More stories

  • in

    The double life of Methanoperedens

    Galperin, M. Y. Environ. Microbiol. 6, 552–567 (2004).Article 
    CAS 

    Google Scholar 
    Higgins, D. & Dworkin, J. FEMS Microbiol. Rev. 36, 131–148 (2012).Article 
    CAS 

    Google Scholar 
    Maamar, H., Raj, A. & Dubnau, D. Science 317, 526–529 (2007).Article 
    CAS 

    Google Scholar 
    Ackermann, M. Nat. Rev. Microbiol. 13, 497–508 (2015).Article 
    CAS 

    Google Scholar 
    Robinson, R. W. Appl. Environ. Microbiol. 52, 17–27 (1986).Article 
    CAS 

    Google Scholar 
    McIlroy, S. J. et al. Nat. Microbiol. https://doi.org/10.1038/s41564-022-01292-9 (2023).Article 

    Google Scholar 
    Leu, A. O. et al. ISME J. 14, 1030–1041 (2020).Article 
    CAS 

    Google Scholar 
    Cui, M., Ma, A., Qi, H., Zhuang, X. & Zhuang, G. Microbiologyopen 4, 1–11 (2015).Article 

    Google Scholar 
    Haroon, M. F. et al. Nature 500, 567–570 (2013).Article 
    CAS 

    Google Scholar 
    Fritts, R. K., McCully, A. L. & McKinlay, J. B. Microbiol. Molec. Biol. Rev. 85, e00135-20 (2021).Article 

    Google Scholar  More

  • in

    Acclimation of phenology relieves leaf longevity constraints in deciduous forests

    Peaucelle, M. et al. Spatial variance of spring phenology in temperate deciduous forests is constrained by background climatic conditions. Nat. Commun. 10, 5388 (2019).Article 

    Google Scholar 
    Hopkins, A. D. The bioclimatic law. Mon. Weather Rev. 48, 355–355 (1920).Article 

    Google Scholar 
    Piao, S. et al. Plant phenology and global climate change: current progresses and challenges. Glob. Change Biol. 25, 1922–1940 (2019).Article 

    Google Scholar 
    Ge, Q., Wang, H., Rutishauser, T. & Dai, J. Phenological response to climate change in China: a meta-analysis. Glob. Change Biol. 21, 265–274 (2015).Article 

    Google Scholar 
    Templ, B. et al. Pan European Phenological database (PEP725): a single point of access for European data. Int. J. Biometeorol. 62, 1109–1113 (2018).Article 

    Google Scholar 
    Richardson, A. D. et al. Climate change, phenology, and phenological control of vegetation feedbacks to the climate system. Agric. For. Meteorol. 169, 156–173 (2013).Article 

    Google Scholar 
    Morisette, J. T. et al. Tracking the rhythm of the seasons in the face of global change: phenological research in the 21st century. Front. Ecol. Environ. 7, 253–260 (2009).Article 

    Google Scholar 
    Flynn, D. F. B. & Wolkovich, E. M. Temperature and photoperiod drive spring phenology across all species in a temperate forest community. New Phytol. 219, 1353–1362 (2018).Article 
    CAS 

    Google Scholar 
    Peñuelas, J., Rutishauser, T. & Filella, I. Phenology feedbacks on climate change. Science 324, 887–888 (2009).Article 

    Google Scholar 
    Körner, C. & Basler, D. Plant science. Phenol. Glob. Warm. Sci. 327, 1461–1462 (2010).
    Google Scholar 
    Delpierre, N. et al. Temperate and boreal forest tree phenology: from organ-scale processes to terrestrial ecosystem models. Ann. For. Sci. 73, 5–25 (2016).Article 

    Google Scholar 
    Klosterman, S. T. et al. Evaluating remote sensing of deciduous forest phenology at multiple spatial scales using PhenoCam imagery. Biogeosciences 11, 4305–4320 (2014).Article 

    Google Scholar 
    Hufkens, K. et al. Linking near-surface and satellite remote sensing measurements of deciduous broadleaf forest phenology. Remote Sens. Environ. 117, 307–321 (2012).Article 

    Google Scholar 
    Garrity, S. R. et al. A comparison of multiple phenology data sources for estimating seasonal transitions in deciduous forest carbon exchange. Agric. For. Meteorol. 151, 1741–1752 (2011).Article 

    Google Scholar 
    Fracheboud, Y. et al. The control of autumn senescence in European aspen. Plant Physiol. 149, 1982–1991 (2009).Article 
    CAS 

    Google Scholar 
    Mariën, B. et al. Does drought advance the onset of autumn leaf senescence in temperate deciduous forest trees? Biogeosciences 18, 3309–3330 (2021).Article 

    Google Scholar 
    Fu, Y. H. et al. Larger temperature response of autumn leaf senescence than spring leaf-out phenology. Glob. Change Biol. 24, 2159–2168 (2018).Article 

    Google Scholar 
    Menzel, A., Sparks, T. H., Estrella, N. & Roy, D. B. Altered geographic and temporal variability in phenology in response to climate change. Glob. Ecol. Biogeogr. 15, 498–504 (2006).Article 

    Google Scholar 
    Gordo, O. & Sanz, J. J. Long-term temporal changes of plant phenology in the Western Mediterranean. Glob. Change Biol. 15, 1930–1948 (2009).Article 

    Google Scholar 
    Meier, M., Vitasse, Y., Bugmann, H. & Bigler, C. Phenological shifts induced by climate change amplify drought for broad-leaved trees at low elevations in Switzerland. Agric. For. Meteorol. 307, 108485 (2021).Basler, D. Evaluating phenological models for the prediction of leaf-out dates in six temperate tree species across central Europe. Agric. For. Meteorol. 217, 10–21 (2016).Article 

    Google Scholar 
    Keenan, T. F. et al. Terrestrial biosphere model performance for inter-annual variability of land–atmosphere CO2 exchange. Glob. Change Biol. 18, 1971–1987 (2012).Article 

    Google Scholar 
    Liu, G., Chen, X., Fu, Y. & Delpierre, N. Modelling leaf coloration dates over temperate China by considering effects of leafy season climate. Ecol. Modell. 394, 34–43 (2019).Article 

    Google Scholar 
    Keenan, T. F. & Richardson, A. D. The timing of autumn senescence is affected by the timing of spring phenology: implications for predictive models. Glob. Change Biol. 21, 2634–2641 (2015).Article 

    Google Scholar 
    Wu, C., Hou, X., Peng, D., Gonsamo, A. & Xu, S. Land surface phenology of China’s temperate ecosystems over 1999–2013: spatial–temporal patterns, interaction effects, covariation with climate and implications for productivity. Agric. For. Meteorol. 216, 177–187 (2016).Article 

    Google Scholar 
    Fu, Y. S. H. et al. Variation in leaf flushing date influences autumnal senescence and next year’s flushing date in two temperate tree species. Proc. Natl Acad. Sci. USA 111, 7355–7360 (2014).Article 
    CAS 

    Google Scholar 
    Zani, D., Crowther, T. W., Mo, L., Renner, S. S. & Zohner, C. M. Increased growing-season productivity drives earlier autumn leaf senescence in temperate trees. Science 370, 1066–1071 (2020).Article 
    CAS 

    Google Scholar 
    Paul, M. J. & Foyer, C. H. Sink regulation of photosynthesis. J. Exp. Bot. 52, 1383–1400 (2001).Article 
    CAS 

    Google Scholar 
    Herold, A. Regulation of photosynthesis by sink activity—the missing link. New Phytol. 86, 131–144 (1980).Article 
    CAS 

    Google Scholar 
    Keenan, T. F. et al. Recent pause in the growth rate of atmospheric CO2 due to enhanced terrestrial carbon uptake. Nat. Commun. 7, 13428 (2016).Campbell, J. E. et al. Large historical growth in global terrestrial gross primary production. Nature 544, 84–87 (2017).Article 
    CAS 

    Google Scholar 
    Schimel, D., Stephens, B. B. & Fisher, J. B. Effect of increasing CO2 on the terrestrial carbon cycle. Proc. Natl Acad. Sci.USA 112, 436–441 (2015).Article 
    CAS 

    Google Scholar 
    Walker, A. P. et al. Integrating the evidence for a terrestrial carbon sink caused by increasing atmospheric CO. New Phytol. 229, 2413–2445 (2021).Article 
    CAS 

