1.
Schminke, H. K. Entomology for the copepodologist. J. Plankton Res. 29, i149–i162, https://doi.org/10.1093/plankt/fbl073 (2007).
Article Google Scholar
2.
Le Borgne, R. Equivalences between the measures of biovolumes, dry weight, ashfree dry weight, carbon, nitrogen and phosphorus of the mesozooplankton of the tropical Atlantic. Cah. O.R.S.T.O.M. Ser. Oceanogr. 13, 179–196 (1975).
Google Scholar
3.
Corral Estrada, J. Contribucion al conocimiento del plancton de Canarias. Estudio cuantitativo, sistematico y observaciones ecologicas de nos Copépodos epipelagicos en la zona de Santa Cruz de Tenerife en el curso de un ciclo anual. Publnes Fac. Cienc. Madrid, Seccion de Biol., (A) 129 Doct. thesis, Univ. Madrid (1970).
4.
Lovegrove, T. In Some contemporary studies in marine science (ed Barnes, H.) 429-467 (Allen and Unwin, 1966).
5.
Harris, R., Wiebe, P., Lenz, J., Skjoldal, H. R. & Huntley, M. ICES zooplankton methodology manual. (Elsevier, 2000).
6.
McEnnulty, F. R. et al. The Australian Zooplankton Biomass Database (1932–2019). Australian Ocean Data Network https://doi.org/10.26198/5c4170d42ab24 (2019).
7.
Davies, C. H. et al. Over 75 years of zooplankton data from Australia. Ecology 95, 3229–3229, https://doi.org/10.1890/14-0697.1 (2014).
Article Google Scholar
8.
Davies, C. H. et al. A database of marine phytoplankton abundance, biomass and species composition in Australian waters (vol 3, 160043, 2016). Sci. Data 3, https://doi.org/10.1038/sdata.2016.111.
9.
Davies, C. H. et al. A database of chlorophyll a in Australian waters. Sci. Data 5, https://doi.org/10.1038/sdata.2018.18
10.
Skerratt, J. H. et al. Simulated nutrient and plankton dynamics in the Great Barrier Reef (2011–2016). J. Mar. Syst. 192, 51–74, https://doi.org/10.1016/j.jmarsys.2018.12.006 (2019).
Article Google Scholar
11.
Bernardi, D. In A manual on methods for the assessment of secondary productivity in freshwaters (eds Downing, J.A & Rigler, F.H.) 59–86 (Blackwell Scientific, Oxford, 1984).
12.
Omori, M. & Ikeda, T. Methods in marine zooplankton ecology. (Wiley, 1984).
13.
Richardson, A. J. et al. Using continuous plankton recorder data. Prog. Oceanogr. 68, 27–74, https://doi.org/10.1016/j.pocean.2005.09.011 (2006).
ADS Article Google Scholar
14.
Everett, J. D. et al. Modeling What We Sample and Sampling What We Model: Challenges for Zooplankton Model Assessment. Front. Mar. Sci. 4, https://doi.org/10.3389/fmars.2017.00077 (2017).
15.
Herman, A. W., Beanlands, B. & Phillips, E. F. The next generation of Optical Plankton Counter: The Laser-OPC. J. Plankton Res. 26, 1135–1145, https://doi.org/10.1093/plankt/fbh095 (2004).
Article Google Scholar
16.
Bivand, R. & Lewin-Koh, N. maptools: Tools for Handling Spatial Objects. R package version 0.9–5, https://CRAN.R-project.org/package=maptools. (2019).
17.
Amante, C. & Eakins, B. W. ETOPO1 1 Arc-Minute Global Relief Model: Procedures, Data Sources and Analysis. NOAA Technical Memorandum NESDIS. NGDC-24, https://doi.org/10.7289/V5C8276M.19 (NOAA., National Geophysical Data Center, 2009).
18.
Pante, E. & Simon-Bouhet, B. marmap: A Package for Importing, Plotting and Analyzing Bathymetric and Topographic Data in R. Plos One 8, https://doi.org/10.1371/journal.pone.0073051 (2013).
