myoglobin to oxymyoglobin. The b* index in meat, on the other hand, may be related to the concentration of fat and/or the presence of carotenoids in the diet which can be affected by forage preservation processes, such as silage and hay, which significantly reduces by up to 80% carotenoids levels13. It is believed that the carotenoid concentrations in the diet of this study were similar between treatments and consequently in values of b* of meat. Values of a* and Chroma directly depend on the content and state of the heme pigments in the muscle, due to the chemical state of iron (Fe), playing an important role in meat color10. These parameters showed no significant difference between treatments, however, higher values of a* and Chroma in meat are desired, as a result of the increase in oxymyoglobin and decrease in metmyoglobin that provides the meat’s “bloom”. According to Dawson et al.17, the minimum critical value for meat luminosity (L*) is 34. Lower values of L are related to elevating pHfinal, which results in the high concentration of metmyoglobin, making the meat darker, which causes rejection by consumers for associating dark meat to as old meat.The meat’s presentation and more precisely its color is an important factor that can influence a consumer’s purchase decision, as it gives us the idea of freshness and meat’ quality. The L* and a* color parameters are the most representative for these characteristics18. Although in our research it did not have a significant effect on the color parameters, we can indicate that the meat obtained in this research would be well accepted by consumers, because Hopkins19 suggests that consumers will consider meat color acceptable when the L* value is equal to or exceeds 34, and a* value below 19 or equal to or exceeds 9.5 according to Khliji et al.18. In the present study, all values for L* remained above this aforementioned threshold and the values of a* remained within these values which suggests that meats from all diets and water supply levels had an acceptable color for consumers.When evaluating the chemical composition of meat, no significant differences were observed between treatments, except for the ash content, that remained above the average values found in the literature, which is 0.99–1.10%16. It is believed that because cactus pear is a rich source of Ca, Mg, K and with increasing level of cactus pear silage in the diet31, these minerals were consumed in larger amounts, which could have resulted in a higher proportion of minerals in the meat of animals that received 42% cactus pear silage.The lipid fatty acid profile in meat has a major impact on sensory properties and nutritional quality, influencing acceptance and health for consumers20,21. Intermittent water supply, cactus pear silage, and interaction between water supply and cactus pear silage did not influence most fatty acids present in the Longissimus lumborum muscle of the animals under study, except only a few saturated fatty acids e.g. docosanoic acid (C22:0), tricosanoic acid (C23:0), BCFA, anteiso-tridecanoic acid (C13:0 anteiso) and anteiso-pentadecanoic acid (C15:0 anteiso).Biohydrogenation of ruminal bacteria results in a circumstantial variety of fatty acids (FA), which will be absorbed in the intestine and later incorporated into the meat of goats. In addition to the diet and the biohydrogenation, the meat lipid profile can vary due to de novo synthesis, desaturation, duration of the feeding period and differences in pathways of various FA by the animal organism22.A high concentration of saturated fatty acids present in meat is not desirable, as there is evidence that saturated fatty acids, mainly C16:0, as well as myristic (C14:0) and lauric (C12:0) increase the blood cholesterol and low-density lipoproteins (LDL) concentration, due to interferences with hepatic LDL receptors23, however, in the studied treatments, there were no significant differences for these fatty acids. On the other hand, C18:0 has no impact on cholesterol levels, due to being poorly digested and easily desaturated to C18:1 by Δ9-desaturase24, present in the cell endoplasmic reticulum. This fatty acid is not harmful to health and is considered the only desirable SFA. As the levels of C18:0 in diets tend to be minimal, their main origin is the biohydrogenation of PUFA and de novo syntheses in diets with a high energy pattern25.In addition to carrying out the biohydrogenation process, ruminal bacteria synthesize a series of FA, mainly those of odd and branched chain, that comprise mainly the lipids of the bacterial membrane26,27, to maintain membrane fluidity. Linear odd-chains fatty acids are formed when propionyl-CoA, instead of acetyl-CoA, is used as a de novo synthesis initiator25. On the other hand, iso and anteiso FA are synthesized by the precursors branched-chain amino acids (valine, leucine, and isoleucine) and their corresponding branched- short-chain carboxylic acids (isobutyric, isovaleric and 2-methyl butyric acids)28.There is an increasing interest to study odd-and branched-chain fatty acids (OBCFAs) from animal products, mainly in milk due to its higher concentration compared to meat. Researchers reported that several OBCFAs have potential health benefits in humans29 as improved gut health30 and presenting anti-cancer activity31, as well as improve the sensory characteristics of the meat, providing a greater sensation of tenderness and juiciness, because BCFA content are associated with a less consistent fat in meat from lambs due to its lower melting point and its chain structure32.The FAs profile in the ruminal bacteria is largely composed by OBCFAs (C15:0; anteiso C15:0; iso C15:0; C17:0; iso C17:0; C17:1 and anteiso C17:0) in the bacteria membrane lipids24. Thus, the higher concentration of OBCFAs might be the result of the difference in the rumen bacterial populations induced by variation in the dietary carbohydrate, that is, a higher concentration of cellulolytic bacteria in relation to amylolytic bacteria, due to the high neutral detergent fiber (NDF) content in the diet with 0% cactus forage silage. It is also known that amylolytic bacteria produce more linear odd chain and anteiso FAs than iso FAs, whereas cellulolytic bacteria produce more iso FAs28,32. As the Tifton 85 grass hay-based diet had the highest neutral detergent fiber corrected for ash and protein (NDFap) and starch content (highest % of ground corn), the meat of those animals had higher concentrations of anteiso C15:0 and anteiso C13:0 compared to animals fed diets with the inclusion of cactus pear silage, also influencing the total sum of branched chain fatty acids.Although levels of intermittent water supply have generated punctual changes in tricosanoic acid (C23:0) SFA, the same was not observed for MUFA and PUFA, due to changes in the rumen environment, promoted by water restrictions, which were not sufficient to circumstantially modify biohydrogenation, resulting in similarities in concentrations of unsaturated fatty acids in goat meat.The animals subjected to 24 h of intermittent water supply (IWS) presented the highest concentration of C23:0 in relation to other treatments, which is interesting because it is involved in the synthesis of ceramide and reduces the risk of diabetes in humans33.The cactus pear has high non-fibrous carbohydrate (NFC) content (mainly pectin), having 59.5% high and medium rumen degradation carbohydrates which provide a higher production rate and removal of short-chain fatty acids and changes in rumen bacterial populations34. The inclusion of CPS resulted in a higher passage rate of digesta, affected biohydrogenation, and resulted in the escape of intermediate fatty acids isomers that are absorbed in the small intestine. Consequently, there was changing composition of fatty acids in the muscle of these