    Google Scholar 
    Liu, Q. et al. Modeling leaf senescence of deciduous tree species in Europe. Glob. Change Biol. 26, 4104–4118 (2020).Article 

    Google Scholar 
    Friedl, M., Gray, J. & Sulla-Menashe, D. MCD12Q2 MODIS/Terra+Aqua Land Cover Dynamics Yearly L3 Global 500m SIN Grid V006 (NASA, 2019).Zhang, X. et al. Monitoring vegetation phenology using MODIS. Remote Sens. Environ. 84, 471–475 (2003).Article 

    Google Scholar 
    Stocker, B. D. et al. P-model v1.0: an optimality-based light use efficiency model for simulating ecosystem gross primary production. Geosci. Model Dev. 13, 1545–1581 (2020).Article 

    Google Scholar 
    Pastorello, G. et al. The FLUXNET2015 dataset and the ONEFlux processing pipeline for eddy covariance data. Sci. Data 7, 225 (2020).Article 

    Google Scholar 
    Sitch, S. et al. Evaluation of ecosystem dynamics, plant geography and terrestrial carbon cycling in the LPJ dynamic global vegetation model. Glob. Change Biol. 9, 161–185 (2003).Article 

    Google Scholar 
    Hänninen, H. & Tanino, K. Tree seasonality in a warming climate. Trends Plant Sci. 16, 412–416 (2011).Article 

    Google Scholar 
    Kikuzawa, K. & Lechowicz, M. J. Ecology of Leaf Longevity (Springer, 2011).Fu, Y. H. et al. Nutrient availability alters the correlation between spring leaf-out and autumn leaf senescence dates. Tree Physiol. 39, 1277–1284 (2019).Article 
    CAS 

    Google Scholar 
    Lim, P. O., Kim, H. J. & Nam, H. G. Leaf senescence. Annu. Rev. Plant Biol. 58, 115–136 (2007).Article 
    CAS 

    Google Scholar 
    Piao, S., Friedlingstein, P., Ciais, P., Viovy, N. & Demarty, J. Growing season extension and its impact on terrestrial carbon cycle in the Northern Hemisphere over the past 2 decades. Glob. Biogeochem. Cycles 21, GB3018 (2007).Jeong, S.-J., Ho, C.-H., Gim, H.-J. & Brown, M. E. Phenology shifts at start vs. end of growing season in temperate vegetation over the Northern Hemisphere for the period 1982–2008. Glob. Change Biol. 17, 2385–2399 (2011).Article 

    Google Scholar 
    Cong, N. et al. Changes in satellite-derived spring vegetation green-up date and its linkage to climate in China from 1982 to 2010: a multimethod analysis. Glob. Change Biol. 19, 881–891 (2013).Article 

    Google Scholar 
    Keenan, T. F. et al. Net carbon uptake has increased through warming-induced changes in temperate forest phenology. Nat. Clim. Change 4, 598–604 (2014).Article 
    CAS 

    Google Scholar 
    Garonna, I., de Jong, R. & Schaepman, M. E. Variability and evolution of global land surface phenology over the past three decades (1982–2012). Glob. Change Biol. 22, 1456–1468 (2016).Article 

    Google Scholar 
    Smith, N. G. & Dukes, J. S. Plant respiration and photosynthesis in global-scale models: incorporating acclimation to temperature and CO2. Glob. Change Biol. 19, 45–63 (2013).Article 

    Google Scholar 
    Estiarte, M. & Peñuelas, J. Alteration of the phenology of leaf senescence and fall in winter deciduous species by climate change: effects on nutrient proficiency. Glob. Change Biol. 21, 1005–1017 (2015).Article 

    Google Scholar 
    Delpierre, N. et al. Modelling interannual and spatial variability of leaf senescence for three deciduous tree species in France. Agric. For. Meteorol. 149, 938–948 (2009).Article 

    Google Scholar 
    Chung, H. et al. Experimental warming studies on tree species and forest ecosystems: a literature review. J. Plant Res. 126, 447–460 (2013).Article 

    Google Scholar 
    Schaaf, C. B. et al. First operational BRDF, albedo nadir reflectance products from MODIS. Remote Sens. Environ. 83, 135–148 (2002).Article 

    Google Scholar 
    Tuck, S. L. et al. MODISTools—downloading and processing MODIS remotely sensed data in R. Ecol. Evol. 4, 4658–4668 (2014).Article 

    Google Scholar 
    Farquhar, G. D., von Caemmerer, S. & Berry, J. A. A biochemical model of photosynthetic CO2 assimilation in leaves of C3 species. Planta 149, 78–90 (1980).Article 
    CAS 

    Google Scholar 
    Medlyn, B. E. et al. Reconciling the optimal and empirical approaches to modelling stomatal conductance. Glob. Change Biol. 17, 2134–2144 (2011).Article 

    Google Scholar 
    Stocker, B. rsofun: A modelling framework that implements the P-model for leaf-level acclimation of photosynthesis. R package version 4.3 https://github.com/computationales/rsofun (2020).Weedon, G. P. et al. The WFDEI meteorological forcing data set: WATCH Forcing Data methodology applied to ERA-Interim reanalysis data. Water Resour. Res. 50, 7505–7514 (2014).Article 

    Google Scholar 
    Meek, D. W., Hatfield, J. L., Howell, T. A., Idso, S. B. & Reginato, R. J. A generalized relationship between photosynthetically active radiation and solar radiation 1. Agron. J. 76, 939–945 (1984).Article 

    Google Scholar 
    Fick, S. E. & Hijmans, R. J. WorldClim 2: new 1‐km spatial resolution climate surfaces for global land areas. Int. J. Climatol. 37, 4302–4315 (2017).Article 

    Google Scholar 
    Stocker, B. ingestr: A tool to extract environmental point data from large global files or remote data servers. R package version 1.4 https://github.com/computationales/ingestr (2020).Wang, H. et al. Towards a universal model for carbon dioxide uptake by plants. Nat. Plants 3, 734–741 (2017).Article 
    CAS 

    Google Scholar 
    Bates, D., Mächler, M., Bolker, B. & Walker, S. Fitting linear mixed-effects models using lme4. J. Stat. Softw. 67, 1–48 (2015).Article 

    Google Scholar 
    R Core Team. R: A Language and Environment for Statistical Computing (R Foundation for Statistical Computing, 2021).Myneni, R., Knyazikhin, Y. & Park, T. MCD15A3H MODIS/Terra+Aqua Leaf Area Index/FPAR 4-day L4 Global 500m SIN Grid V006 (NASA EOSDIS Land Processes DAAC, 2015). More

  • in

    Nature-positive goals for an organization’s food consumption

    Mace, G. M. et al. Aiming higher to bend the curve of biodiversity loss. Nat. Sustain. 1, 448–451 (2018).Article 

    Google Scholar 
    Díaz, S., et al. Pervasive human-driven decline of life on Earth points to the need for transformative change. Science 366, eaax3100 (2019).Díaz, S. et al. Set ambitious goals for biodiversity and sustainability. Science 370, 411 (2020).Article 

    Google Scholar 
    Locke, H., et al. A Nature-Positive World: The Global Goal for Nature (Wildlife Conservation Society, 2020); https://library.wcs.org/doi/ctl/view/mid/33065/pubid/DMX3974900000.aspxOpen-ended Working Group on the Post-2020 Global Biodiversity Framework. First Draft of the Post-2020 Global Biodiversity Framework CBD/WG2020/3/3 (Convention on Biological Diversity, 2021).Open-Ended Working Group on the Post-2020 Global Biodiversity Framework. Draft Recommendation Submitted by the Co-Chairs CBD/WG2020/4/L.2-ANNEX (Convention on Biological Diversity, 2022).Environment Act 2021 (UK) (HM Government, 2021); https://www.legislation.gov.uk/ukpga/2021/30/contents/enactedBull, J. W. & Strange, N. The global extent of biodiversity offset implementation under no net loss policies. Nat. Sustain. 1, 790–798 (2018).Article 