19.
Wiebe, P. H. & Benfield, M. C. From the Hensen net toward four-dimensional biological oceanography. Prog. Oceanogr. 56, 7–136, https://doi.org/10.1016/s0079-6611(02)00140-4 (2003).
ADS Article Google Scholar
20.
Smith, P. E., Counts, R. C. & Clutter, R. I. Changes in the filtering efficiency of plankton nets due to clogging under tow. Cons. Perm. Int. p. l’Expl. d. l. Mer 32, 232–248 (1968).
Article Google Scholar
21.
Jackson, C. J., Rothlisberg, P. C. & Pendrey, R. C. Role of larval distribution and abundance in overall life-history dynamics: a study of the prawn Penaeus semisulcatus in Albatross Bay, Gulf of Carpentaria, Australia. Mar. Ecol. Prog. Ser. 213, 241–252, https://doi.org/10.3354/meps213241 (2001).
ADS Article Google Scholar
22.
Hernroth, L. Sampling and filtration efficiency of 2 commonly used plankton nets – A comparative study of the Nansen net and the UNESCO WP-2 net. J. Plankton Res. 9, 719–728, https://doi.org/10.1093/plankt/9.4.719 (1987).
Article Google Scholar
23.
Verheye, H. M., Richardson, A. J., Hutchings, L., Marska, G. & Gianakouras, D. Long-term trends in the abundance and community structure of coastal zooplankton in the southern Benguela system, 1951–1996. S. Afr. J. Mar. Sci. 19, 317–332 (1998).
Article Google Scholar
24.
Colton, J. B., Green, J. R., Byron, R. R. & Frisella, J. L. Bongo net retention rates as effected by towing speed and mesh size. Can. J. Fish. Aquat.Sci. 37, 606–623, https://doi.org/10.1139/f80-077 (1980).
Article Google Scholar
25.
Pillar, S. C. A comparison of the performance of four zooplankton samplers. S. Afr. J. Mar. Sci. 2, 1–18 (1984).
Article Google Scholar
26.
McKinnon, A. D. et al. Zooplankton Growth, Respiration and Grazing on the Australian Margins of the Tropical Indian and Pacific Oceans. Plos One 10, e0140012, https://doi.org/10.1371/journal.pone.0140012 (2015).
CAS Article PubMed PubMed Central Google Scholar
27.
Beers, J. R. Determination of zooplankton biomass. Monogr. Oceanogr. Methodol. 4, 35–84 (1976).
Google Scholar
28.
Postel, L. et al. 83–192 (Elsevier, 2000).
29.
Motoda, S. Plankton sampler for collecting uncontaminated materials from several zones by a single vertical haul. Rapp. P.-V. Réun. Cons. Int. Explor. Mer. 153, 55–58 (1962).
Google Scholar
30.
Motoda, S. & Osawa, K. Filteration ratio, variance of samples and estimated distance of haul in vertical hauls with Indian Ocean standard net. Inf. Bull. Planktol. Japan 11, 11–24 (1964).
Google Scholar
31.
Wiebe, P. H., Boyd, S. & Cox, J. L. Relationships between zooplankton displacement volume, wet weight, dry weight, and carbon. Fish. Bull. (Wash. D. C.) 73, 777–796 (1975).
Google Scholar
32.
Wiebe, P. H. Functional regression equations for zooplankton displacement volume, wet weight, dry weight, and carbon: a correction. U S Fish. Wildl. Serv. Fish. Bull. 86, 833–835 (1988).
Google Scholar
33.
Moriarty, R. & O’Brien, T. D. Distribution of mesozooplankton biomass in the global ocean. Earth Syst. Sci. Data 5, 45–55, https://doi.org/10.5194/essd-5-45-2013 (2013).
ADS Article Google Scholar
34.
Omori, M. Some factors affecting on dry-weight, organic weight and concentrations of carbon and nitrogen in freshlt prepared and in preserved zooplankton. Int. Rev. Gesamt. Hydrobiol. 63, 261–269, https://doi.org/10.1002/iroh.19780630211 (1978).
