More stories

  • in

    Investigating metropolitan change through mathematical morphology and a dynamic factor analysis of structural and functional land-use indicators

    Alphan, H. Land use change and urbanisation of Adana, Turkey. Land Degrad. Dev. 14, 575–586 (2003).Article 

    Google Scholar 
    Catalàn, B., Sauri, D. & Serra, P. Urban sprawl in the Mediterranean? Patterns of growth and change in the Barcelona Metropolitan Region 1993–2000. Landsc. Urban Plan. 85(3–4), 174–184 (2008).
    Google Scholar 
    Chen, K., Long, H., Liao, L., Tu, S. & Li, T. Land use transitions and urban-rural integrated development: Theoretical framework and China’s evidence. Land Use Policy 92, 104465 (2020).Article 

    Google Scholar 
    Bianchini, L. et al. Forest transition and metropolitan transformations in developed countries: Interpreting apparent and latent dynamics with local regression models. Land 11(1), 12 (2021).Article 

    Google Scholar 
    Angel, S., Parent, J., Civco, D. L., Blei, A. & Potere, D. The dimensions of global urban expansion: Estimates and projections for all countries, 2000–2050. Prog. Plan. 75(2), 53–107 (2011).Article 

    Google Scholar 
    Fischer, A. P. Forest landscapes as social-ecological systems and implications for management. Landsc. Urban Plan. 177, 138–147 (2018).Article 

    Google Scholar 
    Darvishi, A., Yousefi, M. & Marull, J. Modelling landscape ecological assessments of land use and cover change scenarios. Application to the Bojnourd Metropolitan Area (NE Iran). Land Use Policy 99, 105098 (2020).Article 

    Google Scholar 
    Cheng, L. L., Tian, C. & Yin, T. T. Identifying driving factors of urban land expansion using Google earth engine and machine-learning approaches in Mentougou District, China. Sci. Rep. 12(1), 1–13 (2022).Article 
    CAS 

    Google Scholar 
    Kasanko, M. et al. Are European Cities becoming dispersed? A comparative analysis of fifteen European urban areas. Landsc. Urban Plan. 77(1–2), 111–130 (2006).Article 

    Google Scholar 
    Terzi, F. & Bolen, F. Urban sprawl measurement of Istanbul. Eur. Plan. Stud. 17(10), 1559–1570 (2009).Article 

    Google Scholar 
    Angel, S., Parent, J. & Civco, D. L. Ten compactness properties of circles: measuring shape in geography. Can. Geogr. 54, 441–461 (2010).Article 

    Google Scholar 
    Salvati, L., Gemmiti, R. & Perini, L. Land degradation in Mediterranean urban areas: An unexplored link with planning?. Area 44(3), 317–325 (2012).Article 

    Google Scholar 
    Attorre, F., Bruno, M., Francesconi, F., Valenti, R. & Bruno, F. Landscape changes of Rome through tree-lined roads. Landsc. Urban Plan. 49, 115–128 (2000).Article 

    Google Scholar 
    Turok, I. & Mykhnenko, V. The trajectories of European cities, 1960–2005. Cities 24(3), 165–182 (2007).Article 

    Google Scholar 
    Ioannidis, C., Psaltis, C. & Potsiou, C. Towards a strategy for control of suburban informal buildings through automatic change detection. Comput. Environ. Urban Syst. 33, 64–74 (2009).Article 

    Google Scholar 
    Grekousis, G., Manetos, P. & Photis, Y. N. Modeling urban evolution using neural networks, fuzzy logic and GIS: The case of the athens metropolitan area. Cities 30, 193–203 (2013).Article 

    Google Scholar 
    Salvati, L. Towards a polycentric region? The socioeconomic trajectory of Rome, an ‘Eternally Mediterranean’ city. Tijdschr. Econ. Soc. Geogr. 105(3), 268–284 (2014).Article 

    Google Scholar 
    Chorianopoulos, I., Pagonis, T., Koukoulas, S. & Drymoniti, S. Planning, competitiveness and sprawl in the Mediterranean city: The case of Athens. Cities 27, 249–259 (2010).Article 

    Google Scholar 
    Munafò, M., Salvati, L. & Zitti, M. Estimating soil sealing rate at national level—Italy as a case study. Ecol. Ind. 26, 137–140 (2013).Article 

    Google Scholar 
    Morelli, V. G., Rontos, K. & Salvati, L. Between suburbanisation and re-urbanisation: Revisiting the urban life cycle in a Mediterranean compact city. Urban Res. Pract. 7(1), 74–88 (2014).Article 

    Google Scholar 
    Basem Ajjur, S. & Al-Ghamdi, S. G. Exploring urban growth–climate change–flood risk nexus in fast growing cities. Sci. Rep. 12, 12265 (2022).Article 
    ADS 

    Google Scholar 
    Li, H. & Wu, J. Use and misuse of landscape indices. Landsc. Ecol. 19, 389–399 (2004).Article 

    Google Scholar 
    Salvati, L. Agro-forest landscape and the ‘fringe’city: A multivariate assessment of land-use changes in a sprawling region and implications for planning. Sci. Total Environ. 490, 715–723 (2014).Article 
    ADS 
    CAS 

    Google Scholar 
    Sang, X. et al. Intensity and stationarity analysis of land use change based on CART algorithm. Sci. Rep. 9(1), 1–12 (2019).Article 
    ADS 
    CAS 

    Google Scholar 
    Ettehadi Osgouei, P., Sertel, E. & Kabadayı, M. E. Integrated usage of historical geospatial data and modern satellite images reveal long-term land use/cover changes in Bursa/Turkey, 1858–2020. Sci. Rep. 12(1), 1–17 (2022).Article 

    Google Scholar 
    He, S., Yu, S., Li, G. & Zhang, J. Exploring the influence of urban form on land-use efficiency from a spatiotemporal heterogeneity perspective: Evidence from 336 Chinese cities. Land Use Policy 95, 104576 (2020).Article 

    Google Scholar 
    Bockarjova, M., Wouter Botzen, W. J., Bulkeley, H. A. & Toxopeus, H. Estimating the social value of nature-based solutions in European cities. Sci. Rep. 12, 19833 (2022).Article 
    ADS 
    CAS 

    Google Scholar 
    Liu, J. & Niyogi, D. Meta-analysis of urbanisation impact on rainfall modification. Sci. Rep. 9(1), 1–14 (2019).ADS 

    Google Scholar 
    Holland, J. H. Studying complex adaptive systems. J. Syst. Sci. Complex. 19(1), 1–8 (2006).Article 
    MathSciNet 
    MATH 

    Google Scholar 
    Salvati, L. & Serra, P. Estimating rapidity of change in complex urban systems: A multidimensional, local-scale approach. Geogr. Anal. 48(2), 132–156 (2016).Article 

    Google Scholar 
    Bura, S., Guerin-Pace, F., Mathian, H., Pumain, D. & Sanders, L. Multi-agents systems and the dynamics of a settlement system. Geogr. Anal. 28(2), 161–178 (1996).Article 

    Google Scholar 
    Hasse, J. E. & Lathrop, R. G. Land resource impact indicators of urban sprawl. Appl. Geogr. 23, 159–175 (2003).Article 

    Google Scholar 
    Grafius, D. R., Corstanje, R. & Harris, J. A. Linking ecosystem services, urban form and green space configuration using multivariate landscape metric analysis. Landsc. Ecol. 33(4), 557–573 (2018).Article 

    Google Scholar 
    Pumain, D. Hierarchy in Natural and Social Sciences (Kluwer-Springer, 2005).
    Google Scholar 
    Cabral, P., Augusto, G., Tewolde, M. & Araya, Y. Entropy in urban systems. Entropy 15(12), 5223–5236 (2013).Article 
    ADS 

    Google Scholar 
    Salvati, L. & Carlucci, M. In-between stability and subtle changes: Urban growth, population structure, and the city life cycle in Rome. Popul. Space Place 22(3), 216–227 (2016).Article 

    Google Scholar 
    Batty, M. & Longley, P. Fractal Cities (Academic Press, 1994).MATH 

    Google Scholar 
    Berry, B. J. L. Cities as systems within systems of cities. Pap. Reg. Sci. 13, 147–163 (2005).Article 

    Google Scholar 
    Petrosillo, I. et al. The resilient recurrent behavior of mediterranean semi-arid complex adaptive landscapes. Land 10(3), 296 (2021).Article 

    Google Scholar 
    Portugali, J. Complexity, Cognition and the City, Understanding Complex Systems (Springer, 2011).Book 

    Google Scholar 
    Wu, J., Jenerette, G. D., Buyantuyev, A. & Redman, C. L. Quantifying spatiotemporal patterns of urbanisation: The case of the two fastest growing metropolitan regions in the United States. Ecol. Complex. 8(1), 1–8 (2011).Article 

    Google Scholar 
    Sun, Y., Gao, C., Li, J., Li, W. & Ma, R. Examining urban thermal environment dynamics and relations to biophysical composition and configuration and socioeconomic factors: A case study of the Shanghai metropolitan region. Sustain. Cities Soc. 40, 284–295 (2018).Article 

    Google Scholar 
    Phillips, M. A. & Ritala, P. A complex adaptive systems agenda for ecosystem research methodology. Technol. Forecast. Soc. Change 148, 119739 (2019).Article 

    Google Scholar 
    Walker, B., Holling, C. S., Carpenter, S. R. & Kinzig, A. Resilience, adaptability and transformability in social-ecological systems. Ecol. Soc. 9(2), 5 (2004).Article 

    Google Scholar 
    Kelly, C. et al. Community resilience and land degradation in forest and shrublandsocio-ecological systems: A case study in Gorgoglione, Basilicata regionn, Italy. Land Use Policy 46, 11–20 (2015).Article 

    Google Scholar 
    Preiser, R., Biggs, R., De Vos, A. & Folke, C. Social-ecological systems as complex adaptive systems. Ecol. Soc. 23(4), 46 (2018).Article 

    Google Scholar 
    Ferrara, A. et al. Shaping the role of ‘fast’ and ‘slow’ drivers of change in forest-shrubland socio-ecological systems. J. Environ. Manag. 169, 155–166 (2016).Article 

    Google Scholar 
    Lamy, T., Liss, K. N., Gonzalez, A. & Bennett, E. M. Landscape structure affects the provision of multiple ecosystem services. Environ. Res. Lett. 11(12), 124017 (2016).Article 
    ADS 

    Google Scholar 
    Riitters, K. H., Vogt, P., Soille, P., Kozak, J. & Estreguil, C. Neutral model analysis of landscape patterns from mathematical morphology. Landsc. Ecol. 22(7), 1033–1043 (2007).Article 

    Google Scholar 
    Riitters, K., Vogt, P., Soille, P. & Estreguil, C. Landscape patterns from mathematical morphology on maps with contagion. Landsc. Ecol. 24(5), 699–709 (2009).Article 

    Google Scholar 
    Anas, A., Arnott, R. & Small, K. Urban spatial structure. J. Econ. Lit. 36(3), 1426–1464 (1998).
    Google Scholar 
    Arroyo-Mora, J. P., Sánchez-Azofeifa, G. A., Rivard, B., Calvo, J. C. & Janzen, D. H. Dynamics in landscape structure and composition for the Chorotega region, Costa Rica from 1960 to 2000. Agr. Ecosyst. Environ. 106(1), 27–39 (2005).Article 

    Google Scholar 
    Siles, G., Charland, A., Voirin, Y. & Bénié, G. B. Integration of landscape and structure indicators into a web-based geoinformation system for assessing wetlands status. Eco. Inform. 52, 166–176 (2019).Article 

    Google Scholar 
    Soille, P. Morphological Image Analysis: Principles and Applications (Springer, 2003).MATH 

    Google Scholar 
    Soille, P. & Vogt, P. Morphological segmentation of binary patterns. Pattern Recogn. Lett. 30, 456–459 (2009).Article 
    ADS 

