More stories

  • in

    Development of a fast and user-friendly cryopreservation protocol for sweet potato genetic resources

    Plant material
    In vitro-grown plantlets of ten different Ipomoea batatas cultivars; Camote Mata Serrano (CAM; Cip-420530); Cinitavo (CIN,Cip-440669); CMR 1112 (CMR; Cip-440145); Espelma (ESP, Cip-421028); Ibarreno (IBA; Cip-400989); Jewel (JEW; Cip-440031); Manchester Hawk (MAN; Cip-400040); Tanzania (TAN; Cip-440166); Tis 87/0029 (TIS; Cip-442764); and Trujillano (TRUJ; Cip-420665) were supplied by CIP (Lima, Peru). These ten cultivars were chosen to represent the diversity of the cultivars present at the sweet potato genebank of CIP as they originate from a broad range of countries over 4 different continents.
    Plant multiplication
    In vitro plantlets were propagated on “CIP medium” and plain MS medium50). The CIP medium contains half strength MS salts (Duchefa Biochemie, M0221) supplemented with 30 g/L sucrose, 2.8 g/L gelrite, 2 mg/L calciumpanthotenate, 100 mg/L calciumnitrate, 200 mg/L ascorbic acid and 10 mg/L gibberellic acid, pH was set to 6.12 before autoclavation (b.a.). The MS medium contains MS salts and vitamins (Duchefa Biochemie, M0222) supplemented with 25 g/L sucrose and 2.8 g/L gelrite, pH was set to 6.12 b.a.. Nodal fragments from the in vitro plantlets were excised in a sterile laminar flow bench. This was done by removing the leaves and roots of the plantlet, after which 1 cm stem fragments were cut, each containing one axillary meristem in the middle. Three fragments were transferred to each culture tube and grown in a 24 °C growth room on a 16/8 h light/dark regime with the light being provided with 36 W (cool white)/ 840 Lumilux fluorescent lights. The material was subcultured every 5–6 weeks.
    Six weeks after initiation, the number of new nodes was counted. This experiment was initially executed on the following 4 cultivars: TIS, IBA, JEW and TAN. Further propagation of all 10 cultivars was done with the medium that proved to be the most productive.
    Meristem excision
    Two meristem types were excised using a binocular microscope; apical and axillary meristems. The apical meristems were excised by trimming the top leaves until the apical meristem is visible. Then a cut is made in the stem underneath the apical meristem, leaving the apical dome with 2 to 4 leaf primordia (Fig. 7). The axillary meristems were excised by first removing the leaves completely, including the petiole. From this a small cube of 1mm3 was excised containing the axillary meristem on one of the sides (Fig. 7) A movie demonstrating this process is added as supplementary information in the digital version of this paper (see Online Supplementary Resource 1). The exact position of the axillary meristem on the stem was not taken into account in this research, since it was proven that this had no significant impact on the survival rate after cryopreservation39.
    Figure 7

    Excised apical (left) and axillary meristem (right) from a CIN and ESP cultivar plantlet respectively, displayed on millimetre paper. The black bar represents 1 mm.

    Full size image

    Preculture
    In the “no preculture method”, the excised meristems are transferred on top of a sterile filter paper placed on a MS plate (MS, 30 g/L sucrose and 3 g/L gelrite, pH set to 6.12 b.a.). As soon as sufficient meristems for that specific experiment are excised, they are subjected on the same day to the cryopreservation procedure. In the “preculture method”, the excised meristems are transferred on top of a sterile filter paper placed on a 0.3 M MS plate (MS, 102.7 g/L sucrose; 3 g/L gelrite, pH set to 6.12 b.a.) and kept on this medium in the dark for14 to 16 h before cryopreservation takes place.
    The difference between precultured and non-precultured meristems was tested by comparing the post-thaw survival and regeneration rate of 950 of both axillary and apical meristems originating from 3 different cultivars (IBA, CIN, and CMR). These were cryopreserved via the droplet cryopreservation protocol using the following parameters: Loading solution (LS) 20 min; Plant Vitrification Solution (PVS2) 30 min; Recovery Solution (RS) 15 min and 2.22 µM BA regeneration medium.
    Droplet cryopreservation
    Precultured or non-precultured meristems were transferred to a sterile 30 ml plastic tube containing 15 ml of LS ( MS supplemented with 2 M glycerol and 0.4 M sucrose; pH 5.8), where they remain at room temperature for 20 min. Then the LS was removed from the tube with a sterile plastic boll pipette, taking care not to remove or damage the meristems.
    The empty tube was then filled with 15 ml chilled PVS251 with the Murashige- Tucker medium replaced by MS ( MS supplemented with 30% glycerol, 15% ethylene glycol, 15% DMSO and 0.4 M sucrose, pH 5.8) and subsequently placed in an ice bath for 30 min21,23.
    Of each sample of 10 meristems, 3 were directly transferred from the PVS2 to the RS (MS supplemented with 1.2 M sucrose, pH 5.8) at room temperature to act as a control. The remaining 7 meristems were transferred with a plastic boll pipet to a sterile aluminium foil strip (4 × 15 mm). From this strip, the remaining PVS2 fluid was removed until only a thin layer of PVS2 surrounds each meristem. Subsequently the aluminium strip was plunged into liquid nitrogen (LN). When the LN surrounding the aluminium strip stopped boiling, the strip containing the meristems was transferred to a 2 mL cryotube filled with liquid nitrogen where the meristems remained for at least 30 min. To warm the meristems, the aluminium strip with meristems was removed from the cryotube with liquid nitrogen and directly plunged in the RS at room temperature.
    Both control and cryopreserved meristems were exposed to the RS for 15 min. Following this, they were placed one by one with a plastic boll pipette onto a filter paper placed on a MS plate containing 0.3 M sucrose. The plates were then sealed with parafilm and stored overnight in darkness at a temperature of 24 °C. The next day, the meristems were transferred on to the regeneration medium in an upright position, with the meristematic domes not fully submerged in the medium. The meristems were left in the dark for 7 days, where after they were moved into the light.
    After 1 month they were moved from the regeneration medium to new MS plates (Fig. 8).
    Figure 8

    Step-by-step cryopreservation process of sweet potato.

    Full size image

    Effect of the age of the in vitro plantlet
    The effect of plant age was tested by comparing the post-thaw regeneration rates of 215 meristems, for both apical and axillary each, from 3, 6 and 9 weeks old plantlets from the JEW, IBA, MAN and CMR cultivars, using the following parameters: preculture (0.3 M sucrose); 20 min treatment with LS; 30 min with PVS2; 15 min with RS and regeneration on 0.3 M sucrose medium (1 day) followed by MS with 2.22 µM 6-Benzyladenine (BA) regeneration medium.
    Effect of toxicity of the loading solution
    For this experiment 24 apical and 72 axillary meristems of the cultivars TIS, TAN, IBA and JEW were subjected to 3 different LS treatment times (20, 180 and 360 min). After the LS treatment the meristems were transferred to a MS plate containing 0.3 M sucrose for one day plate after which they were transferred to an MS plate. Thereafter, the survival and regeneration rates were compared.
    Effect of composition of the regeneration media
    Three different media were tested: MS (MS supplemented with 25 g/L sucrose and 2.8 g/L gelrite), Hirai* (MS supplemented with 30 g/L sucrose, 1 g/L casein hydrolysate, gibberellic acid 0.5 mg/L and 2 g/L gelrite; which is a slightly altered medium of Hirai and Sakai18, and 2.22 µM BA (MS supplemented with 25 g/L sucrose; 2.8 g/L gelrite and 2.22 µM BA). The pH of the media were set to 6.12 b.a. These media were already previously reported to have been used successfully for cryopreservation of sweet potato meristems. The survival and regeneration rate of these media after cryopreservation were compared for 939 apical and 939 axillary meristems from 4 cultivars (TIS, JEW, IBA and TAN). The cryopreservation parameters were: No preculture; LS 20 min; PVS2 15 min; RS 15 min.
    Effect of axillary versus apical meristem
    This was tested by comparing the post-thaw regeneration rate of 475 apical and 475 axillary meristems originating from 3 different cultivars (IBA, CIN, and CMR). These were cryopreserved using the following parameters: No preculture; LS 20 min; PVS2 30 min; RS 15 min and 2.22 µM BA regeneration medium.
    Post-cryopreservation regrowth
    Observations were executed one and two months after cryopreservation using a binocular microscope.
    To express the results of the regrowth(survival) and regeneration, 7 categories of post thaw reactions are distinguished. In case of doubt, the lower growth category is taken in order to avoid false positives. The categories are summarized below and a visual representation of a typical meristem in each of the 7 categories is shown in Fig. 5.
    Full regeneration (F) are those meristems that have grown multiple leaves, each containing a new meristem in the axil, and that are growing visible roots. These plantlets are able to regenerate into a new plant that can be subcultured and transferred to the soil. A Hyperhydricity (H) score is given to meristems which do form new leaves and meristems, but are growing abnormally. These plantlets have narrow leaves with a thick stem and roots that grow upwards. These are not categorized as regeneration as subculturing these plants will not lead to plantlets that can be transferred to the field. Shoot growth (S) is linked to meristems that produced a limited number of leaves, around 3, and then stop growing. They remain rootless. Tip growth (T) means that the meristem is visibly growing but shows no unfolded leafs. A callus (C) score is given when there is no visible growth other than callus. Black (B) or White (W) is given to meristems that have died either after or before/during cryopreservation. In many cases, callus growth is associated with one of the above categories.
    To calculate the post thaw regeneration rate of a plate, the Full regeneration (F) meristems were counted and divided by the total number of meristems on the plate. The survival rate was calculated by counting all meristems with living tissue (F, H, S, T and C).
    Statistical analysis
    The comparison of the number of nodes after 6 weeks on the 2 propagation media was executed using a one-sided tail, student t-test (homoscedastic) with a P-value  More

  • in

    Emergent dispersal networks in dynamic wetlandscapes

    1.
    Gibbs, J. P. Importance of small wetlands for the persistence of local populations of wetland-associated animals. Wetlands 13(1), 25–31 (1993).
    Google Scholar 
    2.
    Muneepeerakul, R. et al. Neutral metacommunity models predict fish diversity patterns in Mississippi–Missouri basin. Nature 453(7192), 220–222 (2008).
    ADS  CAS  PubMed  Google Scholar 

    3.
    Kinlan, B. P. & Gaines, S. D. Propagule dispersal in marine and terrestrial environments: A community perspective. Ecology 84(8), 2007–2020 (2003).
    Google Scholar 

    4.
    Niebuhr, B. B. et al. Survival in patchy landscapes: The interplay between dispersal, habitat loss and fragmentation. Sci. Rep. 5, 11898 (2015).
    ADS  PubMed  PubMed Central  Google Scholar 

    5.
    Deal, E., Braun, J. & Botter, G. Understanding the role of rainfall and hydrology in determining fluvial erosion efficiency. J. Geophys. Res. Earth Surf. 123(4), 744–778 (2018).
    ADS  Google Scholar 

    6.
    Kadoya, T. Assessing functional connectivity using empirical data. Popul. Ecol. 51(1), 5–15 (2009).
    Google Scholar 

    7.
    Hanski, I. & Gilpin, M. Metapopulation dynamics: Brief history and conceptual domain. Biol. J. Lin. Soc. 42(1–2), 3–16 (1991).
    Google Scholar 

    8.
    Cadotte, M. W. Dispersal and species diversity: A meta-analysis. Am. Nat. 167(6), 913–924 (2006).
    PubMed  Google Scholar 

    9.
    Koelle, K. & Vandermeer, J. Dispersal-induced desynchronization: From metapopulations to metacommunities. Ecol. Lett. 8(2), 167–175 (2005).
    Google Scholar 

    10.
    Foltête, J. C., Clauzel, C., Vuidel, G. & Tournant, P. Integrating graph-based connectivity metrics into species distribution models. Landsc. Ecol. 27(4), 557–569 (2012).
    Google Scholar 

    11.
    Tournant, P., Afonso, E., Roué, S., Giraudoux, P. & Foltête, J. C. Evaluating the effect of habitat connectivity on the distribution of lesser horseshoe bat maternity roosts using landscape graphs. Biol. Cons. 164, 39–49 (2013).
    Google Scholar 

    12.
    Wellborn, G. A., Skelly, D. K. & Werner, E. E. Mechanisms creating community structure across a freshwater habitat gradient. Annu. Rev. Ecol. Syst. 27(1), 337–363 (1996).
    Google Scholar 

    13.
    Creed, I. F. et al. Enhancing protection for vulnerable waters. Nat. Geosci. 10(11), 809–815 (2017).
    ADS  CAS  PubMed  PubMed Central  Google Scholar 

    14.
    Rains, M. C. et al. Geographically isolated wetlands are part of the hydrological landscape. Hydrol. Process. 30(1), 153–160 (2016).
    ADS  Google Scholar 

    15.
    Levins, R. Some demographic and genetic consequences of environmental heterogeneity for biological control. Am. Entomol. 15(3), 237–240 (1969).
    Google Scholar 

    16.
    Gilpin, M. (ed.) Metapopulation Dynamics: Empirical and Theoretical Investigations (Academic Press, New York, 2012).
    Google Scholar 

    17.
    Gibbs, J. P. Wetland loss and biodiversity conservation. Conserv. Biol. 14(1), 314–317 (2000).
    Google Scholar 

    18.
    Boughton, E. H., Quintana-Ascencio, P. F., Bohlen, P. J., Jenkins, D. G. & Pickert, R. Land-use and isolation interact to affect wetland plant assemblages. Ecography 33(3), 461–470 (2010).
    Google Scholar 

    19.
    Smith, L. L. et al. Biological connectivity of seasonally ponded wetlands across spatial and temporal scales. JAWRA J. Am. Water Resour. Assoc. 55(2), 334–353 (2019).
    ADS  Google Scholar 

    20.
    Le, P. V. & Kumar, P. Power law scaling of topographic depressions and their hydrologic connectivity. Geophys. Res. Lett. 41(5), 1553–1559 (2014).
    ADS  Google Scholar 

    21.
    Bertassello, L. E. et al. Wetlandscape fractal topography. Geophys. Res. Lett. 45(14), 6983–6991 (2018).
    ADS  Google Scholar 

    22.
    Hurst, H. E. (1965). Long term storage. An experimental study.

    23.
    Mandelbrot, B. B. (1975). Les objets fractals: forme, hasard et dimension.

    24.
    Keitt, T. H. Spectral representation of neutral landscapes. Landsc. Ecol. 15(5), 479–494 (2000).
    Google Scholar 

    25.
    Park, J., Botter, G., Jawitz, J. W. & Rao, P. S. C. Stochastic modeling of hydrologic variability of geographically isolated wetlands: Effects of hydro-climatic forcing and wetland bathymetry. Adv. Water Resour. 69, 38–48 (2014).
    ADS  Google Scholar 

    26.
    Bertassello, L. E., Rao, P. S. C., Jawitz, J. W., Aubeneau, A. F. & Botter, G. Wetlandscape hydrologic dynamics driven by shallow groundwater and landscape topography. Hydrol. Process. 2, 2 (2019).
    Google Scholar 

    27.
    Wu, Q. et al. Efficient delineation of nested depression hierarchy in digital elevation models for hydrological analysis using level-set method. JAWRA J. Am. Water Resour. Assoc. 55(2), 354–368 (2019).
    ADS  Google Scholar 

    28.
    Saura, S. & Pascual-Hortal, L. A new habitat availability index to integrate connectivity in landscape conservation planning: comparison with existing indices and application to a case study. Landsc. Urban Plan. 83(2–3), 91–103 (2007).
    Google Scholar 

    29.
    Bunn, A. G., Urban, D. L. & Keitt, T. H. Landscape connectivity: A conservation application of graph theory. J. Environ. Manag. 59(4), 265–278 (2000).
    Google Scholar 

    30.
    Urban, D. & Keitt, T. Landscape connectivity: A graph-theoretic perspective. Ecology 82(5), 1205–1218 (2001).
    Google Scholar 

    31.
    Fortuna, M. A., Gómez-Rodríguez, C. & Bascompte, J. Spatial network structure and amphibian persistence in stochastic environments. Proc. R. Soc. B Biol. Sci. 273(1592), 1429–1434 (2006).
    Google Scholar 

    32.
    Hayashi, M. & Van der Kamp, G. Simple equations to represent the volume–area–depth relations of shallow wetlands in small topographic depressions. J. Hydrol. 237(1–2), 74–85 (2000).
    ADS  Google Scholar 

    33.
    Rittenhouse, T. A. & Semlitsch, R. D. Distribution of amphibians in terrestrial habitat surrounding wetlands. Wetlands 27(1), 153–161 (2007).
    Google Scholar 

    34.
    Osher, S. & Fedkiw, R. P. Level set methods: an overview and some recent results. J. Comput. Phys. 169(2), 463–502 (2001).
    ADS  MathSciNet  CAS  MATH  Google Scholar 

    35.
    National Map Viewer. Available online: https://viewer.nationalmap.gov (accessed on July 2018).

    36.
    Gallant, J. C., Moore, I. D., Hutchinson, M. F. & Gessler, P. Estimating fractal dimension of profiles: A comparison of methods. Math. Geol. 26(4), 455–481 (1994).
    Google Scholar 

    37.
    Voss, R. F. Fractals in nature: from characterization to simulation. In The Science of Fractal Images 21–70 (Springer, New York, 1988).
    Google Scholar 

    38.
    Russ, J. C. Fractal Surfaces (Plenum, New York, 1994).
    Google Scholar 

    39.
    Baguette, M., Blanchet, S., Legrand, D., Stevens, V. M. & Turlure, C. Individual dispersal, landscape connectivity and ecological networks. Biol. Rev. 88(2), 310–326 (2013).
    PubMed  Google Scholar 