Article Google Scholar
35.
Balvay, P. G. Equivalence entre quelques paramètres estimatifs de l’abondance du zooplancton total. Swiss J. Hydrol. 49, 75–84, https://doi.org/10.1007/BF02540381 (1987).
Article Google Scholar
36.
Tranter, D. J. Comparison of zooplankton biomass determinations by Indian Ocean Standard Net, Juday Net and Clarke-Bumpus sampler. Nature 198, 1179, https://doi.org/10.1038/1981179a0 (1963).
ADS Article Google Scholar
37.
DeVries, D. R. & Stein, R. A. Comparison of three zooplankton samplers: a taxon-specific assessment. J. Plankton Res. 13, 53–59, https://doi.org/10.1093/plankt/13.1.53 (1991).
Article Google Scholar
38.
Skjoldal, H. R. et al. Intercomparison of zooplankton (net) sampling systems: Results from the ICES/GLOBEC sea-going workshop. Prog. Oceanogr. 108, 1–42, https://doi.org/10.1016/j.pocean.2012.10.006 (2013).
ADS Article Google Scholar
39.
Eriksen, R. S. et al. Australia’s Long-Term Plankton Observations: The Integrated Marine Observing System National Reference Station Network. Front. Mar. Sci. 6, https://doi.org/10.3389/fmars.2019.00161 (2019).
40.
O’Brien, T. D. COPEPOD: The Global Plankton Database. An overview of the 2014 database contents, processing methods, and access interface. U.S. Dep. Commerce, NOAA Tech. Memo., NMFS-F/ST-37. 29 p. (NOAA, 2014).
41.
O’Brien, T. D. COPEPOD: The Global Plankton Database. An overview of the 2010 database contents, processing methods, and access interface. U.S. Dep. Commerce, NOAA Tech. Memo., NMFS-F/ST-36. 28 p. (NOAA, 2010).
42.
O’Brien, T. D. COPEPOD: The Global Plankton Database. A review of the 2007 database contents and new quality control methodology. U.S. Dep. Commerce, NOAA Tech. Memo., NMFS-F/ST-34. 28 p. (NOAA, 2007).
43.
O’Brien, T. D. COPEPOD: A Global Plankton Database. U.S. Dep. Commerce, NOAA Tech. Memo. NMFS-F/SPO-73. 136 p. (NOAA, 2002).
44.
O’Brien, T. D., Wiebe, P. H. & Falkenhaug, T. ICES Zooplankton Status Report 2010/2011. ICES Cooperative Research Report. 318, 208 (2013).
Google Scholar
45.
Clark, R. A., Frid, C. L. J. & Batten, S. A critical comparison of two long-term zooplankton time series from the central-west North Sea. J. Plankton Res. 23, 27–39 (2001).
Article Google Scholar
46.
John, E. H., Batten, S. D., Harris, R. P. & Hays, G. C. Comparison between zooplankton data collected by the Continuous Plankton Recorder survey in the English Channel and by WP-2 nets at station L4, Plymouth (UK). J. Sea Res. 46, 223–232 (2001).
ADS Article Google Scholar
47.
Pitois, S. G. & Fox, C. J. Long-term changes in zooplankton biomass concentration and mean size over the Northwest European shelf inferred from Continuous Plankton Recorder data. ICES J. Mar. Sci. 63, 785–798, https://doi.org/10.1016/j.iccsjms.2006.03.009 (2006).
CAS Article Google Scholar
48.
Richardson, A. J., John, E. H., Irigoien, X., Harris, R. P. & Hays, G. C. How well does the continuous plankton recorder (CPR) sample zooplankton? A comparison with the Longhurst Hardy Plankton Recorder (LHPR) in the northeast Atlantic. Deep Sea Res. Part I. 51, 1283–1294, https://doi.org/10.1016/j.dsr.2004.04.002 (2004).
49.
