Biogeography of marine giant viruses reveals their interplay with eukaryotes and ecological functions
1.
Field, C. B., Behrenfeld, M. J., Randerson, J. T. & Falkowski, P. Primary production of the biosphere: integrating terrestrial and oceanic components. Science 281, 237–240 (1998).
CAS PubMed Google Scholar
2.
Worden, A. Z. et al. Environmental science. Rethinking the marine carbon cycle: factoring in the multifarious lifestyles of microbes. Science 347, 1257594 (2015).
PubMed Google Scholar
3.
Brum, J. R. & Sullivan, M. B. Rising to the challenge: accelerated pace of discovery transforms marine virology. Nat. Rev. Microbiol. 13, 147–159 (2015).
CAS PubMed Google Scholar
4.
Selosse, M.-A., Charpin, M. & Not, F. Mixotrophy everywhere on land and in water: the grand écart hypothesis. Ecol. Lett. 20, 246–263 (2017).
PubMed Google Scholar
5.
Weitz, J. S. et al. A multitrophic model to quantify the effects of marine viruses on microbial food webs and ecosystem processes. ISME J. 9, 1352–1364 (2015).
PubMed PubMed Central Google Scholar
6.
Mojica, K. D., Huisman, J., Wilhelm, S. W. & Brussaard, C. P. Latitudinal variation in virus-induced mortality of phytoplankton across the North Atlantic Ocean. ISME J. 10, 500–513 (2016).
CAS PubMed Google Scholar
7.
Suttle, C. A. Marine viruses–major players in the global ecosystem. Nat. Rev. Microbiol. 5, 801–812 (2007).
CAS PubMed Google Scholar
8.
Guidi, L. et al. Plankton networks driving carbon export in the oligotrophic ocean. Nature 532, 465–470 (2016).
CAS PubMed PubMed Central Google Scholar
9.
Laber, C. P. et al. Coccolithovirus facilitation of carbon export in the North Atlantic. Nat. Microbiol. 3, 537–547 (2018).
CAS PubMed Google Scholar
10.
Colson, P. et al. “Megavirales”, a proposed new order for eukaryotic nucleocytoplasmic large DNA viruses. Arch. Virol. 158, 2517–2521 (2013).
PubMed PubMed Central Google Scholar
11.
Fischer, M. G. Giant viruses come of age. Curr. Opin. Microbiol. 31, 50–57 (2016).
PubMed Google Scholar
12.
Koonin, E. V. & Yutin, N. Evolution of the large nucleocytoplasmic DNA viruses of eukaryotes and convergent origins of viral gigantism. Adv. Virus Res. 103, 167–202 (2019).
PubMed Google Scholar
13.
Monier, A., Claverie, J. M. & Ogata, H. Taxonomic distribution of large DNA viruses in the sea. Genome Biol. 9, R106 (2008).
PubMed PubMed Central Google Scholar
14.
Hingamp, P. et al. Exploring nucleo-cytoplasmic large DNA viruses in Tara Oceans microbial metagenomes. ISME J. 7, 1678–1695 (2013).
CAS PubMed PubMed Central Google Scholar
15.
Clerissi, C. et al. Deep sequencing of amplified Prasinovirus and host green algal genes from an Indian Ocean transect reveals interacting trophic dependencies and new genotypes. Environ. Microbiol. Rep. 7, 979–989 (2015).
CAS PubMed Google Scholar
16.
Li, Y. et al. The earth is small for “Leviathans”: long distance dispersal of giant viruses across aquatic environments. Microbes Environ. 34, 334–339 (2019).
PubMed PubMed Central Google Scholar
17.
Mihara, T. et al. Taxon richness of “Megaviridae” exceeds those of bacteria and archaea in the ocean. Microbes Environ. 33, 162–171 (2018).
PubMed PubMed Central Google Scholar
18.
Li, Y. et al. Degenerate PCR primers to reveal the diversity of giant viruses in coastal waters. Viruses 10, 496 (2018).
PubMed Central Google Scholar
19.