    40.
    Zamberletti, P., Zaffaroni, M., Accatino, F., Creed, I. F. & De Michele, C. Connectivity among wetlands matters for vulnerable amphibian populations in wetlandscapes. Ecol. Model. 384, 119–127 (2018).
    Google Scholar 

    41.
    Barabási, A. L. & Albert, R. Emergence of scaling in random networks. Science 286(5439), 509–512 (1999).
    ADS  MathSciNet  PubMed  MATH  Google Scholar 

    42.
    Cox, D. & Lewis, P. The statistical analysis of series of events. Popul. Sci https://doi.org/10.1007/978-94-011-7801-3 (1966).
    Article  MATH  Google Scholar 

    43.
    Diggle, P. J. Statistical methods for spatial point patterns in ecology. Spat. Tempor. Anal. Ecol. 2, 99–150 (1979).
    Google Scholar 

    44.
    Diggle, P. J. Statistical analysis of spatial and spatio-temporal point patterns (CRC Press, Boca Raton, 2013).
    Google Scholar 

    45.
    Cohen, M. J. et al. Do geographically isolated wetlands influence landscape functions?. Proc. Natl. Acad. Sci. 113, 1978–1986. https://doi.org/10.1073/pnas.1512650113 (2016).
    ADS  CAS  Article  PubMed  Google Scholar 

    46.
    Galpern, P., Manseau, M. & Fall, A. Patch-based graphs of landscape connectivity: a guide to construction, analysis and application for conservation. Biol. Cons. 144(1), 44–55 (2011).
    Google Scholar 

    47.
    Gustafson, E. J. How has the state of art for quantification of landscape patterns advanced in the twenty first century?. Landscape Ecol. 34, 2065–2202 (2019).
    Google Scholar 

    48.
    Shreevastava, A., Bhalachandran, S., McGrath, G. S., Huber, M. & Rao, P. S. C. Paradoxical impact of sprawling intra-Urban Heat Islets: Reducing mean surface temperatures while enhancing local extremes. Sci. Rep. 9(1), 1–10 (2019).
    ADS  Google Scholar 

    49.
    Werner, E. E., Skelly, D. K., Relyea, R. A. & Yurewicz, K. L. Amphibian species richness across environmental gradients. Oikos 116, 1697–1712. https://doi.org/10.1111/j.0030-1299 (2007).
    Article  Google Scholar 

    50.
    Kantrud, H. A. & Stewart, R. E. Use of natural basin wetlands by breeding waterfowl in North Dakota. J. Wildlife Manag. 2, 243–253 (1977).
    Google Scholar 

    51.
    Euliss, N. H. et al. The wetland continuum: A conceptual framework for interpreting biological studies. Wetlands 24, 448–458. https://doi.org/10.1672/0277-5212(2004)024 (2004).
    Article  Google Scholar 

    52.
    Leibold, M. A. et al. The metacommunity concept: A framework for multi-scale community ecology. Ecol. Lett. 7(7), 601–613 (2004).
    Google Scholar 

    53.
    Kuefler, D., Hudgens, B., Haddad, N. M., Morris, W. F. & Thurgate, N. The conflicting role of matrix habitats as conduits and barriers for dispersal. Ecology 91(4), 944–950 (2010).
    PubMed  Google Scholar 

    54.
    Winter, T. C. Relation of streams, lakes, and wetlands to groundwater flow systems. Hydrogeol. J. 7(1), 28–45. https://doi.org/10.1007/s100400050178 (1999).
    ADS  Article  Google Scholar  More

  • in

    Combining genetic markers with stable isotopes in otoliths reveals complexity in the stock structure of Atlantic bluefin tuna (Thunnus thynnus)

    1.
    FAO. The State of World Fisheries and Aquaculture 2018-Meeting the sustainable development goals. Rome. Licence: CC BY-NC-SA 3.0 IGO. (2018). https://www.fao.org/documents/card/en/c/I9540EN/.
    2.
    Cheung, W. W. L. et al. Large-scale redistribution of maximum fisheries catch potential in the global ocean under climate change. Glob. Change Biol. 16, 24–35. https://doi.org/10.1111/j.1365-2486.2009.01995.x (2010).
    ADS  Article  Google Scholar 

    3.
    Myers, R. A. & Worm, B. Rapid worldwide depletion of predatory fish communities. Nature 423, 280–283. https://doi.org/10.1038/nature01610 (2003).
    ADS  Article  PubMed  CAS  Google Scholar 

    4.
    Worm, B. et al. Rebuilding global fisheries. Science 325, 578–585. https://doi.org/10.1126/science.1173146 (2009).
    ADS  Article  PubMed  CAS  Google Scholar 

    5.
    van Gemert, R. & Andersen, K. H. Challenges to fisheries advice and management due to stock recovery. ICES J. Mar. Sci. 75, 1864–1870. https://doi.org/10.1093/icesjms/fsy084 (2018).
    Article  Google Scholar 

    6.
    Cadrin, S. X., Kerr, L. A. & Mariani, S. Stock identification methods: an overview, in Stock Identification Methods: Applications in Fishery Science (eds S.X. Cadrin, L.A. Kerr, & S. Mariani) 535–552 (Academic Press, 2014).

    7.
    Kerr, L. A. et al. Lessons learned from practical approaches to reconcile mismatches between biological population structure and stock units of marine fish. ICES J. Mar. Sci. 74, 1708–1722. https://doi.org/10.1093/icesjms/fsw188 (2017).
    Article  Google Scholar 

    8.
    Ovenden, J. R., Berry, O., Welch, D. J., Buckworth, R. C. & Dichmont, C. M. Ocean’s eleven: A critical evaluation of the role of population, evolutionary and molecular genetics in the management of wild fisheries. Fish. Fish. 16, 125–159. https://doi.org/10.1111/faf.12052 (2015).
    Article  Google Scholar 

    9.
    Conover, D. O., Clarke, L. M., Munch, S. B. & Wagner, G. N. Spatial and temporal scales of adaptive divergence in marine fishes and the implications for conservation. J. Fish Biol. 69, 21–47. https://doi.org/10.1111/j.1095-8649.2006.01274.x (2006).
    Article  Google Scholar 

    10.
    Stockwell, C. A., Hendry, A. P. & Kinnison, M. T. Contemporary evolution meets conservation biology. Trends Ecol. Evol. 18, 94–101. https://doi.org/10.1016/s0169-5347(02)00044-7 (2003).
    Article  Google Scholar 

    11.
    Begg, G. A. & Waldman, J. R. An holistic approach to fish stock identification. Fish. Res. 43, 35–44. https://doi.org/10.1016/S0165-7836(99)00065-X (1999).
    Article  Google Scholar 

    12.
    Hastings, A. & Botsford, L. W. Persistence of spatial populations depends on returning home. Proc. Natl. Acad. Sci. USA 103, 6067–6072. https://doi.org/10.1073/pnas.0506651103 (2006).
    ADS  Article  PubMed  CAS  Google Scholar 

    13.
    Harma, C., Brophy, D., Minto, C. & Clarke, M. The rise and fall of autumn-spawning herring (Clupea harengus L.) in the Celtic Sea between 1959 and 2009: Temporal trends in spawning component diversity. Fish. Res. 121–122, 31–42. https://doi.org/10.1016/j.fishres.2012.01.005 (2012).
    Article  Google Scholar 

    14.
    Brophy, D. & King, P. A. Larval otolith growth histories show evidence of stock structure in north east Atlantic blue whiting (Micromesistius poutassou). ICES J. Mar. Sci. 64, 1136–1144. https://doi.org/10.1093/icesjms/fsm080 (2007).
    Article  Google Scholar 

    15.
    Secor, D. H. The unit stock concept: bounded fish and fisheries in Stock Identification Methods 2nd edn (eds CadrinLisa, S.X. & Mariani, A.K.) 7–28 (Academic Press, 2014).

    16.
    Marengo, M. et al. Combining microsatellite, otolith shape and parasites community analyses as a holistic approach to assess population structure of Dentex dentex. J. Sea Res. 128, 1–14. https://doi.org/10.1016/j.seares.2017.07.003 (2017).
    ADS  Article  Google Scholar 

    17.
    Taillebois, L. et al. Strong population structure deduced from genetics, otolith chemistry and parasite abundances explains vulnerability to localized fishery collapse in a large Sciaenid fish, Protonibea diacanthus. Evol. Appl. 10, 978–993. https://doi.org/10.1111/eva.12499 (2017).
    Article  PubMed  PubMed Central  Google Scholar 

    18.
    Welch, D. J. et al. Integrating different approaches in the definition of biological stocks: A northern Australian multi-jurisdictional fisheries example using grey mackerel, Scomberomorus semifasciatus. Mar. Policy 55, 73–80. https://doi.org/10.1016/j.marpol.2015.01.010 (2015).
    Article  Google Scholar 

    19.
    Reis-Santos, P. et al. Reconciling differences in natural tags to infer demographic and genetic connectivity in marine fish populations. Sci. Rep. 8, 10343. https://doi.org/10.1038/s41598-018-28701-6 (2018).
    ADS  Article  PubMed  PubMed Central  CAS  Google Scholar 

    20.
    Kritzer, J. P. & Liu, O. R. Fishery management strategies for addressing complex spatial structure in marine fish stocks in Stock Identification Methods 2nd edn (eds Cadrin, S.X., Kerr, L.A., & Mariani, S.) 29–57 (Academic Press, 2014).

    21.
    Abaunza, P. et al. Stock identity of horse mackerel (Trachurus trachurus) in the Northeast Atlantic and Mediterranean Sea: Integrating the results from different stock identification approaches. Fish. Res. 89, 196–209. https://doi.org/10.1016/j.fishres.2007.09.022 (2008).
    Article  Google Scholar 

    22.
    Sala-Bozano, M., Ketmaier, V. & Mariani, S. Contrasting signals from multiple markers illuminate population connectivity in a marine fish. Mol. Ecol. 18, 4811–4826. https://doi.org/10.1111/j.1365-294X.2009.04404.x (2009).
    Article  PubMed  CAS  Google Scholar 

    23.
    Fromentin, J. M. & Powers, J. E. Atlantic bluefin tuna: Population dynamics, ecology, fisheries and management. Fish Fish. 6, 281–306. https://doi.org/10.1111/j.1467-2979.2005.00197.x (2005).
    Article  Google Scholar 

    24.
    Collette, B. B. et al. High value and long life-double jeopardy for tunas and billfishes. Science 333, 291–292. https://doi.org/10.1126/science.1208730 (2011).
    ADS  Article  PubMed  CAS  Google Scholar 

    25.
    Collette, B. et al. Thunnus thynnus. The IUCN Red List of Threatened Species 2011: e.T21860A9331546. https://doi.org/10.2305/IUCN.UK.2011-2.RLTS.T21860A9331546.en. (2011) (Downloaded on 25 June 2020).

    26.
    Fromentin, J.-M., Bonhommeau, S., Arrizabalaga, H. & Kell, L. T. The spectre of uncertainty in management of exploited fish stocks: The illustrative case of Atlantic bluefin tuna. Mar. Policy 47, 8–14. https://doi.org/10.1016/j.marpol.2014.01.018 (2014).
    Article  Google Scholar 

    27.
    ICCAT. Report of the standing committee on research and statistics (SCRS). Madrid, Spain, 30 September–4 October 2019. https://www.iccat.int/Documents/Meetings/Docs/2019/REPORTS/2019_SCRS_ENG.pdf (2019).

    28.
    ICCAT. Report of the 2017 ICCAT bluefin stock assessment meeting. Madrid, Spain 20–28 July, 2017. https://www.iccat.int/Documents/SCRS/DetRep/BFT_SA_ENG.pdf (2017).

    29.
    Rooker, J. R. et al. Crossing the line: Migratory and homing behaviors of Atlantic bluefin tuna. Mar. Ecol. Prog. Ser. 504, 265–276. https://doi.org/10.3354/meps10781 (2014).
    ADS  Article  CAS  Google Scholar 

    30.
    Arregui, I. et al. Movements and geographic distribution of juvenile bluefin tuna in the Northeast Atlantic, described through internal and satellite archival tags. ICES J. Mar. Sci. 75, 1560–1572. https://doi.org/10.1093/icesjms/fsy056 (2018).
    Article  Google Scholar 

    31.
    Lutcavage, M. E., Brill, R. W., Skomal, G. B., Chase, B. C. & Howey, P. W. Results of pop-up satellite tagging of spawning size class fish in the Gulf of Maine: Do North Atlantic bluefin tuna spawn in the mid-Atlantic?. Can. J. Fish. Aquat. Sci. 56, 173–177. https://doi.org/10.1139/cjfas-56-2-173 (1999).
    Article  Google Scholar 

    32.
    Block, B. A. et al. Electronic tagging and population structure of Atlantic bluefin tuna. Nature 434, 1121–1127. https://doi.org/10.1038/nature03463 (2005).
    ADS  Article  PubMed  CAS  Google Scholar 

    33.
    Boustany, A. M., Reeb, C. A. & Block, B. A. Mitochondrial DNA and electronic tracking reveal population structure of Atlantic bluefin tuna (Thunnus thynnus). Mar. Biol. 156, 13–24. https://doi.org/10.1007/s00227-008-1058-0 (2008).
    Article  CAS  Google Scholar 

    34.
    Rodríguez-Ezpeleta, N. et al. Determining natal origin for improved management of Atlantic bluefin tuna. Front. Ecol. Environ. 17, 439–444. https://doi.org/10.1002/fee.2090 (2019).
    Article  Google Scholar 

    35.
    Rooker, J. R. et al. Natal homing and connectivity in Atlantic bluefin tuna populations. Science 322, 742–744. https://doi.org/10.1126/science.1161473 (2008).
    ADS  Article  PubMed  CAS  Google Scholar 

    36.
    Block, B. A. et al. Migratory movements, depth preferences, and thermal biology of Atlantic bluefin tuna. Science 293, 1310–1314. https://doi.org/10.1126/science.1061197 (2001).
    ADS  Article  PubMed  CAS  Google Scholar 

    37.
    Galuardi, B. et al. Complex migration routes of Atlantic bluefin tuna (Thunnus thynnus) question current population structure paradigm. Can. J. Fish. Aquat. Sci. 67, 966–976. https://doi.org/10.1139/f10-033 (2010).
    Article  Google Scholar 

    38.
    McGowan, M. F. & Richards, W. J. Bluefin tuna, Thunnus thynnus, larvae in the Gulf Stream off the southeastern United States—satellite and shipboard observations of their environment. Fish. Bull. 87, 615–631. https://spo.nmfs.noaa.gov/sites/default/files/pdf-content/1989/873/mcgowan.pdf (1989).

    39.
    Richardson, D. E. et al. Discovery of a spawning ground reveals diverse migration strategies in Atlantic bluefin tuna (Thunnus thynnus). Proc. Natl. Acad. Sci. USA 113, 3299–3304. https://doi.org/10.1073/pnas.1525636113 (2016).
    ADS  Article  PubMed  CAS  Google Scholar 

    40.
    Muhling, B. A. et al. Collection of larval bluefin tuna (Thunnus thynnus) outside documented western Atlantic spawning grounds. Bull. Mar. Sci. 87, 687–694. https://doi.org/10.5343/bms.2010.1101 (2011).
    Article  Google Scholar 

    41.
    Leach, A. W., Levontin, P., Holt, J., Kell, L. T. & Mumford, J. D. Identification and prioritization of uncertainties for management of Eastern Atlantic bluefin tuna (Thunnus thynnus). Mar. Policy 48, 84–92. https://doi.org/10.1016/j.marpol.2014.03.010 (2014).
    Article  Google Scholar 

    42.
    Carruthers, T. Evaluating management strategies for Atlantic bluefin tuna, Report 5: Completion and release of the first comprehensive ABFT MSE package for use by stakeholders in MP testing. Short-term contract for modelling approaches: support to BFT assessment (GBYP 06/2017) of the Atlantic-wide research programme on bluefin tuna (ICCAT-GBYP-Phase 7). https://www.iccat.int/GBYP/Docs/Modelling_Phase_7_MSE_Framework.pdf (2018).