Herman, A. W. Design and calibration of a new optical plankton counter capable of sizing small zooplankton. Deep Sea Res. Part I. 39, 395–415, https://doi.org/10.1016/0198-0149(92)90080-D (1992).
ADS Article Google Scholar
50.
Espinasse, B. et al. Conditions for assessing zooplankton abundance with LOPC in coastal waters. Prog. Oceanogr. 163, 260–270, https://doi.org/10.1016/j.pocean.2017.10.012 (2018).
Article Google Scholar
51.
Baird, M. E. et al. Biological properties across the Tasman Front off southeast Australia. Deep Sea Res. Part I. 55, 1438–1455, https://doi.org/10.1016/j.dsr.2008.06.011 (2008).
Article Google Scholar
52.
Everett, J. D., Baird, M. E. & Suthers, I. M. Three-dimensional structure of a swarm of the salp Thalia democratica within a cold-core eddy off southeast Australia. J. Geophys. Res. 116, https://doi.org/10.1029/2011jc007310 (2011).
53.
Baird, M. E., Everett, J. D. & Suthers, I. M. Analysis of southeast Australian zooplankton observations of 1938–42 using synoptic oceanographic conditions. Deep Sea Res. Part II. 58, 699–711, https://doi.org/10.1016/j.dsr2.2010.06.002 (2011).
ADS Article Google Scholar
54.
Brady, G. S. Report on the Copepoda collected by H.M.S. ‘Challenger’ during the years 1873–76. Rep. Sci. Results, Voy. of H. M. S. “Challenger,” Zool. viii, 1–142 (1883).
Google Scholar
55.
Knox, G. A. Biology of the Southern Ocean. Second edition (CRC Press/Taylor & Francis Group, 2007).
56.
Scott, A. The Copepoda of the Siboga Expedition, Part I. Free swimming, littoral and semi-parasitic Copepoda Siboga expeditie. 29a, 323 p. (1909).
57.
Farran, G. P. Crustacea, Part X. Copepoda. Natural History Report 8 no. 3. (Trustees Brit. Mus., London, 1929).
58.
Brady, G. S. Copepoda. AAE 1911-1914 Ser C. 5, 1–48 (1918).
Google Scholar
59.
Russell, F. S. & Colman, J. S. Great Barrier Reef expedition 1928-1929. The zooplankton I. Gear, methods and station list. 2, 2–35 (The Bristish Museum, London, 1931).
60.
Marshall, S. M. The production of microplankton in the Great Barrier Reef region. Sci. Rpts. Gt. Barrier Reef Exped. London 1928–29 2, 111–157 (1933).
Google Scholar
61.
Jesperson, P. Quantative investigation of the distribution of the macroplankton in different oceanic regions. Rep. “Dana” Exped. 2, 1–44 (1935).
Google Scholar
62.
Sheard, K. Plankton of the Australian-Antarctic quadrant. Rep. BANZ Antarct. Res. Exped. ser. B 6, 1–120 (1947).
Google Scholar
63.
Dakin, W. J. & Colefax, A. The marine plankton of the coastal waters of New South Wales. I. The chief planktonic forms and their seasonal distribution. Proc. Linn. Soc. N.S.W. 58, 186–222 (1933).
Google Scholar
64.
Dakin, W. J. & Colefax, A. The plankton of the Australian coastal waters off New South Wales Part I. Publ. Univ. Syd. 210 (1940).
65.
Thompson, H. Pelagic Tunicates in the plankton of South-eastern Australian Waters, and their place in Oceanographic studies. Bull. CSIR. Aust. 153, 1–51 (1942).
Google Scholar
66.
Foxton, P. The distribution of the standing crop of zooplankton in the Southern Ocean. Discovery Reports 28, 191–236 (1956).
Google Scholar
67.
Smith, J. A. et al. A database of marine larval fish assemblages in Australian temperate and subtropical waters. Sci. Data 5, 180207, https://doi.org/10.1038/sdata.2018.207 (2018).