animals, with a significant effect being observed only in the cis-13 C18:1. Furthermore, diets with high proportions of cactus pear silage (CPS), such as 42% CPS diet, can decrease ruminal pH and affect the final stages of biohydrogenation, resulting in the escape of intermediate fatty acids isomers, that are absorbed in the small intestine, which can explain the similarity of the C20:1 in 42% CPS diet from the Tifton hay-based diet, with differences between goat meat from 21% CPS diet and Tifton hay-based diet.Oleic acid (c9-C18:1) was the MUFA with the highest participation in the lipid profile of goat meat, which is interesting because it has a hypocholesterolemic effect, being a desirable fatty acid (DFA) for not reducing the serum high density lipoproteins (HDL) levels and thus prevent cardiovascular disease by reducing LDL levels35. The high concentrations of c9-C18:1 in ruminant meat come from the food intake, the effect of biohydrogenation, and mainly of the high activity of Δ9-desaturase, necessary for animal biosynthesis through desaturation of C18:0 to c9-C18:127. This fatty acid in the lipid profile of red meat varies between 30 and 43%36, confirming that the meat in the present study had a good concentration of this fatty acid.Much of unsaturated fatty acids, which have 18 carbons or 16 carbons, are largely converted to C18:0 and C16:0 through biohydrogenation, and when this process is not 100% completed, in addition to the PUFA that pass through this process intact, some product intermediates are formed, reaching the duodenum and are absorbed by the animal, in which significant amounts of cis and trans-monounsaturated, such as vaccenic fatty acid (t11-C18:1), reach the duodenum and are absorbed, later composing the muscle tissue22.The literature indicates that the precursor of conjugated linoleic acid (CLA) in the meat of animals is trans vaccenic acid (t11-C18:1), so the enzyme ∆9-desaturase, besides acting in the conversion of stearic into oleic fatty acid, also converts the trans-vaccenic acid to its corresponding CLA isomer, c9t11-C18:236. This pathway is more expressive in the mammary gland, and as the concentration of vaccenic acid (t11-C18:1) was not different, the concentration of CLA was not affected by the supply of silage and intermittent water supply, in the same way, that there are also no differences in the activity of ∆9-desaturase. Nevertheless, it is worth noting that in the human adipose tissue there is also the presence of ∆9-desaturase, and therefore, increased intake of vaccenic fatty acid could have the same beneficial effects associated with the intake of CLA, where the dietary vaccenic fatty acid shows 19–30% conversion rate37.Tifton hay is a natural source of n-3 fatty acids, mainly C18:3 n-3 with up to 20% participation in the lipid profile2, allowing a certain part of these PUFAs to be absorbed and increased in the tissue muscle, with 10 to 30% PUFAs in the diet generally escaping from biohydrogenation.Linoleic fatty acid (c9c12 C18:2) and α-linolenic acid (C18:3 n-3) are essential fatty acids for humans, that serve as precursors of the n-3 and n-6 pathways, distinct families, but synthesized by some of the same enzymes (∆4-desaturase, ∆5-desaturase, and ∆6-desaturase)25. Arachidonic fatty acid (C20:4 n-6) comes from elongation and desaturation of linoleic acid, where its concentrations, even close to that of its precursor, may indicate that there was a high activity of ∆6-desaturase (desaturation to γ-linolenic), elongase (elongation of γ-linolenic to dihomo-gamma-linolenic) and ∆5-desaturase. This fatty acid was influenced by the diets, presenting lower concentrations in the meat of animals fed the 42% cactus pear silage when compared to the Tifton hay diet (0% cactus pear silage).A higher concentration of long-chain PUFA n-3, docosahexaenoic (C22:6 n-3), was observed in the muscle of animals fed on Tifton hay. This was probably due to the high concentration of C18:3 n-3, precursor of C22:6 n-3, that the hay presents in relation to the cactus pear silage.The ratios and proportions of fatty acids are used to determine nutritional and nutraceutical values of the product or diet, and mainly, to indicate the cholesterolemic potential4. It is interesting that the n-6/n-3 ratio is low due to the pro-inflammatory properties of n-6; it is recommended to decrease its intake to assist in disease prevention38, while n-3 fatty acids are anti-inflammatory, antithrombotic, antiarrhythmic and reduce blood lipids, with vasodilating properties, being interesting that they present a higher proportion24. n-6 fatty acids tend to have a higher percentage in meat, and this directly influences the formation of n-3 isomers, since linoleic acid, when in excess, can reduce the synthesis of linolenic acid metabolites. The percentage of FA in one group can interfere with the metabolism of the other, reducing its incorporation into tissue lipids and altering its general biological effects38. Therefore, it is not recommended that the n-6/n-3 ratio be kept above 5 or 639, demonstrating that the averages of the current research remained acceptable.In relation to atherogenicity index (AI) and thrombogenicity index (TI), Ulbricht and Southgate39 proposed that sheep meat should have values of up to 1.0 and 1.58, respectively, and the lower the values for these indices in the lipid fraction, the greater the prevention of early stages of cardiovascular diseases. In the present study, the general averages observed were 0.29 for the AI, and 0.81 for the TI, although there were no significant differences, all treatments are within the recommended range, despite having been used as comparative standard to sheep, due to the absence of the proposed standard for goat meat.The h:H ratio did not differ for diets and water supply levels, but had an average of 1.90, below the reference value for meat products, which is 2.0. Values above 2.0 are recommended and favorable40, as it indicates a higher proportion of hypocholesterolemic fatty acids, that are beneficial to human health.The ∆9-desaturase enzyme that acts on both the mammary gland and adipose tissue, responsible for the transformation of SFA into unsaturated fatty acids (UFA), as well as in the endogenous conversion of CLA37 did not differ between treatments. On the other hand, the elongase showed less activity. Probably there was a greater “de novo” synthesis which resulted in a greater accumulation of palmitic fatty acid, and a reduction in the activity of the elongase enzyme.The crossbred goats demonstrated to present efficient mechanisms for adapting to water restrictions, especially when receiving feed with higher water content, such as cactus pear silage, being able to replace Tifton hay with 42% cactus pear silage in the diet for goats in confinement without negatively affecting the carcass traits and meat quality. Because, although these animals have shown some differences in the indices of tenderness and juiciness of their meats, however, all presented values of juiciness and tenderness compatible with meat extremely appreciated by the consumer market, and even goat meat showing some fatty acids with different concentrations induced by the supply of silage and water intermittence, the final lipid profile was appropriate to the health of consumers, observed by the absence of differences in the total concentrations of PUFA and in the main nutraceutical parameters (DFA, n-6/n-3; h:H; AI and TI).These results are relevant, indicating that goat feedlots in regions with low water availability may adopt strategies of lesser demand for drinking water and considerable concentrations of cactus pear silage in the diet, can reduce production costs without considerably affecting the product to be marketed, and therefore, provide higher profitability of the system. More