    Google Scholar 
    Prendeville, S., Cherim, E. & Bocken, N. Circular cities: mapping six cities in transition. Environ. Innov. Soc. Transit. 26, 171–194 (2018).de Silva, G. C., Regan, E. C., Pollard, E. H. B. & Addison, P. F. E. The evolution of corporate no net loss and net positive impact biodiversity commitments: understanding appetite and addressing challenges. Bus. Strategy Environ. 28, 1481–1495 (2019).Article 

    Google Scholar 
    zu Ermgassen, S. O. S. E. et al. Exploring the ecological outcomes of mandatory biodiversity net gain using evidence from early‐adopter jurisdictions in England. Conserv. Lett. 14, e12820 (2021).Article 

    Google Scholar 
    McGlyn, J., et al. Science-Based Targets for Nature: Initial Guidance for Business (Science Based Targets Network, 2020); https://sciencebasedtargetsnetwork.org/resource-repository/zu Ermgassen, S. O. S. E. et al. Are corporate biodiversity commitments consistent with delivering ‘nature-positive’ outcomes? A review of ‘nature-positive’ definitions, company progress and challenges. J. Clean. Prod. 379, 134798 (2022).Article 

    Google Scholar 
    Addison, P. F. E., Bull, J. W. & Milner‐Gulland, E. J. Using conservation science to advance corporate biodiversity accountability. Conserv. Biol. 33, 307–318 (2019).Article 

    Google Scholar 
    Smith, T. et al. Biodiversity means business: reframing global biodiversity goals for the private sector. Conserv. Lett. 13, e12690 (2020).Article 

    Google Scholar 
    Maron, M. et al. Setting robust biodiversity goals. Conserv. Lett. https://doi.org/10.1111/conl.12816 (2021).Newing, H. & Perram, A. What do you know about conservation and human rights? Oryx 53, 595–596 (2019).Article 

    Google Scholar 
    Standard on Biodiversity Offsets (The Business and Biodiversity Offsets Programme, 2012).Arlidge, W. N. S., et al. A mitigation hierarchy approach for managing sea turtle captures in small-scale fisheries. Front. Mar. Sci. 7, 49 (2020).Squires, D. & Garcia, S. The least-cost biodiversity impact mitigation hierarchy with a focus on marine fisheries and bycatch issues. Conserv. Biol. 32, 989–997 (2018).Article 

    Google Scholar 
    Booth, H., Squires, D. & Milner-Gulland, E. J. The mitigation hierarchy for sharks: a risk-based framework for reconciling trade-offs between shark conservation and fisheries objectives. Fish Fish. 21, 269–289 (2020).Article 

    Google Scholar 
    Gupta, T. et al. Mitigation of elasmobranch bycatch in trawlers: a case study in Indian fisheries. Front. Mari. Sci. 7, 571 (2020).Budiharta, S. et al. Restoration to offset the impacts of developments at a landscape scale reveals opportunities, challenges and tough choices. Global Environ. Change 52, 152–161 (2018).Article 

    Google Scholar 
    Bull, J. W. et al. Net positive outcomes for nature. Nat. Ecol. Evol. 4, 4–7 (2020).Article 

    Google Scholar 
    Arlidge, W. N. S. et al. A global mitigation hierarchy for nature conservation. BioScience 68, 336–347 (2018).Article 

    Google Scholar 
    Milner-Gulland, E. J. et al. Four steps for the Earth: mainstreaming the post-2020 global biodiversity framework. One Earth 4, 75–87 (2021).Article 
    ADS 

    Google Scholar 
    Wolff, A., Gondran, N. & Brodhag, C. Detecting unsustainable pressures exerted on biodiversity by a company. Application to the food portfolio of a retailer. J. Clean. Prod. 166, 784–797 (2017).Article 

    Google Scholar 
    FAOSTAT Analytical Brief 15 Land Use and Land Cover Statistics: Global, Regional and Country Trends, 1990–2018 (FAO, 2020).Williams, D. R. et al. Proactive conservation to prevent habitat losses to agricultural expansion. Nat. Sustain. 4, 314–322 (2021).Article 

    Google Scholar 
    Leclère, D. et al. Bending the curve of terrestrial biodiversity needs an integrated strategy. Nature 585, 551–556 (2020).Article 
    ADS 

    Google Scholar 
    Springmann, M. et al. Health and nutritional aspects of sustainable diet strategies and their association with environmental impacts: a global modelling analysis with country-level detail. Lancet Planet. Health 2, e451–e461 (2018).Article 

    Google Scholar 
    Clark, M. A., Springmann, M., Hill, J. & Tilman, D. Multiple health and environmental impacts of foods. Proc. Natl Acad. Sci. USA 116, 23357 (2019).Article 
    ADS 
    CAS 

    Google Scholar 
    Willett, W. et al. Food in the Anthropocene: the EAT–Lancet Commission on healthy diets from sustainable food systems. Lancet 393, 447–492 (2019).Article 

    Google Scholar 
    Poore, J. & Nemecek, T. Reducing food’s environmental impacts through producers and consumers. Science 360, 987 (2018).Article 
    ADS 
    CAS 

    Google Scholar 
    Wiedmann, T., Lenzen, M., Keyßer, L. T. & Steinberger, J. K. Scientists’ warning on affluence. Nat. Commun. 11, 3107 (2020).Article 
    ADS 
    CAS 

    Google Scholar 
    Benton, T. G. et al. A ‘net zero’ equivalent target is needed to transform food systems. Nat. Food 2, 905–906 (2021). 2021.Article 

    Google Scholar 
    Crenna, E., Sinkko, T. & Sala, S. Biodiversity impacts due to food consumption in Europe. J. Clean. Prod. 227, 378–391 (2019).Article 
    CAS 

    Google Scholar 
    Bull, J. W., et al. Analysis: the biodiversity footprint of the University of Oxford. Nature 604, 420–424 (2022).Harrington, R. A., Adhikari, V., Rayner, M. & Scarborough, P. Nutrient composition databases in the age of big data: foodDB, a comprehensive, real-time database infrastructure. BMJ Open 9, e026652 (2019).Article 

    Google Scholar 
    Chaudhary, A., Verones, F., De Baan, L. & Hellweg, S. Quantifying land use impacts on biodiversity: combining species–area models and vulnerability indicators. Environ. Sci. Technol. 49, 9987–9995 (2015).Article 
    ADS 
    CAS 

    Google Scholar 
    Winter, L., Lehmann, A., Finogenova, N. & Finkbeiner, M. Including biodiversity in life cycle assessment—state of the art, gaps and research needs. Environ. Impact Assess. Rev. 67, 88–100 (2017).Article 

    Google Scholar 
    Chaudhary, A. & Kastner, T. Land use biodiversity impacts embodied in international food trade. Global Environ. Change 38, 195–204 (2016).Article 

    Google Scholar 
    Lenzen, M. et al. International trade drives biodiversity threats in developing nations. Nature 486, 109–112 (2012).Article 
    ADS 
    CAS 

    Google Scholar 
    Bates, B., et al. National Diet and Nutrition Survey Years 1 to 9 of the Rolling Programme (2008/2009–2016/2017): Time Trend and Income Analyses (Public Health England & Food Standards Agency, 2019).Stewart, C., Piernas, C., Cook, B. & Jebb, S. A. Trends in UK meat consumption: analysis of data from years 1–11 (2008–09 to 2018–19) of the National Diet and Nutrition Survey rolling programme. Lancet Planet. Health 5, e699–e708 (2021).Article 

    Google Scholar 
    Nielsen, K. S. et al. Improving climate change mitigation analysis: a framework for examining feasibility. One Earth 3, 325–336 (2020).Article 
    ADS 

    Google Scholar 
    Selinske, M. J. et al. We have a steak in it: eliciting interventions to reduce beef consumption and its impact on biodiversity. Conserv. Lett. 13, e12721 (2020).Article 

    Google Scholar 
    Hollands, G. J. et al. The TIPPME intervention typology for changing environments to change behaviour. Nat. Hum. Behav. 1, 1–9 (2017).Article 

    Google Scholar 
    Marteau, T. M., Hollands, G. J. & Fletcher, P. C. Changing human behavior to prevent disease: the importance of targeting automatic processes. Science 337, 1492–1495 (2012).Article 
    ADS 
    CAS 

    Google Scholar 
    Michie, S., van Stralen, M. M. & West, R. The behaviour change wheel: a new method for characterising and designing behaviour change interventions. Implement. Sci. 6, 42 (2011).Article 