    Google Scholar 
    Vogt, P. et al. Mapping spatial patterns with morphological image processing. Landsc. Ecol. 22(2), 171–177 (2007).Article 

    Google Scholar 
    Bajocco, S., Ceccarelli, T., Smiraglia, D., Salvati, L. & Ricotta, C. Modeling the ecological niche of long-term land use changes: The role of biophysical factors. Ecol. Ind. 60, 231–236 (2016).Article 

    Google Scholar 
    Yin, Y., Zhou, K. & Chen, Y. Deconstructing the driving factors of land development intensity from multi-scale in differentiated functional zones. Sci. Rep. 12(1), 1–13 (2022).Article 

    Google Scholar 
    Duvernoy, I., Zambon, I., Sateriano, A. & Salvati, L. Pictures from the other side of the fringe: Urban growth and peri-urban agriculture in a post-industrial city (Toulouse, France). J. Rural. Stud. 57, 25–35 (2018).Article 

    Google Scholar 
    Smiraglia, D., Ceccarelli, T., Bajocco, S., Salvati, L. & Perini, L. Linking trajectories of land change, land degradation processes and ecosystem services. Environ. Res. 147, 590–600 (2016).Article 
    CAS 

    Google Scholar 
    Shaker, R. R. Examining sustainable landscape function across the Republic of Moldova. Habitat Int. 72, 77–91 (2018).Article 
    ADS 

    Google Scholar 
    Zheng, H. & Li, H. Spatial–temporal evolution characteristics of land use and habitat quality in Shandong Province, China. Sci. Rep. 12(1), 1–12 (2022).Article 

    Google Scholar 
    Tombolini, I., Munafò, M. & Salvati, L. Soil sealing footprint as an indicator of dispersed urban growth: A multivariate statistics approach. Urban Res. Pract. 9(1), 1–15 (2016).Article 

    Google Scholar 
    Salvati, L., Sateriano, A., Grigoriadis, E. & Carlucci, M. New wine in old bottles: The (changing) socioeconomic attributes of sprawl during building boom and stagnation. Ecol. Econ. 131, 361–372 (2017).Article 

    Google Scholar 
    Zambon, I., Benedetti, A., Ferrara, C. & Salvati, L. Soil matters? A multivariate analysis of socioeconomic constraints to urban expansion in Mediterranean Europe. Ecol. Econ. 146, 173–183 (2018).Article 

    Google Scholar 
    Paul, V. & Tonts, M. Containing urban sprawl: Trends in land use and spatial planning in the Metropolitan Region of Barcelona. J. Environ. Plann. Manag. 48(1), 7–35 (2005).Article 

    Google Scholar 
    Serra, P., Vera, A., Tulla, A. F. & Salvati, L. Beyond urban–rural dichotomy: Exploring socioeconomic and land-use processes of change in Spain (1991–2011). Appl. Geogr. 55, 71–81 (2014).Article 

    Google Scholar 
    Seifollahi-Aghmiuni, S., Kalantari, Z., Egidi, G., Gaburova, L. & Salvati, L. Urbanisation-driven land degradation and socioeconomic challenges in peri-urban areas: Insights from Southern Europe. Ambio 51(6), 1446–1458 (2022).Article 

    Google Scholar 
    Pili, S., Grigoriadis, E., Carlucci, M., Clemente, M. & Salvati, L. Towards sustainable growth? A multi-criteria assessment of (changing) urban forms. Ecol. Ind. 76, 71–80 (2017).Article 

    Google Scholar 
    Salvati, L., Sateriano, A. & Grigoriadis, E. Crisis and the city: Profiling urban growth under economic expansion and stagnation. Lett. Spat. Resour. Sci. 9(3), 329–342 (2016).Article 

    Google Scholar 
    Champion, T. & Hugo, G. New Forms of Urbanisation: Beyond the Urban-Rural Dichotomy (Ashgate, 2004).
    Google Scholar 
    Frondoni, R., Mollo, B. & Capotorti, G. A landscape analysis of land cover change in the municipality of Rome (Italy): Spatio-temporal characteristics and ecological implications of land cover transitions from 1954 to 2001. Landsc. Urban Plan. 100(1–2), 117–128 (2011).Article 

    Google Scholar 
    Perrin, C., Nougarèdes, B., Sini, L., Branduini, P. & Salvati, L. Governance changes in peri-urban farmland protection following decentralisation: A comparison between Montpellier (France) and Rome (Italy). Land Use Policy 70, 535–546 (2018).Article 

    Google Scholar 
    Salvati, L. Monitoring high-quality soil consumption driven by urban pressure in a growing city (Rome, Italy). Cities 31, 349–356 (2013).Article 

    Google Scholar 
    Salvati, L., Ciommi, M. T., Serra, P. & Chelli, F. M. Exploring the spatial structure of housing prices under economic expansion and stagnation: The role of socio-demographic factors in metropolitan Rome, Italy. Land Use Policy 81, 143–152 (2019).Article 

    Google Scholar 
    Ferrara, C., Salvati, L. & Tombolini, I. An integrated evaluation of soil resource depletion from diachronic settlement maps and soil cartography in peri-urban Rome, Italy. Geoderma 232, 394–405 (2014).Article 
    ADS 

    Google Scholar 
    Egidi, G. & Salvati, L. Beyond the suburban-urban divide: Convergence in age structures in metropolitan Rome, Italy. J. Popul. Soc. Stud. 28(2), 130–142 (2020).Article 

    Google Scholar 
    Pili, S., Serra, P. & Salvati, L. Landscape and the city: Agro-forest systems, land fragmentation and the ecological network in Rome, Italy. Urban For. Urban Green. 41, 230–237 (2019).Article 

    Google Scholar 
    European Environment Agency. Urban Sprawl in Europe – The Ignored Challenge. Copenhagen: EEA Report no. 10 (2006).Park, S., Hepcan, Ç. C., Hepcan, Ş & Cook, E. A. Influence of urban form on landscape pattern and connectivity in metropolitan regions: a comparative case study of Phoenix, AZ, USA, and Izmir, Turkey. Environ. Monit. Assess. 186(10), 6301–6318 (2014).Article 

    Google Scholar 
    Luo, F., Liu, Y., Peng, J. & Wu, J. Assessing urban landscape ecological risk through an adaptive cycle framework. Landsc. Urban Plan. 180, 125–134 (2018).Article 

    Google Scholar 
    Ortega, M., Pascual, S., Elena-Rosselló, R. & Rescia, A. J. Land-use and spatial resilience changes in the Spanish olive socio-ecological landscape. Appl. Geogr. 117, 102171 (2020).Article 

    Google Scholar 
    Parcerisas, L. et al. Land use changes, landscape ecology and their socioeconomic driving forces in the Spanish Mediterranean coast (El Maresme County, 1850–2005). Environ. Sci. Policy 23, 120–132 (2012).Article 

    Google Scholar 
    Masini, E. et al. Urban growth, land-use efficiency and local socioeconomic context: A comparative analysis of 417 metropolitan regions in Europe. Environ. Manag. 63(3), 322–337 (2019).Article 
    ADS 

    Google Scholar 
    Luck, M. & Wu, J. A gradient analysis of urban landscape pattern: a case study from the Phoenix metropolitan region, Arizona, USA. Landsc. Ecol. 17(4), 327–339 (2002).Article 

    Google Scholar 
    Pesaresi, M. & Bianchin, A. Recognising settlement structure using mathematical morphology and image texture. Remote Sensing Urban Anal. GISDATA 9, 46–60 (2003).
    Google Scholar 
    Schneider, A. & Woodcock, C. E. Compact, dispersed, fragmented, extensive? A comparison of urban growth in twenty-five global cities using remotely sensed data, pattern metrics and census information. Urban Stud. 45(3), 659–692 (2008).Article 

    Google Scholar 
    Mubareka, S., Koomen, E., Estreguil, C. & Lavalle, C. Development of a composite index of urban compactness for land use modelling applications. Landsc. Urban Plan. 103(3–4), 303–317 (2011).Article 

    Google Scholar 
    Vogt, P. et al. Mapping landscape corridors. Ecol. Ind. 7(2), 481–488 (2007).Article 

    Google Scholar 
    Daya Sagar, B. S. & Murthy, K. S. R. Generation of a fractal landscape using nonlinear mathematical morphological transformations. Fractals 8(03), 267–272 (2000).Article 

    Google Scholar 
    Scott, A. J., Carter, C., Reed, M. R., Stonyer, B. & Coles, R. Disintegrated development at the rural-urban fringe: Re-connecting spatial planning theory and practice. Prog. Plan. 83, 1–52 (2013).Article 

    Google Scholar 
    Zhao, Q., Wen, Z., Chen, S., Ding, S. & Zhang, M. Quantifying land use/land cover and landscape pattern changes and impacts on ecosystem services. Int. J. Environ. Res. Public Health 17(1), 126 (2020).Article 

    Google Scholar 
    Parr, J. The regional economy, spatial structure and regional urban systems. Reg. Stud. 48(12), 1926–1938 (2014).Article 

    Google Scholar 
    Salvati, L., Zambon, I., Chelli, F. M. & Serra, P. Do spatial patterns of urbanisation and land consumption reflect different socioeconomic contexts in Europe?. Sci. Total Environ. 625, 722–730 (2018).Article 
    ADS 
    CAS 

    Google Scholar 
    Coppi, R. & Bolasco, S. Multiway Data Analysis (Elsevier, 1988).MATH 

    Google Scholar 
    Kroonenberg, P. M. Applied Multiway Data Analysis (Wiley, 2008).Book 
    MATH 

    Google Scholar 
    Escofier, B. & Pages, J. Multiple factor analysis (AFMULT Package). Comput. Stat. Data Anal. 18, 121–140 (1994).Article 
    MATH 

    Google Scholar 
    De Rosa, S. & Salvati, L. Beyond a ‘side street story’? Naples from spontaneous centrality to entropic polycentricism, towards a ‘crisis city’. Cities 51, 74–83 (2016).Article 

    Google Scholar 
    Favaro, J.-M. & Pumain, D. Gibrat revisited: An urban growth model incorporating spatial interaction and innovation cycles. Geogr. Anal. 43(3), 261–286 (2011).Article 

    Google Scholar 
    Walker, B. H., Carpenter, S. R., Rockstrom, J., Crepin, A.-S. & Peterson, G. D. “Drivers, “slow” variables, “fast” variables, shocks, and resilience. Ecol. Soc. 17(3), 30 (2012).Article 

    Google Scholar 
    Zhang, Z., Su, S., Xiao, R., Jiang, D. & Wu, J. Identifying determinants of urban growth from a multi-scale perspective: A case study of the urban agglomeration around Hangzhou Bay, China. Appl. Geogr. 45, 193–202 (2013).Article 

    Google Scholar 
    Fratarcangeli, C., Fanelli, G., Franceschini, S., De Sanctis, M. & Travaglini, A. Beyond the urban-rural gradient: Self-organising map detects the nine landscape types of the city of Rome. Urban For. Urban Green. 38, 354–370 (2019).Article 

    Google Scholar 
    Crisci, M., Benassi, F., Rabiei-Dastjerdi, H., McArdle, G. Spatio-temporal variations and contextual factors of the supply of Airbnb in Rome. An initial investigation. Lett. Spat. Resour. Sci. 1–17 (2022).Lelo, K., Monni, S. & Tomassi, F. Socio-spatial inequalities and urban transformation. The case of Rome districts. Socio-Econ. Plann. Sci. 68, 100696 (2019).Article 

    Google Scholar 
    Crisci, M. The impact of the real estate crisis on a south european metropolis: From urban diffusion to Reurbanisation. Appl. Spat. Anal. Policy 15(3), 797–820 (2022).Article 