  • in

    Forest disturbance decreased in China from 1986 to 2020 despite regional variations

    Disturbance detectionWe used a well-established spectral-temporal segmentation method, Landsat-based Detection of Trends in Disturbance and Recovery (LandTrendr), to detect disturbances within the Google Earth Engine (GEE) cloud-computing platform57,58. The core of the LandTrendr is to extract a set of disturbance-related metrics by breaking pixel-level annual time-series spectral trajectories into linear features using Landsat observations. The LandTrendr has been widely used for change detection in various forest settings, and details about the algorithms can be found in previous publications57. Here we briefly described the key steps in generating the year and type of disturbances in China’s forests using the LandTrendr within the GEE platform. The overall analytic flow can be found in Supplementary Fig. 10.First, we generated annual spectrally consistent time-series data by using all available, good quality (cloud cover ≤ 20) Tier 1 Landsat 5 (Thematic Mapper), Landsat 7 (Enhanced Thematic Mapper Plus), and Landsat 8 (Operational Land Imager) images acquired during the peak growing seasons (June 1—September 30) from 1986 to 2020. The peak growing seasons were selected to exclude compounding influences from ice, snow, and soil, and to maximize the spectral changes after forest disturbances. To tackle the spectral inconsistency among Landsat sensors, we harmonized spectral values via linear transformations according to band-respective coefficients presented in59. Clouds, cloud shadows, snow, and water were masked out using the Fmask algorithm60. The annual band composites at 30-meter spatial resolution during 1986–2020 were computed using the Medoid method61.Secondly, we ran the LandTrendr using five spectral indices, including two spectral bands (shortwave infrared I and II that were B5 and B7), tasseled cap wetness (TCW), normalized burn ratio (NBR), and normalized difference vegetation index. These five indices were effective indictors to represent vegetation greenness and structures, and were commonly used for detecting changes in forest disturbance and recovery62. For each spectral index, the LandTrendr produced a set of parameters to describe a possible disturbance event at the pixel level, including spectral values at pre-disturbance level (preval), magnitude of change (mag), duration (dur) and rate of change (rate), and the signal-to-noise ratio (dsnr) (n = 5). Using these five spectral indices, we generated a stack of disturbance-related parameter layers (n = 25, 5 spectral indices × 5 parameters), which were later used to detect and classify disturbances using machine learning models derived from reference data (described below).Disturbance classificationReference dataHigh-quality consistent reference data is key to train and classify disturbance types. To do so, we generated a total of 31225 reference points using a hierarchical approach. We first generated a large number of potential disturbance points using forest loss data from 2001 to 20203. Then we separated fire disturbances from non-fire disturbances by overlaying MODIS burned area (BA) with potential disturbance points following the procedure used by63. Specifically, fire disturbances were determined if the MODIS BA data coincided with the Landsat-derived forest loss for the fire year and 2 years postfire (i.e., t + 0, t + 1, t + 2) to account for delayed post-fire tree mortality. Following this step, we derived points as potential disturbances that consisted of fires and non-fire disturbances (including forest conversion to other land use types and silvicultural practices at various intensities). We also generated roughly the same number of points that experienced no disturbances (e.g., persistent forests), which were determined by selecting pixels with very few changes in spectral indices. These reference points, including fire, non-fire disturbances, and persistent forests, were then used to sample the time-series spectral data from 1986 to 2020. Finally, time-series spectral data from each reference point were visually checked to make sure they accurately represented disturbance events. This process resulted into a total of 31225 reference data points, including 2356 fire disturbance points, 13,242 non-fire disturbance points, and 15,627 no disturbance points (persistent forests) (Supplementary Fig. 2).Random forest classificationWe used machine learning modeling to classify each pixel into fire disturbance, non-fire disturbance, or no disturbance. The reference data points were used to sample the LandTrendr-derived disturbance-related parameter layers described above, which resulted into a dataset consisting of disturbance types. We divided the dataset into 70% of training data, and 30% as validation data. Using the training data, a Random Forest (RF) model was trained to classify each reference point into fire, non-fire disturbance, or no disturbance. Our RF approach showed that short-wave infrared (SWIR)-based moisture indices (e.g., B7, TCW) were strong predictors for detecting forest disturbances (Supplementary Fig. 11) likely because of their sensitivity to vegetation water content and canopy structure64. Finally, we applied the trained RF model to the full classification stack to consistently map the disturbance types from 1986 to 2020 across China’s forests, assuming that the spectral trajectories derived from reference data period 2001–2020 can be extrapolated to the whole mapping period 1986–2020. However, note that our approach was meant to detect relatively acuate and discrete disturbances that caused canopy opening, rather than subtle changes of forest structure or composition resulted from low intensive silvicultural practices and chronic disturbances.Year of disturbanceWe used the LandTrendr to determine the year of disturbance as the onset of magnitude of spectral change. Since we ran LandTrendr on five spectral indices, there were five possible years of disturbance for each pixel. Thus, we determined the year of disturbance using the median value from at least three different indices (i.e., NDVI, NBR, TCW, B5, B7). In this way, we only kept pixels that were detected as disturbances using at least three indices, thus reducing commission errors. The year with the greatest spectral changes generated by the LandTrendr often had an accuracy within 3 years11. A confidence level was also assigned to each disturbed pixel based on numbers of indices which showed possible disturbance events. Specially, low, medium, and high confidence were assigned if the disturbance was detected by three, four, or five spectral indices, respectively.ValidationsWe validated the disturbance map at the pixel and national levels. At the pixel level, we validated the final map using the validation sub-sample described in the previous section. We derived a confusion matrix to report user’s and producer’s accuracy (Supplementary Table 1) as the main accuracy assessment metrics. At the national level, we compared forest disturbance detected in this study to available existing dataset. Specifically, we compared the area of forest fire disturbance between our study and the national fire records during 2003–2009 (Supplementary Fig. 5). We compared the disturbance rates between our study and Landsat-derived global forest cover changes from 2001 to 20193 (Supplementary Fig. 4).Post-processingWe applied a series of spatial filters to minimize the unrealistic outliers from two potential sources of uncertainty, including speckle in time-series spectral trajectories or misregistration among images. This may lead to individual pixel or small patches including only a few pixels, which were (a) detected as disturbances, thus increasing the commission errors, or (b) not detected as disturbances, while their surrounding pixels were mostly disturbed, thereby increasing the omission errors. To address the issue (a), we removed all single-pixel disturbance patches through setting the minimum mapping unit as two 30 × 30 m2 pixels (0.18 ha). To address the issue (b), we applied a 3 by 3 moving window to fill holes through assigning the year of disturbance based on the years in the surrounding pixels. Finally, we smoothed the year of disturbance by assigning the center pixel using majority rules from surrounding pixels within the 3 by 3 windows, thus accounting for artefacts associated with uncertainties in the correct identification of the disturbance year.Characterizing disturbance regimes and their trendsWe characterized the disturbance regime using five indicators within each 0.5° grid cell (n = 1946) across China’s forests based on annual forest disturbance maps generated from the previous step. Within each grid cell, we calculated (1) total annually disturbed forest area (km2 yr−1), (2) percentage of forest disturbed annually (% yr−1), as annual disturbed forest area divided by the total forested area, (3) disturbance size (ha), as the number of disturbed pixels for each individual patch using an eight-neighbor rule, (4) disturbance frequency (# of patches per 1000 km2 forested area each year), as the number of disturbance patches per year divided by the total forested area, (5) disturbance severity (ΔNDVI = NDVIt−1 − NDVIt+1), as magnitude of NDVI change 1 year before and 1 year after disturbance, obtained from the LandTrendr analysis. We used (1) and (2) to characterize the disturbance rate, and (3)–(5) to describe the patch characteristics. The (2) and (4) were normalized by forest area within each grid cell, thus making them comparable among grid cells. For (3)–(5), we only calculated the patch size >0.45 ha (five 30 × 30-m2 pixels), because patches  TC2000), and the expansion of forested area from 1986 to 2000 (e.g., TC1986  20% following Liu et al., (2019). We should note that our study area did not include the newly afforested area after 2000. All analyses were performed within the forest mask, thus excluding the potential confounding factors from other land cover types. The description of TC1986 and TC2000 can be found in3,32. More

  • in

    A bolder conservation future for Indonesia by prioritising biodiversity, carbon and unique ecosystems in Sulawesi

    Jepson, P. R. et al. Protected area asset stewardship. Biol. Conserv. 212, 183–190 (2017).Article 

    Google Scholar 
    Joppa, L. N., Loarie, S. R. & Pimm, S. L. On the protection of “protected areas”. Proc. Natl. Acad. Sci. 105, 6673–6678 (2008).Article 
    ADS 
    CAS 