Schulz, F. et al. Giant virus diversity and host interactions through global metagenomics. Nature 578, 432–436 (2020).
CAS PubMed PubMed Central Google Scholar
20.
Moniruzzaman, M., Martinez-Gutierrez, C. A., Weinheimer, A. R. & Aylward, F. O. Dynamic genome evolution and complex virocell metabolism of globally-distributed giant viruses. Nat. Commun. 11, 1710 (2020).
CAS PubMed PubMed Central Google Scholar
21.
Cottrell, M. T. & Suttle, C. A. Wide-spread occurrence and clonal variation in viruses which cause lysis of a cosmopolitan, eukaryotic marine phytoplankter, Micromonas pusilla. Mar. Ecol. Prog. Ser. 78, 1–9 (1991).
22.
Bratbak, G., Egge, J. K. & Heldal, M. Viral mortality of the marine alga Emiliania huxleyi (Haptophyceae) and termination of algal blooms. Mar. Ecol. Prog. Ser. 93, 39–48 (1993).
Google Scholar
23.
Kenji, T., Keizo, N., Shigeru, I. & Mineo, Y. Isolation of a virus infecting the novel shellfish-killing dinoflagellate Heterocapsa circularisquama. Aquat. Microb. Ecol. 23, 103–111 (2001).
Google Scholar
24.
Fischer, M. G., Allen, M. J., Wilson, W. H. & Suttle, C. A. Giant virus with a remarkable complement of genes infects marine zooplankton. Proc. Natl Acad. Sci. USA 107, 19508–19513 (2010).
CAS PubMed Google Scholar
25.
Needham, D. M. et al. A distinct lineage of giant viruses brings a rhodopsin photosystem to unicellular marine predators. Proc. Natl Acad. Sci. USA 116, 20574–20583 (2019).
CAS PubMed Google Scholar
26.
Pesant, S. et al. Open science resources for the discovery and analysis of Tara Oceans data. Sci. Data 2, 150023 (2015).
CAS PubMed PubMed Central Google Scholar
27.
Gregory, A. C. et al. Marine DNA viral macro- and microdiversity from pole to pole. Cell 177, e1114 (2019).
Google Scholar
28.
Salazar, G. et al. Gene expression changes and community turnover differentially shape the global ocean metatranscriptome. Cell 179, e1021 (2019).
Google Scholar
29.
Matsen, F. A., Kodner, R. B. & Armbrust, E. V. pplacer: linear time maximum-likelihood and Bayesian phylogenetic placement of sequences onto a fixed reference tree. BMC Bioinform. 11, 538 (2010).
Google Scholar
30.
Gallot-Lavallee, L., Blanc, G. & Claverie, J. M. Comparative genomics of Chrysochromulina ericina virus and other microalga-infecting large DNA viruses highlights their intricate evolutionary relationship with the established Mimiviridae family. J. Virol. 91, e00230–17 (2017).
CAS PubMed PubMed Central Google Scholar
31.
Ibarbalz, F. M. et al. Global trends in marine plankton diversity across kingdoms of life. Cell 179, e1021 (2019).
Google Scholar
32.
Mihara, T. et al. Linking virus genomes with host taxonomy. Viruses 8, 66 (2016).
PubMed PubMed Central Google Scholar
33.
Ogata, H. et al. Remarkable sequence similarity between the dinoflagellate-infecting marine girus and the terrestrial pathogen African swine fever virus. Virol. J. 6, 178 (2009).
PubMed PubMed Central Google Scholar
34.
Andreani, J. et al. Pacmanvirus, a new giant icosahedral virus at the crossroads between Asfarviridae and Faustoviruses. J. Virol. 91, e00212–e00217 (2017).
PubMed PubMed Central Google Scholar
35.
Barton, A. D., Dutkiewicz, S., Flierl, G., Bragg, J. & Follows, M. J. Patterns of diversity in marine phytoplankton. Science 327, 1509–1511 (2010).
CAS PubMed Google Scholar
36.
Lima-Mendez, G. et al. Ocean plankton. Determinants of community structure in the global plankton interactome. Science 348, 1262073 (2015).