    Google Scholar 
    Wang, Y. & Zhang, X. A dynamic modeling approach to simulating socioeconomic effects on landscape changes. Ecol. Model. 140(1–2), 141–162 (2001).Article 

    Google Scholar 
    Voghera, A. The River agreement in Italy. Resilient planning for the co-evolution of communities and landscapes. Land Use Policy 91, 104377 (2020).Article 

    Google Scholar 
    Chen, A. & Partridge, M. D. When are cities engines of growth in China? Spread and backwash effects across the urban hierarchy. Reg. Stud. 47(8), 1313–1331 (2013).Article 

    Google Scholar 
    Ciommi, M., Chelli, F. M., Carlucci, M. & Salvati, L. Urban growth and demographic dynamics in southern Europe: Toward a new statistical approach to regional science. Sustainability 10(8), 2765 (2018).Article 

    Google Scholar 
    Jacobs-Crisioni, C., Rietveld, P. & Koomen, E. The impact of spatial aggregation on urban development analyses. Appl. Geogr. 47, 46–56 (2014).Article 

    Google Scholar 
    Kourtit, K., Nijkamp, P. & Reid, N. The new urban world: Challenges and policy. Appl. Geogr. 49, 1–3 (2014).Article 

    Google Scholar 
    Bruegmann, R. Sprawl: A Compact History (University of Chicago Press, 2005).Book 

    Google Scholar 
    Neuman, M. & Hull, A. The Futures of the City Region. Reg. Stud. 43(6), 777–787 (2009).Article 

    Google Scholar 
    Couch, C., Petschel-held, G. & Leontidou, L. Urban Sprawl In Europe: Landscapes, Land-use Change and Policy (Blackwell, 2007).Book 

    Google Scholar 
    Longhi, C. & Musolesi, A. European cities in the process of economic integration: towards structural convergence. Ann. Reg. Sci. 41, 333–351 (2007).Article 

    Google Scholar 
    Tian, G., Ouyang, Y., Quan, Q. & Wu, J. Simulating spatiotemporal dynamics of urbanisation with multi-agent systems—A case study of the Phoenix metropolitan region, USA. Ecol. Model. 222(5), 1129–1138 (2011).Article 

    Google Scholar 
    Tian, L., Chen, J. & Yu, S. X. Coupled dynamics of urban landscape pattern and socioeconomic drivers in Shenzhen, China. Landsc. Ecol. 29(4), 715–727 (2014).Article 

    Google Scholar 
    Fielding, A. J. Counterurbanization in Western Europe. Prog. Plan. 17, 1–52 (1982).Article 

    Google Scholar 
    Oueslati, W., Alvanides, S. & Garrod, G. Determinants of urban sprawl in European cities. Urban Stud. 52(9), 1594–1614 (2015).Article 

    Google Scholar 
    Tress, B., Tress, G., Décamps, H. & d’Hauteserre, A. M. Bridging human and natural sciences in landscape research. Landsc. Urban Plan. 57(3–4), 137–141 (2001).Article 

    Google Scholar 
    Xu, Z., Lv, Z., Li, J., Sun, H. & Sheng, Z. A Novel perspective on travel demand prediction considering natural environmental and socioeconomic factors. IEEE Intell. Transp. Syst. Mag. https://doi.org/10.1109/MITS.2022.3162901 (2022).Article 

    Google Scholar 
    Xu, Z., Lv, Z., Li, J. & Shi, A. A novel approach for predicting water demand with complex patterns based on ensemble learning. Water Resour. Manag. 36(11), 4293–4312 (2022).Article 

    Google Scholar 
    Lv, Z., Li, J., Dong, C., Li, H. & Xu, Z. Deep learning in the COVID-19 epidemic: A deep model for urban traffic revitalisation index. Data Knowl. Eng. 135, 101912 (2021).Article 

    Google Scholar  More

  • in

    Conservation setbacks? The secrets to lifting morale

    Conservationist Jim Groombridge in Hawaii (standing) performing a ‘heli-hook-up’, in which a net full of equipment is hooked up to the hovering helicopter, to save it needing to land.Credit: Jim Groombridge/Maui Forest Bird Recovery Project

    Since his undergraduate degree, Jim Groombridge has been part of several teams that work with critically endangered animals, including the Mauritius kestrel (Falco punctatus), which was brought back from the brink of extinction. But he has also experienced the devastation of some species being lost forever, despite all possible interventions. After receiving his PhD from Queen Mary University of London in 2000, he worked as a project coordinator at the Maui Forest Bird Recovery Project in Makawao, Hawaii. Conservation science spans many topics including climate change, working with local communities, epidemiology, genomics and designing protected areas. Projects can range from single-species conservation to ecosystem-level or landscape conservation, such as restoring whole islands. Now a professor in biodiversity conservation at the University of Kent’s Durrell Institute of Conservation and Ecology in Canterbury, UK, Groombridge teaches bachelor’s and master’s students about leadership of conservation teams and how to motivate them in the face of setbacks.What is special about leading conservation teams?Conservation field teams are slightly quirky, and those quirks can define what makes a team work well or not. One is that team leaders are rarely trained in management tasks, such as overseeing a budget, interacting with project partners and local governments, dealing with team members who feel passionate about what they do and facing the high stakes involved. Team members are enthusiastic, passionate and seldom motivated by money.Another quirk is that, in a small conservation team of four to six people, there is often a mix of skill sets and experience. You can have highly experienced specialists in a particular area, such as screening parrots for diseases, or reintroduction biology, and you might also have volunteers with only passion and enthusiasm to offer.How do you lead a team with such variable experience?Even with those different levels of expertise, you still need to meet high standards for specimen and data collection. At the moment, for example, I’m sequencing the genome of the pink pigeon (Nesoenas mayeri), using samples collected in the 1990s. There’s a sense of responsibility, especially if you’re working with species that are rare, because if you mess it up, they could go extinct. It’s not unusual to have volunteers with only two or three weeks’ worth of experience handling extremely rare samples or working with valuable data sets. Their learning curve is pretty steep. As a leader, you need to make sure that you understand the details — ranging from tasks such as collecting data and monitoring and recording invasive species to, for example, knowing how to trap a mongoose — so that you can make sure that everyone is collecting the data in the same way.

    Jim Groombridge (far left), who studies biodiversity conservation at the University of Kent, UK, with one of the field crews involved in an operation to translocate a bird called the po‘ouli in Hawaii.Credit: Jim Groombridge/Maui Forest Bird Recovery Project

    What do team members tend to have in common?They often share a passion for nature. They want to save the environment, they want to save a species from going extinct, they want to make a difference. That level of emotion is important. It creates an energy, which needs to be channelled proactively and positively into the project to make it a success.In 2002, for example, I was leading a team working to save a bird called the po‘ouli (Melamprosops phaeosoma) on the island of Maui, part of the Hawaiian archipelago. We were trying to translocate one of the last known birds into the range of another one to give them the opportunity to breed. There was huge excitement, but after four weeks of failing to catch the bird, there was also a lot of frustration.How do you manage a team with such strong emotions?Morale is really important. So is being able to deal with difficulties when they arise. That’s what gets small teams through tough times. With the po‘ouli, I had to make sure that the team had fun, and that people genuinely enjoyed themselves. That meant taking time out with the team in the evenings and ensuring that everyone had a bit of a laugh, so it wasn’t deadly serious all the time. Also, I made sure that team members got to perform the aspects of the job that they were good at, to increase their confidence and well-being. We eventually trapped the po‘ouli and moved it, but even though the birds were in the same territory, they didn’t breed.How do you manage expectations amid failure?I had to remind the team about the broader picture of what we had achieved. This was the first time anyone had followed the po‘ouli in the forest for ten days. I think we learnt more about the ecology of that species in that time than anyone had learnt in 30 years. We held the translocated bird for about two hours before we released it, and it took food items from us, which showed that the birds could be kept in captivity if necessary. We learnt a huge amount that could be applied to another project.
    Treading carefully: saving frankincense trees in Yemen
    You have to manage people’s expectations and have goals that are achievable. If you are starting a project on a species with fewer than ten individuals left in the wild, and your goal is to have thousands, that’s a difficult leap of imagination. Instead, perhaps start with finding a food that a species would eat in captivity. People need to remain connected with what’s achievable. There’s a delicate balance between being aspirational and being pragmatic.As a team member, what do you wish more conservation leaders knew?Often, there is too much emphasis placed on the command structure. Innovation in a conservation team is undersold, and easily quashed by a type of line-manager approach. The hierarchy in a team is important because people know what to do and who to report to, but you also have to encourage team members to use their initiative and ask questions. I remember when my team and I were in the cloud forests, tropical mountain regions covered by clouds for most of the year in Hawaii, we were struggling with baiting rats, which prey on eggs and fledglings of native birds. It’s one of the wettest places on Earth, and the rat poison basically turns to cottage cheese. However, one of my colleagues designed a bait box, which kept the bait dry for many weeks. When you’re working with critically endangered species and in field conditions, ingenuity is crucial.
    This interview has been edited for length and clarity. More