    Google Scholar 
    Rija, A. A., Critchlow, R., Thomas, C. D. & Beale, C. M. Global extent and drivers of mammal population declines in protected areas under illegal hunting pressure. PLoS ONE 15, e0227163 (2020).Article 
    CAS 

    Google Scholar 
    Tyrrell, P., du Toit, J. T. & Macdonald, D. W. Conservation beyond protected areas: Using vertebrate species ranges and biodiversity importance scores to inform policy for an East African country in transition. Conserv. Sci. Pract. https://doi.org/10.1111/csp2.136 (2019).Article 

    Google Scholar 
    Gaveau, D. L. A. et al. Evaluating whether protected areas reduce tropical deforestation in Sumatra. J. Biogeogr. 36, 2165–2175 (2009).Article 

    Google Scholar 
    Grantham, H. S. et al. Spatial priorities for conserving the most intact biodiverse forests within Central Africa. Environ. Res. Lett. 15, 222 (2020).Article 

    Google Scholar 
    Setyawati, T. et al. Planning to remove UNESCO World Heritage Sites in Sumatra from being ‘In Danger’. Anim. Conserv. 24, 149–152 (2020).Article 

    Google Scholar 
    Naidoo, R. et al. Evaluating the impacts of protected areas on human well-being across the developing world. Sci. Adv. 5, 1–8 (2019).Article 

    Google Scholar 
    Adams, V. M., Visconti, P., Graham, V. & Possingham, H. P. Indicators keep progress honest: A call to track both the quantity and quality of protected areas. One Earth 4, 901–906 (2021).Article 
    ADS 

    Google Scholar 
    Banks-Leite, C., Larrosa, C., Carrasco, L. R., Tambosi, L. R. & Milner-Gulland, E. J. The suggestion that landscapes should contain 40% of forest cover lacks evidence and is problematic. Ecol. Lett. https://doi.org/10.1111/ele.13668 (2021).Article 

    Google Scholar 
    CBD. Key Elements of the Strategic Plan 2011–2020, including Aichi Biodiversity Targets. (2011). https://www.cbd.int/sp/elements/default.shtml.CBD. First Draft of the Post-2020 Global Biodiversity Framework. Angewandte Chemie Int. Edn. 6(11), 1–12 (2021).Hannah, L. et al. 30% land conservation and climate action reduces tropical extinction risk by more than 50%. Ecography (Cop.) 43, 943–953 (2020).Article 

    Google Scholar 
    Waldron, A. et al. Protecting 30% of the planet for nature: Costs, benefits and economic implications. In Working paper analysing the economic implications of the proposed 30% target for areal protection in the draft post-2020 Global Biodiversity Framework. (2020).Dinerstein, E. et al. An ecoregion-based approach to protecting half the terrestrial realm. Bioscience 67, 534–545 (2017).Article 

    Google Scholar 
    Wilson, E. O. Half-Earth: Our Planet’s Fight for Life (Liveright Publishing Corporation, 2016).
    Google Scholar 
    Dwiyahreni, A. A. et al. Changes in the human footprint in and around Indonesia’s terrestrial national parks between 2012 and 2017. Sci. Rep. 11, 1–14 (2021).Article 

    Google Scholar 
    KSDAE, M. D. Statistik Direktorat Jenderal KSDAE 2017. (Kementerian Lingkungan Hidup dan Kehutanan Direktorat Jenderal Konservasi Sumber Daya Alam dan Ekosistem, 2018).Wallace, A. R. Natural History of Celebes. In The Malay Archipelago 424–447 (Cambridge University Press, 1869).MacKinnon, J. R. & MacKinnon, K. Review of the protected areas system in the Indo-Malayan Realm. (International Union for Conservation of Nature and Natural Resources (IUCN), 1986).Myers, N., Mittermeier, R. A., Mittermeier, C. G., da Fonseca, G. A. B. & Kent, J. Biodiversity hotspots for conservation priorities. Nature 403, 853–858 (2000).Article 
    ADS 
    CAS 

    Google Scholar 
    Olson, D. M. & Dinerstein, E. The Global 200: Priority ecoregions for global conservation. Ann. Missouri Bot. Gard. 89, 199–224 (2002).Article 

    Google Scholar 
    Hunowu, I. et al. New insights into Sulawesi’s apex predator: The Sulawesi civet Macrogalidia musschenbroekii. Oryx 54, 878–881 (2020).Article 

    Google Scholar 
    Johnson, C. L. et al. Camera traps clarify the distribution boundary between the crested black Macaque (Macaca nigra) and Gorontalo Macaque (Macaca nigrescens) in North Sulawesi. Int. J. Primatol. https://doi.org/10.1007/s10764-019-00082-1 (2019).Article 

    Google Scholar 
    Joyce, E., Thiele, K., Slik, F. & Crayn, D. Checklist of the vascular flora of the Sunda-Sahul Convergence Zone. Biodivers. Data J. 8, e51094 (2020).Article 

    Google Scholar 
    Middleton, D. J. et al. Progress on Southeast Asia’s Flora projects. Gard. Bull. Singapore 71, 267–319 (2019).Article 

    Google Scholar 
    Trethowan, L. A. et al. An enigmatic genus on an enigmatic island: The re-discovery of Kalappia on Sulawesi. Ecology 100, e02793 (2019).Article 

    Google Scholar 
    Junaid, A. R., Jihad & Hasudungan, F. Burung-burung di Indonesia: Daftar dan Status 2021. (Burung Indonesia, 2021).Whitten, T., Henderson, G. S. & Mustafa, M. The Ecology of Sulawesi. 4, (Gajah Mada University Press, 1987).Maryanto, I. et al. Checklist of The Mammals of Indonesia 3rd edn, (2019).Chen, S. et al. Ecosystem carbon stock of a tropical mangrove forest in North Sulawesi, Indonesia. Acta Oceanol. Sin. 37, 85–91 (2018).Article 
    CAS 

    Google Scholar 
    Culmsee, H., Leuschner, C., Moser, G. & Pitopang, R. Forest aboveground biomass along an elevational transect in Sulawesi, Indonesia, and the role of Fagaceae in tropical montane rain forests. J. Biogeogr. 37, 960–974 (2010).Article 

    Google Scholar 
    Van der Ent, A., Baker, A. J. M., van Balgooy, M. M. J. & Tjoa, A. Ultramafic nickel laterites in Indonesia (Sulawesi, Halmahera): Mining, nickel hyperaccumulators and opportunities for phytomining. J. Geochemical Explor. 128, 72–79 (2013).Article 

    Google Scholar 
    Pandyaswargo, A. H., Wibowo, A. D., Maghfiroh, M. F. N., Rezqita, A. & Onoda, H. The emerging electric vehicle and battery industry in Indonesia: Actions around the nickel ore export ban and a SWOT analysis. Batter. 7, 80 (2021).Article 
    CAS 

    Google Scholar 
    Zhu, L. et al. Regional scalable priorities for national biodiversity and carbon conservation planning in Asia. Sci. Adv. 7, eabe4261 (2021).Article 
    ADS 