PubMed Google Scholar
37.
Zhou, J. & Ning, D. Stochastic community assembly: does it matter in microbial ecology? Microbiol. Mol. Biol. Rev. 81, e00002–e00017 (2017).
PubMed PubMed Central Google Scholar
38.
Chow, C. E. & Suttle, C. A. Biogeography of viruses in the sea. Annu Rev. Virol. 2, 41–66 (2015).
CAS PubMed Google Scholar
39.
Yoshida, T. et al. Locality and diel cycling of viral production revealed by a 24 h time course cross-omics analysis in a coastal region of Japan. ISME J. 12, 1287–1295 (2018).
CAS PubMed PubMed Central Google Scholar
40.
Sunagawa, S. et al. Ocean plankton. Structure and function of the global ocean microbiome. Science 348, 1261359 (2015).
Google Scholar
41.
Syed, T. H., Famiglietti, J. S., Zlotnicki, V. & Rodell, M. Contemporary estimates of Pan-Arctic freshwater discharge from GRACE and reanalysis. Geophys. Res. Lett. 34, L19404 (2007).
Google Scholar
42.
Wommack, K. E. & Colwell, R. R. Virioplankton: viruses in aquatic ecosystems. Microbiol. Mol. Biol. Rev. 64, 69–114 (2000).
CAS PubMed PubMed Central Google Scholar
43.
Bellec, L. et al. Cophylogenetic interactions between marine viruses and eukaryotic picophytoplankton. BMC Evol. Biol. 14, 59 (2014).
PubMed PubMed Central Google Scholar
44.
Brussaard, C. P. D., Kempers, R. S., Kop, A. J., Riegman, R. & Heldal, M. Virus-like particles in a summer bloom of Emiliania huxleyi in the North Sea. Aquat. Microb. Ecol. 10, 105–113 (1996).
Google Scholar
45.
Stephan, J. et al. Flow cytometric analysis of an Emiliana huxleyi bloom terminated by viral infection. Aquat. Microb. Ecol. 27, 111–124 (2002).
Google Scholar
46.
Hurwitz, B. L., Westveld, A. H., Brum, J. R. & Sullivan, M. B. Modeling ecological drivers in marine viral communities using comparative metagenomics and network analyses. Proc. Natl Acad. Sci. USA 111, 10714–10719 (2014).
CAS PubMed Google Scholar
47.
Herndl, G. J. & Reinthaler, T. Microbial control of the dark end of the biological pump. Nat. Geosci. 6, 718–724 (2013).
CAS PubMed PubMed Central Google Scholar
48.
Giering, S. L. et al. Reconciliation of the carbon budget in the ocean’s twilight zone. Nature 507, 480–483 (2014).
CAS PubMed Google Scholar
49.
Boyd, P. W., Claustre, H., Levy, M., Siegel, D. A. & Weber, T. Multi-faceted particle pumps drive carbon sequestration in the ocean. Nature 568, 327–335 (2019).
CAS PubMed Google Scholar
50.
Janice, E. L. & Curtis, A. S. Effect of viral infection on sinking rates of Heterosigma akashiwo and its implications for bloom termination. Aquat. Microb. Ecol. 37, 1–7 (2004).
Google Scholar
51.
Close, H. G. et al. Export of submicron particulate organic matter to mesopelagic depth in an oligotrophic gyre. Proc. Natl Acad. Sci. USA 110, 12565–12570 (2013).
CAS PubMed Google Scholar
52.
Mestre, M. et al. Sinking particles promote vertical connectivity in the ocean microbiome. Proc. Natl Acad. Sci. USA 115, E6799–E6807 (2018).
CAS PubMed Google Scholar
53.
Hurwitz, B. L., Brum, J. R. & Sullivan, M. B. Depth-stratified functional and taxonomic niche specialization in the ‘core’ and ‘flexible’ Pacific Ocean Virome. ISME J. 9, 472–484 (2015).
CAS PubMed Google Scholar
54.
Sancetta, C., Villareal, T. & Falkowski, P. Massive fluxes of rhizosolenid diatoms: a common occurrence? Limnol. Oceanogr. 36, 1452–1457 (1991).
