More stories

  • in

    Biogeography of marine giant viruses reveals their interplay with eukaryotes and ecological functions

    1.
    Field, C. B., Behrenfeld, M. J., Randerson, J. T. & Falkowski, P. Primary production of the biosphere: integrating terrestrial and oceanic components. Science 281, 237–240 (1998).
    CAS  PubMed  Google Scholar 
    2.
    Worden, A. Z. et al. Environmental science. Rethinking the marine carbon cycle: factoring in the multifarious lifestyles of microbes. Science 347, 1257594 (2015).
    PubMed  Google Scholar 

    3.
    Brum, J. R. & Sullivan, M. B. Rising to the challenge: accelerated pace of discovery transforms marine virology. Nat. Rev. Microbiol. 13, 147–159 (2015).
    CAS  PubMed  Google Scholar 

    4.
    Selosse, M.-A., Charpin, M. & Not, F. Mixotrophy everywhere on land and in water: the grand écart hypothesis. Ecol. Lett. 20, 246–263 (2017).
    PubMed  Google Scholar 

    5.
    Weitz, J. S. et al. A multitrophic model to quantify the effects of marine viruses on microbial food webs and ecosystem processes. ISME J. 9, 1352–1364 (2015).
    PubMed  PubMed Central  Google Scholar 

    6.
    Mojica, K. D., Huisman, J., Wilhelm, S. W. & Brussaard, C. P. Latitudinal variation in virus-induced mortality of phytoplankton across the North Atlantic Ocean. ISME J. 10, 500–513 (2016).
    CAS  PubMed  Google Scholar 

    7.
    Suttle, C. A. Marine viruses–major players in the global ecosystem. Nat. Rev. Microbiol. 5, 801–812 (2007).
    CAS  PubMed  Google Scholar 

    8.
    Guidi, L. et al. Plankton networks driving carbon export in the oligotrophic ocean. Nature 532, 465–470 (2016).
    CAS  PubMed  PubMed Central  Google Scholar 

    9.
    Laber, C. P. et al. Coccolithovirus facilitation of carbon export in the North Atlantic. Nat. Microbiol. 3, 537–547 (2018).
    CAS  PubMed  Google Scholar 

    10.
    Colson, P. et al. “Megavirales”, a proposed new order for eukaryotic nucleocytoplasmic large DNA viruses. Arch. Virol. 158, 2517–2521 (2013).
    PubMed  PubMed Central  Google Scholar 

    11.
    Fischer, M. G. Giant viruses come of age. Curr. Opin. Microbiol. 31, 50–57 (2016).
    PubMed  Google Scholar 

    12.
    Koonin, E. V. & Yutin, N. Evolution of the large nucleocytoplasmic DNA viruses of eukaryotes and convergent origins of viral gigantism. Adv. Virus Res. 103, 167–202 (2019).
    PubMed  Google Scholar 

    13.
    Monier, A., Claverie, J. M. & Ogata, H. Taxonomic distribution of large DNA viruses in the sea. Genome Biol. 9, R106 (2008).
    PubMed  PubMed Central  Google Scholar 

    14.
    Hingamp, P. et al. Exploring nucleo-cytoplasmic large DNA viruses in Tara Oceans microbial metagenomes. ISME J. 7, 1678–1695 (2013).
    CAS  PubMed  PubMed Central  Google Scholar 

    15.
    Clerissi, C. et al. Deep sequencing of amplified Prasinovirus and host green algal genes from an Indian Ocean transect reveals interacting trophic dependencies and new genotypes. Environ. Microbiol. Rep. 7, 979–989 (2015).
    CAS  PubMed  Google Scholar 

    16.
    Li, Y. et al. The earth is small for “Leviathans”: long distance dispersal of giant viruses across aquatic environments. Microbes Environ. 34, 334–339 (2019).
    PubMed  PubMed Central  Google Scholar 

    17.
    Mihara, T. et al. Taxon richness of “Megaviridae” exceeds those of bacteria and archaea in the ocean. Microbes Environ. 33, 162–171 (2018).
    PubMed  PubMed Central  Google Scholar 