    Google Scholar 
    Smith, R. J. et al. Synergies between the key biodiversity area and systematic conservation planning approaches. Conserv. Lett. 12, 1–10 (2018).
    Google Scholar 
    Ball, I. R., Possingham, H. P. & Watts, M. E. Marxan and relatives: Software for spatial conservation prioritization. In Spatial Conservation Prioritization: Quantitative Methods and Computational Tools (eds Moilanen, A. et al.) 185–195 (Oxford University Press, 2009).
    Google Scholar 
    Game, E. T. & Grantham, H. S. Marxan User Manual: For Marxan version 1.8.10. University of Queensland, St. Lucia, Queensland, Australia, and Pacific Marine Analysis and Research Association 127 (2008).BPS. Hasil Sensus Penduduk 2020. Berita Resmi Statistik 1–22 (2021).BPS. Data dan Informasi Kemiskinan Kabupaten/Kota Tahun 2020. 3205014, (Badan Pusat Statistik, 2020).Voigt, M. et al. Emerging threats from deforestation and forest fragmentation in the Wallacea centre of endemism. Environ. Res. Lett. 16, 094048 (2021).Article 
    ADS 

    Google Scholar 
    KLHK. Deforestasi Indonesia Tahun 2017–2018. Direktorat Inventarisasi dan Pemantauan Sumber Daya Hutan. Direktorat Jenderal Planologi Kehutanan dan Tata Lingkungan. 64, (Direktorat Inventarisasi dan Pemantauan Sumber Daya Hutan, Direktorat Jenderal Planologi Kehutanan dan Tata Lingkungan, Kementerian Lingkungan Hidup dan Kehutanan, 2019).Supriatna, J. et al. Deforestation on the Indonesian island of Sulawesi and the loss of primate habitat. Glob. Ecol. Conserv. 24, e01205 (2020).Article 

    Google Scholar 
    Kadir, A., Suaib, E. & Zuada, L. H. Mining in Southeast Sulawesi and Central Sulawesi: Shadow economy and environmental damage regional autonomy Era in Indonesia. Adv. Soc. Sci. Educ. Hum. Res. 404, 20–27 (2020).
    Google Scholar 
    Clements, R., Sodhi, N. S., Schilthuizen, M. & Ng, P. K. L. Limestone karsts of southeast Asia: Imperiled arks of biodiversity. Bioscience 56, 733–742 (2006).Article 

    Google Scholar 
    Albani, A. et al. Activity budget, home range, and habitat use of moor macaques (Macaca maura) in the karst forest of South Sulawesi, Indonesia. Primates https://doi.org/10.1007/s10329-020-00811-8 (2020).Article 

    Google Scholar 
    Coleman, J. L. et al. Top 100 research questions for biodiversity conservation in Southeast Asia. Biol. Conserv. 234, 211–220 (2019).Article 

    Google Scholar 
    Thomas, D. C., Bour, A. & Ardi, W. H. Begonia of the Matarombeo karst, Southeast Sulawesi, Indonesia, including two new species. Gard. Bull. Singapore 70, 163–176 (2018).Article 

    Google Scholar 
    Galey, M. L., van der Ent, A., Iqbal, M. C. M. & Rajakaruna, N. Ultramafic geoecology of South and Southeast Asia. Bot. Stud. 58, 1–28 (2017).Article 

    Google Scholar 
    Rahbek, C. et al. Building mountain biodiversity: Geological and evolutionary processes. Science (80-.). 365, 1114–1119 (2019).Article 
    ADS 
    CAS 

    Google Scholar 
    Atmadja, R. S., J P Golightly & B N Wahju. View of Mafic and Ultramafic Rock Association in the East Arc of Sulawesi. In Proceedings ITB (1974).CBD. First Draft of the Post-2020 Global Biodiversity Framework. (2021).Noss, R. F. et al. Bolder thinking for conservation. Conserv. Biol. 26, 1–4 (2012).Article 

    Google Scholar 
    Soto-Navarro, C. et al. Mapping co-benefits for carbon storage and biodiversity to inform conservation policy and action. Philos. Trans. R. Soc. B Biol. Sci. 375, 128 (2020).Article 

    Google Scholar 
    MoEF (Ministry of Environment and Forestry of Indonesia). Rekalkulasi Penutupan Lahan (Land Cover Recalculation) Indonesia Tahun 2018. (2019).Grantham, H. S. et al. Anthropogenic modification of forests means only 40% of remaining forests have high ecosystem integrity. Nat. Commun. 11, 5978 (2020).Article 
    ADS 
    CAS 

    Google Scholar 
    Ardron, J. A., Possingham, H. P. & Klein, C. J. Marxan Good Practices Handbook, Version 2. Pacific Marine Analysis and Research Association 165 (2010).Zhang, X. & Vincent, A. C. J. Conservation prioritization for seahorses (Hippocampus spp.) at broad spatial scales considering socioeconomic costs. Biol. Conserv. 235, 79–88 (2019).Article 

    Google Scholar 
    Bingham, H. C. et al. User Manual for the World Database on Protected Areas and world database on other effective area- based conservation measures: 1 . 6 User Manual for the World Database on Protected Areas and world database on other effective area-. (2019).McHugh, M. L. Interrater reliability: The kappa statistic. Biochem. Med. 22, 276–282 (2012).Article 

    Google Scholar 
    CEPF. Wallacea Biodiversity Hotspot-Ecosystem profile. (CEPF, 2014).Johnson, C. L. et al. Using occupancy-based camera-trap surveys to assess the critically endangered primate Macaca Nigra across its range in North Sulawesi, Indonesia. Oryx https://doi.org/10.1017/S0030605319000851 (2020).Article 

    Google Scholar 
    Darbyshire, I. et al. Important Plant Areas: Revised selection criteria for a global approach to plant conservation. Biodivers. Conserv. 26, 1767–1800 (2017).Article 

    Google Scholar 
    Trethowan, L. A. et al. Metal-rich soils increase tropical tree stoichiometric distinctiveness. Plant Soil 461, 579–589 (2021).Article 
    CAS 

    Google Scholar 
    Trethowan, L. A. et al. Floristics of forests across low nutrient soils in Sulawesi, Indonesia. Biotropica 52, 1309–1318 (2020).Article 

    Google Scholar 
    Rustiami, H. & Henderson, A. A Synopsis of Calamus (Arecaceae) in Sulawesi. Reinwardtia 16, 49–63 (2017).Article 

    Google Scholar 
    MoEF Ditjen KSDAE. Statistik Direktorat Jenderal KSDAE 2017. (2018).Gunawan, H. & Sugiarti. Mekongga: Hidden Paradise of Sulawesi’s Biodiversity. (LIPI Press, 2014).Gunawan, H. & Sugiarti. Perlunya Penunjukan Kawasan Konservasi Baru Untuk Mengantisipasi Degradasi Keanekaragaman Hayati Akibat Perubahan RTWT dKawasan Wallacea (Lesson Learnt Inisiasi Pengusulan Taman Nasional Mekongga, Sulawesi Tenggara). BioWallacea J. Ilm. Ilmu Biol. 1, 122–133 (2015).Milner-Gulland, E. J. et al. Four steps for the earth: Mainstreaming the post-2020 global biodiversity framework. One Earth 2050, 75–87 (2021).Article 
    ADS 

    Google Scholar 
    IUCN-WCPA. Recognising and reporting other effective area-based conservation measures. (IUCN, International Union for Conservation of Nature, 2019). https://doi.org/10.2305/IUCN.CH.2019.PATRS.3.enAlvard, M. The potential for sustainable harvests by traditional wana hunters in morowali nature reserve, Central Sulawesi, Indonesia. Hum. Organ. 59, 428–440 (2000).Article 