    43.
    Albaina, A. et al. Single nucleotide polymorphism discovery in albacore and Atlantic bluefin tuna provides insights into worldwide population structure. Anim. Genet. 44, 678–692. https://doi.org/10.1111/age.12051 (2013).
    Article  PubMed  CAS  Google Scholar 

    44.
    Carlsson, J., McDowell, J. R., Carlsson, J. E. L. & Graves, J. E. Genetic identity of YOY bluefin tuna from the eastern and western Atlantic spawning areas. J. Hered. 98, 23–28. https://doi.org/10.1093/jhered/esl046 (2007).
    Article  PubMed  CAS  Google Scholar 

    45.
    Puncher, G. N. et al. Spatial dynamics and mixing of bluefin tuna in the Atlantic Ocean and Mediterranean Sea revealed using next-generation sequencing. Mol. Ecol. Resour. 18, 620–638. https://doi.org/10.1111/1755-0998.12764 (2018).
    Article  PubMed  CAS  Google Scholar 

    46.
    Brophy, D. et al. Otolith shape variation in bluefin tuna (Thunnus thynnus) from different regions of the North Atlantic: A potential marker of stock origin. Mar. Freshw. Res. 67, 1023–1036. https://doi.org/10.1071/MF15086 (2016).
    Article  Google Scholar 

    47.
    Dickhut, R. M. et al. Atlantic bluefin tuna (Thunnus thynnus) population dynamics delineated by organochlorine tracers. Environ. Sci. Technol. 43, 8522–8527. https://doi.org/10.1021/es901810e (2009).
    ADS  Article  PubMed  CAS  Google Scholar 

    48.
    Fraile, I., Arrizabalaga, H. & Rooker, J. R. Origin of Atlantic bluefin tuna (Thunnus thynnus) in the Bay of Biscay. ICES J. Mar. Sci. https://doi.org/10.1093/icesjms/fsu156 (2014).
    Article  Google Scholar 

    49.
    Rooker, J. R. et al. Wide-ranging temporal variation in transoceanic movement and population mixing of bluefin tuna in the North Atlantic Ocean. Front. Mar. Sci. 6, 398. https://doi.org/10.3389/fmars.2019.00398 (2019).
    Article  Google Scholar 

    50.
    Corriero, A. et al. Size and age at sexual maturity of female bluefin tuna (Thunnus thynnus L. 1758) from the Mediterranean Sea. J. Appl. Ichthyol. 21, 483–486. https://doi.org/10.1111/j.1439-0426.2005.00700.x (2005).
    Article  Google Scholar 

    51.
    Heinisch, G., Rosenfeld, H., Knapp, J. M., Gordin, H. & Lutcavage, M. E. Sexual maturity in western Atlantic bluefin tuna. Sci. Rep. 4, 7205–7205. https://doi.org/10.1038/srep07205 (2014).
    ADS  Article  PubMed  PubMed Central  CAS  Google Scholar 

    52.
    Muhling, B. et al. Reproduction and larval biology in tunas, and the importance of restricted area spawning grounds. Rev. Fish Biol. Fish. https://doi.org/10.1007/s11160-017-9471-4 (2017).
    Article  Google Scholar 

    53.
    Aranda, G., Abascal, F. J., Varela, J. L. & Medina, A. Spawning behaviour and post-spawning migration patterns of atlantic bluefin tuna (Thunnus thynnus) ascertained from satellite archival tags. PLoS ONE 8, e76445. https://doi.org/10.1371/journal.pone.0076445 (2013).
    ADS  Article  PubMed  PubMed Central  CAS  Google Scholar 

    54.
    Rooker, J. R. et al. Evidence of trans-Atlantic movement and natal homing of bluefin tuna from stable isotopes in otoliths. Mar. Ecol. Prog. Ser. 368, 231–239. https://doi.org/10.3354/meps07602 (2008).
    ADS  Article  Google Scholar 

    55.
    Liaw, A. & Wiener, M. Classification and Regression by randomForest. R News 2, 18–22. https://cogns.northwestern.edu/cbmg/LiawAndWiener2002.pdf (2002).

    56.
    R Core Team R: A language and environment for statistical computing. R Foundation for Statistical Computing, Vienna, Austria. https://www.R-project.org/ (2018).

    57.
    Mercier, L. et al. Selecting statistical models and variable combinations for optimal classification using otolith microchemistry. Ecol. Appl. 21, 1352–1364. https://doi.org/10.1890/09-1887.1 (2011).
    Article  PubMed  Google Scholar 

    58.
    Breiman, L. Random forests. Mach. Learn. 45, 5–32. https://doi.org/10.1023/A:1010933404324 (2001).
    Article  MATH  Google Scholar 

    59.
    Strobl, C., Malley, J. & Tutz, G. An introduction to recursive partitioning: Rationale, application, and characteristics of classification and regression trees, bagging, and random forests. Psychol. Methods 14, 323–348. https://doi.org/10.1037/a0016973 (2009).
    Article  PubMed  PubMed Central  Google Scholar 

    60.
    Genuer, R., Poggi, J.-M. & Tuleau-Malot, C. VSURF: An R package for variable selection using random forests. R J. https://doi.org/10.32614/RJ-2015-018 (2015).
    Article  Google Scholar 

    61.
    Molnar, C., Bischl, B. & Casalicchio, G. iml: An R package for interpretable machine learning. J. Open Source Softw. 3(26), 786. https://doi.org/10.21105/joss.00786 (2018).
    ADS  Article  Google Scholar 

    62.
    Ruckdeschel, R., Kohl, K., Stabla, T. & Camphausen, F. S4 Classes for Distributions. R News 6 (2), 2–6. https://CRAN.R-project.org/doc/Rnews/ (2006).

    63.
    Trueman, C. N., MacKenzie, K. M. & Palmer, M. R. Identifying migrations in marine fishes through stable-isotope analysis. J. Fish. Biol. 81, 826–847. https://doi.org/10.1111/j.1095-8649.2012.03361.x (2012).
    Article  PubMed  CAS  Google Scholar 

    64.
    Labelle, M., Hoch, T., Liorzou, B. & Bigot, J.-L. Indices of bluefin tuna (Thunnus thynnus thynnus) abundance derived from sale records of French purse seine catches in the Mediterranean Sea. Aquat. Living Resour. 10, 329–342. https://doi.org/10.1051/alr:1997036 (1997).
    Article  Google Scholar 

    65.
    LeGrande, A. N. & Schmidt, G. A. Global gridded data set of the oxygen isotopic composition in seawater. Geophys. Res. Lett. https://doi.org/10.1029/2006GL026011 (2006).
    Article  Google Scholar 

    66.
    Ishii, M., Shouji, A., Sugimoto, S. & Matsumoto, T. Objective analyses of sea-surface temperature and marine meteorological variables for the 20th century using ICOADS and the Kobe Collection. Int. J. Climatol. 25, 865–879. https://doi.org/10.1002/joc.1169 (2005).
    Article  Google Scholar 

    67.
    Kitagawa, T. et al. Otolith δ18O of Pacific bluefin tuna Thunnus orientalis as an indicator of ambient water temperature. Mar. Ecol. Prog. Ser. 481, 199–209. https://doi.org/10.3354/meps10202 (2013).
    ADS  Article  CAS  Google Scholar 

    68.
    Rooker, J. R. et al. Life history and stock structure of Atlantic bluefin tuna (Thunnus thynnus). Rev. Fish. Sci. 15, 265–310. https://doi.org/10.1080/10641260701484135 (2007).
    Article  Google Scholar 

    69.
    Friedman, J. H. & Popescu, B. E. Predictive learning via rule ensembles. Ann. Appl. Stat. 2, 916–954. https://doi.org/10.1214/07-AOAS148 (2008).
    MathSciNet  Article  MATH  Google Scholar 

    70.
    Gruber, N. et al. Spatiotemporal patterns of carbon-13 in the global surface oceans and the oceanic suess effect. Global Biogeochem. Cycles 13, 307–335. https://doi.org/10.1029/1999GB900019 (1999).
    ADS  Article  CAS  Google Scholar 

    71.
    Martino, J. C., Doubleday, Z. A. & Gillanders, B. M. Metabolic effects on carbon isotope biomarkers in fish. Ecol. Indic. 97, 10–16. https://doi.org/10.1016/j.ecolind.2018.10.010 (2019).
    Article  CAS  Google Scholar 

    72.
    Cort, J. L., Arregui, I., Estruch, V. D. & Deguara, S. Validation of the growth equation applicable to the eastern Atlantic bluefin tuna, Thunnus thynnus (L.), using Lmax, tag-recapture, and first dorsal spine analysis. Rev. Fish. Sci. Aquac. 22, 239–255. https://doi.org/10.1080/23308249.2014.931173 (2014).
    Article  Google Scholar 

    73.
    Fromentin, J.-M. Descriptive analysis of the ICCAT bluefin tuna tagging database. Collect. Vol. Sci. Pap. ICCAT 54, 353–362 (2002).
    Google Scholar 

    74.
    Arrizabalaga, H. et al. Life history and migrations of Mediterranean bluefin tuna in The Future of Bluefin Tunas (ed B.A. Block) (John Hopkins University Press, 2019).

    75.
    Quílez-Badia, G. et al. The WWF/GBYP multi-annual bluefin tuna electronic tagging program (2008–2013): Repercussions for management. Collect. Vol. Sci. Pap. ICCAT 71(4), 1789–1802 (2015).
    Google Scholar 

    76.
    Di Natale, A., Tensek, S. & García, A. P. Preliminary information about the ICCAT GBYP tagging activities in Phase 5. Collect. Vol. Sci. Pap. ICCAT 72(6), 1589–1613 (2016).
    Google Scholar 

    77.
    Kerr, L. A., Cadrin, S. X., Secor, D. H. & Taylor, N. G. Modeling the implications of stock mixing and life history uncertainty of Atlantic bluefin tuna. Can. J. Fish. Aquat. Sci. 74, 1990–2004. https://doi.org/10.1139/cjfas-2016-0067 (2016).
    Article  Google Scholar 

    78.
    Kerr, L. A. et al. Mixed stock origin of Atlantic bluefin tuna in the US rod and reel fishery (Gulf of Maine) and implications for fisheries management. Fish. Res. 224, 105461. https://doi.org/10.1016/j.fishres.2019.105461 (2020).
    Article  Google Scholar 

    79.
    H. Wickham. ggplot2: Elegant Graphics for Data Analysis. (Springer-Verlag New York, 2016). More

  • in

    Running performance with emphasis on low temperatures in a Patagonian lizard, Liolaemus lineomaculatus

    1.
    Robert Feldmeth, C., Stone, E. A. & Brown, J. H. An increased scope for thermal tolerance upon acclimating pupfish (Cyprinodon) to cycling temperatures. J. Comp. Physiol. 89, 39–44 (1974).
    Google Scholar 
    2.
    Hertz, P. E. Adaptation to altitude in two West Indian anoles. Animals 195, 25–37 (1981).
    Google Scholar 

    3.
    Hertz, P. E. & Huey, R. B. Compensation for altitudinal changes in the thermal environment by some anolis lizards on Hispaniola. Ecology 62, 515–521 (1981).
    Google Scholar 

    4.
    Hertz, P. E., Huey, R. B. & Nevo, E. Fight versus flight: body temperature influences defensive responses of lizards. Anim. Behav. 30, 676–679 (1982).
    Google Scholar 

    5.
    Stillman, J. H. Acclimation capacity underlies susceptibility to climate change. Science 301, 65 (2003).
    CAS  PubMed  Google Scholar 

    6.
    Chown, S. L., Gaston, K. J. & Robinson, D. Macrophysiology: large-scale patterns in physiological traits and their ecological implications. Funct. Ecol. 18, 159–167 (2004).
    Google Scholar 

    7.
    Chown, S. L. et al. Adapting to climate change: a perspective from evolutionary physiology. Clim. Res. 43, 3–15 (2010).
    Google Scholar 

    8.
    Clusella-Trullas, S., Blackburn, T. M. & Chown, S. L. Climatic predictors of temperature performance curve parameters in ectotherms imply complex responses to climate change. Am. Nat. 177, 738–751 (2011).
    PubMed  Google Scholar 

    9.
    Bowler, K. & Terblanche, J. S. Insect thermal tolerance: what is the role of ontogeny, ageing and senescence?. Biol. Rev. 83, 339–355 (2008).
    PubMed  Google Scholar 

    10.
    Huey, R. B. et al. Why tropical forest lizards are vulnerable to climate warming. Proc. R. Soc. B 276, 1939–1948 (2009).
    PubMed  Google Scholar 

    11.
    Waldschmidt, S. & Tracy, C. R. Interactions between a lizard and its thermal environment: implications for sprint performance and space utilization in the lizard Uta stansburiana. Ecology 64, 476–484 (1983).
    Google Scholar 

    12.
    Huey, R. B. & Bennett, A. F. Phylogenetic studies of coadaptation: preferred temperatures versus optimal performance temperature of lizards. Evolution 41, 1098–1115 (1987).
    PubMed  Google Scholar 

    13.
    Huey, R. B. & Stevenson, R. D. Intergrating thermal physiology and ecology of ecotherms: a discussion of approaches. Am. Zool. 19, 357–366 (1979).
    Google Scholar 

    14.
    Huey, R. B. & Kingsolver, J. G. Evolution of thermal sensitivity of ectotherm performance. Trends Ecol. Evol. 4, 131–135 (1989).
    CAS  PubMed  Google Scholar 

    15.
    Huey, R. B. & Kingsolver, J. G. Evolution of resistance to high temperature in ectotherms. Am. Nat. 142, 21–46 (1993).
    Google Scholar 

    16.
    Angilletta, M. J., Wilson, R. S., Navas, C. A. & James, R. S. Tradeoffs and the evolution of thermal reaction norms. Trends Ecol. Evol. 18, 234–240 (2003).
    Google Scholar 

    17.
    Angilletta, M. J. Thermal Adaptation: A Theoretical and Empirical Synthesis (Oxford University Press, Oxford, 2009).
    Google Scholar 

    18.
    Kingsolver, J. G. et al. Complex life cycles and the responses of insects to climate change. Integr. Comp. Biol. 51, 719–732 (2011).
    PubMed  Google Scholar 

    19.
    Logan, M. L., Cox, R. M. & Calsbeek, R. Natural selection on thermal performance in a novel thermal environment. Proc. Natl. Acad. Sci. 111, 14165–14169 (2014).
    ADS  CAS  PubMed  Google Scholar 

    20.
    Sinclair, B. J. et al. Can we predict ectotherm responses to climate change using thermal performance curves and body temperatures?. Ecol. Lett. 19, 1372–1385 (2016).
    PubMed  Google Scholar 

    21.
    Izem, R. & Kingsolver, J. G. Variation in continuous reaction norms: quantifying directions of biological interest. Am. Nat. 166, 277–289 (2005).
    PubMed  Google Scholar 

    22.
    Frazier, M. R., Huey, R. B. & Berrigan, D. Thermodynamics constrains the evolution of insect population growth rates: “warmer is better”. Am. Nat. 168, 512–520 (2006).
    CAS  PubMed  Google Scholar 

    23.
    Kingsolver, J. G. The well-temperatured biologist. Am. Nat. 174, 755–768 (2009).
    PubMed  Google Scholar 

    24.
    Bennett, A. F. Thermal dependence of locomotor capacity. Am. J. Physiol. Regul. Integr. Comp. Physiol. 259, 253–258 (1990).
    Google Scholar 

    25.
    van Damme, R., Bauwens, D. & Verheyen, R. F. Evolutionary rigidity of thermal physiology: the case of the cool temperate lizard Lacerta vivipara. Oikos 57, 61 (1990).
    Google Scholar 

    26.
    Swoap, S. J., Johnson, T. P., Josephson, R. K. & Bennett, A. F. Temperature, muscle power output and limitations on burst locomotor performance of the lizard Dipsosaurus dorsalis. J. Exp. Biol. 174, 199–213 (1993).
    Google Scholar 

    27.
    Vicenzi, N., Corbalán, V., Miles, D., Sinervo, B. & Ibargüengoytía, N. Range increment or range detriment? Predicting potential changes in distribution caused by climate change for the endemic high-Andean lizard Phymaturus palluma. Biol. Conserv. 206, 151–160 (2017).
    Google Scholar 

    28.
    Vicenzi, N., Kubisch, E., Ibargüengoytía, N. & Corbalán, V. Thermal sensitivity of performance of Phymaturus palluma (Liolaemidae) in the highlands of Aconcagua : vulnerability to global warming in the Andes. Amphibia-Reptilia 01, 1–12 (2018).
    Google Scholar 

    29.
    Brattstrom, B. H. Thermal acclimation in anuran amphibians as a function of latitude and altitude. Comp. Biochem. Physiol. 24, 93–111 (1968).
    CAS  PubMed  Google Scholar 

    30.
    Bauwens, D., Castilla, A. M., Van Damme, R. & Verheyen, R. F. Field body temperatures and thermoregulatory behavior of the high altitude lizard, Lacerta bedriagae. J. Herpetol. 24, 88–91 (1990).
    Google Scholar 

    31.
    Adolph, S. C. & Porter, W. P. Temperature, activity, and lizard life histories. Am. Nat. 142, 273–295 (1993).
    CAS  PubMed  Google Scholar 

    32.
    Díaz, J. A. & Cabezas-Díaz, S. Seasonal variation in the contribution of different behavioural mechanisms to lizard thermoregulation. Funct. Ecol. 18, 867–875 (2004).
    Google Scholar 

    33.
    Munoz, M. M. et al. Evolutionary stasis and lability in thermal physiology in a group of tropical lizards. Proc. R. Soc. B 281, 20132433–20132433 (2014).
    PubMed  Google Scholar 

    34.
    Cei, J. M. Reptiles del centro, centro-oeste y sur de la Argentina. Herpetofauna de las zonas áridas y semiáridas. Mitt. zool. Mus. vol. 64 (Torino: Museo Regionale di Scienze Naturali, 1988).