    18.
    Li, Y. et al. Degenerate PCR primers to reveal the diversity of giant viruses in coastal waters. Viruses 10, 496 (2018).
    PubMed Central  Google Scholar 

    19.
    Schulz, F. et al. Giant virus diversity and host interactions through global metagenomics. Nature 578, 432–436 (2020).
    CAS  PubMed  PubMed Central  Google Scholar 

    20.
    Moniruzzaman, M., Martinez-Gutierrez, C. A., Weinheimer, A. R. & Aylward, F. O. Dynamic genome evolution and complex virocell metabolism of globally-distributed giant viruses. Nat. Commun. 11, 1710 (2020).
    CAS  PubMed  PubMed Central  Google Scholar 

    21.
    Cottrell, M. T. & Suttle, C. A. Wide-spread occurrence and clonal variation in viruses which cause lysis of a cosmopolitan, eukaryotic marine phytoplankter, Micromonas pusilla. Mar. Ecol. Prog. Ser. 78, 1–9 (1991).

    22.
    Bratbak, G., Egge, J. K. & Heldal, M. Viral mortality of the marine alga Emiliania huxleyi (Haptophyceae) and termination of algal blooms. Mar. Ecol. Prog. Ser. 93, 39–48 (1993).
    Google Scholar 

    23.
    Kenji, T., Keizo, N., Shigeru, I. & Mineo, Y. Isolation of a virus infecting the novel shellfish-killing dinoflagellate Heterocapsa circularisquama. Aquat. Microb. Ecol. 23, 103–111 (2001).
    Google Scholar 

    24.
    Fischer, M. G., Allen, M. J., Wilson, W. H. & Suttle, C. A. Giant virus with a remarkable complement of genes infects marine zooplankton. Proc. Natl Acad. Sci. USA 107, 19508–19513 (2010).
    CAS  PubMed  Google Scholar 

    25.
    Needham, D. M. et al. A distinct lineage of giant viruses brings a rhodopsin photosystem to unicellular marine predators. Proc. Natl Acad. Sci. USA 116, 20574–20583 (2019).
    CAS  PubMed  Google Scholar 

    26.
    Pesant, S. et al. Open science resources for the discovery and analysis of Tara Oceans data. Sci. Data 2, 150023 (2015).
    CAS  PubMed  PubMed Central  Google Scholar 

    27.
    Gregory, A. C. et al. Marine DNA viral macro- and microdiversity from pole to pole. Cell 177, e1114 (2019).
    Google Scholar 

    28.
    Salazar, G. et al. Gene expression changes and community turnover differentially shape the global ocean metatranscriptome. Cell 179, e1021 (2019).
    Google Scholar 

    29.
    Matsen, F. A., Kodner, R. B. & Armbrust, E. V. pplacer: linear time maximum-likelihood and Bayesian phylogenetic placement of sequences onto a fixed reference tree. BMC Bioinform. 11, 538 (2010).
    Google Scholar 

    30.
    Gallot-Lavallee, L., Blanc, G. & Claverie, J. M. Comparative genomics of Chrysochromulina ericina virus and other microalga-infecting large DNA viruses highlights their intricate evolutionary relationship with the established Mimiviridae family. J. Virol. 91, e00230–17 (2017).
    CAS  PubMed  PubMed Central  Google Scholar 

    31.
    Ibarbalz, F. M. et al. Global trends in marine plankton diversity across kingdoms of life. Cell 179, e1021 (2019).
    Google Scholar 

    32.
    Mihara, T. et al. Linking virus genomes with host taxonomy. Viruses 8, 66 (2016).
    PubMed  PubMed Central  Google Scholar 

    33.
    Ogata, H. et al. Remarkable sequence similarity between the dinoflagellate-infecting marine girus and the terrestrial pathogen African swine fever virus. Virol. J. 6, 178 (2009).
    PubMed  PubMed Central  Google Scholar 

    34.
    Andreani, J. et al. Pacmanvirus, a new giant icosahedral virus at the crossroads between Asfarviridae and Faustoviruses. J. Virol. 91, e00212–e00217 (2017).
    PubMed  PubMed Central  Google Scholar 