  • in

    Genetic basis of thiaminase I activity in a vertebrate, zebrafish Danio rerio

    Sequence analysisProtein sequence searches were conducted in the GenBank nr database with BLASTP42 using default parameters, including automatically adjusting parameters for short input sequences (Table S1). Conserved domain searches were run against the GenBank Conserved Domain Database (CDD)43. Sequence alignments were conducted in CLC Main Workbench 20.0.4 (Qiagen) with the fast alignment algorithm, gap open cost = 10, and gap extension cost = 1. Biochemical properties of the fish putative thiaminase I protein sequences were predicted with the Create Sequence Statistics function in CLC Main Workbench 20.0.4 (Qiagen, Hilden, Germany). The molecular weights were calculated from the sum of the amino acids in the sequence, and the isoelectric points (pIs) were calculated from the pKa values for the individual amino acids in the sequence.Bacteria culturePure cultures of P. thiaminolyticus strain 818822 were cultured at 37 °C in Terrific Broth (MO BIO Laboratories, Carlsbad, CA) in either a shaking incubator or in a beveled flask with a stir bar and were harvested after 48–80 h of culture. Upon harvest, cultures were processed immediately or frozen whole in 50 mL Falcon tubes at − 80 °C. Fresh or thawed cultures were spun at 14,000×g, and culture supernatant was concentrated using Amicon-ultra 10 kDa molecular weight cut-off (MWCO) filters (EMD Millipore, Billerica, MA).The zebrafish and alewife candidate thiaminase I genes were cloned and overexpressed in E. coli to determine whether they produced functional thiaminases. The recombinant thiaminase I gene from P. thiaminolyticus was overexpressed in E. coli as a positive control. Candidate and control genes were synthesized (Integrated DNA Technologies, Inc., Coralville, Iowa) and placed into the pET52b vector (EMD Millipore). Insert sequences are provided in Supplementary Figs. S10–S13. The empty pET52b vector was used as a negative control. The plasmid was transformed into E. coli (Rosetta 2(DE3)pLysS Singles Competent Cells, EMD Millipore) according to the manufacturer’s instructions, and expression of candidate genes was induced by the addition of IPTG. Cells were lysed in 1X BugBuster (Millipore) according to the manufacturer’s instructions in the presence of benzonase nuclease, and soluble and insoluble fractions were separated by centrifugation.Tissue collectionsAdult common carp were captured from Lake Erie using short-set gill nets. Adult alewife and quagga mussels (Dreissena bugensis) were collected from Sturgeon Bay, Lake Michigan using bottom trawls. Fish collections were completed during July 2007. Sex of sampled fish was not identified. Upon collection, unanesthetized animals were immediately euthanized by flash freezing between slabs of dry ice and stored at − 80 °C. Fish were harvested by the Great Lakes Science Center, U.S. Geological Survey (USGS). Laboratory use of frozen animal tissues and wild type and recombinant bacteria was in accordance with institutional guidelines and biosafety procedures at Oregon State University and USGS. Animal care and use procedures were approved by the Great Lakes Science Center, USGS. All USGS sampling and handling of fish during research are carried out in accordance with guidelines for the care and use of fishes by the American Fisheries Society44. All methods are reported in accordance with applicable ARRIVE guidelines (https://arriveguidelines.org). Zebrafish from OSU’s zebrafish facility were anesthetized and euthanized by overdose with waterborne 200 ppm ethyl 3-aminobenzoate methanesulfonate (MS-222, Sigma-Aldrich, St. Louis, MO) following protocols approved by the OSU Animal Institutional Care and Use Committee and were frozen at − 80 °C after euthanization. Gills, liver, spleen, and the intestinal tract were dissected, and gill tissue was homogenized separately from liver, spleen, and gut, which were homogenized together and designated “viscera.” Homogenization and protein preparation procedures were the same as that for alewife. Zebrafish from Columbia Environmental Research Center (CERC), USGS cultures were anesthetized and euthanized by overdose with 200 ppm ethyl 3-aminobenzoate methanesulfonate (MS-222, Sigma-Aldrich, St. Louis, MO) in water following protocols approved by CERC Institutional Animal Care and Use Committee (IACUC). Whole fish (0.2–0.6 g) were homogenized in 10 mL cold phosphate buffer, pH 6.5. Whole common carp and alewife were thawed until they could just be dissected. Preliminary trial extractions on alewife stomach and intestines, spleen, and gills revealed similar results and revealed that gills and spleen tissue produced the cleanest protein preparations. Therefore, subsequent extractions for common carp and alewife used gill tissue. Samples were pooled from 3 to 5 individual fish, haphazardly chosen from the sampled fish without exclusions. Quagga mussels were thawed just sufficiently to be husked from their shell and were used whole. Researchers were aware of the species and tissue designation of each sample throughout the experiments. Animal tissues were placed in ice-cold (4 °C) beakers containing cold extraction buffer (16 mM K3HPO4, 84 mM KH2PO4, 100 mM NaCl, pH 6.5 with 1 mM DTT, 2 mM EDTA, 3 mM Pepstatin, 1X Protease inhibitor cocktail (Sigma), and 1 mM AEBSF). All extractions were carried out at 4 °C in pre-chilled glassware. Samples were mechanically homogenized using a rotor–stator tissue grinder. Samples were stirred gently for several hours to overnight at 4 °C, centrifuged at 14,000×g to remove debris, and strained through cheesecloth to remove any insoluble lipids. Extracts were then subjected to 30–75% ammonium sulfate precipitation. Pellets from the precipitation were resuspended in buffer (83 mM KH2PO4, 17 mM K2HPO4, and 100 mM NaCl), centrifuged to remove any remaining debris, and stored in 30% glycerol at − 20 °C.Protein electrophoresisNative PAGE was run using either pre-cast TGX gels (BioRad, Hercules, California) of varying percentage (7.5% to 12% or 8–16% gradient gels) or on hand-cast gels (TGX FastCast, BioRad) made according to the manufacturer’s instructions.Blue-native PAGE was used to estimate the mass of thiaminases in their native conformation. Blue-native PAGE45 gels were run using the NativePage Novex Bis–Tris system (Life Technologies) or hand-cast equivalents46. Light blue cathode buffer was used to facilitate visualization of the activity stain.Standard denaturing SDS-PAGE was used to estimate the molecular mass of thiaminases after denaturation. Denaturing SDS-PAGE was run using one of three relatively equivalent methods: pre-cast TGX gels (BioRad) according to the manufacturer’s instructions, hand-cast Tris–HCl gels using standard Laemmli chemistry47 with an operating pH of approximately 9.5, or hand-cast Bis–Tris gels (MOPS buffer) with an operating pH of approximately 7. For all denaturing and non-denaturing SDS-PAGE applications, standard Laemmli sample buffer was used, and samples were heated to 75 °C for 15 min to facilitate denaturation followed by brief centrifugation to eliminate any precipitated debris.Non-denaturing PAGE was used as an alternative to denaturing PAGE for the common carp thiaminase that could not be renatured (i.e., activity could not be recovered) following a denaturing SDS-PAGE. Non-denaturing PAGE was conducted using any of the three aforementioned gel chemistries with SDS-containing running buffers including reductant (DTT), but samples were not heated prior to application to the gel. Samples for non-denaturing PAGE were allowed to incubate in sample buffer at room temperature for 30 min prior to gel loading. This preserves the charge-shift induced by SDS but does not result in protein denaturation, facilitating in-gel analysis of thiaminase I activity after separation.To visualize proteins following electrophoresis, gels were stained with Coomassie stain (CBR-250 at 1 g/L in methanol/acetic acid/water (4:5:1) and destained with methanol/acetic acid/water (1.7:1:11.5). Mini-gels were run on BioRad’s mini-protean gel rigs. Midi-gels (16 cm length) were run on Hoefer’s SE660, and large-format gels (32 cm length) were run on a BioRad’s Protean Slab Cell. Mini-gels were generally run at room temperature, and midi- and large-format gels were run at 4 °C. Blue-native PAGE was always run at 4 °C.Two-dimensional electrophoresis (2DE) separated proteins in the first dimension based on pI and in the second dimension based on mass (either native or denatured). 2DE was performed by combining in-gel IEF with either denaturing SDS-PAGE, non-denaturing SDS-PAGE, or native PAGE. IPG strips were incubated in TRIS-buffered equilibration solution48 either with 6 M urea, SDS, and iodacetamide (denaturing) or without urea, SDS, and iodacetamide (non-denaturing) for 20 min. Low melting point agarose was used to solidify IGP strips in place. Agarose was cooled to just above the gelling temperature, as hot agarose inactivated thiaminase I activity.Isoelectric focusingIsoelectric focusing (IEF) was conducted both in-gel and in-liquid. In-gel IEF was conducted in immobilized pH gradient (IPG) strips using a Multifor II (GE Healthcare Life Sciences). Prior to rehydration, all protein preparations were desalted in low-salt (~ 5 to 10 mM) sodium or potassium phosphate buffer (pH 6.5) using 10 kDA MWCO filters. All samples were applied using sample volumes and protein concentrations recommended by the manufacturer. For standard denaturing in-gel IEF, rehydration solution consisted of 8 M urea, 2% CHAPS, 2% IPG buffer of the appropriate pH-range, 1% bromophenol blue, and 18 mM DTT. The IEF was conducted at maximum of 2 mA total current and 5 W total power, with an EPS3500 XL power supply in gradient mode. Voltage gradients were based on standard protocols recommended by the manufacturer. In-gel IEF was also performed under native conditions to allow thiaminase I activity staining of IPG strips. Protocols were essentially the same as those for denaturing conditions, with the following exceptions: (1) urea was eliminated and the CHAPS concentration was reduced to 0.5% in the rehydration solution; (2) rehydration was conducted at 14 °C; and (3) the water in the cooling tray was cooled to 4 °C.In-liquid IEF was conducted using a Rotofor (BioRad) according to the manufacturer’s instructions. Non-denaturing in-liquid IEF was also conducted using a focusing solution including no urea, 2% pH 3–10 biolyte, 0.5% CHAPS, 20% glycerol, and 5 mM DTT. The addition of glycerol helped retain activity but also increased focusing times. The Rotofor was run at a constant 15 W with a maximum current of 20 mA and voltage set for a maximum of 2000 V. Samples containing 8 M urea were cooled to 14 °C during focusing to avoid urea precipitation, whereas samples lacking urea were cooled to 4 °C during focusing. Protein extracts in salt solutions greater than 10 mM were desalted directly in focusing solution using a 10 kDA MWCO filter. Focusing runs were allowed to proceed until the voltage stabilized and fractions were harvested with the needle array and vacuum pump. Ampholytes were removed by addition of NaCl to 1 M and then samples were desalted into phosphate buffer using a 10kD MWCO filter.Thiaminase I activity measurementsFor quantitative measurements of thiaminase I activity, we conducted a radiometric assay at CERC as previously described49. Zebrafish homogenates were diluted 1:8, 1:16, or 1:32 in cold phosphate buffer, pH 6.5. Two replicates per dilution were assayed. Activity was calculated from the greatest dilution that gave activity within the linear range of the assay and was reported as pmol thiamine consumed per g tissue (wet weight) per minute (pmol/g/min).Thiaminase I activity stainingAfter electrophoresis, gels were stained for thiaminase I activity using a previously described diazo-coupling reaction19,50. Briefly, gels were washed 3 times in water, twice in 25 mM sodium phosphate buffer with 1 mM DTT, and once in 25 mM sodium phosphate buffer without DTT. Gels were then incubated in 0.89 mM thiamine-HCl and co-substrate (1.45 mM pyridoxine, 24 mM nicotinic acid, or 20 mM pyridine) in 25 mM sodium phosphate buffer for 10 min. Gels were briefly rinsed in water and placed in a lidded container and incubated at 37 °C for 30 min to allow thiamine degradation by any thiaminases in the gel. The diazo stain19,50 was then applied to detect remaining thiamine in the gel for five minutes with gentle agitation. Stained gels were rinsed with water and photographed, and further stained with Coomassie to visualize proteins. More

  • in

    Differential carbon utilization enables co-existence of recently speciated Campylobacteraceae in the cow rumen epithelial microbiome

    Humpenöder, F. et al. Projected environmental benefits of replacing beef with microbial protein. Nature 605, 90–96 (2022).Article 

    Google Scholar 
    Tilman, D. & Clark, M. Global diets link environmental sustainability and human health. Nature 515, 518–522 (2014).Article 
    CAS 

    Google Scholar 
    Clark, M. A. et al. Global food system emissions could preclude achieving the 1.5° and 2°C climate change targets. Science 370, 705–708 (2020).Article 
    CAS 

    Google Scholar 
    Eisler, M. C. et al. Agriculture: steps to sustainable livestock. Nature 507, 32–34 (2014).Article 

    Google Scholar 
    Kamke, J. et al. Rumen metagenome and metatranscriptome analyses of low methane yield sheep reveals a Sharpea-enriched microbiome characterised by lactic acid formation and utilisation. Microbiome 4, 56 (2016).Article 

    Google Scholar 
    Kruger Ben Shabat, S. et al. Specific microbiome-dependent mechanisms underlie the energy harvest efficiency of ruminants. ISME J. 10, 2958–2972 (2016).Article 

    Google Scholar 
    Janssen, P. H. Influence of hydrogen on rumen methane formation and fermentation balances through microbial growth kinetics and fermentation thermodynamics. Anim. Feed Sci. Technol. 160, 1–22 (2010).Article 
    CAS 

    Google Scholar 
    Wallace, R. J. et al. A heritable subset of the core rumen microbiome dictates dairy cow productivity and emissions. Sci. Adv. 5, eaav8391 (2019).Article 
    CAS 

    Google Scholar 
    Urrutia, N. L. & Harvatine, K. J. Acetate dose-dependently stimulates milk fat synthesis in lactating dairy cows. J. Nutr. 147, 763–769 (2017).Article 
    CAS 

    Google Scholar 
    Seshadri, R. et al. Cultivation and sequencing of rumen microbiome members from the Hungate1000 Collection. Nat. Biotechnol. 36, 359–367 (2018).Article 
    CAS 

    Google Scholar 
    Anderson, C. J., Koester, L. R. & Schmitz-Esser, S. Rumen epithelial communities share a core bacterial microbiota: a meta-analysis of 16S rRNA Gene Illumina MiSeq sequencing datasets. Front. Microbiol. 12, 625400 (2021).Wallace, R. J., Cheng, K.-J., Dinsdale, D. & Ørskov, E. R. An independent microbial flora of the epithelium and its role in the ecomicrobiology of the rumen. Nature 279, 424–426 (1979).Article 
    CAS 