    Google Scholar 
    Moran, D., Giljum, S., Kanemoto, K. & Godar, J. From satellite to supply chain: new approaches connect earth observation to economic decisions. One Earth 3, 5–8 (2020).Article 
    ADS 

    Google Scholar 
    Godar, J., Suavet, C., Gardner, T. A., Dawkins, E. & Meyfroidt, P. Balancing detail and scale in assessing transparency to improve the governance of agricultural commodity supply chains. Environ. Res. Lett. 11, 035015 (2016).Article 
    ADS 

    Google Scholar 
    DeFries, R. S., Fanzo, J., Mondal, P., Remans, R. & Wood, S. A. Is voluntary certification of tropical agricultural commodities achieving sustainability goals for small-scale producers? A review of the evidence. Environ. Res. Lett. 12, 033001 (2017).Article 
    ADS 

    Google Scholar 
    Bull, J. W., Suttle, K. B., Gordon, A., Singh, N. J. & Milner-Gulland, E. J. Biodiversity offsets in theory and practice. Oryx 47, 369–380 (2013).Article 

    Google Scholar 
    zu Ermgassen, S. O. S. E. et al. The ecological outcomes of biodiversity offsets under “no net loss” policies: a global review. Conserv. Lett. 12, e12664 (2019).Article 

    Google Scholar 
    Waddock, S. Achieving sustainability requires systemic business transformation. Glob. Sustain. 3, e12 (2020).Travers, H., Walsh, J., Vogt, S., Clements, T. & Milner-Gulland, E. J. Delivering behavioural change at scale: what conservation can learn from other fields. Biol. Conserv. 257, 109092 (2021).Article 

    Google Scholar 
    Gaupp, F. et al. Food system development pathways for healthy, nature-positive and inclusive food systems. Nat. Food 2, 928–934 (2021).Article 

    Google Scholar 
    Astill, J. et al. Transparency in food supply chains: a review of enabling technology solutions. Trends Food Sci. Technol. 91, 240–247 (2019).Article 
    CAS 

    Google Scholar 
    Poore, J & Nemecek, T. Full Excel model: life-cycle environmental impacts of food drink products. Oxford University Research Archive https://ora.ox.ac.uk/objects/uuid:a63fb28c-98f8-4313-add6-e9eca99320a5 (2018).Clark, M., et al. Estimating the environmental impacts of 57,000 food products. Proc. Natl Acad. Sci. USA 119, e2120584119 (2022).Clark, M., et al. Supplemental Data for ‘Estimating the environmental impacts of 57,000 food products’. Oxford University Research Archive https://ora.ox.ac.uk/objects/uuid:4ad0b594-3e81-4e61-aefc-5d869c799a87 (2022).Bianchi, F., Dorsel, C., Garnett, E., Aveyard, P. & Jebb, S. A. Interventions targeting conscious determinants of human behaviour to reduce the demand for meat: a systematic review with qualitative comparative analysis. IJBNPA 15, 102 (2018).
    Google Scholar 
    Bianchi, F., Garnett, E., Dorsel, C., Aveyard, P. & Jebb, S. A. Restructuring physical micro-environments to reduce the demand for meat: a systematic review and qualitative comparative analysis. Lancet Planet. Health 2, e384–e397 (2018).Article 

    Google Scholar 
    Hillier-Brown, F. C. et al. The impact of interventions to promote healthier ready-to-eat meals (to eat in, to take away or to be delivered) sold by specific food outlets open to the general public: a systematic review. Obes. Rev. 18, 227–246 (2017).Article 
    CAS 

    Google Scholar 
    von Philipsborn, P. et al. Environmental interventions to reduce the consumption of sugar-sweetened beverages and their effects on health. Cochrane Database Syst. Rev. 6, Cd012292 (2019).
    Google Scholar 
    Attwood, S., Voorheis, P., Mercer, C., Davies, K. & Vennard, D. Playbook for Guiding Diners toward Plant-Rich Dishes in Food Service (World Resources Institute, 2020); https://www.wri.org/research/playbook-guiding-diners-toward-plant-rich-dishes-food-serviceGarnett, E. E., Balmford, A., Sandbrook, C., Pilling, M. A. & Marteau, T. M. Impact of increasing vegetarian availability on meal selection and sales in cafeterias. Proc. Natl Acad. Sci. USA 116, 20923 (2019).Article 
    ADS 
    CAS 

    Google Scholar 
    Reinders, M. J., Huitink, M., Dijkstra, S. C., Maaskant, A. J. & Heijnen, J. Menu-engineering in restaurants—adapting portion sizes on plates to enhance vegetable consumption: a real-life experiment. IJBNPA 14, 41 (2017).
    Google Scholar 
    Brunner, F., Kurz, V., Bryngelsson, D. & Hedenus, F. Carbon label at a university restaurant—label implementation and evaluation. Ecol. Econ. 146, 658–667 (2018).Article 

    Google Scholar 
    McClain, A. D., Hekler, E. B. & Gardner, C. D. Incorporating prototyping and iteration into intervention development: a case study of a dining hall-based intervention. J. Am. Coll. Health 61, 122–131 (2013).Article 

    Google Scholar 
    de Vaan, J. Eating Less Meat: How to Stimulate the Choice for a Vegetarian Option without Inducing Reactance. MSc thesis, Radboud Univ. (2018). More

  • in

    Publisher Correction: Seasonal peak photosynthesis is hindered by late canopy development in northern ecosystems

    Institute of Carbon Neutrality, Sino-French Institute for Earth System Science, College of Urban and Environmental Sciences, Peking University, Beijing, ChinaQian Zhao, Yao Zhang & Shilong PiaoSchool of Urban Planning and Design, Shenzhen Graduate School, Peking University, Shenzhen, ChinaZaichun Zhu & Hui ZengKey Laboratory of Earth Surface System and Human—Earth Relations, Ministry of Natural Resources of China, Shenzhen Graduate School, Peking University, Shenzhen, ChinaZaichun Zhu & Hui ZengDepartment of Earth and Environment, Boston University, Boston, MA, USARanga B. MyneniCSIC, Global Ecology Unit CREAF-CSIC-UAB, Barcelona, Catalonia, SpainJosep PeñuelasCREAF, Barcelona, Catalonia, SpainJosep PeñuelasState Key Laboratory of Tibetan Plateau Earth System, Resources and Environment (TPESRE), Institute of Tibetan Plateau Research, Chinese Academy of Sciences, Beijing, ChinaShilong Piao More

  • in

    Enhanced regional connectivity between western North American national parks will increase persistence of mammal species diversity

    Newmark, W. D. A land-bridge island perspective on mammalian extinctions in western North American parks. Nature 325, 430–432 (1987).Article 
    ADS 
    CAS 

    Google Scholar 
    Newmark, W. D. Isolation of African protected areas. Front. Ecol. Environ. 6, 321–328 (2008).Article 

    Google Scholar 
    Radeloff, V. C. et al. Housing growth in and near United States protected areas limits their conservation value. Proc. Natl. Acad. Sci. U. S. A. 107, 940–945 (2010).Article 
    ADS 
    CAS 

    Google Scholar 
    Jones, K. R. et al. One-third of global protected land is under intense human pressure. Science 360, 788–791 (2018).Article 
    CAS 

    Google Scholar 
    Elsen, P. R., Monahan, W. B., Dougherty, E. R. & Merenlender, A. M. Keeping pace with climate change in global terrestrial protected areas. Sci. Adv. https://doi.org/10.1126/sciadv.aay0814 (2020).Article 

    Google Scholar 
    Wasser, S. K. et al. Genetic assignment of large seizures of elephant ivory reveals Africa’s major poaching hotspots. Science 349, 84–87 (2015).Article 
    ADS 
    CAS 

    Google Scholar 
    Davis, C. R. & Hansen, A. J. Trajectories in land use change around U,S. national parks and challenges and opportunities for management. Ecol. Appl. 21, 3299–3316 (2011).Article 

    Google Scholar 
    Newmark, W. D. Extinction of mammal populations in western North American national parks. Conserv. Biol. 9, 512–526 (1995).Article 

    Google Scholar 
    Newmark, W. D. Insularization of Tanzanian parks and the local extinction of large mammals. Conserv. Biol. 10, 1549–1556 (1996).Article 