    35.
    Barton, A. D., Dutkiewicz, S., Flierl, G., Bragg, J. & Follows, M. J. Patterns of diversity in marine phytoplankton. Science 327, 1509–1511 (2010).
    CAS  PubMed  Google Scholar 

    36.
    Lima-Mendez, G. et al. Ocean plankton. Determinants of community structure in the global plankton interactome. Science 348, 1262073 (2015).
    PubMed  Google Scholar 

    37.
    Zhou, J. & Ning, D. Stochastic community assembly: does it matter in microbial ecology? Microbiol. Mol. Biol. Rev. 81, e00002–e00017 (2017).
    PubMed  PubMed Central  Google Scholar 

    38.
    Chow, C. E. & Suttle, C. A. Biogeography of viruses in the sea. Annu Rev. Virol. 2, 41–66 (2015).
    CAS  PubMed  Google Scholar 

    39.
    Yoshida, T. et al. Locality and diel cycling of viral production revealed by a 24 h time course cross-omics analysis in a coastal region of Japan. ISME J. 12, 1287–1295 (2018).
    CAS  PubMed  PubMed Central  Google Scholar 

    40.
    Sunagawa, S. et al. Ocean plankton. Structure and function of the global ocean microbiome. Science 348, 1261359 (2015).
    Google Scholar 

    41.
    Syed, T. H., Famiglietti, J. S., Zlotnicki, V. & Rodell, M. Contemporary estimates of Pan-Arctic freshwater discharge from GRACE and reanalysis. Geophys. Res. Lett. 34, L19404 (2007).
    Google Scholar 

    42.
    Wommack, K. E. & Colwell, R. R. Virioplankton: viruses in aquatic ecosystems. Microbiol. Mol. Biol. Rev. 64, 69–114 (2000).
    CAS  PubMed  PubMed Central  Google Scholar 

    43.
    Bellec, L. et al. Cophylogenetic interactions between marine viruses and eukaryotic picophytoplankton. BMC Evol. Biol. 14, 59 (2014).
    PubMed  PubMed Central  Google Scholar 

    44.
    Brussaard, C. P. D., Kempers, R. S., Kop, A. J., Riegman, R. & Heldal, M. Virus-like particles in a summer bloom of Emiliania huxleyi in the North Sea. Aquat. Microb. Ecol. 10, 105–113 (1996).
    Google Scholar 

    45.
    Stephan, J. et al. Flow cytometric analysis of an Emiliana huxleyi bloom terminated by viral infection. Aquat. Microb. Ecol. 27, 111–124 (2002).
    Google Scholar 

    46.
    Hurwitz, B. L., Westveld, A. H., Brum, J. R. & Sullivan, M. B. Modeling ecological drivers in marine viral communities using comparative metagenomics and network analyses. Proc. Natl Acad. Sci. USA 111, 10714–10719 (2014).
    CAS  PubMed  Google Scholar 

    47.
    Herndl, G. J. & Reinthaler, T. Microbial control of the dark end of the biological pump. Nat. Geosci. 6, 718–724 (2013).
    CAS  PubMed  PubMed Central  Google Scholar 

    48.
    Giering, S. L. et al. Reconciliation of the carbon budget in the ocean’s twilight zone. Nature 507, 480–483 (2014).
    CAS  PubMed  Google Scholar 

    49.
    Boyd, P. W., Claustre, H., Levy, M., Siegel, D. A. & Weber, T. Multi-faceted particle pumps drive carbon sequestration in the ocean. Nature 568, 327–335 (2019).
    CAS  PubMed  Google Scholar 

    50.
    Janice, E. L. & Curtis, A. S. Effect of viral infection on sinking rates of Heterosigma akashiwo and its implications for bloom termination. Aquat. Microb. Ecol. 37, 1–7 (2004).
    Google Scholar 

    51.
    Close, H. G. et al. Export of submicron particulate organic matter to mesopelagic depth in an oligotrophic gyre. Proc. Natl Acad. Sci. USA 110, 12565–12570 (2013).
    CAS  PubMed  Google Scholar 

    52.
    Mestre, M. et al. Sinking particles promote vertical connectivity in the ocean microbiome. Proc. Natl Acad. Sci. USA 115, E6799–E6807 (2018).
    CAS  PubMed  Google Scholar 