    35.
    Scolaro, J. A. Reptiles Patagónicos Sur: Una Guía de Campo (Universidad Nacional de la Patagonia, Comodoro Rivadavia, 2005).
    Google Scholar 

    36.
    Cecchetto, N. R., Medina, S. M., Taussig, S. & Ibargüengoytía, N. R. The lizard abides: cold hardiness and winter refuges of Liolaemus pictus argentinus in Patagonia, Argentina. Can. J. Zool. 782, 773–782 (2019).
    Google Scholar 

    37.
    Ibargüengoytía, N. R. et al. Thermal biology of the southernmost lizards in the world: Liolaemus sarmientoi and Liolaemus magellanicus from Patagonia, Argentina. J. Therm. Biol. 35, 21–27 (2010).
    Google Scholar 

    38.
    Fernández, J., Smith, J., Scolaro, A. & Ibargüengoytía, N. R. Performance and thermal sensitivity of the southernmost lizards in the world, Liolaemus sarmientoi and Liolaemus magellanicus. J. Therm. Biol. 36, 15–22 (2011).
    Google Scholar 

    39.
    Piantoni, C., Ibargüengoytía, N. R. & Cussac, V. E. Age and growth of the Patagonian lizard Phymaturus patagonicus. Amphibia-Reptilia 27, 385–392 (2006).
    Google Scholar 

    40.
    Boretto, J. M. & Ibargüengoytía, N. R. Phymaturus of Patagonia, Argentina: reproductive biology of Phymaturus zapalensis (Liolaemidae) and a comparison of sexual dimorphism within the genus. J. Herpetol. 43, 96–104 (2009).
    Google Scholar 

    41.
    Gutiérrez, J. A., Piantoni, C. & Ibargüengoytía, N. R. Altitudinal effects on life history parameters in populations of Liolaemus pictus argentinus (Sauria:Liolaemidae). Acta Herpetol. 8, 9–17 (2013).
    Google Scholar 

    42.
    Pianka, E. R. Comparative autecology of the lizard Cnemidophorus tigris in different parts of its georgraphic range. Ecology 51, 703–720 (1970).
    Google Scholar 

    43.
    James, C. & Shine, R. Life-history strategies of australian lizards: a comparison between the tropics and the temperate zone. Oecologia 75, 307–316 (1988).
    ADS  PubMed  Google Scholar 

    44.
    Piantoni, C., Navas, C. A. & Ibargüengoytía, N. R. A real tale of Godzilla: impact of climate warming on the growth of a lizard. Biol. J. Linn. Soc. 126, 768–782 (2019).
    Google Scholar 

    45.
    Gutiérrez, J. A., Krenz, J. D. & Ibargüengoytía, N. R. Effect of altitude on thermal responses of Liolaemus pictus argentinus in Argentina. J. Therm. Biol. 35, 332–337 (2010).
    Google Scholar 

    46.
    Medina, M. et al. Thermal biology of genus Liolaemus: a phylogenetic approach reveals advantages of the genus to survive climate change. J. Therm. Biol. 37, 579–586 (2012).
    Google Scholar 

    47.
    Huey, R. B. Physiological consequences of habitat selection. Am. Nat. 137, 91–115 (1991).
    Google Scholar 

    48.
    Sunday, J. M., Bates, A. E. & Dulvy, N. K. Global analysis of thermal tolerance and latitude in ectotherms. Proc. R. Soc. B 278, 1823–1830 (2011).
    PubMed  Google Scholar 

    49.
    Irschick, D. J. & Meyers, J. J. An analysis of the relative roles of plasticity and natural selection in the morphology and performance of a lizard (Urosaurus ornatus). Oecologia 153, 489–499 (2007).
    ADS  PubMed  Google Scholar 

    50.
    Strobbe, F., McPeek, M. A., De Block, M., De Meester, L. & Stoks, R. Survival selection on escape performance and its underlying phenotypic traits: a case of many-to-one mapping. J. Evol. Biol. 22, 1172–1182 (2009).
    CAS  PubMed  Google Scholar 

    51.
    Lima, S. L. Putting predators back into behavioral predator–prey interactions. Trends Ecol. Evol. 17, 70–75 (2002).
    Google Scholar 

    52.
    Herczeg, G. et al. Experimental support for the cost–benefit model of lizard thermoregulation: the effects of predation risk and food supply. Oecologia 155, 1–10 (2008).
    ADS  PubMed  Google Scholar 

    53.
    Lopez-Darias, M., Schoener, T. W., Spiller, D. A. & Losos, J. B. Predators determine how weather affects the spatial niche of lizard prey: exploring niche dynamics at a fine scale. Ecology 93, 2512–2518 (2012).
    PubMed  Google Scholar 

    54.
    Bakken, G. S. & Angilletta, M. J. How to avoid errors when quantifying thermal environments. Funct. Ecol. 28, 96–107 (2014).
    Google Scholar 

    55.
    Zagar, A., Carretero, M. A., Marguc, D., Simcic, T. & Vrezec, A. A metabolic syndrome in terrestrial ectotherms with different elevational and distribution patterns. Ecography 41, 1728–1739 (2018).
    Google Scholar 

    56.
    Bartheld, J. L., Artacho, P. & Bacigalupe, L. Thermal performance curves under daily thermal fluctuation: a study in helmeted water toad tadpoles. J. Therm. Biol. 70, 80–85 (2017).
    PubMed  Google Scholar 

    57.
    Kingsolver, J. G. & Huey, R. B. Introduction: the evolution of morphology, performance, and fitness. Integr. Comp. Biol. 43, 361–366 (2006).
    Google Scholar 

    58.
    Bonino, M. F. et al. Running in cold weather: Morphology, thermal biology, and performance in the southernmost lizard clade in the world (Liolaemus lineomaculatus section: Liolaemini: Iguania). J. Exp. Zool. A. 315, 495–503 (2011).
    Google Scholar 

    59.
    Kubisch, E. L., Fernández, J. & Ibargüengoytía, N. R. Is locomotor performance optimised at preferred body temperature? A study of Liolaemus pictus argentinus from northern Patagonia, Argentina. J. Therm. Biol. 36, 328–333 (2011).
    Google Scholar 

    60.
    Angilletta, M. J. Jr. Thermal and physiological constraints on energy assimilation in a widespread lizard (Sceloporus undulatus). Ecology 82, 3044–3056 (2001).
    Google Scholar 

    61.
    Buckley, L. B., Ehrenberger, J. C. & Angilletta, M. J. Jr. Thermoregulatory behaviour limits local adaptation of thermal niches and confers sensitivity to climate change. Funct. Ecol. 29, 1038–1047 (2015).
    Google Scholar 

    62.
    Taucare-Rios, A., Veloso, C. & Bustamante, R. O. Thermal niche conservatism in an environmental gradient in the spider Sicarius thomisoides (Araneae: Sicariidae): implications for microhabitat selection. J. Therm. Biol. 78, 298–303 (2018).
    CAS  PubMed  Google Scholar 

    63.
    Medina, M., Scolaro, J. A., Méndez-de la Cruz, F., Sinervo, B. & Ibargüengoytía, N. R. Thermal relationships between body temperature and environment conditions set upper distributional limits on oviparous species. J. Therm. Biol. 36, 527–534 (2011).
    Google Scholar 

    64.
    Ibargüengoytía, N. R., Renner, M. L. & Boretto, J. M. Thermal effects on locomotion in the nocturnal gecko Homonota darwini (Gekkonidae). Amphibia-Reptilia 28, 235–246 (2007).
    Google Scholar 

    65.
    Medina, S. M. & Ibargüengoytía, N. R. How do viviparous and oviparous lizards reproduce in Patagonia? A comparative study of three species of Liolaemus. J. Arid Environ. 74, 1024–1032 (2010).
    ADS  Google Scholar 

    66.
    Boretto, J. M., Cabezas-Cartes, F. & Ibargüengoytía, N. R. Slow life histories in lizards living in the highlands of the Andes Mountains. J. Comp. Physiol. B 188, 491–503 (2018).
    PubMed  Google Scholar 

    67.
    Nussey, D. H., Wilson, A. J. & Brommer, J. E. The evolutionary ecology of individual phenotypic plasticity in wild populations. J. Evol. Biol. 20, 831–844 (2007).
    CAS  PubMed  Google Scholar 

    68.
    Artacho, P., Jouanneau, I. & Le Galliard, J.-F. Interindividual variation in thermal sensitivity of maximal sprint speed, thermal behavior, and resting metabolic rate in a lizard. Physiol. Biochem. Zool. 86, 458–469 (2013).
    PubMed  Google Scholar 

    69.
    Bonino, M. F., Moreno Azócar, D. L., Schulte, J. A. & Cruz, F. B. Climate change and lizards: changing species’ geographic ranges in Patagonia. Reg. Environ. Chang. 15, 1121–1132 (2015).
    Google Scholar 

    70.
    Gvozdík, L. & Castilla, A. M. A comparative study of preferred body temperatures and critical thermal tolerance limits among populations of Zootoca vivipara (Squamata: Lacertidae) along an altitudinal gradient. J. Herpetol. 35, 486–492 (2001).
    Google Scholar 

    71.
    Angilletta, M. J. Estimating and comparing thermal performance curves. J. Therm. Biol. 31, 541–545 (2006).
    Google Scholar 

    72.
    Hertz, P. E., Huey, R. B. & Nevo, E. Homage to Santa Anita: thermal sensitivity of sprint speed in agamid lizards. Evolution 37, 1075–1084 (1983).
    PubMed  Google Scholar 

    73.
    Zamora-Camacho, F. J., Rubiño-Hispán, M. V., Reguera, S. & Moreno-Rueda, G. Thermal dependence of sprint performance in the lizard Psammodromus algirus along a 2200-meter elevational gradient: Cold-habitat lizards do not perform better at low temperatures. J. Therm. Biol. 52, 90–96 (2015).
    PubMed  Google Scholar 

    74.
    Huey, R. B. & Slatkin, M. Cost and benefits of lizard thermoregulation. Q. Rev. Biol. 51, 363–384 (1976).
    CAS  PubMed  Google Scholar 

    75.
    Logan, M. L., Fernandez, S. G. & Calsbeek, R. Abiotic constraints on the activity of tropical lizards. Funct. Ecol. 29, 694–700 (2015).
    Google Scholar 

    76.
    Sears, M. W. & Angilletta, M. J. Costs and benefits of thermoregulation revisited: both the heterogeneity and spatial structure of temperature drive energetic costs. Am. Nat. 185, E94–E102 (2015).
    PubMed  Google Scholar 

    77.
    Basson, C. H., Levy, O., Angilletta, M. J. & Clusella-Trullas, S. Lizards paid a greater opportunity cost to thermoregulate in a less heterogeneous environment. Funct. Ecol. 31, 856–865 (2017).
    Google Scholar 

    78.
    Stankowich, T. & Blumstein, D. T. Fear in animals: a meta-analysis and review of risk assessment. Proc. R. Soc. B 272, 2627–2634 (2005).
    PubMed  Google Scholar 

    79.
    Stephens, D. W. & Charnov, E. L. Optimal foraging: some simple stochastic models. Behav. Ecol. Sociobiol. 10, 251–263 (1982).
    Google Scholar 

    80.
    Kacelnik, A. & Bateson, M. Risky theories: the effects of variance on foraging decisions. Am. Zool. 36, 402–434 (1996).
    Google Scholar 

    81.
    Lister, B. C. & Aguayo, A. G. Seasonality, predation, and the behaviour of a tropical mainland anole. J. Anim. Ecol. 61, 717–733 (1992).
    Google Scholar 

    82.
    Broeckhoven, C. & Nortier, F. Some like it hot: camera traps unravel the effects of weather conditions and predator presence on the activity levels of two lizards. PLoS ONE 10, 1–15 (2015).
    Google Scholar 

    83.
    Angilletta, M. J., Niewiarowski, P. H. & Navas, C. A. The evolution of thermal physiology in ectotherms. J. Therm. Biol. 27, 249–268 (2002).
    Google Scholar 

    84.
    Ibargüengoytía, N. R. et al. Volcanic ash from Puyehue-Cordon Caulle eruptions affects running performance and body condition of Phymaturus lizards in Patagonia, Argentina. Biol. J. Linn. Soc. 118, 842–851 (2016).
    Google Scholar 

    85.
    Geng, J., Dong, W., Wu, Q. & Lu, H.-L. Thermal tolerance for two cohorts of a native and an invasive freshwater turtle species. Acta Herpetol. 13, 83–88 (2018).
    Google Scholar 

    86.
    Thompson, M. E., Halstead, B. J. & Donnelly, M. A. Thermal quality influences habitat use of two Anolis species. J. Therm. Biol. 18, 54–61 (2018).
    Google Scholar 

    87.
    Bakken, G. S. Measurement and application of operative and standard operative temperatures in ecology. Am. Zool. 32, 194–216 (1992)

    88.
    Medina, S. M. Adaptaciones morfológicas y fisiológicas ligadas a la transición oviparidad-viviparidad en lagartos de climas fríos: reproducción y fisiología térmica. (PhD thesis, Universidad Nacional del Comahue, 2010).

    89.
    Lindsey, A. A. & Newman, J. E. Use of official wather data in spring time: temperature analysis of an Indiana phenological record. Ecology 37, 812–823 (1956).
    Google Scholar 

    90.
    Guisan, A. & Hofer, U. Predicting reptile distributions at the mesoscale: relation to climate and topography. J. Biogeogr. 30, 1233–1243 (2003).
    Google Scholar 

    91.
    Schwanz, L. E. & Janzen, F. J. Climate change and temperature-dependent sex determination: can individual plasticity in nesting phenology prevent extreme sex ratios?. Physiol. Biochem. Zool. 81, 826–834 (2008).
    PubMed  Google Scholar 

    92.
    Murphy, M. A., Evans, J. S. & Storfer, A. Quantifying Bufo boreas connectivity in Yellowstone National Park with landscape genetics. Ecology 91, 252–261 (2010).
    PubMed  Google Scholar 

    93.
    Boyero, L. et al. A global experiment suggests climate warming will not accelerate litter decomposition in streams but might reduce carbon sequestration. Ecol. Lett. 14, 289–294 (2011).
    PubMed  Google Scholar 

    94.
    Graae, B. J. et al. On the use of weather data in ecological studies along altitudinal and latitudinal gradients. Oikos 121, 3–19 (2012).
    Google Scholar 

    95.
    Mitchell, N. et al. Linking eco-energetics and eco-hydrology to select sites for the assisted colonization of Australia’s rarest reptile. Biology 2, 1–25 (2012).
    PubMed  PubMed Central  Google Scholar 

    96.
    Peig, J. & Green, A. J. New perspectives for estimating body condition from mass/length data: the scaled mass index as an alternative method. Oikos 118, 1883–1891 (2009).
    Google Scholar 

    97.
    Legendre, P. lmodel2: Model II Regression. (2014).

    98.
    R Core Team. R: A Language and Environment for Statistical Computing. (R Core Team, Vienna, 2019).

    99.
    Wood, S. & Wood, M. S. Package ‘mgcv’. R Packag. version 1–7 (2015).

    100.
    Hastie, T. & Tibshirani, R. Generalized additive models: some applications. J. Am. Stat. Assoc. 82, 371–386 (1987).
    MATH  Google Scholar  More

  • in

    Global correlates of terrestrial and marine coverage by protected areas on islands

    1.
    Ripple, W. J. et al. Extinction risk is most acute for the world’s largest and smallest vertebrates. Proc. Natl Acad. Sci. USA 114, 10678–10683 (2017).
    CAS  PubMed  Google Scholar 
    2.
    Panetta, A. M., Stanton, M. L. & Harte, J. Climate warming drives local extinction: evidence from observation and experimentation. Sci. Adv. 4, eaaq1819 (2018).

    3.
    Duffy, J. E., Godwin, C. M. & Cardinale, B. J. Biodiversity effects in the wild are common and as strong as key drivers of productivity. Nature 549, 261 (2017).
    ADS  CAS  PubMed  Google Scholar 

    4.
    Díaz, S. et al. Assessing nature’s contributions to people. Science 359, 270 (2018).
    ADS  PubMed  Google Scholar 

    5.
    Rees, S. E., Foster, N. L., Langmead, O., Pittman, S. & Johnson, D. E. Defining the qualitative elements of Aichi Biodiversity Target 11 with regard to the marine and coastal environment in order to strengthen global efforts for marine biodiversity conservation outlined in the United Nations Sustainable Development Goal 14. Mar. Policy 93, 241–250 (2018).
    Google Scholar 

    6.
    Gray C. L. et al. Local biodiversity is higher inside than outside terrestrial protected areas worldwide. Nat. Commun. 7, 12306 (2016).

    7.
    Cinner, J. E. et al. Gravity of human impacts mediates coral reef conservation gains. Proc. Natl Acad. Sci. USA 115, E6116 (2018).
    CAS  PubMed  Google Scholar 

    8.
    Rasolofoson, R. A. et al. Impacts of community forest management on human economic well-being across Madagascar. Conserv. Lett. 10, 346–353 (2017).
    Google Scholar 

    9.
    Ban, N. C. et al. Well-being outcomes of marine protected areas. Nat. Sustain. 2, 524–532 (2019).
    Google Scholar 

    10.
    Oldekop, J. A., Holmes, G., Harris, W. E. & Evans, K. L. A global assessment of the social and conservation outcomes of protected areas. Conserv. Biol. 30, 133–141 (2016).
    CAS  PubMed  Google Scholar 

    11.
    Roberts, C. M. et al. Marine reserves can mitigate and promote adaptation to climate change. Proc. Natl Acad. Sci. USA 114, 6167–6175 (2017).
    ADS  CAS  PubMed  Google Scholar 

    12.
    Gurney, G. G. et al. Poverty and protected areas: an evaluation of a marine integrated conservation and development project in Indonesia. Glob. Environ. Change 26, 98–107 (2014).
    Google Scholar 

    13.
    Andam, K. S., Ferraro, P. J., Sims, K. R. E., Healy, A. & Holland, M. B. Protected areas reduced poverty in Costa Rica and Thailand. Proc. Natl Acad. Sci. USA 107, 9996 (2010).
    ADS  CAS  PubMed  Google Scholar 

    14.
    Keppel, G., Morrison, C., Watling, D., Tuiwawa Marika, V. & Rounds Isaac, A. Conservation in tropical Pacific Island countries: why most current approaches are failing. Conserv. Lett. 5, 256–265 (2012).
    Google Scholar 

    15.
    Gill, D. A. et al. Social synergies, tradeoffs, and equity in marine conservation impacts. Annu. Rev. Environ. Resour. 44, 347–372 (2019).
    Google Scholar 

    16.
    Dureuil, M., Boerder, K., Burnett, K. A., Froese, R. & Worm, B. Elevated trawling inside protected areas undermines conservation outcomes in a global fishing hot spot. Science 362, 1403–1407 (2018).
    ADS  CAS  PubMed  Google Scholar 

    17.
    Jones, K. R. et al. One-third of global protected land is under intense human pressure. Science 360, 788–791 (2018).
    CAS  PubMed  Google Scholar 

    18.
    Veldhuis, M. P. et al. Cross-boundary human impacts compromise the Serengeti–Mara ecosystem. Science 363, 1424–1428 (2019).
    ADS  CAS  PubMed  Google Scholar 

    19.
    Ewers, R. M. & Rodrigues, A. S. L. Estimates of reserve effectiveness are confounded by leakage. Trends Ecol. Evol. 23, 113–116 (2008).
    PubMed  Google Scholar 

    20.
    Lewison, R. L. et al. Accounting for unintended consequences of resource policy: connecting research that addresses displacement of environmental impacts. Conserv. Lett. 12, e12628 (2019).
    PubMed  PubMed Central  Google Scholar 

    21.
    Watson, J. E. M., Dudley, N., Segan, D. B. & Hockings, M. The performance and potential of protected areas. Nature 515, 67–73 (2014).
    ADS  CAS  PubMed  Google Scholar 

    22.
    Grorud-Colvert, K. et al. High-profile international commitments for ocean protection: empty promises or meaningful progress? Mar. Policy 105, 52–66 (2019).
    Google Scholar 

    23.
    Dinerstein, E. et al. A global deal for nature: guiding principles, milestones, and targets. Sci. Adv. 5, eaaw2869 (2019).
    ADS  CAS  PubMed  PubMed Central  Google Scholar 

    24.
    Chertow, M., Fugate, E. & Ashton W. In Long Term Socio-Ecological Research. Studies in Society-Nature Interactions across Spatial and Temporal Scales (eds Sing, S. J. et al.) Vol. 2, 315–338 (Springer, Dordrecht, 2013).