    Google Scholar 
    Brashares, J. S., Arcese, P. & Sam, M. K. Human demography and reserve size predict wildlife extinction in West Africa. Proc. R. Soc. B Biol. Sci. 268, 2473–2478 (2001).Article 
    CAS 

    Google Scholar 
    Woodroffe, R. & Ginsberg, J. R. Edge effects and the extinction of populations inside protected areas. Science 280, 2126–2128 (1998).Article 
    ADS 
    CAS 

    Google Scholar 
    Turner, M. G. & Dale, V. H. Comparing large, infrequent disturbances: What have we learned?. Ecosystems 1, 493–496 (1998).Article 

    Google Scholar 
    Berger, J. The last mile: How to sustain long-distance migration in mammals. Conserv. Biol. 18, 320–331 (2004).Article 

    Google Scholar 
    Bolger, D. T., Newmark, W. D., Morrison, T. A. & Doak, D. F. The need for integrative approaches to understand and conserve migratory ungulates. Ecol. Lett. 11, 63–77 (2008).
    Google Scholar 
    Sawyer, H., Kauffman, M. J., Nielson, R. M. & Horne, J. S. Identifying and prioritizing ungulate migration routes for landscape-level conservation. Ecol. Appl. 19, 2016–2025 (2009).Article 

    Google Scholar 
    Tucker, M. A. et al. Moving in the anthropocene: Global reductions in terrestrial mammalian movements. Science 469, 466–469 (2018).Article 
    ADS 

    Google Scholar 
    Soulé, M. E. & Terborgh, J. Conserving nature at regional and continental scales-a scientific program for North America. Bioscience 49, 809–817 (1999).Article 

    Google Scholar 
    Hilty, J. et al. Guidelines for conserving connectivity through ecological networks and corridors. Best Pract. Prot. Area Guidel. Ser. 30, 122 (2020).
    Google Scholar 
    Haddad, N. & Tewksbury, J. Impacts of corridors on populations and communities. in Connectivity Conservation (eds. Crooks, K. R. & Sanjayan, M.) 390–415 (Cambridge University Press, 2010).
    Google Scholar 
    Ramiadantsoa, T., Ovaskainen, O., Rybicki, J. & Hanski, I. Large-scale habitat corridors for biodiversity conservation: A forest corridor in Madagascar. PLoS One 10, 1–18 (2015).Article 
    CAS 

    Google Scholar 
    Newmark, W. D., Jenkins, C. N., Pimm, S. L., McNeally, P. B. & Halley, J. M. Targeted habitat restoration can reduce extinction rates in fragmented forests. Proc. Natl. Acad. Sci. USA. 114, 9635–9640 (2017).Article 
    ADS 
    CAS 

    Google Scholar 
    Diamond, J. M. Biogeographic kinetics: Estimation of relaxation times for avifaunas of southwest Pacific islands. Proc. Natl. Acad. Sci. 69, 3199–3203 (1972).Article 
    ADS 
    CAS 

    Google Scholar 
    Terborgh, J. Preservation of natural diversity: The problem of extinction prone species. Bioscience 24, 715–722 (1974).Article 

    Google Scholar 
    Tilman, D., May, R. M., Lehman, C. L. & Nowak, M. A. Habitat destruction and the extinction debt revisited. Nature 371, 65–66 (1994).Article 
    ADS 

    Google Scholar 
    Halley, J. M., Monokrousos, N., Mazaris, A. D., Newmark, W. D. & Vokou, D. Dynamics of extinction debt across five taxonomic groups. Nat. Commun. 7, 1–6 (2016).Article 

    Google Scholar 
    Wearn, O. R., Reuman, D. C. & Ewers, R. M. Extinction debt and windows of conservation opportunity in the Brazilian amazon. Science 337, 228–232 (2012).Article 
    ADS 
    CAS 

    Google Scholar 
    Hanski, I. Extinction debt and species credit in boreal forests: Modelling the consequences of different approaches to conservation. Ann. Zool. Fennici 37, 271–280 (2000).
    Google Scholar 
    LaBarbera, M. Analyzing body size as a factor in ecology and evolution. Annu. Rev. Ecol. Syst. 20, 97–117 (1989).Article 

    Google Scholar 
    Oakleaf, J. K. et al. Habitat selection by recolonizing wolves in the northern Rocky mountains of the United States. J. Wildl. Manage. 70, 554–563 (2006).Article 

    Google Scholar 
    Cushman, S. A., McKelvey, K. S. & Schwartz, M. K. Use of empirically derived source-destination models to map regional conservation corridors. Conserv. Biol. 23, 368–376 (2009).Article 

    Google Scholar 
    Schwartz, M. K. et al. Wolverine gene flow across a narrow climatic niche. Ecology 90, 3222–3232 (2014).Article 

    Google Scholar 
    McKelvey, K. S. et al. Climate change predicted to shift wolverine distributions, connectivity, and dispersal corridors. Ecol. Appl. 21, 2882–2897 (2011).Article 

    Google Scholar 
    Carroll, C., Mcrae, B. H. & Brookes, A. Use of linkage mapping and centrality analysis across habitat gradients to conserve connectivity of gray wolf populations in western North America. Conserv. Biol. 26, 78–87 (2012).Article 

    Google Scholar 
    Parks, S. A., McKelvey, K. S. & Schwartz, M. K. Effects of weighting schemes on the identification of wildlife corridors generated with least-cost methods. Conserv. Biol. 27, 145–154 (2013).Article 

    Google Scholar 
    Peck, C. P. et al. Potential paths for male-mediated gene flow to and from an isolated grizzly bear population. Ecosphere 8, e01969 (2017).Article 

    Google Scholar 
    Wild Migrations: Atlas of Wyoming’s Ungulates. (Oregon State University, 2018).Singleton, P. H., Gaines, W. L. & Lehmkuhl, J. F. Landscape permeability for large carnivores in Washington: A geographic information system weighted-distance and least-cost corridor assessment. (2002).Long, R. A. et al. The Cascades carnivore connectivity project: A landscape genetic assessment of connectivity in Washington’s north Cascades ecosystem. Final report for the Seattle City Light Wildlife Research Program (2013).Diamond, J. M. The island dilemma: Lessons of modern biogeographic studies for the design of natural reserves. Biol. Conserv. 7, 129–146 (1975).Article 

    Google Scholar 
    Wilson, E. O. & Willis, E. O. Applied biogeography. In Ecological structure of ecological communities (eds. Cody, M. L, & Diamond, J. M.) 522–534 (Harvard University Press, 1975)
    Google Scholar 
    Halley, J. M. & Iwasa, Y. Neutral theory as a predictor of avifaunal extinctions after habitat loss. Proc. Natl. Acad. Sci. USA 108, 2316–2321 (2011).Article 
    ADS 
    CAS 

    Google Scholar 
    Cushman, S. A., Lewis, J. S. & Landguth, E. L. Evaluating the intersection of a regional wildlife connectivity network with highways. Mov. Ecol. 1, 1–11 (2013).Article 

    Google Scholar 
    Singleton, P. H. & Lehmkuhl, J. F. I-90 Snoqualmie pass wildlife habitat linkage assessment. Final Report. USDA, Pacific Northwest Research Station. (2000).Craighead, L., Craighead, A., Oeschslia, L. & Kociolek, A. Bozeman pass post-fencing wildlife monitoring. Final Report. FHWA/MT-10-006/8173 (2011).Andis, A. Z., Huijser, M. P. & Broberg, L. Performance of arch-style road crossing structures from relative movement rates of large mammals. Front. Ecol. Evol. 5, 1–13 (2017).Article 

    Google Scholar 
    Millward, L. Small mammal microhabitat use and species composition at a wildlife crossing structure compared with nearby forest (Central Washington University, 2018).
    Google Scholar 
    Bischof, R., Steyaert, S. M. J. G. & Kindberg, J. Caught in the mesh: Roads and their network-scale impediment to animal movement. Ecography 40, 1369–1380 (2017).Article 

    Google Scholar 
    Balkenhol, N. & Waits, L. P. Molecular road ecology: Exploring the potential of genetics for investigating transportation impacts on wildlife. Mol. Ecol. 18, 4151–4164 (2009).Article 