    Google Scholar 
    Hilser, H. Collective stewardship and pathways to change: Understanding pro-social values, connectedness to nature and empathic capacity to cultivate ecocentrism in rural communities of North Sulawesi, Indonesia Harry Hilser, Ph.D. Human Geography. (University of Exeter, 2021).Hariandja, R. Pemetaan Wilayah Adat Lebih 20 Juta Hektar tetapi Pengakuan Minim, Mengapa? Mongabay (2022). https://www.mongabay.co.id/2022/09/03/peta-partisipatif-wilayah-adat-lebih-20-juta-tetapi-pengakuan-minim-mengapa/. (Accessed 23 Sep 2022)BRWA. Infografis Status Pengakuan Wilayah Adat di Indonesia. 6 (2022).BRWA. GIS-BRWA: Peta Wilayah Adat. Peta Interaktif (2022). https://www.brwa.or.id/sig/. (Accessed 23 Sep 2022)Carver, S. et al. Guiding principles for rewilding. Conserv. Biol. 35, 1882–1893 (2021).Article 

    Google Scholar 
    Jepson, P. & Blythe, C. Rewilding [electronic resource] / the radical new science of ecological recovery. (2020).Sheherazade, O. H. K. & Tsang, S. M. Contributions of bats to the local economy through durian pollination in Sulawesi, Indonesia. Biotropica 2, 1–10 (2019).
    Google Scholar  More

  • in

    Reply to: Plant traits alone are good predictors of ecosystem properties when used carefully

    Plant Ecology and Nature Conservation Group, Wageningen University, Wageningen, the NetherlandsFons van der Plas & Liesje MommerSystematic Botany and Functional Biodiversity, Life Science, Leipzig University, Leipzig, GermanyThomas Schröder-Georgi, Alexandra Weigelt, Kathryn Barry & Christian WirthGerman Centre for Integrative Biodiversity Research Halle-Jena-Leipzig, Leipzig, GermanyAlexandra Weigelt, Kathryn Barry, Adriana Alzate, Nico Eisenhauer, Anke Hildebrandt, Christiane Roscher & Christian WirthTerrestrial Ecology Research Group, School of Life Sciences Weihenstephan, Technical University of Munich, Munich, GermanySebastian Meyer & Wolfgang WeisserAquaculture and Fisheries Group, Wageningen University and Research Centre, Wageningen, the NetherlandsAdriana AlzateAgroécologie, AgroSup Dijon, Institut National de la Recherche Agronomique, Université de Bourgogne, Université de Bourgogne Franche-Comté, Dijon, FranceRomain L. BarnardEidgenössische Technische Hochschule Zürich, Zurich, SwitzerlandNina BuchmannDepartment of Experimental Plant Ecology, Institute for Water and Wetland Research, Radboud University Nijmegen, Nijmegen, the NetherlandsHans de KroonInstitute of Ecology and Evolution, University Jena, Jena, GermanyAnne Ebeling & Winfried VoigtInstitute of Biology, Leipzig University, Leipzig, GermanyNico EisenhauerHumboldt-Universität zu Berlin, Berlin, GermanyChristof EngelsInstitute of Plant Sciences, University of Bern, Bern, SwitzerlandMarkus FischerMax Planck Institute for Biogeochemistry, Jena, GermanyGerd Gleixner, Ernst-Detlef Schulze & Christian WirthHelmholtz Centre for Environmental Research, Leipzig, GermanyAnke HildebrandtFriedrich Schiller University Jena, Jena, GermanyAnke HildebrandtGeoecology, University of Tübingen, Tübingen, GermanyEva Koller-France & Yvonne OelmannInstitute of Geography and Geoecology, Karlsruhe Institute of Technology, Karlsruhe, GermanySophia Leimer & Wolfgang WilckeEcotron Européen de Montpellier, Centre National de la Recherche Scientifique, Montferrier-sur-Lez, FranceAlexandru MilcuCentre d’Ecologie Fonctionnelle et Evolutive, Unité Mixte de Recherche 5175 (Centre National de la Recherche Scientifique-Université de Montpellier-Université Paul-Valéry Montpellier-Ecole Pratique des Hautes Etudes), Montpellier, FranceAlexandru MilcuDepartment of Evolutionary Biology and Environmental Studies, University of Zurich, Zurich, SwitzerlandPascal A. NiklausUFZ, Helmholtz Centre for Environmental Research, Department Physiological Diversity, Leipzig, GermanyChristiane RoscherInstitute of Landscape Ecology, University of Münster, Münster, GermanyChristoph ScherberCentre for Biodiversity Monitoring, Zoological Research Museum Alexander Koenig, Bonn, GermanyChristoph ScherberGeobotany, Faculty of Biology, University of Freiburg, Freiburg, GermanyMichael Scherer-LorenzenCentre of Biodiversity and Sustainable Land Use, University of Göttingen, Göttingen, GermanyStefan ScheuJ.F. Blumenbach Institute of Zoology and Anthropology, Animal Ecology, University of Göttingen, Göttingen, GermanyStefan ScheuDepartment of Geography, University of Zurich, Zurich, SwitzerlandBernhard SchmidInstitute of Ecology, College of Urban and Environmental Sciences, Peking University, Beijing, ChinaBernhard SchmidLeuphana University Lüneburg, Institute of Ecology, Lüneburg, GermanyVicky TempertonAgroecology, Department of Crop Sciences, University of Göttingen, Göttingen, GermanyTeja TscharntkeF.v.d.P. wrote the initial draft of the manuscript. T.S.-G., A.W., K.B., S.M., A.A., R.L.B., N.B., H.d.K., A.E., N.E., C.E., M.F., G.G., A.H., E.K.-F., S.L., A.M., L.M., P.A.N., Y.O., C.R., C.S., M.S.-L., S.S., B.S., E.-D.S., V.T., T.T., W.V., W. Weisser, W. Wilcke and C.W. helped edit the manuscript. More

  • in

    Landscape management strategies for multifunctionality and social equity

    The Global Assessment Report on Biodiversity and Ecosystem Services: Summary for Policy-Makers (IPBES, 2019)DeFries, R. & Nagendra, H. Ecosystem management as a wicked problem. Science 356, 265–270 (2017).Article 
    CAS 

    Google Scholar 
    Turkelboom, F. et al. When we cannot have it all: ecosystem services trade-offs in the context of spatial planning. Ecosyst. Serv. 29, 566–578 (2018).Article 

    Google Scholar 
    Lee, H. & Lautenbach, S. A quantitative review of relationships between ecosystem services. Ecol. Indic. 66, 340–351 (2016).Article 

    Google Scholar 
    Bennett, E. M., Peterson, G. D. & Gordon, L. J. Understanding relationships among multiple ecosystem services. Ecol. Lett. 12, 1394–1404 (2009).Article 

    Google Scholar 
    Goldstein, J. H. et al. Integrating ecosystem-service tradeoffs into land-use decisions. Proc. Natl Acad. Sci. USA 109, 7565–7570 (2012).Article 
    CAS 

    Google Scholar 
    Vallet, A., Locatelli, B. & Pramova, E. Ecosystem Services and Social Equity: Who Controls, Who Benefits and Who Loses? (CIFOR, 2020); https://doi.org/10.17528/cifor/007849Neyret, M. et al. Assessing the impact of grassland management on landscape multifunctionality. Ecosyst. Serv. 52, 101366 (2021).Linders, T. E. W. et al. Stakeholder priorities determine the impact of an alien tree invasion on ecosystem multifunctionality. People Nat. 3, 658–672 (2021).Article 