Article PubMed PubMed Central Google Scholar
68.
Brewer, D. T. et al. Impacts of gold mine waste disposal on a tropical pelagic ecosystem. Mar. Pollut. Bull. 64, 2790–2806, https://doi.org/10.1016/j.marpolbul.2012.09.009 (2012).
CAS Article PubMed Google Scholar
69.
Dennis, D. et al. Baseline assessment of the status of the tropical marine benthic and pelagic communities adjacent to and distant from the nickel/cobalt refinery site at Basamuk, PNG. Final Report for Ramu NiCo Management Ltd.Commericial-in-confidence (pp. 208. CSIRO Marine and Atmospheric Research, Australia, 2009).
Google Scholar
70.
Duggan, S., McKinnon, A. D. & Carleton, J. H. Zooplankton in an Australian tropical estuary. Estuar. Coasts 31, 455–467 (2008).
Article Google Scholar
71.
McKinnon, A. D., Duggan, S., Holliday, D. & Brinkman, R. Plankton community structure and connectivity in the Kimberley-Browse region of NW Australia. Estuar. Coast Shelf Sci. 153, 156–167, https://doi.org/10.1016/j.ecss.2014.11.006 (2015).
ADS Article Google Scholar
72.
McKinnon, A. D., Duggan, S., Boettger-Schnack, R., Gusmaoa, L. F. M. & O’Leary, R. A. Depth structuring of pelagic copepod biodiversity in waters adjacent to an Eastern Indian Ocean coral reef. J. Nat. Hist. 47, 639–665 (2013).
Article Google Scholar
73.
McKinnon, A. D. Planning tools for environmentally sustainable tropical finfish cage culture in Indonesia and northern Australia. Final Report, ACIAR Project FIS 2003/027 (Australian Centre for International Agricultural Research, Canberra, 2009).
74.
Strzelecki, J., Koslow, J. A. & Waite, A. Comparison of mesozooplankton communities from a pair of warm- and cold-core eddies off the coast of Western Australia. Deep Sea Res. Part II. 54, 1103–1112, https://doi.org/10.1016/j.dsr2.2007.02.004 (2007).
ADS Article Google Scholar
75.
McKinnon, A. D., Duggan, S. & De’ath, G. Mesozooplankton dynamics in nearshore waters of the Great Barrier Reef. Estuar. Coast Shelf Sci. Science 63, 497–511, https://doi.org/10.1016/j.ecss.2004.12.011 (2005).
ADS CAS Article Google Scholar
76.
AIMS. Biological Oceanographic Reconnaissance of the Arafura Sea. https://apps.aims.gov.au/metadata/view/7b5b2d16-052e-054a098-a392-e051a835e64746 (AIMS Data Centre, Australia, 2019).
77.
McKinnon, A. D. & Duggan, S. Summer copepod production in subtropical waters adjacent to Australia’s North West Cape. Mar. Biol. (Berl) 143, 897–907, https://doi.org/10.1007/s00227-003-1153-1 (2003).
Article Google Scholar
78.
Taw, N. Studies on the zooplankton and hydrology of south-eastern coastal waters of Tasmania. PhD thesis, Univ. Tasmania (1975).
79.
Terauds, A. In Tasmanian Slope Trophodynamics: Final Report. FRDC Project 91/7 (ed Parslow, J. et al.) 213 (CSIRO Division of Fisheries, Australia, 1995).
80.
Pausina, S. et al. In Moreton Bay Quandamooka & Catchment: Past, present and future. (eds Rothlisberg, P. C. et al.) The Moreton Bay Foundation. Brisbane, Australia., pp. 335–360 (The Moreton Bay Foundation, Australia, 2019).
81.
Lynch, T. P. et al. In Oceans 2008, Vols 1-4 Oceans-Ieee 367–374 (Ieee, 2008).
82.
Armstrong, A. O. et al. Prey Density Threshold and Tidal Influence on Reef Manta Ray Foraging at an Aggregation Site on the Great Barrier Reef. Plos One 11, https://doi.org/10.1371/journal.pone.0153393 (2016).