    Google Scholar 
    Clevenger, A. P. & Wierzchowski, J. Maintaining and restoring connectivity in landscapes fragmented by roads. In Connectivity Conservation, (eds. Crooks, K. R. & Sanjayan, M.) 502–535 (Cambridge University Press, 2010.)
    Google Scholar 
    Sawaya, M. A., Kalinowski, S. T. & Clevenger, A. P. Genetic connectivity for two bear species at wildlife crossing structures in Banff National Park. Proc. R. Soc. B Biol. Sci. 281, 20131705 (2014).Article 

    Google Scholar 
    Sawaya, M. A., Clevenger, A. P. & Schwartz, M. K. Demographic fragmentation of a protected wolverine population bisected by a major transportation corridor. Biol. Conserv. 236, 616–625 (2019).Article 

    Google Scholar 
    Kamal, S., Grodzińska-Jurczak, M. & Brown, G. Conservation on private land: A review of global strategies with a proposed classification system. J. Environ. Plan. Manag. 58, 576–597 (2015).Article 

    Google Scholar 
    Wasserman, T. N., Cushman, S. A., Littell, J. S., Shirk, A. J. & Landguth, E. L. Population connectivity and genetic diversity of American marten (Martes americana) in the United States northern Rocky Mountains in a climate change context. Conserv. Genet. 14, 529–541 (2013).Article 

    Google Scholar 
    Wasserman, T. N., Cushman, S. A., Shirk, A. S., Landguth, E. L. & Littell, J. S. Simulating the effects of climate change on population connectivity of American marten (Martes americana) in the northern Rocky Mountains, USA. Landsc. Ecol. 27, 211–225 (2012).Article 

    Google Scholar 
    Cushman, S. A., Landguth, E. L. & Flather, C. H. Evaluating the sufficiency of protected lands for maintaining wildlife population connectivity in the U.S. northern Rocky Mountains. Divers. Distrib. 18, 873–884 (2012).Article 

    Google Scholar 
    Beier, P., Spencer, W., Baldwin, R. F. & Mcrae, B. H. Toward best practices for developing regional connectivity maps. Conserv. Biol. 25, 879–892 (2011).Article 

    Google Scholar 
    R Core Team. R: A language and environment for statistical computing. (2020). More

  • in

    Migration direction in a songbird explained by two loci

    Ethics statementAnimals’ care was in accordance with institutional guidelines. Ethical permit was issued by Malmö-Lund djurförsöksetiska nämnd 5.8.18-00848/2018.Field workWe carried out the field work in Sweden during four breeding seasons (2018–2021). Adult male willow warblers were captured in their breeding territories using mist nets and playback of a song. From each bird, we collected the innermost primary feather from the right wing. From the birds that returned with a logger we also collected ~20 μl of blood from the brachial wing vein. The blood was stored in SET buffer (0.015 M NaCl, 0.05 M Tris, 0.001 M of EDTA, pH 8.0) at room temperature until deposited for permanent storage at −20 °C. We deployed Migrate Technology Ltd geolocators (Intigeo-W30Z11-DIP 12 × 5 × 4 mm, 0.32 g) and used a nylon string to mount them on birds with the “leg-loop” harness method as outlined in our previous work24. The mass of the logger relative to that of the bird was on average 3.3% (range 2.7–3.8%).The tagged birds were ringed with a numbered aluminum ring, and two, colored plastic rings for later identification in the field. In total, we tagged 466 males (349 in 2018 and 117 in 2020) at breeding territories. During the first tagging season (2018), birds were trapped at 17 locations (average 22 birds per site; range 7–30) distributed across Sweden (Fig. S1). Three of the sites were in southern Sweden to document migration routes of allopatric trochilus and three sites were located above the Arctic circle to record migratory routes of allopatric acredula, whereas the remaining (239) loggers were spread over 11 sites located in the migratory divide. Given the observed densities and distribution of hybrids after analyzing returning birds in 2019, we deployed 117 more loggers at one single site (63.439°N, 14.831°E) in 2020. We successfully retrieved tracks from 57 birds tagged in 2019 and 16 from birds tagged in 2021. In search for birds with loggers, we checked circa 3000 willow warbler males and covered an area of at least 0.5 km radius around each site the year after tagging.Geolocator data treatmentThe R package GeoLight (version 2.0)25 was used to extract and analyze locations from raw geolocator data. All twilight events were obtained with light threshold of 3 lux. The most extreme outliers were trimmed with “loessFilter” function and a K value of 3. We used GeoLight’s function “getElevation” for estimating the sun elevation angle for the breeding period: these sets of locations were used to infer the positions for autumn departure direction. In addition, we carried out a “Hill-Ekström” calibration for the longest stationary winter site during the period before the spring equinox. Winter calibration produced location sets that better reflected the winter coordinates of the main winter site in sub-Saharan Africa26. We reduced some of the inherent geolocation “noise” by applying cantered 5-day rolling means to the coordinates. The equinox periods were visually identified by inspecting standard deviations in latitude. Latitudes from equinox periods were omitted (on average autumn equinox obscured data for 45 days (range 25–68). For the main winter site, we used the longest period at which bird stayed stationary and from which in all cases begun the spring migration (mean = 118, SD = 23 days). Timing of autumn departure was estimated by manual inspection of longitudes and latitudes plotted in time series. To estimate at which longitude the birds crossed the Mediterranean, we extracted the longitude when birds crossed latitude 35 N° (Mediterranean crossing longitude). For 29 birds, it was possible to directly extract the longitude at crossing latitude 35 N°. For the rest of the cases, the birds had not reached latitude 35 N° before the latitude was obscured by the equinox, we calculated the mean longitude of 10 days from the onset of fall equinox as a measure of the Mediterranean crossing. This measurement correlated highly with the winter longitude (r = 0.78, p = 2.8 × 10−16). To control for the birds relative breeding site longitude, we extracted the departure direction (1°–360°) relative from the tagging site to the location where the birds crossed the Mediterranean (departure direction). The departure data was of circular type (measured in 360°), however the variance did not span more than 180° degrees (range 151°–224°). Therefore, we proceeded with analyses using linear statistics. Geographic distances and departure direction were calculated using R package “geosphere” (version 1.5-10). Complete set of positions of each individual bird with equinoxes excluded is presented in Supplementary Data 1.Laboratory work and molecular data extractionWe extracted DNA from blood samples following the ammonium acetate protocol16. Genotyping for divergent regions on chromosome 1 (InvP-Ch1) and chromosome 5 (InvP-Ch5) was done using a qPCR SNP assay16, which is based on one informative SNP per region (SNP 65 for chromosome 1 and SNP 285 for chromosome 5). Probes and primers were produced by Thermo Fisher Scientific and were designed using the online Custom TaqMan® Assay Design tool (Table S4). We used Bio-Rad CFX96™ Real-time PCR system (Bio-Rad Laboratories, CA, USA) and the universal Fast-two-steps protocol: 95 °C, 15 min—40*(95 °C, 10 s–60 °C, 30 s, plate read. Both regions contain inversion polymorphisms that restrict recombination between subspecies-specific haplotypes and contain nearly all the SNPs separating the two subspecies13. For each region, we scored genotypes as either “Tro” (homozygous for trochilus haplotypes), “Acr” (homozygous for acredula haplotypes) or “Het” (heterozygous). The method that we used to assess the presence of MARB-a is based on a qPCR assay that quantifies the copy number of a novel TE (previously known as AFLP-WW212) that has expanded in acredula. The quantification of repeats by this method has been shown to be highly repeatable (R2 = 0.88) when comparing estimates obtained from DNA in blood and feathers15. We used the forward (5′-CCTTGCATACTTCTATTTCTCCC-3′) and reverse (5′-CATAGGACAGACATTGTTGAGG-3′) primers developed by Caballero-López et al.15 to amplify the TE motif. For reference of a single copy region we used the primers SFRS3F and SFRS3R27. We diluted DNA to 1 ng/μl−1 and used a Bio-Rad CFX96™ Real-time PCR system (Bio-Rad Laboratories, CA, USA) with SYBR-green-based detection. Total reaction volume was 25 μl of which 4 μl of DNA, 12.5 μl of SuperMix, 0.1 μl ROX, 1 μl of primer (forward and reverse), and 6.4 μl of double distilled H2O. We ran quantifications of the single copy gene and the TE variant found on MARB-a on separate plates with the following settings: 50 °C for 2 min as initial incubation, 95 °C for 2 min X 43 (94 °C for 30 s [55.3 °C SFRS3 and 55.5 °C for TE, 30 s] and 72 °C for 45 s). Each sample was run in duplicate and together with a two-fold serial standard dilution (2.5–7.8 × 10−2 ng). Allopatric trochilus have 0–6 copies whereas allopatric acredula have 8–45 copies15; a bimodal distribution was also confirmed in this new data set (Fig. S2). Accordingly, for the present analyses, we split the data in two groups: birds with ≤6 TE copies and birds with >7, translating into absence or presence of MARB-a, with the former assumed to be homozygous for the absence of MARB-a and the latter heterozygous or homozygous for the presence of MARB-a. Data from two investigated willow warbler families suggest a Mendelian inheritance pattern and provide support for our interpretation of how TE copy numbers reflect the three genotypes (Table S5). Moreover, the TE copy numbers within the hybrid swarm have a distribution similar to a combination of allopatric trochilus and acredula, further supporting that the copies are inherited as intact blocks (haplotypes). However, a precise distinction between heterozygotes and homozygotes on MARB-a is still not possible15.Statistical analysisWe used linear models with departure direction, winter longitude, migration distance and departure timing as response variables and the three genetic markers: MARB-a (a factor with two levels), InvP-Ch1 (a factor with three levels) and InvP-Ch5 (a factor with three levels) as explanatory variables. Models were constructed with R base package “stats”. We reported Type II ANOVA for models with more than one explanatory variable and no interactions and type III ANOVA results for models with interaction term by using R package “Car” (version 3.0-12)28. We initially constructed mixed effect models with timing of departure and tagging year as random factors however, this delivered singular fits due to insufficient sample sizes across categories. Normality of residuals was checked with a Shapiro–Wilk test. For carrying out circular statistics on autumn migration direction we used the R package “circular” (version 0.4-93). Watson’s U2 pairwise comparisons of different groups delivered the same results as linear models (Table S2 and Fig. S5). Circular means were identical to conventional linear means in our data set, which we take as another evidence that linear models are appropriate for the analysis of our data (Table S3 and Fig. S5). Maps in Figs. 1 and 2b and S1, S3 and S4 were created with R package “ggplot2” (version 3.3.6) using continent contours from Natural Earth, naturalearthdata.com/. Heat gradient over the maps in Fig. 1a–d were created with R package “gstat” (version 2.0-8) and the inverse distance weighting power of 3.0. Circular plots were created with ORIANA (version 4.02). All analyses were carried out with R version 4.1.1 (R Core Team 2021).Reporting summaryFurther information on research design is available in the Nature Portfolio Reporting Summary linked to this article. More