    25.
    Brodie, G., Pikacha, P. & Tuiwawa, M. In Conservation Biology: Voices from the Tropics, Ch. 21 (eds Navjot, S., Luke, G. & Peter, R.), 181–187 (Wiley, 2013).

    26.
    Coulthard, S. et al. Exploring ‘islandness’ and the impacts of nature conservation through the lens of wellbeing. Environ. Conserv. 44, 298–309 (2017).
    Google Scholar 

    27.
    Reenberg, A., Birch-Thomsen, T., Mertz, O., Fog, B. & Christiansen, S. Adaptation of human coping strategies in a small island society in the SW Pacific—50 years of change in the coupled human–environment system on Bellona, Solomon Islands. Hum. Ecol. 36, 807–819 (2008).
    Google Scholar 

    28.
    Díaz, S. et al. Pervasive human-driven decline of life on Earth points to the need for transformative change. Science 366, eaax3100 (2019).
    PubMed  Google Scholar 

    29.
    Doherty, T. S., Glen, A. S., Nimmo, D. G., Ritchie, E. G. & Dickman, C. R. Invasive predators and global biodiversity loss. Proc. Natl Acad. Sci. USA 113, 11261 (2016).
    CAS  PubMed  Google Scholar 

    30.
    Cooper, W. E., Pyron, R. A. & Garland, T. Island tameness: living on islands reduces flight initiation distance. Proc. R. Soc. Ser. B 281, 20133019 (2014).
    Google Scholar 

    31.
    Tershy, B. R., Shen, K. W., Newton, K. M., Holmes, N. D. & Croll, D. A. The importance of islands for the protection of biological and linguistic diversity. Bioscience 65, 592–597 (2015).
    Google Scholar 

    32.
    Spatz, D. R. et al. Globally threatened vertebrates on islands with invasive species. Sci. Adv. 3, e1603080 (2017).

    33.
    O’Leary, B. C. et al. Addressing criticisms of large-scale marine protected areas. Bioscience https://doi.org/10.1093/biosci/biy021 (2018).

    34.
    Visconti, P. et al. Protected area targets post-2020. Science eaav6886 (2019).

    35.
    Sala, E. et al. Assessing real progress towards effective ocean protection. Mar. Policy 91, 11–13 (2018).
    Google Scholar 

    36.
    Noss, R. F. et al. Bolder thinking for conservation. Conserv. Biol. 26, 1–4 (2012).
    PubMed  Google Scholar 

    37.
    Coad, L. et al. Widespread shortfalls in protected area resourcing undermine efforts to conserve biodiversity. Front. Ecol. Environ. 17, 259–264 (2019).
    Google Scholar 

    38.
    Watson, J. E. M. et al. Catastrophic declines in wilderness areas undermine global environment targets. Curr. Biol. 26, 2929–2934 (2016).
    CAS  PubMed  Google Scholar 

    39.
    Kroodsma, D. A. et al. Tracking the global footprint of fisheries. Science 359, 904 (2018).
    ADS  CAS  PubMed  Google Scholar 

    40.
    Pimm, S. L., Jenkins, C. N. & Li, B. V. How to protect half of Earth to ensure it protects sufficient biodiversity. Sci. Adv. 4, eaat2616 (2018).
    ADS  PubMed  PubMed Central  Google Scholar 

    41.
    Schleicher, J., Peres, C. A. & Leader-Williams, N. Conservation performance of tropical protected areas: how important is management? Conserv. Lett. 12, e12650 (2019).
    Google Scholar 

    42.
    Geldmann, J., Manica, A., Burgess, N. D., Coad, L. & Balmford, A. A global-level assessment of the effectiveness of protected areas at resisting anthropogenic pressures. Proc. Natl Acad. Sci. USA 116, 23209 (2019).
    ADS  CAS  PubMed  Google Scholar 

    43.
    Fox, H. E. et al. Explaining global patterns and trends in marine protected area (MPA) development. Mar. Policy 36, 1131–1138 (2012).
    Google Scholar 

    44.
    Marinesque, S., Kaplan, D. M. & Rodwell, L. D. Global implementation of marine protected areas: is the developing world being left behind? Mar. Policy 36, 727–737 (2012).
    Google Scholar 

    45.
    Joppa, L. N. & Pfaff, A. Global protected area impacts. Proc. R. Soc. Ser. B 278, 1633–1638 (2011).
    Google Scholar 

    46.
    Devillers, R. et al. Reinventing residual reserves in the sea: are we favouring ease of establishment over need for protection? Aquat. Conserv. Mar. Freshw. Ecosyst. 25, 480–504 (2015).
    Google Scholar 

    47.
    Hillebrand, H. On the generality of the latitudinal diversity gradient. Am. Naturalist 163, 192–211 (2004).
    Google Scholar 

    48.
    Kinlock Nicole, L. et al. Explaining global variation in the latitudinal diversity gradient: meta‐analysis confirms known patterns and uncovers new ones. Glob. Ecol. Biogeogr. 27, 125–141 (2017).
    Google Scholar 

    49.
    Kier, G. et al. A global assessment of endemism and species richness across island and mainland regions. Proc. Natl Acad. Sci. USA 106, 9322–9327 (2009).
    ADS  CAS  PubMed  Google Scholar 

    50.
    Jenkins, C. N., Pimm, S. L. & Joppa, L. N. Global patterns of terrestrial vertebrate diversity and conservation. Proc. Natl Acad. Sci. USA 110, 2602–2610 (2013).
    ADS  Google Scholar 

    51.
    Joppa, L. N. & Pfaff, A. High and far: biases in the location of protected areas. PLoS ONE 4, e8273 (2009).
    ADS  PubMed  PubMed Central  Google Scholar 

    52.
    Pollock, L. J., Thuiller, W. & Jetz, W. Large conservation gains possible for global biodiversity facets. Nature 546, 141 (2017).
    ADS  CAS  PubMed  Google Scholar 

    53.
    Grenié, M. et al. Functional rarity of coral reef fishes at the global scale: hotspots and challenges for conservation. Biol. Conserv. 226, 288–299 (2018).
    Google Scholar 

    54.
    Luck, G. W. A review of the relationships between human population density and biodiversity. Biol. Rev. 82, 607–645 (2007).
    PubMed  Google Scholar 

    55.
    Maffi, L. Linguistic, cultural, and biological diversity. Annu. Rev. Anthropol. 34, 599–617 (2005).
    Google Scholar 

    56.
    Gorenflo, L. J., Romaine, S., Mittermeier, R. A. & Walker-Painemilla, K. Co-occurrence of linguistic and biological diversity in biodiversity hotspots and high biodiversity wilderness areas. Proc. Natl Acad. Sci. USA 109, 8032 (2012).
    ADS  CAS  PubMed  Google Scholar 

    57.
    Hua, X., Greenhill, S. J., Cardillo, M., Schneemann, H. & Bromham, L. The ecological drivers of variation in global language diversity. Nat. Commun. 10, 2047 (2019).
    ADS  PubMed  PubMed Central  Google Scholar 

    58.
    Butchart, S. H. M. et al. Protecting important sites for biodiversity contributes to meeting global conservation targets. PLoS ONE 7, e32529 (2012).
    ADS  CAS  PubMed  PubMed Central  Google Scholar 

    59.
    O’Hara, C. C., Villaseñor-Derbez, J. C., Ralph, G. M. & Halpern, B. S. Mapping status and conservation of global at-risk marine biodiversity. Conserv. Lett. e12651 (2019).

    60.
    Barlow, J. et al. The future of hyperdiverse tropical ecosystems. Nature 559, 517–526 (2018).
    ADS  CAS  PubMed  Google Scholar 

    61.
    Cámara-Leret, R., Fortuna, M. A. & Bascompte, J. Indigenous knowledge networks in the face of global change. Proc. Natl Acad. Sci. USA 116, 9913 (2019).
    PubMed  Google Scholar 

    62.
    Wang, C. & Steiner, B. Can ethno-linguistic diversity explain cross-country differences in social capital?: a global perspective. Econ. Rec. 91, 338–366 (2015).
    Google Scholar 

    63.
    Page, S. E. How the Power of Diversity Creates Better Groups, Firms, Schools, and Societies (Princeton University Press, 2008).

    64.
    Weeks, R. & Adams, V. M. Research priorities for conservation and natural resource management in Oceania’s small‐island developing states. Conserv. Biol. 32, 72–83 (2017).
    PubMed  Google Scholar 

    65.
    Benitez-Capistros, F., Camperio, G., Hugé, J., Dahdouh-Guebas, F. & Koedam, N. Emergent conservation conflicts in the Galapagos Islands: human-giant tortoise interactions in the rural area of Santa Cruz Island. PLoS ONE 13, e0202268 (2018).
    PubMed  PubMed Central  Google Scholar 

    66.
    McCrea-Strub, A. et al. Understanding the cost of establishing marine protected areas. Mar. Policy 35, 1–9 (2011).
    Google Scholar 

    67.
    Balmford, A., Gaston, K. J., Blyth, S., James, A. & Kapos, V. Global variation in terrestrial conservation costs, conservation benefits, and unmet conservation needs. Proc. Natl Acad. Sci. USA 100, 1046 (2003).
    ADS  CAS  PubMed  Google Scholar 

    68.
    Cetas, E. R. & Yasué, M. A systematic review of motivational values and conservation success in and around protected areas. Conserv. Biol. 31, 203–212 (2017).
    PubMed  Google Scholar 

    69.
    Kerwath, S. E., Winker, H., Götz, A. & Attwood, C. G. Marine protected area improves yield without disadvantaging fishers. Nat. Commun. 4, 1–6 (2013).

    70.
    Leclerc, C., Courchamp, F. & Bellard, C. Insular threat associations within taxa worldwide. Sci. Rep. 8, 6393 (2018).
    ADS  PubMed  PubMed Central  Google Scholar 

    71.
    Schleicher, J. et al. Protecting half of the planet could directly affect over one billion people. Nat. Sustain. 2, 1094–1096 (2019).

    72.
    Mehrabi, Z., Ellis, E. C. & Ramankutty, N. The challenge of feeding the world while conserving half the planet. Nat. Sustain. 1, 409–412 (2018).
    Google Scholar 

    73.
    Hoffmann, M. et al. The impact of conservation on the status of the world’s vertebrates. Science 330, 1503–1509 (2010).
    ADS  CAS  PubMed  Google Scholar 

    74.
    Fick, S. E. & Hijmans, R. J. WorldClim 2: new 1-km spatial resolution climate surfaces for global land areas. Int. J. Climatol. 37, 4302–4315 (2017).
    Google Scholar 

    75.
    Broxton, P. D., Zeng, X., Sulla-Menashe, D. & Troch, P. A. A global land cover climatology using MODIS data. J. Appl. Meteorol. Climatol. 53, 1593–1605 (2014).
    ADS  Google Scholar 

    76.
    Simons, G. F. & Fennig, C. D. Ethnologue: Languages of the World 20th edn (SIL International, 2017).

    77.
    Burnham, K. P. & Anderson D. R. Model Selection and Inference. A Practical Information-Theoretic Approach (Springer, 1998).

    78.
    Estrella, A. A new measure of fit for equations with dichotomous dependent variables. J. Bus. Econ. Stat. 16, 198–205 (1998).
    Google Scholar 

    79.
    Azen, R. & Traxel, N. Using dominance analysis to determine predictor importance in logistic regression. J. Educ. Behav. Stat. 34, 319–347 (2009).
    Google Scholar 

    80.
    Swets, J. A. Measuring the accuracy of diagnostic systems. Science 240, 1285 (1988).
    ADS  MathSciNet  CAS  PubMed  MATH  Google Scholar 

    81.
    Geldmann, J. et al. A global analysis of management capacity and ecological outcomes in terrestrial protected areas. Conserv. Lett. 11, e12434 (2018).
    Google Scholar 

    82.
    Romdal, T. S., Araújo, M. B. & Rahbek, C. Life on a tropical planet: niche conservatism and the global diversity gradient. Glob. Ecol. Biogeogr. 22, 344–350 (2013).
    Google Scholar 

    83.
    Powers, R. P. & Jetz, W. Global habitat loss and extinction risk of terrestrial vertebrates under future land-use-change scenarios. Nat. Clim. Change 9, 323 (2019).
    ADS  Google Scholar 

    84.
    Pina, T. E. N., Carvalho, W. D., Rosalino, L. M. C. & Hilario. R. R. Drivers of mammal richness, diversity and occurrence in heterogeneous landscapes composed by plantation forests and natural environments. For. Ecol. Manag. 449, 117467 (2019).

    85.
    Bradie, J. & Leung, B. A quantitative synthesis of the importance of variables used in MaxEnt species distribution models. J. Biogeogr. 44, 1344–1361 (2017).
    Google Scholar 

    86.
    Kreft, H., Jetz, W., Mutke, J., Kier, G. & Barthlott, W. Global diversity of island floras from a macroecological perspective. Ecol. Lett. 11, 116–127 (2008).
    PubMed  Google Scholar 

    87.
    Bohm, M. et al. The conservation status of the world’s reptiles. Biol. Conserv. 157, 372–385 (2013).
    Google Scholar 

    88.
    Farneda, F. Z. et al. Predicting biodiversity loss in island and countryside ecosystems through the lens of taxonomic and functional biogeography. Ecography 43, 97–106 (2020).
    Google Scholar 

    89.
    MacArthur, R. H. & Wilson, E. O. Equilibrium-theory of insular zoogeography. Evolution 17, 373-& (1963).
    Google Scholar 

    90.
    Stratford, E. Island Geographies: Essays and Conversations (Routledge, London, 2017).

    91.
    Steinbauer, M. J., Otto, R., Naranjo-Cigala, A., Beierkuhnlein, C. & Fernández-Palacios, J.-M. Increase of island endemism with altitude – speciation processes on oceanic islands. Ecography 35, 23–32 (2012).
    Google Scholar 

    92.
    Haddaway, N. R., Styles, D. & Pullin, A. S. Environmental impacts of farm land abandonment in high altitude/mountain regions: a systematic map of the evidence. Environ. Evid. 2, 18 (2013).
    Google Scholar 

    93.
    Johnson, M. P., Frost, N. J., Mosley, M. W. J., Roberts, M. F. & Hawkins, S. J. The area-independent effects of habitat complexity on biodiversity vary between regions. Ecol. Lett. 6, 126–132 (2003).
    Google Scholar 

    94.
    Darling, E. S. et al. Social-environmental drivers inform strategic management of coral reefs in the Anthropocene. Nat. Ecol. Evol. 3, 1341–1350 (2019).
    PubMed  Google Scholar  More

  • in

    Microbial interactions in the mosquito gut determine Serratia colonization and blood-feeding propensity

    1.
    Patterson EI, Villinger J, Muthoni JN, Dobel-Ober L, Hughes GL. Exploiting insect-specific viruses as a novel strategy to control vector-borne disease. Curr Opin Insect Sci. 2020;39:50–56. https://doi.org/10.1016/j.cois.2020.02.005.
    Article  PubMed  Google Scholar 
    2.
    Tawidian P, Rhodes VL, Michel K. Mosquito-fungus interactions and antifungal immunity. Insect Biochem Mol Biol. 2019;111:103182. https://doi.org/10.1016/j.ibmb.2019.103182.
    CAS  Article  PubMed  PubMed Central  Google Scholar 

    3.
    Guégan M, Zouache K, Démichel C, Minard G, Tran-Van V, Potier P, et al. The mosquito holobiont:. fresh insight into mosquito-microbiota interactions. Microbiome. 2018;6:49. https://doi.org/10.1186/s40168-018-0435-2.
    Article  PubMed  PubMed Central  Google Scholar 

    4.
    Hegde S, Khanipov K, Albayrak L, Golovko G, Pimenova M, Saldana MA, et al. Microbiome interaction networks and community structure from laboratory-reared and field-collected Aedes aegypti, Aedes albopictus, and Culex quinquefasciatus mosquito vectors. Front Microbiol. 2018;9:2160. https://doi.org/10.3389/fmicb.2018.02160.
    Article  PubMed  PubMed Central  Google Scholar 

    5.
    Osei-Poku J, Mbogo CM, Palmer WJ, Jiggins FM. Deep sequencing reveals extensive variation in the gut microbiota of wild mosquitoes from Kenya. Mol Ecol. 2012;21:5138–50. https://doi.org/10.1111/j.1365-294X.2012.05759.x.
    CAS  Article  PubMed  Google Scholar 

    6.
    Ricci I, Cancrini G, Gabrielli S, D’Amelio S, Favia G. Searching for Wolbachia (Rickettsiales: Rickettsiaceae) in mosquitoes (Diptera: Culicidae): large polymerase chain reaction survey and new identifications. J Med Entomol. 2002;39:562–7.
    Article  Google Scholar 

    7.
    Rasgon JL, Scott TW. An initial survey for Wolbachia (Rickettsiales: Rickettsiaceae) infections in selected California mosquitoes (Diptera: Culicidae). J Med Entomol. 2004;41:255–7.
    Article  Google Scholar 

    8.
    Gloria-Soria A, Chiodo TG, Powell JR. Lack of evidence for natural wolbachia infections in Aedes aegypti (Diptera: Culicidae). J Med Entomol. 2018;7:e1002415. https://doi.org/10.1093/jme/tjy084.
    Article  Google Scholar 

    9.
    Goindin D, Cannet A, Delannay C, Ramdini C, Gustave J, Atyame C, et al. Screening of natural Wolbachia infection in Aedes aegypti, Aedes taeniorhynchus and Culex quinquefasciatus from Guadeloupe (French West Indies). Acta Trop. 2018. https://doi.org/10.1016/j.actatropica.2018.06.011.