Google Scholar
55.
Kawakami, H. & Honda, M. C. Time-series observation of POC fluxes estimated from 234Th in the northwestern North Pacific. Deep Sea Res. I 54, 1070–1090 (2007).
Google Scholar
56.
Richardson, T. L. & Jackson, G. A. Small phytoplankton and carbon export from the surface ocean. Science 315, 838–840 (2007).
CAS PubMed Google Scholar
57.
Blanc-Mathieu, R. et al. Viruses of the eukaryotic plankton are predicted to increase carbon export efficiency in the global sunlit ocean. Preprint at bioRxiv https://doi.org/10.1101/710228 (2019).
58.
Iversen, M. H. & Ploug, H. Ballast minerals and the sinking carbon flux in the ocean: carbon-specific respiration rates and sinking velocity of marine snow aggregates. Biogeosciences 7, 2613–2624 (2010).
CAS Google Scholar
59.
Alberti, A. et al. Viral to metazoan marine plankton nucleotide sequences from the Tara Oceans expedition. Sci. Data 4, 170093 (2017).
CAS PubMed PubMed Central Google Scholar
60.
Eddy, S. R. Profile hidden Markov models. Bioinformatics 14, 755–763 (1998).
CAS PubMed Google Scholar
61.
Katoh, K. & Standley, D. M. MAFFT multiple sequence alignment software version 7: improvements in performance and usability. Mol. Biol. Evol. 30, 772–780 (2013).
CAS PubMed PubMed Central Google Scholar
62.
Stamatakis, A. RAxML-VI-HPC: maximum likelihood-based phylogenetic analyses with thousands of taxa and mixed models. Bioinformatics 22, 2688–2690 (2006).
CAS PubMed Google Scholar
63.
Koonin, E. V. & Yutin, N. Multiple evolutionary origins of giant viruses. F1000Res. 7, 1840 (2018).
64.
Yoshikawa, G. et al. Medusavirus, a novel large DNA virus discovered from hot spring water. J. Virol. 93, e02130–18 (2019).
CAS PubMed PubMed Central Google Scholar
65.
Longhurst, A. R. in Ecological Geography of the Sea 2nd edn (ed. Longhurst, A. R.) Ch. 6 (Academic Press, 2007).
66.
Letunic, I. & Bork, P. Interactive tree of life (iTOL) v3: an online tool for the display and annotation of phylogenetic and other trees. Nucleic Acids Res. 44, W242–W245 (2016).
CAS PubMed PubMed Central Google Scholar
67.
Besemer, J., Lomsadze, A. & Borodovsky, M. GeneMarkS: a self-training method for prediction of gene starts in microbial genomes. Implications for finding sequence motifs in regulatory regions. Nucleic Acids Res. 29, 2607–2618 (2001).
CAS PubMed PubMed Central Google Scholar
68.
Keeling, P. J. et al. The Marine Microbial Eukaryote Transcriptome Sequencing Project (MMETSP): illuminating the functional diversity of eukaryotic life in the oceans through transcriptome sequencing. PLoS Biol. 12, e1001889 (2014).
PubMed PubMed Central Google Scholar
69.
Jain, C., Rodriguez, R. L., Phillippy, A. M., Konstantinidis, K. T. & Aluru, S. High throughput ANI analysis of 90K prokaryotic genomes reveals clear species boundaries. Nat. Commun. 9, 5114 (2018).
PubMed PubMed Central Google Scholar
70.
Anderson, M. J. A new method for non-parametric multivariate analysis of variance. Austral. Ecol. 26, 32–46 (2001).
Google Scholar
71.
de Vargas, C. et al. Ocean plankton. Eukaryotic plankton diversity in the sunlit ocean. Science 348, 1261605 (2015).
PubMed Google Scholar
72.
Benjamini, Y. & Hochberg, Y. Controlling the false discovery rate: a practical and powerful approach to multiple testing. J. R. Stat. Soc. B 57, 289–300 (1995).
Google Scholar More