  • in

    Predator-mediated diversity of stream fish assemblages in a boreal river basin, China

    Chase, J. M. et al. The interaction between predation and competition: A review and synthesis. Ecol. Lett. 5, 302–315. https://doi.org/10.1046/j.1461-0248.2002.00315.x (2002).Article 

    Google Scholar 
    Droge, E., Creel, S., Becker, M. S. & M’Soka, J. Risky times and risky places interact to affect prey behaviour. Nat. Ecol. Evol. 1, 1123–1128. https://doi.org/10.1038/s41559-017-0220-9 (2017).Article 

    Google Scholar 
    Allesina, S. & Levine Jonathan, M. A competitive network theory of species diversity. Proc. Natl. Acad. Sci. U.S.A. 108, 5638–5642. https://doi.org/10.1073/pnas.1014428108 (2011).Article 
    ADS 

    Google Scholar 
    Bairey, E., Kelsic, E. D. & Kishony, R. High-order species interactions shape ecosystem diversity. Nat. Commun. 7, 12285. https://doi.org/10.1038/ncomms12285 (2016).Article 
    ADS 
    CAS 

    Google Scholar 
    Letten, A. D. & Stouffer, D. B. The mechanistic basis for higher-order interactions and non-additivity in competitive communities. Ecol. Lett. 22, 423–436. https://doi.org/10.1111/ele.13211 (2019).Article 

    Google Scholar 
    Lotka, A. J. Elements of physical biology. Sci. Prog. Twent. Century (1919–1933) 21, 341–343 (1926).
    Google Scholar 
    Volterra, V. Variazioni e Fluttuazioni del Numero d’Individui in Specie Animali Conviventi. (Società Anonima Tipografica “Leonardo da Vinci”, 1926).Schmitz, O. J. Top predator control of plant biodiversity and productivity in an old-field ecosystem. Ecol. Lett. 6, 156–163. https://doi.org/10.1046/j.1461-0248.2003.00412.x (2003).Article 

    Google Scholar 
    Fey, K., Banks, P. B., Oksanen, L. & Korpimäki, E. Does removal of an alien predator from small islands in the Baltic Sea induce a trophic cascade?. Ecography 32, 546–552. https://doi.org/10.1111/j.1600-0587.2008.05637.x (2009).Article 

    Google Scholar 
    Terborgh John, W. Toward a trophic theory of species diversity. Proc. Natl. Acad. Sci. U.S.A. 112, 11415–11422. https://doi.org/10.1073/pnas.1501070112 (2015).Article 
    ADS 
    CAS 

    Google Scholar 
    Pringle, R. M. et al. Predator-induced collapse of niche structure and species coexistence. Nature 570, 58–64. https://doi.org/10.1038/s41586-019-1264-6 (2019).Article 
    ADS 
    CAS 

    Google Scholar 
    Sandom, C. et al. Mammal predator and prey species richness are strongly linked at macroscales. Ecology 94, 1112–1122. https://doi.org/10.1890/12-1342.1 (2013).Article 

    Google Scholar 
    Louette, G. & De Meester, L. Predation and priority effects in experimental zooplankton communities. Oikos 116, 419–426. https://doi.org/10.1111/j.2006.0030-1299.15381.x (2007).Article 

    Google Scholar 
    Johnston, N. K., Pu, Z. & Jiang, L. Predator identity influences metacommunity assembly. J. Anim. Ecol. 85, 1161–1170. https://doi.org/10.1111/1365-2656.12551 (2016).Article 

    Google Scholar 
    Karakoc, C., Radchuk, V., Harms, H. & Chatzinotas, A. Interactions between predation and disturbances shape prey communities. Sci. Rep. 8, 2968. https://doi.org/10.1038/s41598-018-21219-x (2018).Article 
    ADS 
    CAS 

    Google Scholar 
    Hubbell, S. P. The Unified Neutral Theory of Biodiversity and Biogeography (MPB-32) (Princeton University Press, 2011).Book 

    Google Scholar 
    MacArthur, R. H. & Wilson, E. O. The Theory of Island Biogeography (Princeton University Press, 2001).Book 

    Google Scholar 
    Daniel, J., Gleason, J. E., Cottenie, K. & Rooney, R. C. Stochastic and deterministic processes drive wetland community assembly across a gradient of environmental filtering. Oikos 128, 1158–1169. https://doi.org/10.1111/oik.05987 (2019).Article 

    Google Scholar 
    Lehner, B. & Döll, P. Development and validation of a global database of lakes, reservoirs and wetlands. J. Hydrol. 296, 1–22. https://doi.org/10.1016/j.jhydrol.2004.03.028 (2004).Article 
    ADS 

    Google Scholar 
    Chase, J. M., Biro, E. G., Ryberg, W. A. & Smith, K. G. Predators temper the relative importance of stochastic processes in the assembly of prey metacommunities. Ecol. Lett. 12, 1210–1218. https://doi.org/10.1111/j.1461-0248.2009.01362.x (2009).Article 

    Google Scholar 
    Werner, E. E. & Peacor, S. D. A review of trait-mediated indirect interactions in ecological communities. Ecology 84, 1083–1100. https://doi.org/10.1890/0012-9658(2003)084[1083:AROTII]2.0.CO;2 (2003).Article 

    Google Scholar 
    Pearson, D. E., Ortega, Y. K., Eren, Ö. & Hierro, J. L. Community assembly theory as a framework for biological invasions. Trends Ecol. Evol. 33, 313–325. https://doi.org/10.1016/j.tree.2018.03.002 (2018).Article 