    10.
    Mitri C, Bischoff E, Belda Cuesta E, Volant S, Ghozlane A, Eiglmeier K, et al. Leucine-rich immune factor APL1 Is associated with specific modulation of enteric microbiome Taxa in the Asian malaria mosquito Anopheles stephensi. Front Microbiol. 2020;11:289. https://doi.org/10.3389/fmicb.2020.00306.
    Article  Google Scholar 

    11.
    Short SM, Mongodin EF, MacLeod HJ, Talyuli OAC, Dimopoulos G. Amino acid metabolic signaling influences Aedes aegypti midgut microbiome variability. PLoS Negl Trop Dis. 2017;11:e0005677. https://doi.org/10.1371/journal.pntd.0005677.
    CAS  Article  PubMed  PubMed Central  Google Scholar 

    12.
    Pang X, Xiao X, Liu Y, Zhang R, Liu J, Liu Q, et al. Mosquito C-type lectins maintain gut microbiome homeostasis. Nat Microbiol. 2016;1:16023. https://doi.org/10.1038/nmicrobiol.2016.23.
    CAS  Article  PubMed  PubMed Central  Google Scholar 

    13.
    Xiao X, Yang L, Pang X, Zhang R, Zhu Y, Wang P, et al. A Mesh-Duox pathway regulates homeostasis in the insect gut. Nat Microbiol. 2017;2:17020. https://doi.org/10.1038/nmicrobiol.2017.20.
    Article  PubMed  PubMed Central  Google Scholar 

    14.
    Zhao B, Lucas KJ, Saha TT, Ha J, Ling L, Kokoza VA, et al. MicroRNA-275 targets sarco/endoplasmic reticulum Ca2+ adenosine triphosphatase (SERCA) to control key functions in the mosquito gut. PLoS Genet. 2017;13:e1006943–19. https://doi.org/10.1371/journal.pgen.1006943.
    Article  PubMed  PubMed Central  Google Scholar 

    15.
    Dennison NJ, Saraiva RG, Cirimotich CM, Mlambo G, Mongodin EF, Dimopoulos G. Functional genomic analyses of Enterobacter, Anopheles and Plasmodium reciprocal interactions that impact vector competence. Malar J. 2016;15:425. https://doi.org/10.1186/s12936-016-1468-2.
    Article  PubMed  PubMed Central  Google Scholar 

    16.
    Hegde S, Nilyanimit P, Kozlova E, Anderson ER, Narra HP, Sahni SK, et al. CRISPR/Cas9-mediated gene deletion of the ompA gene in symbiotic Cedecea neteri impairs biofilm formation and reduces gut colonization of Aedes aegypti mosquitoes. PLoS Negl Trop Dis. 2019;13:e0007883. https://doi.org/10.1371/journal.pntd.0007883.
    CAS  Article  PubMed  PubMed Central  Google Scholar 

    17.
    Ramirez JL, Short SM, Bahia AC, Saraiva RG, Dong Y, Kang S, et al. Chromobacterium Csp_P reduces malaria and dengue infection in vector mosquitoes and has entomopathogenic and in vitro anti-pathogen activities. PLoS Pathog. 2014;10:e1004398. https://doi.org/10.1371/journal.ppat.1004398.
    Article  PubMed  PubMed Central  Google Scholar 

    18.
    Hughes GL, Dodson BL, Johnson RM, Murdock CC, Tsujimoto H, Suzuki Y, et al. Native microbiome impedes vertical transmission of Wolbachia in Anopheles mosquitoes. Proc Natl Acad Sci USA. 2014;111:12498–503. https://doi.org/10.1073/pnas.1408888111.
    CAS  Article  PubMed  Google Scholar 

    19.
    Hegde S, Rasgon JL, Hughes GL. The microbiome modulates arbovirus transmissionin mosquitoes. Curr Opin Virol. 2015;15:97–102. https://doi.org/10.1016/j.coviro.2015.08.011.
    CAS  Article  PubMed  PubMed Central  Google Scholar 

    20.
    Dennison NJ, Jupatanakul N, Dimopoulos G. The mosquito microbiota influences vector competence for human pathogens. Curr Opin Insect Sci. 2014;3:6–13. https://doi.org/10.1016/j.cois.2014.07.004.
    Article  PubMed  PubMed Central  Google Scholar 

    21.
    Wong AC-N, Wang Q-P, Morimoto J, Senior AM, Lihoreau M, Neely GG, et al. Gut microbiota modifies olfactory-guided microbial preferences and foraging decisions in drosophila. Curr Biol. 2017;27:2397–.e4. https://doi.org/10.1016/j.cub.2017.07.022.
    CAS  Article  PubMed  Google Scholar 

    22.
    Fischer CN, Trautman EP, Crawford JM, Stabb E, Handelsman J, Broderick NA. Metabolite exchange between microbiome members produces compounds that influence Drosophila behavior. eLife. 2017;6:e18855. https://doi.org/10.7554/eLife.18855.001.
    Article  PubMed  PubMed Central  Google Scholar 

    23.
    Saldana MA, Hegde S, Hughes GL. Microbial control of arthropod-borne disease. Mem Inst Oswaldo Cruz Fundação Oswaldo Cruz. 2017;112:81–93. https://doi.org/10.1590/0074-02760160373.
    CAS  Article  Google Scholar 

    24.
    Gao H, Cui C, Wang L, Jacobs-Lorena M, Wang S. Mosquito microbiota and implications for disease control. Trends Parasitol. 2020;36:98–111. https://doi.org/10.1016/j.pt.2019.12.001.
    Article  PubMed  Google Scholar 

    25.
    Briones-Roblero CI, Hernandez-Garcia JA, Gonzalez-Escobedo R, Soto-Robles LV, Rivera-Orduna FN, Zuniga G. Structure and dynamics of the gut bacterial microbiota of the bark beetle, Dendroctonus rhizophagus (Curculionidae: Scolytinae) across their life stages. PLoS ONE. 2017;12:e0175470. https://doi.org/10.1371/journal.pone.0175470.
    Article  PubMed  PubMed Central  Google Scholar 

    26.
    Medina F, Li H, Vinson SB, Coates CJ. Genetic transformation of midgut bacteria from the red imported fire ant (Solenopsis invicta). Curr Microbiol. 2009;58:478–82.
    CAS  Article  Google Scholar 

    27.
    Muhammad A, Fang Y, Hou Y, Shi Z. The Gut Entomotype of Red Palm Weevil Rhynchophorus ferrugineus Olivier (Coleoptera: Dryophthoridae) and their effect on host nutrition metabolism. Front Microbiol. 2017;8:2291. https://doi.org/10.3389/fmicb.2017.02291.
    Article  PubMed  PubMed Central  Google Scholar 

    28.
    Renoz F, Noel C, Errachid A, Foray V, Hance T. Infection dynamic of symbiotic bacteria in the pea aphid Acyrthosiphon pisum gut and host immune response at the early steps in the infection process. PLoS ONE. 2015;10:e0122099.
    Article  Google Scholar 

    29.
    Wang A, Yao Z, Zheng W, Zhang H. Bacterial communities in the gut and reproductive organs of Bactrocera minax (Diptera: Tephritidae) based on 454 pyrosequencing. PLoS ONE. 2014;9:e106988. https://doi.org/10.1371/journal.pone.0106988.
    Article  PubMed  PubMed Central  Google Scholar 

    30.
    Lin X-L, Pan Q-J, Tian H-G, Douglas AE, Liu T-X. Bacteria abundance and diversity of different life stages of Plutella xylostella (Lepidoptera: Plutellidae), revealed by bacteria culture-dependent and PCR-DGGE methods. Insect Sci. 2015;22:375–85. https://doi.org/10.1111/1744-7917.12079
    CAS  Article  PubMed  Google Scholar 

    31.
    Gumiel M, da Mota FF, Rizzo V, de S, Sarquis O, de Castro DP, et al. Characterization of the microbiota in the guts of Triatoma brasiliensis and Triatoma pseudomaculata infected by Trypanosoma cruzi in natural conditions using culture independent methods. Parasit Vectors. 2015;8:245. https://doi.org/10.1186/s13071-015-0836-z.
    Article  PubMed  PubMed Central  Google Scholar 

    32.
    Gupta AK, Rastogi G, Nayduch D, Sawant SS, Bhonde RR, Shouche YS. Molecular phylogenetic profiling of gut-associated bacteria in larvae and adults of flesh flies. Med Vet Entomol. 2014;28:345–54. https://doi.org/10.1111/mve.12054.
    CAS  Article  PubMed  Google Scholar 

    33.
    da Mota FF, Marinho LP, Moreira CJ, de C, Lima MM, Mello CB, et al. Cultivation-independent methods reveal differences among bacterial gut microbiota in triatomine vectors of Chagas disease. PLoS Negl Trop Dis. 2012;6:e1631. https://doi.org/10.1371/journal.pntd.0001631.
    Article  PubMed  PubMed Central  Google Scholar 

    34.
    Kelly PH, Bahr SM, Serafim TD, Ajami NJ, Petrosino JF, Meneses C, et al. The gut microbiome of the vector Lutzomyia longipalpisIs essential for survival of Leishmania infantum. MBio. 2017;8:e01121–16. https://doi.org/10.1128/mBio.01121-16.
    CAS  Article  PubMed  PubMed Central  Google Scholar 

    35.
    Vieira CS, Waniek PJ, Castro DP, Mattos DP, Moreira OC, Azambuja P. Impact of Trypanosoma cruzi on antimicrobial peptide gene expression and activity in the fat body and midgut of Rhodnius prolixus. Parasit Vectors. 2016;9:119. https://doi.org/10.1186/s13071-016-1398-4.
    CAS  Article  PubMed  PubMed Central  Google Scholar 

    36.
    Zink S, Van Slyke G, Palumbo M, Kramer L, Ciota A. Exposure to West Nile virus increases bacterial diversity and immune gene expression in Culex pipiens. Viruses. 2015;7:5619–31. https://doi.org/10.3390/v7102886.
    CAS  Article  PubMed  PubMed Central  Google Scholar 

    37.
    Thongsripong P, Chandler JA, Green AB, Kittayapong P, Wilcox BA, Kapan DD, et al. Mosquito vector‐associated microbiota: metabarcoding bacteria and eukaryotic symbionts across habitat types in Thailand endemic for dengue and other arthropod‐borne diseases. Ecol Evolution. 2017;16:118. https://doi.org/10.1002/ece3.3676.
    Article  Google Scholar 

    38.
    Seitz HM, Maier WA, Rottok M, Becker-Feldmann H. Concomitant infections of Anopheles stephensi with Plasmodium berghei and Serratia marcescens: additive detrimental effects. Zentralbl Bakteriol Mikrobiol Hyg A. 1987;266:155–66.
    CAS  PubMed  Google Scholar 

    39.
    Muturi EJ, Bara JJ, Rooney AP, Hansen AK. Midgut fungal and bacterial microbiota of Aedes triseriatus and Aedes japonicus shift in response to La Crosse virus infection. Mol Ecol. 2016;25:4075–90. https://doi.org/10.1111/mec.13741.
    CAS  Article  PubMed  Google Scholar 

    40.
    Bennett KL, Gómez-Martínez C, Chin Y, Saltonstall K, McMillan WO, Rovira JR, et al. Dynamics and diversity of bacteria associated with the disease vectors Aedes aegypti and Aedes albopictus. Sci Rep. 2019;9:12160–12. https://doi.org/10.1038/s41598-019-48414-8.
    Article  PubMed  PubMed Central  Google Scholar 

    41.
    Dickson LB, Jiolle D, Minard G, Moltini-Conclois I, Volant S, Ghozlane A, et al. Carryover effects of larval exposure to different environmental bacteria drive adult trait variation in a mosquito vector. Sci Adv. 2017;3:e1700585. https://doi.org/10.1126/sciadv.1700585.
    Article  PubMed  PubMed Central  Google Scholar 

    42.
    Zouache K, Raharimalala FN, Raquin V, Tran-Van V, Raveloson LHR, Ravelonandro P, et al. Bacterial diversity of field-caught mosquitoes, Aedes albopictus and Aedes aegypti, from different geographic regions of Madagascar. FEMS Microbiol Ecol. 2010. https://doi.org/10.1111/j.1574-6941.2010.01012.x.

    43.
    Dickson LB, Ghozlane A, Volant S, Bouchier C, Ma L, Vega-Rua A, et al. Diverse laboratory colonies of Aedes aegypti harbor the same adult midgut bacterial microbiome. Parasit Vectors. 2018;3:e1700585. https://doi.org/10.1101/200659.
    Article  Google Scholar 

    44.
    David MR, Santos LMBD, Vicente ACP, Maciel-de-Freitas R. Effects of environment, dietary regime and ageing on the dengue vector microbiota: evidence of a core microbiota throughout Aedes aegypti lifespan. Mem Inst Oswaldo Cruz. 2016;111:577–87. https://doi.org/10.1590/0074-02760160238.
    Article  PubMed  PubMed Central  Google Scholar 

    45.
    de O, Gaio A, Gusmão DS, Santos AV, Berbert-Molina MA, Pimenta PF, et al. Contribution of midgut bacteria to blood digestion and egg production in Aedes aegypti (diptera: culicidae) (L.). Parasit Vectors. 2011;4:105. https://doi.org/10.1186/1756-3305-4-105.
    Article  Google Scholar 

    46.
    Gusmão DS, Santos AV, Marini DC, Russo E, de S, Peixoto AMD, et al. First isolation of microorganisms from the gut diverticulum of Aedes aegypti (Diptera: Culicidae): new perspectives for an insect-bacteria association. Mem Inst Oswaldo Cruz. 2007;102:919–24.
    Article  Google Scholar 

    47.
    Gusmão DS, Santos AV, Marini DC, Bacci M, Berbert-Molina MA, Lemos FJA. Culture-dependent and culture-independent characterization of microorganisms associated with Aedes aegypti (Diptera: Culicidae) (L.) and dynamics of bacterial colonization in the midgut. Acta Trop. 2010;115:275–81. https://doi.org/10.1016/j.actatropica.2010.04.011.
    Article  PubMed  Google Scholar 

    48.
    Coon KL, Vogel KJ, Brown MR, Strand MR. Mosquitoes rely on their gut microbiota for development. Mol Ecol. 2014;23:2727–39. https://doi.org/10.1111/mec.12771.
    CAS  Article  PubMed  PubMed Central  Google Scholar 

    49.
    Kozlova EV, Khajanchi BK, Sha J, Chopra AK. Quorum sensing and c-di-GMP-dependent alterations in gene transcripts and virulence-associated phenotypes in a clinical isolate of Aeromonas hydrophila. Micro Pathog. 2011;50:213–23. https://doi.org/10.1016/j.micpath.2011.01.007.
    CAS  Article  Google Scholar 

    50.
    Rose WA, McGowin CL, Spagnuolo RA, Eaves-Pyles TD, Popov VL, Pyles RB. Commensal bacteria modulate innate immune responses of vaginal epithelial cell multilayer cultures. PLoS ONE 2012;7:e32728. https://doi.org/10.1371/journal.pone.0032728.
    CAS  Article  PubMed  PubMed Central  Google Scholar 

    51.
    Kozlova EV, Khajanchi BK, Popov VL, Wen J, Chopra AK. Impact of QseBC system in c-di-GMP-dependent quorum sensing regulatory network in a clinical isolate SSU of Aeromonas hydrophila. Micro Pathog. 2012;53:115–24. https://doi.org/10.1016/j.micpath.2012.05.008.
    CAS  Article  Google Scholar 

    52.
    Williams RP, Gott CL. Inhibition by streptomycin of the biosynthesis of prodigiosin. Biochem Biophys Res Commun. 1964;16:47–52. https://doi.org/10.1016/0006-291X(64)90209-8.
    CAS  Article  PubMed  Google Scholar 

    53.
    Jeffries CL, Lawrence GG, Golovko G, Kristan M, Orsborne J, Spence K, et al. Novel Wolbachia strains in Anopheles malaria vectors from Sub-Saharan Africa. Wellcome Open Res. 2018;3:113. https://doi.org/10.12688/wellcomeopenres.14765.2.
    Article  PubMed  PubMed Central  Google Scholar 

    54.
    Tourlousse DM, Yoshiike S, Ohashi A, Matsukura S, Noda N, Sekiguchi Y. Synthetic spike-in standards for high-throughput 16S rRNA gene amplicon sequencing. Nucleic Acids Res. 2017;45:e23. https://doi.org/10.1093/nar/gkw984.
    Article  PubMed  Google Scholar 

    55.
    Klindworth A, Pruesse E, Schweer T, Peplies J, Quast C, Horn M. et al. Evaluation of general 16S ribosomal RNA gene PCR primers for classical and next-generation sequencing-based diversity studies. Nucleic Acids Res. 2012;41:e1.
    Article  Google Scholar 

    56.
    Quast C, Pruesse E, Yilmaz P, Gerken J, Schweer T, Yarza P, et al. The SILVA ribosomal RNA gene database project: improved data processing and web-based tools. Nucleic Acids Res. 2013;41:D590–6. https://doi.org/10.1093/nar/gks1219.
    CAS  Article  PubMed  PubMed Central  Google Scholar 