83.
Furnas, M. J., Mitchell, A. W., Gilmartin, M. & Revelante, N. Phytoplankton biomass and primary production in semi-enclosed reef lagoons of the central Great Barrier Reef, Australia. Coral Reefs 9, 1–10, https://doi.org/10.1007/bf00686716 (1990).
ADS Article Google Scholar
84.
CSIRO. Oceanographical observations in the Indian Ocean in 1959. H.M.A.S. Diamantina cruises Dm1/59 and Dm2/59. Oceanographical Cruise Report 1 (Division of Fisheries and Oceanography, CSIRO Australia, 1962).
85.
CSIRO. Oceanographical observations in the Indian Ocean in 1960. H.M.A.S. Diamantina cruise Dm1/60. Oceanographical Cruise Report 2 (Division of Fisheries and Oceanography, CSIRO Australia, 1962).
86.
CSIRO. Oceanographical observations in the Indian Ocean in 1961. H.M.A.S. Diamantina cruise Dm2/61. Oceanographical Cruise Report 9 (Division of Fisheries and Oceanography, CSIRO Australia, 1963).
87.
CSIRO. Oceanographical observations in the Indian Ocean in 1961. H.M.A.S. Diamantina cruise Dm1/61. Oceanographical Cruise Report 7 (Division of Fisheries and Oceanography, CSIRO Australia 1963).
88.
CSIRO. Oceanographical observations in the Indian Ocean in 1960. H.M.A.S. Diamantina cruise Dm2/60. Oceanographical Cruise Report 3 (Division of Fisheries and Oceanography, CSIRO Australia, 1963).
89.
CSIRO. Oceanographical observations in the Indian Ocean in 1961. H.M.A.S. Diamantina cruise Dm3/61. Oceanographical Cruise Report 11 (Division of Fisheries and Oceanography, CSIRO Australia, 1964).
90.
CSIRO. Oceanographical observations in the Pacific Ocean in 1960. H.M.A.S. Gascoyne cruises G1/60 and G2/60. Oceanographical Cruise Report 5 (Division of Fisheries and Oceanography, CSIRO Australia, 1962).
91.
CSIRO. Oceanographical observations in the Pacific Ocean in 1961. H.M.A.S. Gascoyne cruise G1/61. Oceanographical Cruise Report 8 (Division of Fisheries and Oceanography, CSIRO Australia, 1963).
92.
CSIRO. Oceanographical observations in the Pacific Ocean in 1961. H.M.A.S. Gascoyne cruise G4/61. Oceanographical Cruise Report 12 (Division of Fisheries and Oceanography, CSIRO Australia, 1967).
93.
CSIRO. Oceanographical observations in the Pacific Ocean in 1962. H.M.A.S. Gascoyne cruise G1/62. Oceanographical Cruise Report 13 (Division of Fisheries and Oceanography, CSIRO Australia, 1967).
94.
Crooks, A. D. Coastal hydrological investigations in the New South Wales tuna fishing area, 1960. Oceanographical Station List 53 (Division of Fisheries. CSIRO Australia, 1963).
95.
CSIRO. Investigations by F.R.V. Derwent Hunter on the eastern Australian tuna grounds in 1961. Oceanographical Station List 54 (Division of Fisheries. CSIRO Australia, 1968).
96.
CSIRO. Investigations by F.R.V. Derwent Hunter on the eastern Australian tuna grounds in 1962. Oceanographical Station List 59 (Division of Fisheries, CSIRO Australia, 1968).
97.
CSIRO. Coastal investigations at Port Hacking, New South Wales, 1961. Oceanographical Station List 81 (Division of Fisheries, CSIRO Australia, 1961).
98.
CSIRO. F.R.V. “Derwent Hunter”. Scientific report of Cruises 13/57-16/57. Report of Division of Fisheries and Oceanography 21 (Division of Fisheries and Oceanography, CSIRO Australia, 1959).
99.