    Google Scholar 
    Duchesne, É. et al. Variable strength of predator-mediated effects on species occurrence in an arctic terrestrial vertebrate community. Ecography 44, 1236–1248. https://doi.org/10.1111/ecog.05760 (2021).Article 

    Google Scholar 
    Ryberg, W. A., Smith, K. G. & Chase, J. M. Predators alter the scaling of diversity in prey metacommunities. Oikos 121, 1995–2000. https://doi.org/10.1111/j.1600-0706.2012.19620.x (2012).Article 

    Google Scholar 
    Carrete Vega, G. & Wiens, J. J. Why are there so few fish in the sea?. Proc. R. Soc. B 279, 2323–2329. https://doi.org/10.1098/rspb.2012.0075 (2012).Article 

    Google Scholar 
    Barrett, M. et al. Living planet report 2018: Aiming higher. (2018).Reid, A. J. et al. Emerging threats and persistent conservation challenges for freshwater biodiversity. Biol. Rev. 94, 849–873. https://doi.org/10.1111/brv.12480 (2019).Article 

    Google Scholar 
    Di Marco, M. et al. Changing trends and persisting biases in three decades of conservation science. Glob. Ecol. Conserv. 10, 32–42. https://doi.org/10.1016/j.gecco.2017.01.008 (2017).Article 

    Google Scholar 
    Hammerschlag, N. et al. Ecosystem function and services of aquatic predators in the anthropocene. Trends Ecol. Evol. 34, 369–383. https://doi.org/10.1016/j.tree.2019.01.005 (2019).Article 

    Google Scholar 
    Wang, T. et al. Amur tigers and leopards returning to China: direct evidence and a landscape conservation plan. Landsc Ecol 31, 491–503. https://doi.org/10.1007/s10980-015-0278-1 (2016).Article 

    Google Scholar 
    Hong, S. et al. Stream health, topography, and land use influences on the distribution of the Eurasian otter Lutra lutra in the Nakdong River basin, South Korea. Ecol. Indic. 88, 241–249. https://doi.org/10.1016/j.ecolind.2018.01.004 (2018).Article 

    Google Scholar 
    Guter, A., Dolev, A., Saltz, D. & Kronfeld-Schor, N. Using videotaping to validate the use of spraints as an index of Eurasian otter (Lutra lutra) activity. Ecol. Indic. 8, 462–465. https://doi.org/10.1016/j.ecolind.2007.04.009 (2008).Article 

    Google Scholar 
    Sittenthaler, M., Bayerl, H., Unfer, G., Kuehn, R. & Parz-Gollner, R. Impact of fish stocking on Eurasian otter (Lutra lutra) densities: A case study on two salmonid streams. Mamm. Biol. 80, 106–113. https://doi.org/10.1016/j.mambio.2015.01.004 (2015).Article 

    Google Scholar 
    Zheng, B., Huang, H., Zhang, Y. & Dai, D. The Fishes of Tumen River (Jilin People’s Publishing House, 1980).
    Google Scholar 
    Fleishman, E., Murphy, D. D. & Brussard, P. F. A new method for selection of umbrella species for conservation planning. Ecol Appl 10, 569–579. https://doi.org/10.1890/1051-0761(2000)010[0569:ANMFSO]2.0.CO;2 (2000).Article 

    Google Scholar 
    Roberge, J.-M. & Angelstam, P. E. R. Usefulness of the umbrella species concept as a conservation tool. Conserv. Biol. 18, 76–85. https://doi.org/10.1111/j.1523-1739.2004.00450.x (2004).Article 

    Google Scholar 
    McGowan, J. et al. Conservation prioritization can resolve the flagship species conundrum. Nat. Commun. 11, 994. https://doi.org/10.1038/s41467-020-14554-z (2020).Article 
    ADS 
    CAS 

    Google Scholar 
    Katano, I., Doi, H., Eriksson, B. K. & Hillebrand, H. A cross-system meta-analysis reveals coupled predation effects on prey biomass and diversity. Oikos 124, 1427–1435. https://doi.org/10.1111/oik.02430 (2015).Article 

    Google Scholar 
    Leibold, M. A. A graphical model of keystone predators in food webs: Trophic regulation of abundance, incidence, and diversity patterns in communities. Am. Nat. 147, 784–812. https://doi.org/10.1086/285879 (1996).Article 

    Google Scholar 
    McPeek, M. A. The consequences of changing the top predator in a food web: A comparative experimental approach. Ecol. Monogr. 68, 1–23. https://doi.org/10.1890/0012-9615(1998)068[0001:TCOCTT]2.0.CO;2 (1998).Article 

    Google Scholar 
    Chase, J. M. & Leibold, M. A. Ecological Niches: Linking Classical and Contemporary Approaches (University of Chicago Press, 2003).Book 

    Google Scholar 
    Gravel, D., Canham, C. D., Beaudet, M. & Messier, C. Reconciling niche and neutrality: The continuum hypothesis. Ecol. Lett. 9, 399–409. https://doi.org/10.1111/j.1461-0248.2006.00884.x (2006).Article 

    Google Scholar 
    Yoshida, T., Jones, L. E., Ellner, S. P., Fussmann, G. F. & Hairston, N. G. Rapid evolution drives ecological dynamics in a predator–prey system. Nature 424, 303–306. https://doi.org/10.1038/nature01767 (2003).Article 
    ADS 
    CAS 

    Google Scholar 
    Yin, X., Wang, J., Yin, H. & Ruan, Y. Does inducible defense mitigate physiological stress responses of prey to predation risk?. Hydrobiologia 843, 173–181. https://doi.org/10.1007/s10750-019-04046-7 (2019).Article 

    Google Scholar 
    Chalcraft, D. R. & Resetarits, W. J. Jr. Predator identity and ecological impacts: Functional redundancy or functional diversity?. Ecology 84, 2407–2418. https://doi.org/10.1890/02-0550 (2003).Article 

    Google Scholar 
    Petchey, O. L. & Gaston, K. J. Functional diversity: Back to basics and looking forward. Ecol. Lett. 9, 741–758. https://doi.org/10.1111/j.1461-0248.2006.00924.x (2006).Article 

    Google Scholar 
    Burner, R. C. et al. Functional structure of European forest beetle communities is enhanced by rare species. Biol. Conserv. 267, 109491. https://doi.org/10.1016/j.biocon.2022.109491 (2022).Article 

    Google Scholar  More

  • in

    Rhizobial migration toward roots mediated by FadL-ExoFQP modulation of extracellular long-chain AHLs

    Identification of broad-host-range rhizoplane colonization genes by Tn-seqThis work was focused on SF2 harboring a typical multipartite genome of Sinorhizobium (chromosome, chromid, and symbiosis plasmid) [59]. To perform genome-wide survey of rhizoplane colonization genes of SF2 (Fig. 1), the input mutant library was inoculated on filter paper of plant culture dish, and output mutant libraries were collected from filter papers at 1 h post inoculation (F1h) and 7 days post inoculation (dpi; F7d), and from rhizoplane of cultivated soybean (CS7d), wild soybean (WS7d), rice (R7d), and maize (Z7d) at 7 dpi. To facilitate Tn-seq library construction, all output mutant libraries were subject to 32 h cultivation in the TY rich medium, with input libraries cultivated at the same condition as control (TY). Tn-seq revealed that transposon insertion density in three input and 21 output samples ranged from 57.03 to 86.99% (Table S3), which are above the threshold of 50% insertion density for a good Tn-seq dataset [49]. A reproducible rhizosphere effect was observed in three independent experiments (Fig. S1), i.e., rhizoplane samples (CS7d, WS7d, R7d, and Z7d) consistently formed distinct clusters compared to those of TY, F1h, and F7d. A considerable signature of three independent input libraries was also identified (Data S1, Data S2, and Fig. S1). These results highlight that stochastic variations among multiple independent input libraries should be considered before making conclusions on gene fitness, which has been largely overlooked in earlier studies based on just one input library [49].Based on gene fitness scores of rhizoplane samples (CS7d, WS7d, R7d and Z7d) compared to corresponding F1h datasets (Fig. S2A; Data S2), 93, 91, 127, and 206 genes were identified as rhizoplane colonization genes for test plants of cultivated soybean, wild soybean, maize, and rice, respectively, accounting for 1.4–3.1% of the SF2 genome (p values  More