    57.
    Mandal S, Van Treuren W, White RA, Eggesbø M, Knight R, Peddada SD. Analysis of composition of microbiomes: a novel method for studying microbial composition. Microb Ecol Health Dis. 2015;26:1–7. https://doi.org/10.3402/mehd.v26.27663.
    Article  Google Scholar 

    58.
    Zhu H, Sun S-J, Dang H-Y. PCR detection of Serratia spp. using primers targeting pfs and luxS genes involved in AI-2-dependent quorum sensing. Curr Microbiol. 2008;57:326–30. https://doi.org/10.1007/s00284-008-9197-6.
    CAS  Article  PubMed  Google Scholar 

    59.
    Wick RR, Judd LM, Gorrie CL, Holt KE. Unicycler: resolving bacterial genome assemblies from short and long sequencing reads. PLoS Comput Biol. 2017;13:e1005595. https://doi.org/10.1371/journal.pcbi.1005595.
    CAS  Article  PubMed  PubMed Central  Google Scholar 

    60.
    Li H, Handsaker B, Wysoker A, Fennell T, Ruan J, Homer N, et al. The sequence Alignment/Map format and SAMtools. Bioinformatics. 2009;25:2078–9. https://doi.org/10.1093/bioinformatics/btp352
    CAS  Article  PubMed  PubMed Central  Google Scholar 

    61.
    Kinosita Y, Kikuchi Y, Mikami N, Nakane D, Nishizaka T. Unforeseen swimming and gliding mode of an insect gut symbiont, Burkholderia sp. RPE64, with wrapping of the flagella around its cell body. ISME J. 2018;12:838–48. https://doi.org/10.1038/s41396-017-0010-z.
    Article  PubMed  Google Scholar 

    62.
    Wiles TJ, Schlomann BH, Wall ES, Betancourt R, Parthasarathy R, Guillemin K. Swimming motility of a gut bacterial symbiont promotes resistance to intestinal expulsion and enhances inflammation. PLoS Biol. 2020;18:e3000661. https://doi.org/10.1371/journal.pbio.3000661.
    CAS  Article  PubMed  PubMed Central  Google Scholar 

    63.
    Bando H, Okado K, Guelbeogo WM, Badolo A, Aonuma H, Nelson B, et al. Intra-specific diversity of Serratia marcescens in Anopheles mosquito midgut defines Plasmodium transmission capacity. Sci Rep. 2013;3:1641–9. https://doi.org/10.1038/srep01641.
    Article  PubMed  PubMed Central  Google Scholar 

    64.
    Abreo E, Altier N. Pangenome of Serratia marcescens strains from nosocomial and environmental origins reveals different populations and the links between them. Sci Rep. 2019;9:46–8. https://doi.org/10.1038/s41598-018-37118-0.
    Article  PubMed  PubMed Central  Google Scholar 

    65.
    Chavda KD, Chen L, Fouts DE, Sutton G, Brinkac L, Jenkins SG, et al. Comprehensive genome analysis of carbapenemase-producing Enterobacter spp.: new insights into phylogeny, population structure, and resistance mechanisms. MBio. 2016;7. https://doi.org/10.1128/mBio.02093-16.

    66.
    Wyres KL, Lam MMC, Holt KE. Population genomics of Klebsiella pneumoniae. Nat Rev Micro. 2020;66:1–16. https://doi.org/10.1038/s41579-019-0315-1.
    Article  Google Scholar 

    67.
    Pumpuni CB, Demaio J, Kent M, Davis JR, Beier JC. Bacterial population dynamics in three anopheline species: the impact on Plasmodium sporogonic development. Am J Epidemiol. 1996;54:214–8.
    CAS  Google Scholar 

    68.
    Wang Y, Gilbreath TM III, Kukutla P, Yan G, Xu J. Dynamic gut microbiome across life history of the malaria mosquito Anopheles gambiae in Kenya. PLoS ONE. 2011;6:e24767. https://doi.org/10.1371/journal.pone.0024767.
    CAS  Article  PubMed  PubMed Central  Google Scholar 

    69.
    Wang S, Ghosh AK, Bongio N, Stebbings KA, Lampe DJ, Jacobs-Lorena M. Fighting malaria with engineered symbiotic bacteria from vector mosquitoes. Proc Natl Acad Sci USA. 2012;109:12734–9. https://doi.org/10.1073/pnas.1204158109.
    CAS  Article  PubMed  Google Scholar 

    70.
    Bai L, Wang L, Vega-Rodriguez J, Wang G, Wang S. A Gut Symbiotic Bacterium Serratia marcescens renders mosquito resistance to plasmodium infection through activation of mosquito immune responses. Front Microbiol. 2019;10:1580. https://doi.org/10.3389/fmicb.2019.01580.
    Article  PubMed  PubMed Central  Google Scholar 

    71.
    Muturi EJ, Dunlap C, Ramirez JL, Rooney AP, Kim C-H. Host blood-meal source has a strong impact on gut microbiota of Aedes aegypti. FEMS Microbiol Ecol. 2019;95. https://doi.org/10.1093/femsec/fiy213.

    72.
    Yao Z, Wang A, Li Y, Cai Z, Lemaitre B, Zhang H. The dual oxidase gene BdDuox regulates the intestinal bacterial community homeostasis of Bactrocera dorsalis. ISME J. 2016;10:1037–50. https://doi.org/10.1038/ismej.2015.202.
    CAS  Article  PubMed  Google Scholar 

    73.
    Andersen K, Kesper MS, Marschner JA, Konrad L, Ryu M, SK VR, et al. Intestinal dysbiosis, barrier dysfunction, and bacterial translocation account for CKD–related systemic inflammation. JASN. 2017;28:76–83. https://doi.org/10.1681/ASN.2015111285.
    CAS  Article  PubMed  Google Scholar 

    74.
    Schaubeck M, Clavel T, Calasan J, Lagkouvardos I, Haange SB, Jehmlich N, et al. Dysbiotic gut microbiota causes transmissible Crohn’s disease-like ileitis independent of failure in antimicrobial defence. Gut. 2016;65:225–37. https://doi.org/10.1136/gutjnl-2015-309333.
    CAS  Article  PubMed  Google Scholar 

    75.
    Peng W, Huang J, Yang J, Zhang Z, Yu R, Fayyaz S, et al. Integrated 16S rRNA sequencing, metagenomics, and metabolomics to characterize gut microbial composition, function, and fecal metabolic phenotype in non-obese type 2 diabetic Goto-Kakizaki rats. Front Microbiol. 2019;10:3141. https://doi.org/10.3389/fmicb.2019.03141.
    Article  PubMed  Google Scholar 

    76.
    Li F, Wang P, Chen Z, Sui X, Xie X, Zhang J. Alteration of the fecal microbiota in North-Eastern Han Chinese population with sporadic Parkinson’s disease. Neurosci Lett. 2019;707:134297. https://doi.org/10.1016/j.neulet.2019.134297
    CAS  Article  PubMed  Google Scholar 

    77.
    Hegde S, Voronin D, Casas-Sanchez A, Saldaña M, Acosta-Serrano A, Popov VL, et al. Gut-associated bacteria invade the midgut epithelium of Aedes aegypti and stimulate innate immunity and suppress Zika virus infection in cells. bioRxiv. 2019;37:866897. https://doi.org/10.1101/866897.
    Article  Google Scholar 

    78.
    Xi Z, Ramirez JL, Dimopoulos G. The Aedes aegypti toll pathway controls dengue virus infection. PLoS Pathog. 2008;4:e1000098–49.
    Article  Google Scholar 

    79.
    Ramirez JL, Souza-Neto J, Torres Cosme R, Rovira J, Ortiz A, Pascale JM, et al. Reciprocal tripartite interactions between the Aedes aegypti midgut microbiota, innate immune system and dengue virus influences vector competence. PLoS Negl Trop Dis. 2012;6:e1561. https://doi.org/10.1371/journal.pntd.0001561.
    Article  PubMed  PubMed Central  Google Scholar 

    80.
    Koosha M, Vatandoost H, Karimian F, Choubdar N, Abai MR, Oshaghi MA. Effect of Serratia AS1 (Enterobacteriaceae: Enterobacteriales) on the fitness of Culex pipiens (Diptera: Culicidae) for paratransgenic and RNAi approaches. J Med Entomol. 2019;56:553–9. https://doi.org/10.1093/jme/tjy183.
    CAS  Article  PubMed  Google Scholar 

    81.
    Adair KL, Bost A, Bueno E, Kaunisto S, Kortet R, Peters-Schulze G, et al. Host determinants of among-species variation in microbiome composition in drosophilid flies. ISME J. 2020;14:217–29. https://doi.org/10.1038/s41396-019-0532-7.
    Article  PubMed  Google Scholar 

    82.
    Early AM, Shanmugarajah N, Buchon N, Clark AG. Drosophila genotype influences commensal bacterial levels. PLoS ONE. 2017;12:e0170332–15.
    Article  Google Scholar  More

  • in

    Biogeography of marine giant viruses reveals their interplay with eukaryotes and ecological functions

    1.
    Field, C. B., Behrenfeld, M. J., Randerson, J. T. & Falkowski, P. Primary production of the biosphere: integrating terrestrial and oceanic components. Science 281, 237–240 (1998).
    CAS  PubMed  Google Scholar 
    2.
    Worden, A. Z. et al. Environmental science. Rethinking the marine carbon cycle: factoring in the multifarious lifestyles of microbes. Science 347, 1257594 (2015).
    PubMed  Google Scholar 

    3.
    Brum, J. R. & Sullivan, M. B. Rising to the challenge: accelerated pace of discovery transforms marine virology. Nat. Rev. Microbiol. 13, 147–159 (2015).
    CAS  PubMed  Google Scholar 

    4.
    Selosse, M.-A., Charpin, M. & Not, F. Mixotrophy everywhere on land and in water: the grand écart hypothesis. Ecol. Lett. 20, 246–263 (2017).
    PubMed  Google Scholar 

    5.
    Weitz, J. S. et al. A multitrophic model to quantify the effects of marine viruses on microbial food webs and ecosystem processes. ISME J. 9, 1352–1364 (2015).
    PubMed  PubMed Central  Google Scholar 

    6.
    Mojica, K. D., Huisman, J., Wilhelm, S. W. & Brussaard, C. P. Latitudinal variation in virus-induced mortality of phytoplankton across the North Atlantic Ocean. ISME J. 10, 500–513 (2016).
    CAS  PubMed  Google Scholar 

    7.
    Suttle, C. A. Marine viruses–major players in the global ecosystem. Nat. Rev. Microbiol. 5, 801–812 (2007).
    CAS  PubMed  Google Scholar 

    8.
    Guidi, L. et al. Plankton networks driving carbon export in the oligotrophic ocean. Nature 532, 465–470 (2016).
    CAS  PubMed  PubMed Central  Google Scholar 

    9.
    Laber, C. P. et al. Coccolithovirus facilitation of carbon export in the North Atlantic. Nat. Microbiol. 3, 537–547 (2018).
    CAS  PubMed  Google Scholar 

    10.
    Colson, P. et al. “Megavirales”, a proposed new order for eukaryotic nucleocytoplasmic large DNA viruses. Arch. Virol. 158, 2517–2521 (2013).
    PubMed  PubMed Central  Google Scholar 

    11.
    Fischer, M. G. Giant viruses come of age. Curr. Opin. Microbiol. 31, 50–57 (2016).
    PubMed  Google Scholar 

    12.
    Koonin, E. V. & Yutin, N. Evolution of the large nucleocytoplasmic DNA viruses of eukaryotes and convergent origins of viral gigantism. Adv. Virus Res. 103, 167–202 (2019).
    PubMed  Google Scholar 

    13.
    Monier, A., Claverie, J. M. & Ogata, H. Taxonomic distribution of large DNA viruses in the sea. Genome Biol. 9, R106 (2008).
    PubMed  PubMed Central  Google Scholar 

    14.
    Hingamp, P. et al. Exploring nucleo-cytoplasmic large DNA viruses in Tara Oceans microbial metagenomes. ISME J. 7, 1678–1695 (2013).
    CAS  PubMed  PubMed Central  Google Scholar 

    15.
    Clerissi, C. et al. Deep sequencing of amplified Prasinovirus and host green algal genes from an Indian Ocean transect reveals interacting trophic dependencies and new genotypes. Environ. Microbiol. Rep. 7, 979–989 (2015).
    CAS  PubMed  Google Scholar 

    16.
    Li, Y. et al. The earth is small for “Leviathans”: long distance dispersal of giant viruses across aquatic environments. Microbes Environ. 34, 334–339 (2019).
    PubMed  PubMed Central  Google Scholar 

    17.
    Mihara, T. et al. Taxon richness of “Megaviridae” exceeds those of bacteria and archaea in the ocean. Microbes Environ. 33, 162–171 (2018).
    PubMed  PubMed Central  Google Scholar 

    18.
    Li, Y. et al. Degenerate PCR primers to reveal the diversity of giant viruses in coastal waters. Viruses 10, 496 (2018).
    PubMed Central  Google Scholar 

    19.
    Schulz, F. et al. Giant virus diversity and host interactions through global metagenomics. Nature 578, 432–436 (2020).
    CAS  PubMed  PubMed Central  Google Scholar 

    20.
    Moniruzzaman, M., Martinez-Gutierrez, C. A., Weinheimer, A. R. & Aylward, F. O. Dynamic genome evolution and complex virocell metabolism of globally-distributed giant viruses. Nat. Commun. 11, 1710 (2020).
    CAS  PubMed  PubMed Central  Google Scholar 

    21.
    Cottrell, M. T. & Suttle, C. A. Wide-spread occurrence and clonal variation in viruses which cause lysis of a cosmopolitan, eukaryotic marine phytoplankter, Micromonas pusilla. Mar. Ecol. Prog. Ser. 78, 1–9 (1991).

    22.
    Bratbak, G., Egge, J. K. & Heldal, M. Viral mortality of the marine alga Emiliania huxleyi (Haptophyceae) and termination of algal blooms. Mar. Ecol. Prog. Ser. 93, 39–48 (1993).
    Google Scholar 

    23.
    Kenji, T., Keizo, N., Shigeru, I. & Mineo, Y. Isolation of a virus infecting the novel shellfish-killing dinoflagellate Heterocapsa circularisquama. Aquat. Microb. Ecol. 23, 103–111 (2001).
    Google Scholar 

    24.
    Fischer, M. G., Allen, M. J., Wilson, W. H. & Suttle, C. A. Giant virus with a remarkable complement of genes infects marine zooplankton. Proc. Natl Acad. Sci. USA 107, 19508–19513 (2010).
    CAS  PubMed  Google Scholar 

    25.
    Needham, D. M. et al. A distinct lineage of giant viruses brings a rhodopsin photosystem to unicellular marine predators. Proc. Natl Acad. Sci. USA 116, 20574–20583 (2019).
    CAS  PubMed  Google Scholar 

    26.
    Pesant, S. et al. Open science resources for the discovery and analysis of Tara Oceans data. Sci. Data 2, 150023 (2015).
    CAS  PubMed  PubMed Central  Google Scholar 

    27.
    Gregory, A. C. et al. Marine DNA viral macro- and microdiversity from pole to pole. Cell 177, e1114 (2019).
    Google Scholar 

    28.
    Salazar, G. et al. Gene expression changes and community turnover differentially shape the global ocean metatranscriptome. Cell 179, e1021 (2019).
    Google Scholar 

    29.
    Matsen, F. A., Kodner, R. B. & Armbrust, E. V. pplacer: linear time maximum-likelihood and Bayesian phylogenetic placement of sequences onto a fixed reference tree. BMC Bioinform. 11, 538 (2010).
    Google Scholar 

    30.
    Gallot-Lavallee, L., Blanc, G. & Claverie, J. M. Comparative genomics of Chrysochromulina ericina virus and other microalga-infecting large DNA viruses highlights their intricate evolutionary relationship with the established Mimiviridae family. J. Virol. 91, e00230–17 (2017).
    CAS  PubMed  PubMed Central  Google Scholar 

    31.
    Ibarbalz, F. M. et al. Global trends in marine plankton diversity across kingdoms of life. Cell 179, e1021 (2019).
    Google Scholar 

    32.
    Mihara, T. et al. Linking virus genomes with host taxonomy. Viruses 8, 66 (2016).
    PubMed  PubMed Central  Google Scholar 

    33.
    Ogata, H. et al. Remarkable sequence similarity between the dinoflagellate-infecting marine girus and the terrestrial pathogen African swine fever virus. Virol. J. 6, 178 (2009).
    PubMed  PubMed Central  Google Scholar 

    34.
    Andreani, J. et al. Pacmanvirus, a new giant icosahedral virus at the crossroads between Asfarviridae and Faustoviruses. J. Virol. 91, e00212–e00217 (2017).
    PubMed  PubMed Central  Google Scholar 

    35.
    Barton, A. D., Dutkiewicz, S., Flierl, G., Bragg, J. & Follows, M. J. Patterns of diversity in marine phytoplankton. Science 327, 1509–1511 (2010).
    CAS  PubMed  Google Scholar 

    36.
    Lima-Mendez, G. et al. Ocean plankton. Determinants of community structure in the global plankton interactome. Science 348, 1262073 (2015).
    PubMed  Google Scholar 

    37.
    Zhou, J. & Ning, D. Stochastic community assembly: does it matter in microbial ecology? Microbiol. Mol. Biol. Rev. 81, e00002–e00017 (2017).
    PubMed  PubMed Central  Google Scholar 

    38.
    Chow, C. E. & Suttle, C. A. Biogeography of viruses in the sea. Annu Rev. Virol. 2, 41–66 (2015).
    CAS  PubMed  Google Scholar 

    39.
    Yoshida, T. et al. Locality and diel cycling of viral production revealed by a 24 h time course cross-omics analysis in a coastal region of Japan. ISME J. 12, 1287–1295 (2018).
    CAS  PubMed  PubMed Central  Google Scholar 