    Google Scholar 
    Mann, E., Wetzels, S. U., Wagner, M., Zebeli, Q. & Schmitz-Esser, S. Metatranscriptome sequencing reveals insights into the gene expression and functional potential of rumen wall bacteria. Front. Microbiol. 9, 43 (2018).Pacífico, C. et al. Unveiling the bovine epimural microbiota composition and putative function. Microorganisms 9, 342 (2021).Article 

    Google Scholar 
    VanInsberghe, D., Arevalo, P., Chien, D. & Polz, M. F. How can microbial population genomics inform community ecology?. Phil. Trans. R. Soc. B 375, 20190253 (2020).Article 

    Google Scholar 
    Hunt, D. E. et al. Resource partitioning and sympatric differentiation among closely related bacterioplankton. Science 320, 1081–1085 (2008).Article 
    CAS 

    Google Scholar 
    Fraser, C., Hanage, W. P. & Spratt, B. G. Recombination and the nature of bacterial speciation. Science 315, 476–480 (2007).Article 
    CAS 

    Google Scholar 
    Shapiro, B. J. et al. Population genomics of early events in the ecological differentiation of bacteria. Science 335, 48–51 (2012).Article 

    Google Scholar 
    Cadillo-Quiroz, H. et al. Patterns of gene flow define species of thermophilic Archaea. PLoS Biol. 10, e1001265 (2012).Article 
    CAS 

    Google Scholar 
    Koeppel, A. et al. Identifying the fundamental units of bacterial diversity: a paradigm shift to incorporate ecology into bacterial systematics. Proc. Natl Acad. Sci. USA 105, 2504–2509 (2008).Article 
    CAS 

    Google Scholar 
    Arevalo, P., VanInsberghe, D., Elsherbini, J., Gore, J. & Polz, M. F. A reverse ecology approach based on a biological definition of microbial populations. Cell 178, 820–834.e14 (2019).Article 
    CAS 

    Google Scholar 
    Wetzels, S. U. et al. Epimural bacterial community structure in the rumen of Holstein cows with different responses to a long-term subacute ruminal acidosis diet challenge. J. Dairy Sci. 100, 1829–1844 (2017).Article 
    CAS 

    Google Scholar 
    Neubauer, V. et al. Effects of clay mineral supplementation on particle-associated and epimural microbiota, and gene expression in the rumen of cows fed high-concentrate diet. Anaerobe 59, 38–48 (2019).Article 
    CAS 

    Google Scholar 
    Stewart, R. D. et al. Compendium of 4,941 rumen metagenome-assembled genomes for rumen microbiome biology and enzyme discovery. Nat. Biotechnol. 37, 953–961 (2019).Article 
    CAS 

    Google Scholar 
    Waite, D. W. et al. Comparative genomic analysis of the class Epsilonproteobacteria and proposed reclassification to Epsilonbacteraeota (phyl. nov.). Front. Microbiol. 8, 682 (2017).Article 

    Google Scholar 
    Rodriguez-R, L. M. & Konstantinidis, K. T. Bypassing cultivation to identify bacterial species. Microbe Mag. 9, 111–118 (2014).Article 

    Google Scholar 
    Bendall, M. L. et al. Genome-wide selective sweeps and gene-specific sweeps in natural bacterial populations. ISME J. 10, 1589–1601 (2016).Article 

    Google Scholar 
    Birky, C. W., Adams, J., Gemmel, M. & Perry, J. Using population genetic theory and DNA sequences for species detection and identification in asexual organisms. PLoS ONE 5, e10609 (2010).Article 

    Google Scholar 
    Li, W.-H. Unbiased estimation of the rates of synonymous and nonsynonymous substitution. J. Mol. Evol. 36, 96–99 (1993).Article 
    CAS 

    Google Scholar 
    Novichkov, P. S., Wolf, Y. I., Dubchak, I. & Koonin, E. V. Trends in prokaryotic evolution revealed by comparison of closely related bacterial and archaeal genomes. J. Bacteriol. 191, 65–73 (2009).Article 
    CAS 

    Google Scholar 
    Tilman, D. Resource competition between plankton algae: an experimental and theoretical approach. Ecology 58, 338–348 (1977).Article 
    CAS 

    Google Scholar 
    Yawata, Y. et al. Competition–dispersal tradeoff ecologically differentiates recently speciated marine bacterioplankton populations. Proc. Natl Acad. Sci. USA 111, 5622–5627 (2014).Article 
    CAS 

    Google Scholar 
    Basan, M. et al. A universal trade-off between growth and lag in fluctuating environments. Nature 584, 470–474 (2020).Article 
    CAS 

    Google Scholar 
    Flamholz, A., Noor, E., Bar-Even, A., Liebermeister, W. & Milo, R. Glycolytic strategy as a tradeoff between energy yield and protein cost. Proc. Natl Acad. Sci. USA 110, 10039–10044 (2013).Article 
    CAS 

    Google Scholar 
    Szymanski, C. M., Yao, R., Ewing, C. P., Trust, T. J. & Guerry, P. Evidence for a system of general protein glycosylation in Campylobacter jejuni. Mol. Microbiol. 32, 1022–1030 (1999).Article 
    CAS 

    Google Scholar 
    Roux, D. et al. Identification of poly-N-acetylglucosamine as a major polysaccharide component of the Bacillus subtilis biofilm matrix. J. Biol. Chem. 290, 19261–19272 (2015).Article 
    CAS 

    Google Scholar 
    Troutman, J. M. & Imperiali, B. Campylobacter jejuni PglH is a single active site processive polymerase that utilizes product inhibition to limit sequential glycosyl transfer reactions. Biochemistry 48, 2807–2816 (2009).Article 
    CAS 

    Google Scholar 
    Hehemann, J. H. et al. Adaptive radiation by waves of gene transfer leads to fine-scale resource partitioning in marine microbes. Nat. Commun. 7, 12860 (2016).Article 
    CAS 

    Google Scholar 
    Treangen, T. J. & Rocha, E. P. C. Horizontal transfer, not duplication, drives the expansion of protein families in prokaryotes. PLoS Genet. 7, e1001284 (2011).Article 
    CAS 

    Google Scholar 
    Castric, P. pilO, a gene required for glycosylation of Pseudomonas aeruginosa 1244 pilin. Microbiology 141, 1247–1254 (1995).Article 
    CAS 

    Google Scholar 
    Mourkas, E. et al. Host ecology regulates interspecies recombination in bacteria of the genus Campylobacter. eLife 11, e73552 (2022).Article 
    CAS 

    Google Scholar 
    Sheppard, S. K. et al. Genome-wide association study identifies vitamin B 5 biosynthesis as a host specificity factor in Campylobacter. Proc. Natl Acad. Sci. USA 110, 11923–11927 (2013).Article 
    CAS 

    Google Scholar 
    Bobay, L.-M. & Ochman, H. Biological species are universal across life’s domains. Genome Biol. Evol. https://doi.org/10.1093/gbe/evx026 (2017).Dieho, K. et al. Morphological adaptation of rumen papillae during the dry period and early lactation as affected by rate of increase of concentrate allowance. J. Dairy Sci. 99, 2339–2352 (2016).Article 
    CAS 

    Google Scholar 
    Lawson, C. E. et al. Autotrophic and mixotrophic metabolism of an anammox bacterium revealed by in vivo 13C and 2H metabolic network mapping. ISME J. 15, 673–687 (2021).Article 
    CAS 

    Google Scholar 
    Kwong, W. K., Zheng, H. & Moran, N. A. Convergent evolution of a modified, acetate-driven TCA cycle in bacteria. Nat. Microbiol. 2, 17067 (2017).Article 
    CAS 

    Google Scholar 
    Kather, B., Stingl, K., van der Rest, M. E., Altendorf, K. & Molenaar, D. Another unusual type of citric acid cycle enzyme in Helicobacter pylori: the malate:quinone oxidoreductase. J. Bacteriol. 182, 3204–3209 (2000).Article 
    CAS 

    Google Scholar 
    Mullins, E. A. & Kappock, T. J. Crystal structures of Acetobacter aceti succinyl-coenzyme A (CoA):acetate CoA-transferase reveal specificity determinants and illustrate the mechanism used by class I CoA-transferases. Biochemistry 51, 8422–8434 (2012).Article 
    CAS 

    Google Scholar 
    Letten, A. D., Hall, A. R. & Levine, J. M. Using ecological coexistence theory to understand antibiotic resistance and microbial competition. Nat. Ecol. Evol. 5, 431–441 (2021).Article 

    Google Scholar 
    Park, S. Y. et al. Strain-level fitness in the gut microbiome is an emergent property of glycans and a single metabolite. Cell 185, 513–529.e21 (2022).Article 
    CAS 

    Google Scholar 
    Kim, C. H. Control of lymphocyte functions by gut microbiota-derived short-chain fatty acids. Cell Mol. Immunol. 18, 1161–1171 (2021).Article 
    CAS 

    Google Scholar 
    Morrison, D. J. & Preston, T. Formation of short chain fatty acids by the gut microbiota and their impact on human metabolism. Gut Microbes 7, 189–200 (2016).Article 

    Google Scholar 
    Frampton, J., Murphy, K. G., Frost, G. & Chambers, E. S. Short-chain fatty acids as potential regulators of skeletal muscle metabolism and function. Nat. Metab. 2, 840–848 (2020).Article 
    CAS 

    Google Scholar 
    Good, B. H., McDonald, M. J., Barrick, J. E., Lenski, R. E. & Desai, M. M. The dynamics of molecular evolution over 60,000 generations. Nature 551, 45–50 (2017).Article 

    Google Scholar 
    Lang, G. I. et al. Pervasive genetic hitchhiking and clonal interference in forty evolving yeast populations. Nature 500, 571–574 (2013).Article 
    CAS 

    Google Scholar 
    Shapiro, B. J. & Polz, M. F. Microbial speciation. Cold Spring Harb. Perspect. Biol. 7, a018143 (2015).Article 

    Google Scholar 
    Sheppard, S. K. et al. Evolution of an agriculture-associated disease causing Campylobacter coli clade: evidence from national surveillance data in Scotland. PLoS ONE 5, e15708 (2010).Article 
    CAS 

    Google Scholar 
    Callahan, B. J. et al. DADA2: high-resolution sample inference from Illumina amplicon data. Nat. Methods 13, 581–583 (2016).Article 
    CAS 

    Google Scholar 
    Wang, Q., Garrity, G. M., Tiedje, J. M. & Cole, J. R. Naive Bayesian classifier for rapid assignment of rRNA sequences into the new bacterial taxonomy. Appl. Environ. Microbiol. 73, 5261–5267 (2007).Article 
    CAS 

    Google Scholar 
    Pacífico, C. et al. Bovine rumen epithelial miRNA–mRNA dynamics reveals post-transcriptional regulation of gene expression upon transition to high-grain feeding and phytogenic supplementation. Genomics 114, 110333 (2022).Article 

    Google Scholar 
    Rivera-Chacon, R. et al. Supplementing a phytogenic feed additive modulates the risk of subacute rumen acidosis, rumen fermentation and systemic inflammation in cattle fed acidogenic diets. Animals 12, 1201 (2022).Article 

    Google Scholar 
    Bolger, A. M., Lohse, M. & Usadel, B. Trimmomatic: a flexible trimmer for Illumina sequence data. Bioinformatics 30, 2114–2120 (2014).Article 
    CAS 

    Google Scholar 
    Bankevich, A. et al. SPAdes: a new genome assembly algorithm and its applications to single-cell sequencing. J. Comput. Biol. 19, 455–477 (2012).Article 
    CAS 