    Google Scholar 
    Herzig, A., Ausseil, A.-G. & Dymond, J. in Ecosystem Services in New Zealand—Conditions and Trends (ed. Dymond, J. R.) 511–523 (Manaaki Whenua Press, 2014).Chan, K. M. A., Shaw, M. R., Cameron, D. R., Underwood, E. C. & Daily, G. C. Conservation planning for ecosystem services. PLoS Biol. 4, e379 (2006).Article 

    Google Scholar 
    Pennington, D. N. et al. Cost-effective land use planning: optimizing land use and land management patterns to maximize social benefits. Ecol. Econ. 139, 75–90 (2017).Article 

    Google Scholar 
    Hölting, L. et al. Including stakeholders’ perspectives on ecosystem services in multifunctionality assessments. Ecosyst. People 16, 354–368 (2020).Article 

    Google Scholar 
    Plieninger, T. et al. Exploring futures of ecosystem services in cultural landscapes through participatory scenario development in the Swabian Alb, Germany. Ecol. Soc. 18, 39 (2013).Article 

    Google Scholar 
    Tasser, E., Schirpke, U., Zoderer, B. M. & Tappeiner, U. Towards an integrative assessment of land-use type values from the perspective of ecosystem services. Ecosyst. Serv. 42, 101082 (2020).Article 

    Google Scholar 
    Sayer, J. et al. Ten principles for a landscape approach to reconciling agriculture, conservation, and other competing land uses. Proc. Natl Acad. Sci. USA 110, 8349–8356 (2013).Article 
    CAS 

    Google Scholar 
    Vallet, A. et al. Linking equity, power, and stakeholders: roles in relation to ecosystem services. Ecol. Soc. 24, 14 (2019).Article 

    Google Scholar 
    Allan, E. et al. Land use intensification alters ecosystem multifunctionality via loss of biodiversity and changes to functional composition. Ecol. Lett. 18, 834–843 (2015).Article 

    Google Scholar 
    Hector, A. & Bagchi, R. Biodiversity and ecosystem multifunctionality. Nature 448, 188–190 (2007).Article 
    CAS 

    Google Scholar 
    Manning, P. et al. Redefining ecosystem multifunctionality. Nat. Ecol. Evol. 2, 427–436 (2018).Article 

    Google Scholar 
    Raudsepp-Hearne, C., Peterson, G. D. & Bennett, E. M. Ecosystem service bundles for analyzing tradeoffs in diverse landscapes. Proc. Natl Acad. Sci. USA 107, 5242–5247 (2010).Article 
    CAS 

    Google Scholar 
    Daniel, T. C. et al. Contributions of cultural services to the ecosystem services agenda. Proc. Natl Acad. Sci. USA 109, 8812–8819 (2012).Article 
    CAS 

    Google Scholar 
    Gunton, R. M. et al. Beyond ecosystem services: valuing the invaluable. Trends Ecol. Evol. 32, 249–257 (2017).Article 

    Google Scholar 
    Peter, S., Le Provost, G., Mehring, M., Müller, T. & Manning, P. Cultural worldviews consistently explain bundles of ecosystem service prioritisation across rural Germany. People Nat. 4, 218–230 (2022).Article 

    Google Scholar 
    Haines-Young, R. & Potschin, M. in Ecosystem Ecology (eds Raffaelli, D. G. & Frid, C. L. J.) 110–139 (Cambridge Univ. Press, 2010).Fischer, M. et al. Implementing large-scale and long-term functional biodiversity research: the Biodiversity Exploratories. Basic Appl. Ecol. 11, 473–485 (2010).Article 

    Google Scholar 
    Wilson, E. O. Half-Earth: Our Planet’s Fight for Life (Norton, 2017).Bastin, J.-F. et al. The global tree restoration potential. Science 365, 76–79 (2019).Article 
    CAS 

    Google Scholar 
    Clapp, J. & Moseley, W. G. This food crisis is different: COVID-19 and the fragility of the neoliberal food security order. J. Peasant Stud. 47, 1393–1417 (2020).Article 

    Google Scholar 
    Kirwan, J. & Maye, D. Food security framings within the UK and the integration of local food systems. J. Rural Stud. 29, 91–100 (2013).Article 

    Google Scholar 
    Ellis, E. C. To conserve nature in the Anthropocene, half Earth is not nearly enough. One Earth 1, 163–167 (2019).Article 

    Google Scholar 
    Boetzl, F. A. et al. A multitaxa assessment of the effectiveness of agri-environmental schemes for biodiversity management. Proc. Natl Acad. Sci. USA 118, e2016038118 (2021).Tyllianakis, E. & Martin-Ortega, J. Agri-environmental schemes for biodiversity and environmental protection: how we are not yet ‘hitting the right keys’. Land Use Policy 109, 105620 (2021).Article 

    Google Scholar 
    Arroyo-Rodríguez, V. et al. Designing optimal human-modified landscapes for forest biodiversity conservation. Ecol. Lett. 23, 1404–1420 (2020).Article 

    Google Scholar 
    Gilroy, J. J. et al. Cheap carbon and biodiversity co-benefits from forest regeneration in a hotspot of endemism. Nat. Clim. Change 4, 503–507 (2014).Article 

    Google Scholar 
    Lindenmayer, D. B. et al. Avoiding bio-perversity from carbon sequestration solutions: avoiding bio-perversity in carbon markets. Conserv. Lett. 5, 28–36 (2012).Article 

    Google Scholar 
    Stoll-Kleemann, S. & O’Riordan, T. in The Encyclopedia of the Anthropocene Vol. 3 (eds DellaSala, D. A. & Goldstein, M. I.) 347–353 (Elsevier, 2018).Schaich, H., Bieling, C. & Plieninger, T. Linking ecosystem services with cultural landscape research. GAIA 19, 269–277 (2010).Article 

    Google Scholar 
    O’Connor, L. M. J. et al. Balancing conservation priorities for nature and for people in Europe. Science 372, 856–860 (2021).Article 

    Google Scholar 
    Büscher, B. et al. Half-Earth or Whole Earth? Radical ideas for conservation, and their implications. Oryx 51, 407–410 (2017).Article 

    Google Scholar 
    van der Plas, F. et al. Towards the development of general rules describing landscape heterogeneity–multifunctionality relationships. J. Appl. Ecol. 56, 168–179 (2019).Article 

    Google Scholar 
    Almeida, I., Rösch, C. & Saha, S. Converting monospecific into mixed forests: stakeholders’ views on ecosystem services in the Black Forest Region. Ecol. Soc. 26, 28 (2021).Meyer, M. A. & Früh-Müller, A. Patterns and drivers of recent agricultural land-use change in southern Germany. Land Use Policy 99, 104959 (2020).Article 

    Google Scholar 
    Kastner, T. et al. Global agricultural trade and land system sustainability: implications for ecosystem carbon storage, biodiversity, and human nutrition. One Earth 4, 1425–1443 (2021).Rasmussen, L. V. et al. Social–ecological outcomes of agricultural intensification. Nat. Sustain. 1, 275–282 (2018).Article 

    Google Scholar 
    Lindborg, R. et al. How spatial scale shapes the generation and management of multiple ecosystem services. Ecosphere 8, e01741 (2017).Article 