    40.
    Sunagawa, S. et al. Ocean plankton. Structure and function of the global ocean microbiome. Science 348, 1261359 (2015).
    Google Scholar 

    41.
    Syed, T. H., Famiglietti, J. S., Zlotnicki, V. & Rodell, M. Contemporary estimates of Pan-Arctic freshwater discharge from GRACE and reanalysis. Geophys. Res. Lett. 34, L19404 (2007).
    Google Scholar 

    42.
    Wommack, K. E. & Colwell, R. R. Virioplankton: viruses in aquatic ecosystems. Microbiol. Mol. Biol. Rev. 64, 69–114 (2000).
    CAS  PubMed  PubMed Central  Google Scholar 

    43.
    Bellec, L. et al. Cophylogenetic interactions between marine viruses and eukaryotic picophytoplankton. BMC Evol. Biol. 14, 59 (2014).
    PubMed  PubMed Central  Google Scholar 

    44.
    Brussaard, C. P. D., Kempers, R. S., Kop, A. J., Riegman, R. & Heldal, M. Virus-like particles in a summer bloom of Emiliania huxleyi in the North Sea. Aquat. Microb. Ecol. 10, 105–113 (1996).
    Google Scholar 

    45.
    Stephan, J. et al. Flow cytometric analysis of an Emiliana huxleyi bloom terminated by viral infection. Aquat. Microb. Ecol. 27, 111–124 (2002).
    Google Scholar 

    46.
    Hurwitz, B. L., Westveld, A. H., Brum, J. R. & Sullivan, M. B. Modeling ecological drivers in marine viral communities using comparative metagenomics and network analyses. Proc. Natl Acad. Sci. USA 111, 10714–10719 (2014).
    CAS  PubMed  Google Scholar 

    47.
    Herndl, G. J. & Reinthaler, T. Microbial control of the dark end of the biological pump. Nat. Geosci. 6, 718–724 (2013).
    CAS  PubMed  PubMed Central  Google Scholar 

    48.
    Giering, S. L. et al. Reconciliation of the carbon budget in the ocean’s twilight zone. Nature 507, 480–483 (2014).
    CAS  PubMed  Google Scholar 

    49.
    Boyd, P. W., Claustre, H., Levy, M., Siegel, D. A. & Weber, T. Multi-faceted particle pumps drive carbon sequestration in the ocean. Nature 568, 327–335 (2019).
    CAS  PubMed  Google Scholar 

    50.
    Janice, E. L. & Curtis, A. S. Effect of viral infection on sinking rates of Heterosigma akashiwo and its implications for bloom termination. Aquat. Microb. Ecol. 37, 1–7 (2004).
    Google Scholar 

    51.
    Close, H. G. et al. Export of submicron particulate organic matter to mesopelagic depth in an oligotrophic gyre. Proc. Natl Acad. Sci. USA 110, 12565–12570 (2013).
    CAS  PubMed  Google Scholar 

    52.
    Mestre, M. et al. Sinking particles promote vertical connectivity in the ocean microbiome. Proc. Natl Acad. Sci. USA 115, E6799–E6807 (2018).
    CAS  PubMed  Google Scholar 

    53.
    Hurwitz, B. L., Brum, J. R. & Sullivan, M. B. Depth-stratified functional and taxonomic niche specialization in the ‘core’ and ‘flexible’ Pacific Ocean Virome. ISME J. 9, 472–484 (2015).
    CAS  PubMed  Google Scholar 

    54.
    Sancetta, C., Villareal, T. & Falkowski, P. Massive fluxes of rhizosolenid diatoms: a common occurrence? Limnol. Oceanogr. 36, 1452–1457 (1991).
    Google Scholar 

    55.
    Kawakami, H. & Honda, M. C. Time-series observation of POC fluxes estimated from 234Th in the northwestern North Pacific. Deep Sea Res. I 54, 1070–1090 (2007).
    Google Scholar 

    56.
    Richardson, T. L. & Jackson, G. A. Small phytoplankton and carbon export from the surface ocean. Science 315, 838–840 (2007).
    CAS  PubMed  Google Scholar 

    57.
    Blanc-Mathieu, R. et al. Viruses of the eukaryotic plankton are predicted to increase carbon export efficiency in the global sunlit ocean. Preprint at bioRxiv https://doi.org/10.1101/710228 (2019).

    58.
    Iversen, M. H. & Ploug, H. Ballast minerals and the sinking carbon flux in the ocean: carbon-specific respiration rates and sinking velocity of marine snow aggregates. Biogeosciences 7, 2613–2624 (2010).
    CAS  Google Scholar 

    59.
    Alberti, A. et al. Viral to metazoan marine plankton nucleotide sequences from the Tara Oceans expedition. Sci. Data 4, 170093 (2017).
    CAS  PubMed  PubMed Central  Google Scholar 

    60.
    Eddy, S. R. Profile hidden Markov models. Bioinformatics 14, 755–763 (1998).
    CAS  PubMed  Google Scholar 

    61.
    Katoh, K. & Standley, D. M. MAFFT multiple sequence alignment software version 7: improvements in performance and usability. Mol. Biol. Evol. 30, 772–780 (2013).
    CAS  PubMed  PubMed Central  Google Scholar 

    62.
    Stamatakis, A. RAxML-VI-HPC: maximum likelihood-based phylogenetic analyses with thousands of taxa and mixed models. Bioinformatics 22, 2688–2690 (2006).
    CAS  PubMed  Google Scholar 

    63.
    Koonin, E. V. & Yutin, N. Multiple evolutionary origins of giant viruses. F1000Res. 7, 1840 (2018).

    64.
    Yoshikawa, G. et al. Medusavirus, a novel large DNA virus discovered from hot spring water. J. Virol. 93, e02130–18 (2019).
    CAS  PubMed  PubMed Central  Google Scholar 

    65.
    Longhurst, A. R. in Ecological Geography of the Sea 2nd edn (ed. Longhurst, A. R.) Ch. 6 (Academic Press, 2007).

    66.
    Letunic, I. & Bork, P. Interactive tree of life (iTOL) v3: an online tool for the display and annotation of phylogenetic and other trees. Nucleic Acids Res. 44, W242–W245 (2016).
    CAS  PubMed  PubMed Central  Google Scholar 

    67.
    Besemer, J., Lomsadze, A. & Borodovsky, M. GeneMarkS: a self-training method for prediction of gene starts in microbial genomes. Implications for finding sequence motifs in regulatory regions. Nucleic Acids Res. 29, 2607–2618 (2001).
    CAS  PubMed  PubMed Central  Google Scholar 

    68.
    Keeling, P. J. et al. The Marine Microbial Eukaryote Transcriptome Sequencing Project (MMETSP): illuminating the functional diversity of eukaryotic life in the oceans through transcriptome sequencing. PLoS Biol. 12, e1001889 (2014).
    PubMed  PubMed Central  Google Scholar 

    69.
    Jain, C., Rodriguez, R. L., Phillippy, A. M., Konstantinidis, K. T. & Aluru, S. High throughput ANI analysis of 90K prokaryotic genomes reveals clear species boundaries. Nat. Commun. 9, 5114 (2018).
    PubMed  PubMed Central  Google Scholar 

    70.
    Anderson, M. J. A new method for non-parametric multivariate analysis of variance. Austral. Ecol. 26, 32–46 (2001).
    Google Scholar 

    71.
    de Vargas, C. et al. Ocean plankton. Eukaryotic plankton diversity in the sunlit ocean. Science 348, 1261605 (2015).
    PubMed  Google Scholar 

    72.
    Benjamini, Y. & Hochberg, Y. Controlling the false discovery rate: a practical and powerful approach to multiple testing. J. R. Stat. Soc. B 57, 289–300 (1995).
    Google Scholar  More

  • in

    Role of C4 carbon fixation in Ulva prolifera, the macroalga responsible for the world’s largest green tides

    1.
    Raven, J. A. Carbon dioxide fixation. in Algal Physiology and Biochemistry (ed Stewart, W. D. P.) 434–455 (Blackwell Scientific Publications, Oxford, 1974).
    2.
    Cooper, T. G., Filmer, D., Wishnick, M. & Lane, M. D. The active species of “CO2” utilized by ribulose diphosphate carboxylase. J. Biol. Chem. 244, 1081–1083 (1969).
    CAS  PubMed  Google Scholar 

    3.
    Badger, M. R. et al. The diversity and coevolution of Rubisco, plastids, pyrenoids, and chloroplast-based CO2-concentrating mechanisms in algae. Can. J. Bot. 76, 1052–1071 (1998).
    CAS  Google Scholar 

    4.
    Burkhardt, S., Amoroso, G., Riebesell, U. & Sültemeyerl, D. CO2 and HCO3− uptake in marine diatoms acclimated to different CO2 concentrations. Limnol. Oceanogr. 46, 1378–1391 (2001).
    CAS  Article  Google Scholar 

    5.
    Giordano, M., Beardall, J. & Raven, J. A. CO2 concentrating mechanisms in algae: mechanisms, environmental modulation, and evolution. Ann. Rev. Plant Biol. 56, 99–131 (2005).
    CAS  Article  Google Scholar 

    6.
    Reiskind, J. B. & Bowes, G. The role of phosphoenolpyruvate carboxykinase in a marine macroalga with C4-like photosynthetic characteristics. Proc. Natl Acad. Sci. USA 88, 2883–2887 (1991).
    CAS  Article  Google Scholar 

    7.
    Reinfelder, J. R., Kraepiel, A. M. L. & Morel, F. M. M. Unicellular C4 photosynthesis in a marine diatom. Nature 407, 996–999 (2000).
    CAS  Article  Google Scholar 

    8.
    Reinfelder, J. R., Milligan, A. J. & Morel, F. M. M. The role of the C4 pathway in carbon accumulation and fixation in a marine diatom. Plant Physiol. 135, 2106–2111 (2004).
    CAS  Article  Google Scholar 

    9.
    Shao, H. et al. Responses of Ottelia alismoides, an aquatic plant with three CCMs, to variable CO2 and light. J. Exp. Bot. 68, 3985–3995 (2017).
    CAS  Article  Google Scholar 

    10.
    Han, S. et al. Structural basis for C4 photosynthesis without Kranz anatomy in leaves of the submerged freshwater plant Ottelia alismoides. Ann. Bot. 125, 869–879 (2020).
    Article  Google Scholar 

    11.
    Liu, D., Keesing, J. K., Xing, Q. & Shi, P. Worldʼs largest macroalgal bloom caused by expansion of seaweed aquaculture in China. Mar. Poll. Bull. 58, 888–895 (2009).
    CAS  Article  Google Scholar 

    12.
    Keesing, J. K., Liu, D. Y., Fearns, P. & Garcia, R. Inter-and intra-annual patterns of Ulva prolifera green tides in the Yellow Sea during 2007–2009, their origin and relationship to the expansion of coastal seaweed aquaculture in China. Mar. Poll. Bull. 62, 1169–1182 (2011).
    CAS  Article  Google Scholar 

    13.
    Liu, D. et al. The worldʼs largest macroalgal bloom in the Yellow Sea, China: formation and implications. Estuar. Coast. Shelf Sci. 129, 2–10 (2013).
    CAS  Article  Google Scholar 

    14.
    Zhang, J. H., Kim, J. K., Yarish, C. & He, P. The expansion of Ulva prolifera O.F. Müller macroalgal blooms in the Yellow Sea, PR China, through asexual reproduction. Mar. Poll. Bull. 104, 101–106 (2016).
    CAS  Article  Google Scholar 

    15.
    Xu, J. et al. Evidence of coexistence of C3 and C4 photosynthetic pathways in a green-tide-forming alga, Ulva prolifera. PLoS ONE 7, e37438 (2012).
    CAS  Article  Google Scholar 

    16.
    Valiela, I., Liu, D., Lloret, J., Chenoweth, K. & Hanacek, D. Stable isotopic evidence of nitrogen sources and C4 metabolism driving the worldʼs largest macroalgal green tides in the Yellow Sea. Sci. Rep. 8, 17437 (2018).
    Article  Google Scholar 

    17.
    Hatch, M. D. C4 photosynthesis: a unique blend of modified biochemistry, anatomy and ultrastructure. Biochim. Biophys. Acta Rev. Bioenerg. 895, 81–106 (1987).
    CAS  Article  Google Scholar 

    18.
    Haimovich-Dayan, M. et al. The role of C4 metabolism in the marine diatom Phaeodactylum tricornutum. N. Phytol. 197, 177–185 (2013).
    CAS  Article  Google Scholar 

    19.
    OʼLeary, M. H. Carbon isotopes in photosynthesis. BioScience 38, 328–336 (1988).
    Article  Google Scholar 

    20.
    Fry, B. 13C/12C fractionation by marine diatoms. Mar. Ecol. Prog. Ser. 134, 283–294 (1996).
    CAS  Article  Google Scholar 

    21.
    Carvalho, M. C. & Eyre, B. D. Carbon stable isotope discrimination during respiration in three seaweed species. Mar. Ecol. Prog. Ser. 437, 41–49 (2011).
    CAS  Article  Google Scholar 

    22.
    Cornwall, C. E. et al. Inorganic carbon physiology underpins macroalgal responses to elevated CO2. Sci. Rep. 7, 46297 (2017).
    CAS  Article  Google Scholar 

    23.
    Carvalho, M. C., Hayashizaki, K. & Ogawa, H. Short-term measurement of carbon stable isotope discrimination in photosynthesis and respiration by aquatic macrophytes, with marine macroalgal examples. J. Phycol. 45, 761–770 (2009).
    Article  Google Scholar 

    24.
    Raven, J. A., Giordano, M., Beardall, J. & Maberly, S. C. Algal evolution in relation to atmospheric CO2: carboxylases, carbon-concentrating mechanisms and carbon oxidation cycles. Philos. Trans. Roy. Soc. B 367, 493–507 (2012).
    CAS  Article  Google Scholar 

    25.
    Roberts, K., Granum, E., Leegood, R. C. & Raven, J. A. C3 and C4 pathways of photosynthetic carbon assimilation in marine diatoms are under genetic, not environmental control. Plant Physiol. 145, 230–235 (2007).
    CAS  Article  Google Scholar 

    26.
    Roberts, K., Granum, E., Leegood, R. C. & Raven, J. A. Carbon acquisition by diatoms. Photosynth. Res. 93, 79–88 (2007).
    CAS  Article  Google Scholar 

    27.
    Beardall, J. & Giordano, M. Ecological implications of microalgal and cyanobacterial CO2 concentrating mechanisms, and their regulation. Funct. Plant Biol. 29, 335–347 (2002).
    CAS  Article  Google Scholar 

    28.
    Palmqvist, K., Yu, J. W. & Badger, M. R. Carbonic anhydrase activity and inorganic carbon fluxes in low- and high-Ci cells of Chlamydomonas reinhardtü and Scenedesmus obliquus. Physiol. Plant. 90, 537–547 (1994).
    CAS  Article  Google Scholar 

    29.
    Reinfelder, J. R. Carbon concentrating mechanisms in eukaryotic marine phytoplankton. Ann. Rev. Mar. Sci. 3, 291–315 (2011).
    Article  Google Scholar 

    30.
    Beardall, J. Effects of photon flux density on the CO2-concentrating mechanism of the cyanobacterium Anabaena variabilis. J. Plankton Res. 13, 133–141 (1991).
    Google Scholar 

    31.
    Kargul, J. & Barber, J. Photosynthetic acclimation: structural reorganization of light harvesting antenna-role of redox-dependent phosphorylation of major and minor chlorophyll a/b binding proteins. FEBS J. 275, 1056–1068 (2008).
    CAS  Article  Google Scholar 

    32.
    Zhao, X., Tang, X., Zhang, H., Qu, T. & Wang, Y. Photosynthetic adaptation strategy of Ulva prolifera floating on the sea surface to environmental changes. Plant Physiol. Biochem. 107, 116–125 (2016).
    CAS  Article  Google Scholar 

    33.
    Xu, J. & Gao, K. Future CO2-induced ocean acidification mediates the physiological performance of a green tide alga. Plant Physiol. 160, 1762–1769 (2012).
    CAS  Article  Google Scholar 

    34.
    Li, J., Sun, X. & Zheng, S. In situ study on photosynthetic characteristics of phytoplankton in the Yellow Sea and East China Sea in summer 2013. J. Mar. Syst. 160, 94–106 (2016).
    Article  Google Scholar 

    35.
    Qin, B. Y., Tao, Z., Li, Z. W. & Yang, X. F. Seasonal changes and controlling factors of sea surface pCO2 in the Yellow Sea. IOP Conf. Ser. 17, 012025 (2014).
    Article  Google Scholar 

    36.
    Krause-Jensen, D., McGlathery, K., Rysgaard, S. & Christensen, P. B. Production within dense mats of the filamentous macroalga Chaetomorpha linum in relation to light and nutrient availability. Mar. Ecol. Prog. Ser. 134, 207–216 (1996).
    Article  Google Scholar 

    37.
    Keesing, J. K., Liu, D., Shi, Y. & Wang, Y. Abiotic factors influencing biomass accumulation of green tide causing Ulva spp. on Pyropia culture rafts in the Yellow Sea, China. Mar. Poll. Bull. 105, 88–97 (2016).
    CAS  Article  Google Scholar 

    38.
    Pierrot, D., Lewis, E. & Wallace, D. W. R. MS Excel Program Developed for CO2System Calculations. ORNL/CDIAC−105a. (Carbon Dioxide Information Analysis Center, Oak Ridge National Laboratory, US Department of Energy, Oak Ridge, Tennessee, 2006).

    39.
    Wilbur, K. M. & Anderson, N. G. Electronic and colorimetric determination of carbonic anhydrase. J. Biol. Chem. 176, 147–154 (1948).
    CAS  PubMed  Google Scholar  More