    Google Scholar 
    Li, H. Aligning sequence reads, clone sequences and assembly contigs with BWA-MEM. Preprint at https://arxiv.org/abs/1303.3997 (2013).Parks, D. H., Imelfort, M., Skennerton, C. T., Hugenholtz, P. & Tyson, G. W. CheckM: assessing the quality of microbial genomes recovered from isolates, single cells, and metagenomes. Genome Res. 25, 1043–1055 (2015).Article 
    CAS 

    Google Scholar 
    Seemann, T. Prokka: rapid prokaryotic genome annotation. Bioinformatics 30, 2068–2069 (2014).Article 
    CAS 

    Google Scholar 
    Putri, G. H., Anders, S., Pyl, P. T., Pimanda, J. E. & Zanini, F. Analysing high-throughput sequencing data in Python with HTSeq 2.0. Bioinformatics 38, 2943–2945 (2022).Article 
    CAS 

    Google Scholar 
    O’doherty, A. et al. Development of nalidixic acid amphotericin B vancomycin (NAV) medium for the isolation of Campylobacter ureolyticus from the stools of patients presenting with acute gastroenteritis. Br. J. Biomed. Sci. 71, 6–12 (2014).Article 

    Google Scholar 
    Schmieder, R. & Edwards, R. Quality control and preprocessing of metagenomic datasets. Bioinformatics 27, 863–864 (2011).Article 
    CAS 

    Google Scholar 
    Karst, S. M., Kirkegaard, R. H. & Albertsen, M. mmgenome: a toolbox for reproducible genome extraction from metagenomes. Preprint at bioRxiv https://doi.org/10.1101/059121 (2014).Edgar, R. C. MUSCLE: multiple sequence alignment with high accuracy and high throughput. Nucleic Acids Res. 32, 1792–1797 (2004).Article 
    CAS 

    Google Scholar 
    Jain, C., Rodriguez-R, L. M., Phillippy, A. M., Konstantinidis, K. T. & Aluru, S. High throughput ANI analysis of 90K prokaryotic genomes reveals clear species boundaries. Nat. Commun. 9, 5114 (2018).Article 

    Google Scholar 
    Jukes, T. H. & Cantor, C. R. in Mammalian Protein Metabolism (ed. Munro, H. N.) 21–132 (Elsevier, 1969).Guindon, S. et al. New algorithms and methods to estimate maximum-likelihood phylogenies: assessing the performance of PhyML 3.0. Syst. Biol. 59, 307–321 (2010).Article 
    CAS 

    Google Scholar 
    Nguyen, L.-T., Schmidt, H. A., von Haeseler, A. & Minh, B. Q. IQ-TREE: a fast and effective stochastic algorithm for estimating maximum-likelihood phylogenies. Mol. Biol. Evol. 32, 268–274 (2015).Article 
    CAS 

    Google Scholar 
    Kalyaanamoorthy, S., Minh, B. Q., Wong, T. K. F., von Haeseler, A. & Jermiin, L. S. ModelFinder: fast model selection for accurate phylogenetic estimates. Nat. Methods 14, 587–589 (2017).Article 
    CAS 

    Google Scholar 
    Hoang, D. T., Chernomor, O., von Haeseler, A., Minh, B. Q. & Vinh, L. S. UFBoot2: improving the ultrafast bootstrap approximation. Mol. Biol. Evol. 35, 518–522 (2018).Article 
    CAS 

    Google Scholar 
    Altschul, S. F., Gish, W., Miller, W., Myers, E. W. & Lipman, D. J. Basic local alignment search tool. J. Mol. Biol. 215, 403–410 (1990).Article 
    CAS 

    Google Scholar 
    Le, S. Q. & Gascuel, O. An improved general amino acid replacement matrix. Mol. Biol. Evol. 25, 1307–1320 (2008).Article 
    CAS 

    Google Scholar 
    Danecek, P. et al. Twelve years of SAMtools and BCFtools. Gigascience 10, giab008 (2021).Article 

    Google Scholar 
    Danecek, P. et al. The variant call format and VCFtools. Bioinformatics 27, 2156–2158 (2011).Article 
    CAS 

    Google Scholar 
    Love, M. I., Huber, W. & Anders, S. Moderated estimation of fold change and dispersion for RNA-seq data with DESeq2. Genome Biol. 15, 550 (2014).Article 

    Google Scholar 
    Tan, R. S. G., Zhou, M., Li, F. & Guan, L. L. Identifying active rumen epithelial associated bacteria and archaea in beef cattle divergent in feed efficiency using total RNA-seq. Curr. Res. Microbial Sci. 2, 100064 (2021).Article 
    CAS 

    Google Scholar 
    Chaumeil, P.-A., Mussig, A. J., Hugenholtz, P. & Parks, D. H. GTDB-Tk: a toolkit to classify genomes with the Genome Taxonomy Database. Bioinformatics https://doi.org/10.1093/bioinformatics/btz848 (2019).Brewer, M. T., Anderson, K. L., Yoon, I., Scott, M. F. & Carlson, S. A. Amelioration of salmonellosis in pre-weaned dairy calves fed Saccharomyces cerevisiae fermentation products in feed and milk replacer. Vet. Microbiol. 172, 248–255 (2014).Article 

    Google Scholar  More

  • in

    Anthropogenic edge effects and aging errors by hunters can affect the sustainability of lion trophy hunting

    Tilman, D. et al. Future threats to biodiversity and pathways to their prevention. Nature 546, 73. https://doi.org/10.1038/nature22900 (2017).Article 
    ADS 
    CAS 

    Google Scholar 
    Laurance, W. F., Sayer, J. & Cassman, K. G. Agricultural expansion and its impacts on tropical nature. Trends Ecol. Evol. 29, 107–116. https://doi.org/10.1016/j.tree.2013.12.001 (2014).Article 

    Google Scholar 
    Ceballos, G. et al. Accelerated modern human–induced species losses: Entering the sixth mass extinction. J. Sci. Adv. 1, e1400253. https://doi.org/10.1126/sciadv.1400253 (2015).Article 
    ADS 

    Google Scholar 
    Cardillo, M. et al. Human population density and extinction risk in the world’s carnivores. PLoS Biol. 2, e197. https://doi.org/10.1371/journal.pbio.0020197 (2004).Article 

    Google Scholar 
    Estes, J. A. et al. Trophic downgrading of planet earth. Science 333, 301–306 (2011).Article 
    ADS 
    CAS 

    Google Scholar 
    Ripple, W. J. et al. Status and ecological effects of the world’s largest carnivores. Science 343, 124–148 (2014).Article 

    Google Scholar 
    Bauer, H. et al. Lion (Panthera leo) populations are declining rapidly across Africa, except in intensively managed areas. Proc. Natl. Acad. Sci. 112, 14895–14899 (2015).Article 
    ADS 

    Google Scholar 
    Bauer, H., Page-Nicholson, S., Hinks, A. & Dickman, A. Guidelines for the Conservation of lion in Africa 17–24 (IUCN SSC Cat Specialist Group, 2018).
    Google Scholar 
    Lindsey, P. A., Roulet, P. A. & Romanach, S. S. Economic and conservation significance of the trophy hunting industry in sub-Saharan Africa. Biol. Conserv. 134, 455–469. https://doi.org/10.1016/j.biocon.2006.09.005 (2007).Article 

    Google Scholar 
    Vucetich, J. A. et al. The value of argument analysis for understanding ethical considerations pertaining to trophy hunting and lion conservation. Biol. Conserv. 235, 260–272. https://doi.org/10.1016/j.biocon.2019.04.012 (2019).Article 

    Google Scholar 
    Dube, N. Voices from the village on trophy hunting in Hwange district, Zimbabwe. Ecol. Econ. 159, 335–343. https://doi.org/10.1016/j.ecolecon.2019.02.006 (2019).Article 

    Google Scholar 
    Murombedzi, J. African wildlife and livelihoods. In The Promise and Performance of Community Conservation (eds Hulme, D. & Murphree, M.) 244–255 (James Currey, 2001).
    Google Scholar 
    Leader-Williams, N., Baldus, R. D. & Smith, R. J. Recreational hunting. In Conservation and Rural Livelihoods (eds Dickson, B. et al.) 296–316 (Blackwell Publishing Ltd., 2009).Chapter 

    Google Scholar 
    DiMinin, E., Leader-Williams, N. & Bradshaw, C. J. A. Banning trophy hunting will exacerbate biodiversity loss. Trends Ecol. Evol. 31, 99–102 (2016).Article 

    Google Scholar 
    Whitman, K., Starfield, A. M., Quadling, H. S. & Packer, C. Sustainable trophy hunting of African lions. Nature 428, 175–178 (2004).Article 
    ADS 
    CAS 

    Google Scholar 
    Packer, C. et al. Sport hunting, predator control and conservation of large carnivores. PLoS ONE 4, e5941. https://doi.org/10.1371/journal.pone.0005941 (2009).Article 
    ADS 
    CAS 

    Google Scholar 
    Mweetwa, T. et al. Quantifying lion (Panthera leo) demographic response following a three-year moratorium on trophy hunting. PLoS ONE 13, e0197030. https://doi.org/10.1371/journal.pone.0197030 (2018).Article 
    CAS 

    Google Scholar 
    Loveridge, A. J. et al. Conservation of large predator populations: Demographic and spatial responses of African lions to the intensity of trophy hunting. Biol. Conserv. 204, 247–254. https://doi.org/10.1016/j.biocon.2016.10.024 (2016).Article 

    Google Scholar 
    Starfield, A. M., Shiell, J. D. & Smuts, G. L. Simulation of lion control strategies in a large game reserve. Ecol. Model. 13, 17–28 (1981).Article 

    Google Scholar 
    Venter, J. & Hopkins, M. E. Use of a simulation model in the management of a lion population. S. Afr. J. Wildl. Res. 18, 126–130 (1988).
    Google Scholar 
    Starfield, A. M. & Bleloch, A. L. Modelling the effect of contraception on part of the lion population in Etosha National Park. Applied Mathematic Dept. Report R3/82, Witwaterstrand University, South Africa. 7 (1982).Dickman, A., Becker, M., Begg, C., Loveridge, A. J. & Macdonald, D. W. Guidelines for the Conservation of Lions in Africa, Ch. 6 69–75 (IUCN SSC Cat Specialist Group, 2018).
    Google Scholar 
    Creel, S. et al. Assessing the sustainability of lion trophy hunting with recomendations for policy. Ecol. Appl. 26, 2347–2357. https://doi.org/10.1002/eap.1377 (2016).Article 

    Google Scholar 
    Barthold, J., Loveridge, A. J., Macdonald, D. W., Packer, C. & Colchero, F. Bayesian estimates of male and female African lion mortality for future use in population management. J. Appl. Ecol. 53, 295–304 (2016).Article 

    Google Scholar 
    Loveridge, A. J., Valeix, M., Elliot, N. B. & Macdonald, D. W. The landscape of anthropogenic mortality: How African lions respond to spatial variation in risk. J. Appl. Ecol. 54, 815–825. https://doi.org/10.1111/1365-2664.12794 (2017).Article 

    Google Scholar 
    Loveridge, A. J. et al. Evaluating the spatial intensity and demographic impacts of wire-snare bush-meat poaching on large carnivores. Biol. Conserv. 244, 108504 (2020).Article 

    Google Scholar 
    Becker, M. S. et al. Estimating past and future male loss in three Zambian lion populations. J. Wildl. Manag. 77, 128–142 (2013).Article 

    Google Scholar 
    Kiffner, C., Meyer, B., Muhlenberg, M. & Waltert, M. Plenty of prey, few predators: What limits lions Panthera leo in Katavi National park, western Tanzania?. Oryx 43, 52–59 (2009).Article 

    Google Scholar 
    Loveridge, A. J., Searle, A. W., Murindagomo, F. & Macdonald, D. W. The impact of sport hunting on the population dynamics of an African lion population in a protected area. Biol. Conserv. 134, 548–558 (2007).Article 

    Google Scholar 
    Miller, J. R. B. et al. Aging traits and sustainable trophy hunting of African lions. Biol. Conserv. 201, 160–168 (2016).Article 

    Google Scholar 
    Woodroffe, R. & Ginsberg, J. R. Edge effects and the extinction of populations inside protected areas. Science 280, 2126–2128 (1998).Article 
    ADS 
    CAS 

    Google Scholar 
    Gervasi, V., Linnell, J. D. C., Brøseth, H. & Gimenez, O. Failure to coordinate management in transboundary populations hinders the achievement of national management goals: The case of wolverines in Scandinavia. J. Appl. Ecol. 56, 1905–1915. https://doi.org/10.1111/1365-2664.13379 (2019).Article 

    Google Scholar 
    Breitenmoser, U. & Nobbe, C. Guidelines for the Conservation of Lions in Africa (ed IUCN CSG/SSC) 29–30 (IUCN, 2018).du Preez, B. & Lopez-Bao, J. V. Guidelines for the Conservation of the Lion in Africa (ed IUCN CSG/SSC) 76–78 (IUCN, 2018).Loveridge, A. J., Hemson, G., Davidson, Z. & Macdonald, D. W. African lions on the edge: reserve boundaries as ‘attractive sinks’ In Biology and Conservation of Wild Felids, Ch. 11 (eds Macdonald, D. W. & Loveridge, A. J.) 283–304 (Oxford University Press, London, 2010).