CSIRO. F.R.V. Derwent Hunter. Scientific report of Cruises 5/57-8/57. Report of Division of Fisheries and Oceanography 19 (Division of Fisheries and Oceanography, CSIRO Australia, 1958).
100.
CSIRO. F.R.V. Derwent Hunter. Scientific report of Cruises DH 9/57-12/57. Report of Division of Fisheries and Oceanography 20 (Division of Fisheries and Oceanography, CSIRO Australia 1959).
101.
Rothlisberg, P. C. & Jackson, C. J. Temporal & spatial variation of plankton abundance in the Gulf of Carpentaria, Australia 1975–1977. J. Plankton Res. 4, 19–40, https://doi.org/10.1093/plankt/4.1.19 (1982).
Article Google Scholar
102.
CSIRO. RV Southern Surveyor dropnet data files: C2012/7164, C2012/7171, C2012/7166. (CSIRO Oceans & Atmosphere DataCentre, Australia, 2012).
103.
Ikeda, T. et al. Biological, chemical and physical observations in inshore waters of the Great Barrier Reef, North Queensland 1975–1978. AIMS Techn. Bull. AIMS-OS-80-1. 56 (AIMS, Australia, 1980).
104.
Tranter, D. J. Zooplankton abundance in Australasian waters. Aust. J. Mar. Freshwater Res. 13, 106–142 (1962).
MathSciNet Article Google Scholar
105.
Young, J. W., Bradford, R. W., Lamb, T. D. & Lyne, V. D. Biomass of zooplankton and micronekton in the southern bluefin tuna fishing grounds off eastern Tasmania, Australia. Mar. Ecol. Prog. Ser. 138, 1–14 (1996).
ADS Article Google Scholar
106.
CSIRO. Australian Equatorial JGOFS Dataset. CSIRO Division of Marine Research, http://www.marine.csiro.au/datacentre/JGOFSweb/inventory/index.htm (2000).
107.
Motoda, S., Kawamura, T. & Taniguchi, A. Differences in productivities between the Great Australian Bight and the Gulf of Carpentaria, in summer. Mar. Biol. (Berl) 46, 93–99, https://doi.org/10.1007/bf00391524 (1978).
CAS Article Google Scholar
108.
Sheard, K. Plankton characteristics at the Cronulla Onshore Station, New South Wales 1943-46. Bull. CSIR. Aust. 246, 1–23 (1949).
Google Scholar
109.
Thompson, P., Lourey, M., Strzelecki, J., Wild-Allen, K. & McLaughlin, J. In Final report. Southwest Australian Coastal Biogeochemistry (ed J. Keesing) (CSIRO, 2011).
110.
Davis, T. L. O. & Clementson, L. A. Data report on the vertical and horizontal distribution of tuna larvae in the east Indian Ocean, January-February 1987. CSIRO Marine Laboratories Report (CSIRO Australia, 1990).
111.
van Ruth, P. D. Spatial and temporal variation in primary and secondary productivity in the easten Great Australian Bight PhD thesis, Univ. Adelaide (2009).
112.
Stevens, J. D., Hausfeld, H. F. & Davenport, S. R. Observations on the biology, distribution and abundance of Trachurus declivis, Sardinops neopilchardus and Scomber australasicus in the Great Australian Bight. CSIRO Marine Laboratories Report 27 (CSIRO Australia, 1984).
113.
Clementson, L. A., Harris, G. P., Griffiths, F. B. & Rimmer, D. W. Seasonal and inter-annual variability in chemical and biological parameters in Storm Bay, Tasmania. 1. Physics, chemistry and the biomass of components of the food chain. Aust. J. Mar. Freshwater Res. 40, 25–38 (1989).
CAS Article Google Scholar
114.
Swadling, K. M., Eriksen, R. S., Beard, J. M. & Crawford, C. M. Marine currents, nutrients and plankton in the coastal waters of south eastern Tasmania and responses to changing weather patterns. (FRDC Project No 2014/031) 99 (University of Tasmania, Australia, 2017). More