    53.
    Hurwitz, B. L., Brum, J. R. & Sullivan, M. B. Depth-stratified functional and taxonomic niche specialization in the ‘core’ and ‘flexible’ Pacific Ocean Virome. ISME J. 9, 472–484 (2015).
    CAS  PubMed  Google Scholar 

    54.
    Sancetta, C., Villareal, T. & Falkowski, P. Massive fluxes of rhizosolenid diatoms: a common occurrence? Limnol. Oceanogr. 36, 1452–1457 (1991).
    Google Scholar 

    55.
    Kawakami, H. & Honda, M. C. Time-series observation of POC fluxes estimated from 234Th in the northwestern North Pacific. Deep Sea Res. I 54, 1070–1090 (2007).
    Google Scholar 

    56.
    Richardson, T. L. & Jackson, G. A. Small phytoplankton and carbon export from the surface ocean. Science 315, 838–840 (2007).
    CAS  PubMed  Google Scholar 

    57.
    Blanc-Mathieu, R. et al. Viruses of the eukaryotic plankton are predicted to increase carbon export efficiency in the global sunlit ocean. Preprint at bioRxiv https://doi.org/10.1101/710228 (2019).

    58.
    Iversen, M. H. & Ploug, H. Ballast minerals and the sinking carbon flux in the ocean: carbon-specific respiration rates and sinking velocity of marine snow aggregates. Biogeosciences 7, 2613–2624 (2010).
    CAS  Google Scholar 

    59.
    Alberti, A. et al. Viral to metazoan marine plankton nucleotide sequences from the Tara Oceans expedition. Sci. Data 4, 170093 (2017).
    CAS  PubMed  PubMed Central  Google Scholar 

    60.
    Eddy, S. R. Profile hidden Markov models. Bioinformatics 14, 755–763 (1998).
    CAS  PubMed  Google Scholar 

    61.
    Katoh, K. & Standley, D. M. MAFFT multiple sequence alignment software version 7: improvements in performance and usability. Mol. Biol. Evol. 30, 772–780 (2013).
    CAS  PubMed  PubMed Central  Google Scholar 

    62.
    Stamatakis, A. RAxML-VI-HPC: maximum likelihood-based phylogenetic analyses with thousands of taxa and mixed models. Bioinformatics 22, 2688–2690 (2006).
    CAS  PubMed  Google Scholar 

    63.
    Koonin, E. V. & Yutin, N. Multiple evolutionary origins of giant viruses. F1000Res. 7, 1840 (2018).

    64.
    Yoshikawa, G. et al. Medusavirus, a novel large DNA virus discovered from hot spring water. J. Virol. 93, e02130–18 (2019).
    CAS  PubMed  PubMed Central  Google Scholar 

    65.
    Longhurst, A. R. in Ecological Geography of the Sea 2nd edn (ed. Longhurst, A. R.) Ch. 6 (Academic Press, 2007).

    66.
    Letunic, I. & Bork, P. Interactive tree of life (iTOL) v3: an online tool for the display and annotation of phylogenetic and other trees. Nucleic Acids Res. 44, W242–W245 (2016).
    CAS  PubMed  PubMed Central  Google Scholar 

    67.
    Besemer, J., Lomsadze, A. & Borodovsky, M. GeneMarkS: a self-training method for prediction of gene starts in microbial genomes. Implications for finding sequence motifs in regulatory regions. Nucleic Acids Res. 29, 2607–2618 (2001).
    CAS  PubMed  PubMed Central  Google Scholar 

    68.
    Keeling, P. J. et al. The Marine Microbial Eukaryote Transcriptome Sequencing Project (MMETSP): illuminating the functional diversity of eukaryotic life in the oceans through transcriptome sequencing. PLoS Biol. 12, e1001889 (2014).
    PubMed  PubMed Central  Google Scholar 

    69.
    Jain, C., Rodriguez, R. L., Phillippy, A. M., Konstantinidis, K. T. & Aluru, S. High throughput ANI analysis of 90K prokaryotic genomes reveals clear species boundaries. Nat. Commun. 9, 5114 (2018).
    PubMed  PubMed Central  Google Scholar 