    Google Scholar 
    Borrego, N., Ozgul, A., Slotow, R. & Packer, C. Lion population dynamics: Do nomadic males matter?. Behav. Ecol. 29, 660–666. https://doi.org/10.1093/beheco/ary018%JBehavioralEcology (2018).Article 

    Google Scholar 
    Packer, C. et al. The case for fencing remains intact. Ecol. Lett. https://doi.org/10.1111/ele.12171 (2013).Balme, G. et al. Big cats at large: Density, structure, and spatio-temporal patterns of a leopard population free of anthropogenic mortality. Popul. Ecol. 61, 256–267. https://doi.org/10.1002/1438-390x.1023 (2019).Article 

    Google Scholar 
    Grünewald, C., Schleuning, M. & Böhning-Gaese, K. Biodiversity, scenery and infrastructure: Factors driving wildlife tourism in an African savannah national park. Biol. Conserv. 201, 60–68. https://doi.org/10.1016/j.biocon.2016.05.036 (2016).Article 

    Google Scholar 
    Pulliam, H. R. Sources, sinks, and population. Regulation 132, 652–661. https://doi.org/10.1086/284880 (1988).Article 

    Google Scholar 
    Lamb, C. T. et al. The ecology of human–carnivore coexistence. Proc. Natl. Acad. Sci. 117, 17876–17883. https://doi.org/10.1073/pnas.1922097117 (2020).Article 
    ADS 
    CAS 

    Google Scholar 
    Robinson, H. S., Weilgus, R. B., Cooley, H. & Cooley, S. Source—sink populations in carnivore management: cougar demography and immigration in a hunted population. Ecol. Appl. 18, 1028–1037 (2008).Article 

    Google Scholar 
    Creel, S. et al. Questionable policy for large carnivore hunting. Science 350, 1473–1475 (2015).Article 
    ADS 
    CAS 

    Google Scholar 
    Cushman, S. A. et al. Prioritizing core areas, corridors and conflict hotspots for lion conservation in southern Africa. PLoS ONE 13, e0196213. https://doi.org/10.1371/journal.pone.0196213 (2018).Article 
    CAS 

    Google Scholar 
    Kelly, M. J. & Durant, S. M. Viability of the Serengeti cheetah population. Conserv. Biol. 14, 786–797 (2000).Article 

    Google Scholar 
    Skalski, J. R., Ryding, K. & Millspaug, J. J. Wildlife Demography: Analysis of Sex, Age, and Count Data (Elsevier Academic Press, 2005).
    Google Scholar 
    Hamlin, K. L., Pac, D. F., Sime, C. A., DeSimone, R. M. & Dusek, G. L. Evaluating the accuracy of ages obtained by two methods for montana ungulates. J. Wildl. Manag. 64, 441–449. https://doi.org/10.2307/3803242 (2000).Article 

    Google Scholar 
    Storm, D. J. et al. Estimating ages of white-tailed deer: Age and sex patterns of error using tooth wear-and-replacement and consistency of cementum annuli. Wildl Soc Bull 38, 849–856. https://doi.org/10.1002/wsb.457 (2014).Article 
    ADS 

    Google Scholar 
    Balme, G. A., Hunter, L. & Braczkowski, A. R. Applicability of age-based hunting regulations for African Leopards. PLoS ONE 7, e35209. https://doi.org/10.1371/journal.pone.0035209 (2012).Article 
    ADS 
    CAS 

    Google Scholar 
    Gipson, P. S., Ballard, W. B., Nowak, R. M. & Mech, L. D. Accuracy and precision of estimating age of gray wolves by tooth wear. J. Wildl. Manag. 64, 752–758. https://doi.org/10.2307/3802745 (2000).Article 

    Google Scholar 
    Hiller, T. L. Comparison of two age-estimation techniques for cougars. J. Northwest. Nat. 77–82, 76 (2014).
    Google Scholar 
    Begg, C. M., Miller, J. R. B. & Begg, K. S. Effective implementation of age restrictions increases selectivity of sport hunting of the African lion. J. Appl. Ecol. 55, 139–146. https://doi.org/10.1111/1365-2664.12951 (2018).Article 

    Google Scholar 
    Mandisodza-Chikerema, R., Jooste, D. & Funston, P. J. Lion aging and adaptive quota management report: Ages of lions hunted and recommended quotas for 2019 in Zimbabwe. 12 (Unpublished report, Zimbabwe Parks and Wildlife Management and Panthera, Harare, Zimbabwe, 2019).Smuts, G. L., Anderson, J. L. & Austin, J. C. Age determination of the African lion (Panthera leo). J. Zool. Lond. 185, 115–146 (1978).Article 

    Google Scholar 
    Lindsey, P. A. et al. The trophy hunting of African lions: Scale, current management practices and factors undermining sustainability. PLoS ONE 8, 1–11 (2013).Article 

    Google Scholar 
    R Core Team. R: A Language and Environment for Statistical Computing. R Foundation for Statistical Computing, Vienna, Austria. https://www.R-project.org/ (2022).Packer, C. et al. Effects of trophy hunting on lion and leopard populations in Tanzania. Conserv. Biol. 25, 142–153 (2011).Article 
    CAS 

    Google Scholar 
    Mace, G. M. & Reynolds, J. Exploitation as a conservation issue. In Conservation of Exploited Species, Ch. 1 (eds Reynolds, J. et al.) 3–15 (Cambridge University Press, Cambridge, 2001).
    Google Scholar 
    Struhsaker, T. T. A biologists perspective on the role of sustainable harvest in conservation. Conserv. Biol. 12, 930–932 (1998).Article 

    Google Scholar  More

  • in

    Temperature fluctuation promotes the thermal adaptation of soil microbial respiration

    Auffret, M. D. et al. The role of microbial community composition in controlling soil respiration responses to temperature. PLoS ONE 11, e0165448 (2016).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Yao, Y. et al. A data-driven global soil heterotrophic respiration dataset and the drivers of its inter‐annual variability. Glob. Biogeochem. Cycle 35, e2020GB006918 (2021).Article 
    CAS 

    Google Scholar 
    Davidson, E. A., Janssens, I. A. & Luo, Y. On the variability of respiration in terrestrial ecosystems: moving beyond Q10. Glob. Change Biol. 12, 154–164 (2006).Article 

    Google Scholar 
    Wang, Q. et al. Soil microbial respiration rate and temperature sensitivity along a north–south forest transect in eastern China: patterns and influencing factors. J. Geophys. Res. Biogeosci. 121, 399–410 (2016).Article 

    Google Scholar 
    Sihi, D. et al. Merging a mechanistic enzymatic model of soil heterotrophic respiration into an ecosystem model in two AmeriFlux sites of northeastern USA. Agric. Meteorol. 252, 155–166 (2018).Article 

    Google Scholar 
    Shao, P., Zeng, X., Moore, D. J. P. & Zeng, X. Soil microbial respiration from observations and Earth system models. Environ. Res. Lett. 8, 034034 (2013).Article 
    CAS 

    Google Scholar 
    Davidson, E. A., Samanta, S., Caramori, S. S. & Savage, K. The dual Arrhenius and Michaelis–Menten kinetics model for decomposition of soil organic matter at hourly to seasonal time scales. Glob. Change Biol. 18, 371–384 (2012).Article 

    Google Scholar 
    Oechel, W. C. et al. Acclimation of ecosystem CO2 exchange in the Alaskan Arctic in response to decadal climate warming. Nature 406, 978–981 (2000).Article 
    CAS 
    PubMed 

    Google Scholar 
    Alster, C. J., von Fischer, J. C., Allison, S. D. & Treseder, K. K. Embracing a new paradigm for temperature sensitivity of soil microbes. Glob. Change Biol. 26, 3221–3229 (2020).Article 

    Google Scholar 
    Nie, M. et al. Positive climate feedbacks of soil microbial communities in a semi-arid grassland. Ecol. Lett. 16, 234–241 (2013).Article 
    PubMed 

    Google Scholar 
    Ji, F., Wu, Z., Huang, J. & Chassignet, E. P. Evolution of land surface air temperature trend. Nat. Clim. Change 4, 462–466 (2014).Article 

    Google Scholar 
    Huntingford, C., Jones, P. D., Livina, V. N., Lenton, T. M. & Cox, P. M. No increase in global temperature variability despite changing regional patterns. Nature 500, 327–330 (2013).Article 
    CAS 
    PubMed 

    Google Scholar 
    Hansen, J., Sato, M. & Ruedy, R. Perception of climate change. Proc. Natl Acad. Sci. USA 109, E2415–E2423 (2012).Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Byrne, M. P. Amplified warming of extreme temperatures over tropical land. Nat. Geosci. 14, 837–841 (2021).Article 
    CAS 

    Google Scholar 
    IPCC Climate Change 2021: The Physical Science Basis (eds Masson-Delmotte, V. et al.) (Cambridge Univ. Press, 2021).Chan, W. P. et al. Seasonal and daily climate variation have opposite effects on species elevational range size. Science 351, 1437–1439 (2016).Article 
    CAS 
    PubMed 

    Google Scholar 
    Biederbeck, V. O. & Campbell, C. A. Soil microbial activity as influenced by temperature trends and fluctuations. Can. J. Soil Sci. 53, 363–375 (1973).Article 

    Google Scholar 
    Karhu, K. et al. Temperature sensitivity of soil respiration rates enhanced by microbial community response. Nature 513, 81–84 (2014).Article 
    CAS 
    PubMed 

    Google Scholar 
    Chen, H., Zhu, T., Li, B., Fang, C. & Nie, M. The thermal response of soil microbial methanogenesis decreases in magnitude with changing temperature. Nat. Commun. 11, 5733 (2020).Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Allison, S. D., Wallenstein, M. D. & Bradford, M. A. Soil-carbon response to warming dependent on microbial physiology. Nat. Geosci. 3, 336–340 (2010).Article 
    CAS 

    Google Scholar 
    Nottingham, A. T. et al. Microbial responses to warming enhance soil carbon loss following translocation across a tropical forest elevation gradient. Ecol. Lett. 22, 1889–1899 (2019).Article 
    PubMed 

    Google Scholar 
    Alster, C. J., Robinson, J. M., Arcus, V. L. & Schipper, L. A. Assessing thermal acclimation of soil microbial respiration using macromolecular rate theory. Biogeochemistry 158, 131–141 (2022).Article 
    CAS 