    Google Scholar 
    Duarte, G. T., Santos, P. M., Cornelissen, T. G., Ribeiro, M. C. & Paglia, A. P. The effects of landscape patterns on ecosystem services: meta-analyses of landscape services. Landsc. Ecol. 33, 1247–1257 (2018).Article 

    Google Scholar 
    Le Provost, G. et al. The supply of multiple ecosystem services requires biodiversity across spatial scales. Nat. Ecol. Evol. https://doi.org/10.1038/s41559-022-01918-5 (2022).Martin, D. A. et al. Land-use trajectories for sustainable land system transformations: identifying leverage points in a global biodiversity hotspot. Proc. Natl Acad. Sci. USA 119, e2107747119 (2022).Article 
    CAS 

    Google Scholar 
    Seabloom, E. W., Borer, E. T. & Tilman, D. Grassland ecosystem recovery after soil disturbance depends on nutrient supply rate. Ecol. Lett. 23, 1756–1765 (2020).Article 

    Google Scholar 
    Messinger, J. & Winterbottom, B. African forest landscape restoration initiative (AFR100): restoring 100 million hectares of degraded and deforested land in Africa. Nat. Faune 30, 14–17 (2016).
    Google Scholar 
    Whittingham, M. J. The future of agri-environment schemes: biodiversity gains and ecosystem service delivery? J. Appl. Ecol. 48, 509–513 (2011).Article 

    Google Scholar 
    Le Clec’h, S. et al. Assessment of spatial variability of multiple ecosystem services in grasslands of different intensities. J. Environ. Manage. 251, 109372 (2019).Article 

    Google Scholar 
    Forschungsethische Grundsätze und Prüfverfahren in den Sozial‐ und Wirtschaftswissenschaften Output 9, Berufungsperiode 5 (German Data Forum, 2017).Strukturdaten Reutlingen—Statistisches Bundesamt (Bundeswahlleiter, 2020); https://www.bundeswahlleiter.de/europawahlen/2019/strukturdaten/bund-99/land-8/kreis-8415.htmlStrukturdaten Uckermark—Statistisches Bundesamt (Bundeswahlleiter, 2020); https://www.bundeswahlleiter.de/europawahlen/2019/strukturdaten/bund-99/land-12/kreis-12073.htmlStrukturdaten Unstrut-Hainich-Kreis—Statistisches Bundesamt (Bundeswahlleiter, 2020); https://www.bundeswahlleiter.de/europawahlen/2019/strukturdaten/bund-99/land-16/kreis-16064.htmlBlüthgen, N. et al. A quantitative index of land-use intensity in grasslands: integrating mowing, grazing and fertilization. Basic Appl. Ecol. 13, 207–220 (2012).Article 

    Google Scholar 
    Ostrowski, A., Lorenzen, K., Petzold, E. & Schindler, S. Land use intensity index (LUI) calculation tool of the Biodiversity Exploratories project for grassland survey data from three different regions in Germany since 2006, BEXIS 2 module. Zenodo https://doi.org/10.5281/zenodo.3865579 (2020).Schall, P. et al. The impact of even‐aged and uneven‐aged forest management on regional biodiversity of multiple taxa in European beech forests. J. Ecol. 55, 267–278 (2018).Statistisches Jahrbuch über Ernährung, Landwirtschaft und Forsten der Bundesrepublik Deutschland Vol. 63 (Bundesministerium für Ernährung und Landwirtschaft, 2019).Simons, N. K. & Weisser, W. W. Agricultural intensification without biodiversity loss is possible in grassland landscapes. Nat. Ecol. Evol. https://doi.org/10.1038/s41559-017-0227-2 (2017).Zinke, O. Heupreise steigen: Futter für die Bauern knapp und teuer. Agrarheute https://www.agrarheute.com/markt/futtermittel/heupreise-steigen-futter-fuer-bauern-knapp-teuer-571946 (2020).Bois de Chez Nous (Lignum, 2021); https://www.lignum.ch/files/images/Downloads_francais/Shop/20010_Bois_de_chez_nous.pdfGerman Timber Company—Internationaler Holzhandel (German Timber Company, 2021); https://www.germantimber.company/. Accessed 2021-11-24Holzeinschlag nach Holzartengruppen, Holzsorten, ausgewählten Besitzarten (Statistisches Bundesamt, 2022); https://www.destatis.de/DE/Themen/Branchen-Unternehmen/Landwirtschaft-Forstwirtschaft-Fischerei/Wald-Holz/Tabellen/holzeinschlag-deutschland.htmlJahresjagdstrecke Bundesrepublik Deutschland, 2019–2020 (Deutsche Jagdverband, 2020); https://www.jagdverband.de/sites/default/files/2021-01/2021-01_Infografik_Jahresjagdstrecke_Bundesrepublik_Deutschland_2019_2020.jpgHeinze, E. et al. Habitat use of large ungulates in northeastern Germany in relation to forest management. For. Ecol. Manage. 261, 288–296 (2011).Article 

    Google Scholar 
    Conant, R. T., Cerri, C. E. P., Osborne, B. B. & Paustian, K. Grassland management impacts on soil carbon stocks: a new synthesis. Ecol. Appl. 27, 662–668 (2017).Article 

    Google Scholar 
    Hermes, J., Albert, C. & von Haaren, C. Mapping and Assessing Local Recreation as a Cultural Ecosystem Service in Germany. UVP-Report https://doi.org/10.17442/uvp-report.034.08 (2020).Hermes, J., Albert, C. & von Haaren, C. Assessing the aesthetic quality of landscapes in Germany. Ecosyst. Serv. 31, 296–307 (2018).Article 

    Google Scholar 
    Ehrhart, S. & Schraml, U. Perception and evaluation of natural forest dynamics. Allg. Forst Jagdztg. 185, 166–183 (2014).
    Google Scholar 
    Villanueva-Rivera, L. J. & Pijanowski, B. C. soundecology: Soundscape ecology. R package version 1.3.3 (2018).Meyer, S., Wesche, K., Krause, B. & Leuschner, C. Dramatic losses of specialist arable plants in central Germany since the 1950s/60s—a cross-regional analysis. Divers. Distrib. 19, 1175–1187 (2013).Article 

    Google Scholar 
    Sasaki, K., Hotes, S., Kadoya, T., Yoshioka, A. & Wolters, V. Landscape associations of farmland bird diversity in Germany and Japan. Glob. Ecol. Conserv. 21, e00891 (2020).Article 

    Google Scholar 
    Peña, L., Casado-Arzuaga, I. & Onaindia, M. Mapping recreation supply and demand using an ecological and a social evaluation approach. Ecosyst. Serv. 13, 108–118 (2015).Article 

    Google Scholar 
    Schägner, J. P., Brander, L., Paracchini, M.-L., Hartje, V. & Maes, J. Mapping recreational ecosystem services and its values across Europe: a combination of GIS and meta-analysis. In European Association of Environmental and Resource Economists 22nd Annual Conference (2016).R Core Team. R: A Language and Environment for Statistical Computing v.4.2.1 (R Foundation for Statistical Computing, 2022).Rust Programming Language https://www.rust-lang.org/ v 1.44Le Provost, G. et al. Contrasting responses of above- and belowground diversity to multiple components of land-use intensity. Nat. Commun. 12, 3918 (2021).Article 

    Google Scholar 
    Gini, C. On the measurement of concentration and variability of characters (English translation from Italian by Fulvio de Santis in 2005). Metron 63, 1–38 (1914). More