    Google Scholar 
    Moinet, G. Y. K. et al. Soil microbial sensitivity to temperature remains unchanged despite community compositional shifts along geothermal gradients. Glob. Change Biol. 27, 6217–6231 (2021).Article 

    Google Scholar 
    Feng, J. et al. Soil microbial trait-based strategies drive metabolic efficiency along an altitude gradient. ISME Commun. 1, 71 (2021).Article 

    Google Scholar 
    Li, J. et al. Key microorganisms mediate soil carbon-climate feedbacks in forest ecosystems. Sci. Bull. 66, 2036–2044 (2021).Article 
    CAS 

    Google Scholar 
    Trivedi, P. et al. Microbial regulation of the soil carbon cycle: evidence from gene–enzyme relationships. ISME J. 10, 2593–2604 (2016).Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Zhu, B. & Cheng, W. Constant and diurnally-varying temperature regimes lead to different temperature sensitivities of soil organic carbon decomposition. Soil Biol. Biochem. 43, 866–869 (2011).Article 
    CAS 

    Google Scholar 
    Bradford, M. A. et al. Thermal adaptation of soil microbial respiration to elevated temperature. Ecol. Lett. 11, 1316–1327 (2008).Article 
    PubMed 

    Google Scholar 
    Hartley, I. P., Hopkins, D. W., Garnett, M. H., Sommerkorn, M. & Wookey, P. A. Soil microbial respiration in Arctic soil does not acclimate to temperature. Ecol. Lett. 11, 1092–1100 (2008).Article 
    PubMed 

    Google Scholar 
    Bradford, M. A. et al. Cross-biome patterns in soil microbial respiration predictable from evolutionary theory on thermal adaptation. Nat. Ecol. Evol. 3, 223–231 (2019).Article 
    PubMed 

    Google Scholar 
    Tian, W. et al. Thermal adaptation occurs in the respiration and growth of widely distributed bacteria. Glob. Change Biol. 28, 2820–2829 (2022).Article 
    CAS 

    Google Scholar 
    Bradford, M. A., Watts, B. W. & Davies, C. A. Thermal adaptation of heterotrophic soil respiration in laboratory microcosms. Glob. Change Biol. 16, 1576–1588 (2010).Article 

    Google Scholar 
    Walker, T. W. N. et al. Microbial temperature sensitivity and biomass change explain soil carbon loss with warming. Nat. Clim. Change 8, 885–889 (2018).Article 
    CAS 

    Google Scholar 
    Chen, H. et al. Microbial respiratory thermal adaptation is regulated by r-/K-strategy dominance. Ecol. Lett. 25, 2489–2499 (2022).Article 
    PubMed 

    Google Scholar 
    Wang, C. et al. The temperature sensitivity of soil: microbial biodiversity, growth, and carbon mineralization. ISME J. 15, 2738–2747 (2021).Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Ramadhin, C., Yi, C. & Hendrey, G. Temperature variance portends and indicates the extent of abrupt climate shifts. IOP SciNotes 2, 014002 (2021).Article 

    Google Scholar 
    Sun, Y. Q. & Ge, Y. Temporal changes in the function of bacterial assemblages associated with decomposing earthworms. Front. Microbiol. 12, 682224 (2021).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Shi, Z., Xu, J., Li, X., Li, R. & Li, Q. Links of extracellular enzyme activities, microbial metabolism, and community composition in the river-impacted coastal waters. J. Geophys. Res. Biogeosci. 124, 3507–3520 (2019).Article 

    Google Scholar 
    Razanamalala, K. et al. Soil microbial diversity drives the priming effect along climate gradients: a case study in Madagascar. ISME J. 12, 451–462 (2017).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Xu, M. et al. High microbial diversity stabilizes the responses of soil organic carbon decomposition to warming in the subsoil on the Tibetan Plateau. Glob. Change Biol. 27, 2061–2075 (2021).Article 
    CAS 

    Google Scholar 
    Clemmensen, K. E. et al. Roots and associated fungi drive long-term carbon sequestration in boreal forest. Science 339, 1615–1618 (2013).Article 
    CAS 
    PubMed 

    Google Scholar 
    Qiao, N. et al. Labile carbon retention compensates for CO2 released by priming in forest soils. Glob. Change Biol. 20, 1943–1954 (2014).Article 

    Google Scholar 
    Ning, Q. et al. Carbon limitation overrides acidification in mediating soil microbial activity to nitrogen enrichment in a temperate grassland. Glob. Change Biol. 27, 5976–5988 (2021).Article 
    CAS 

    Google Scholar 
    Wan, S. & Luo, Y. Substrate regulation of soil respiration in a tallgrass prairie: results of a clipping and shading experiment. Glob. Biogeochem. Cycle 17, 1054 (2003).Article 

    Google Scholar 
    Gillabel, J., Cebrian-Lopez, B., Six, J. & Merckx, R. Experimental evidence for the attenuating effect of SOM protection on temperature sensitivity of SOM decomposition. Glob. Change Biol. 16, 2789–2798 (2010).Article 

    Google Scholar 
    Xia, J. et al. Terrestrial carbon cycle affected by non-uniform climate warming. Nat. Geosci. 7, 173–180 (2014).Article 
    CAS 

    Google Scholar 
    Balesdent, J. et al. Atmosphere–soil carbon transfer as a function of soil depth. Nature 559, 599–602 (2018).Article 
    CAS 
    PubMed 

    Google Scholar 
    Howard, D. M. & Howard, P. J. A. Relationships between CO2 evolution, moisture-content and temperature for a range of soil types. Soil Biol. Biochem. 25, 1537–1546 (1993).Article 

    Google Scholar 
    Hoyle, F. C., Murphy, D. V. & Brookes, P. C. Microbial response to the addition of glucose in low-fertility soils. Biol. Fertil. Soils 44, 571–579 (2008).Article 
    CAS 

    Google Scholar 
    Mau, R. L. et al. Linking soil bacterial biodiversity and soil carbon stability. ISME J. 9, 1477–1480 (2015).Article 
    CAS 
    PubMed 

    Google Scholar 
    Tucker, C. L., Bell, J., Pendall, E. & Ogle, K. Does declining carbon-use efficiency explain thermal acclimation of soil respiration with warming? Glob. Change Biol. 19, 252–263 (2013).Article 

    Google Scholar 
    Billings, S. A. & Ballantyne, F. T. How interactions between microbial resource demands, soil organic matter stoichiometry, and substrate reactivity determine the direction and magnitude of soil respiratory responses to warming. Glob. Change Biol. 19, 90–102 (2013).Article 

    Google Scholar 
    Li, J. et al. Biogeographic variation in temperature sensitivity of decomposition in forest soils. Glob. Change Biol. 26, 1873–1885 (2020).Article 

    Google Scholar 
    Min, K. et al. Temperature sensitivity of biomass-specific microbial exo-enzyme activities and CO2 efflux is resistant to change across short- and long-term timescales. Glob. Change Biol. 5, 1793–1807 (2019).Article 

    Google Scholar 
    Dacal, M., Bradford, M. A., Plaza, C., Maestre, F. T. & Garcia-Palacios, P. Soil microbial respiration adapts to ambient temperature in global drylands. Nat. Ecol. Evol. 3, 232–238 (2019).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Field-Fote, E. E. Mediators and moderators, confounders and covariates: exploring the variables that illuminate or obscure the “active ingredients” in neurorehabilitation. J. Neurol. Phys. Ther. 43, 83–84 (2019).Article 
    PubMed 

    Google Scholar 
    Anderson, T. H. & Domsch, K. H. Soil microbial biomass: the eco-physiological approach. Soil Biol. Biochem. 12, 2039–2043 (2010).Article 

    Google Scholar 
    Vance, E. D., Brookes, P. C. & Jenkinson, D. S. Microbial biomass measurements in forest soils—the use of the chloroform fumigation incubation method in strongly acid soils. Soil Biol. Biochem. 19, 697–702 (1987).Article 
    CAS 

    Google Scholar 
    Bolger, A. M., Lohse, M. & Usadel, B. Trimmomatic: a flexible trimmer for Illumina sequence data. Bioinformatics 30, 2114–2120 (2014).Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Martin, M. Cutadapt removes adapter sequences from high-throughput sequencing reads. EMBnet J. 17, 10–12 (2011).Article 

    Google Scholar 
    Edgar, R. C., Haas, B. J., Clemente, J. C., Quince, C. & Knight, R. UCHIME improves sensitivity and speed of chimera detection. Bioinformatics 27, 2194–2200 (2011).Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Edgar, R. C. UPARSE: highly accurate OTU sequences from microbial amplicon reads. Nat. Methods 10, 996–998 (2013).Article 
    CAS 
    PubMed 

    Google Scholar 
    Bolyen, E. et al. Reproducible, interactive, scalable and extensible microbiome data science using QIIME 2. Nat. Biotechnol. 37, 852–857 (2019).Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Callahan, B. J. et al. DADA2: high-resolution sample inference from Illumina amplicon data. Nat. Methods 13, 581–583 (2016).Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Quast, C. et al. The SILVA ribosomal RNA gene database project: improved data processing and web-based tools. Nucleic Acids Res. 41, D590–D596 (2013).Article 
    CAS 
    PubMed 

    Google Scholar 
    Koljalg, U. et al. UNITE: a database providing web-based methods for the molecular identification of ectomycorrhizal fungi. N. Phytol. 166, 1063–1068 (2005).Article 
    CAS 

    Google Scholar 
    German, D. P. et al. Optimization of hydrolytic and oxidative enzyme methods for ecosystem studies. Soil Biol. Biochem. 43, 1387–1397 (2011).Article 
    CAS 

    Google Scholar 
    Mazerolle, M. Improving data analysis in herpetology: using Akaike’s information criterion (AIC) to assess the strength of biological hypotheses. Amphib. Reptil. 2, 169–180 (2006).Article 

    Google Scholar 
    Moinet, G. Y. K. et al. Temperature sensitivity of decomposition decreases with increasing soil organic matter stability. Sci. Total Environ. 704, 135460 (2020).Article 
    CAS 
    PubMed 

    Google Scholar 
    Moinet, G. Y. K. et al. The temperature sensitivity of soil organic matter decomposition is constrained by microbial access to substrates. Soil Biol. Biochem. 116, 333–339 (2018).Article 
    CAS 

    Google Scholar 
    Dixon, P. VEGAN, a package of R functions for community ecology. J. Veg. Sci. 14, 927–930 (2003).Article 

    Google Scholar  More

  • in

    The double life of Methanoperedens

    Galperin, M. Y. Environ. Microbiol. 6, 552–567 (2004).Article 
    CAS 

    Google Scholar 
    Higgins, D. & Dworkin, J. FEMS Microbiol. Rev. 36, 131–148 (2012).Article 
    CAS 

    Google Scholar 
    Maamar, H., Raj, A. & Dubnau, D. Science 317, 526–529 (2007).Article 
    CAS 

    Google Scholar 
    Ackermann, M. Nat. Rev. Microbiol. 13, 497–508 (2015).Article 
    CAS 

    Google Scholar 
    Robinson, R. W. Appl. Environ. Microbiol. 52, 17–27 (1986).Article 
    CAS 

    Google Scholar 
    McIlroy, S. J. et al. Nat. Microbiol. https://doi.org/10.1038/s41564-022-01292-9 (2023).Article 

    Google Scholar 
    Leu, A. O. et al. ISME J. 14, 1030–1041 (2020).Article 
    CAS 

    Google Scholar 
    Cui, M., Ma, A., Qi, H., Zhuang, X. & Zhuang, G. Microbiologyopen 4, 1–11 (2015).Article 

    Google Scholar 
    Haroon, M. F. et al. Nature 500, 567–570 (2013).Article 
    CAS 

    Google Scholar 
    Fritts, R. K., McCully, A. L. & McKinlay, J. B. Microbiol. Molec. Biol. Rev. 85, e00135-20 (2021).Article 

    Google Scholar  More