    70.
    Anderson, M. J. A new method for non-parametric multivariate analysis of variance. Austral. Ecol. 26, 32–46 (2001).
    Google Scholar 

    71.
    de Vargas, C. et al. Ocean plankton. Eukaryotic plankton diversity in the sunlit ocean. Science 348, 1261605 (2015).
    PubMed  Google Scholar 

    72.
    Benjamini, Y. & Hochberg, Y. Controlling the false discovery rate: a practical and powerful approach to multiple testing. J. R. Stat. Soc. B 57, 289–300 (1995).
    Google Scholar  More

  • in

    Role of C4 carbon fixation in Ulva prolifera, the macroalga responsible for the world’s largest green tides

    1.
    Raven, J. A. Carbon dioxide fixation. in Algal Physiology and Biochemistry (ed Stewart, W. D. P.) 434–455 (Blackwell Scientific Publications, Oxford, 1974).
    2.
    Cooper, T. G., Filmer, D., Wishnick, M. & Lane, M. D. The active species of “CO2” utilized by ribulose diphosphate carboxylase. J. Biol. Chem. 244, 1081–1083 (1969).
    CAS  PubMed  Google Scholar 

    3.
    Badger, M. R. et al. The diversity and coevolution of Rubisco, plastids, pyrenoids, and chloroplast-based CO2-concentrating mechanisms in algae. Can. J. Bot. 76, 1052–1071 (1998).
    CAS  Google Scholar 

    4.
    Burkhardt, S., Amoroso, G., Riebesell, U. & Sültemeyerl, D. CO2 and HCO3− uptake in marine diatoms acclimated to different CO2 concentrations. Limnol. Oceanogr. 46, 1378–1391 (2001).
    CAS  Article  Google Scholar 

    5.
    Giordano, M., Beardall, J. & Raven, J. A. CO2 concentrating mechanisms in algae: mechanisms, environmental modulation, and evolution. Ann. Rev. Plant Biol. 56, 99–131 (2005).
    CAS  Article  Google Scholar 

    6.
    Reiskind, J. B. & Bowes, G. The role of phosphoenolpyruvate carboxykinase in a marine macroalga with C4-like photosynthetic characteristics. Proc. Natl Acad. Sci. USA 88, 2883–2887 (1991).
    CAS  Article  Google Scholar 

    7.
    Reinfelder, J. R., Kraepiel, A. M. L. & Morel, F. M. M. Unicellular C4 photosynthesis in a marine diatom. Nature 407, 996–999 (2000).
    CAS  Article  Google Scholar 

    8.
    Reinfelder, J. R., Milligan, A. J. & Morel, F. M. M. The role of the C4 pathway in carbon accumulation and fixation in a marine diatom. Plant Physiol. 135, 2106–2111 (2004).
    CAS  Article  Google Scholar 

    9.
    Shao, H. et al. Responses of Ottelia alismoides, an aquatic plant with three CCMs, to variable CO2 and light. J. Exp. Bot. 68, 3985–3995 (2017).
    CAS  Article  Google Scholar 

    10.
    Han, S. et al. Structural basis for C4 photosynthesis without Kranz anatomy in leaves of the submerged freshwater plant Ottelia alismoides. Ann. Bot. 125, 869–879 (2020).
    Article  Google Scholar 

    11.
    Liu, D., Keesing, J. K., Xing, Q. & Shi, P. Worldʼs largest macroalgal bloom caused by expansion of seaweed aquaculture in China. Mar. Poll. Bull. 58, 888–895 (2009).
    CAS  Article  Google Scholar 

    12.
    Keesing, J. K., Liu, D. Y., Fearns, P. & Garcia, R. Inter-and intra-annual patterns of Ulva prolifera green tides in the Yellow Sea during 2007–2009, their origin and relationship to the expansion of coastal seaweed aquaculture in China. Mar. Poll. Bull. 62, 1169–1182 (2011).
    CAS  Article  Google Scholar 

    13.
    Liu, D. et al. The worldʼs largest macroalgal bloom in the Yellow Sea, China: formation and implications. Estuar. Coast. Shelf Sci. 129, 2–10 (2013).
    CAS  Article  Google Scholar 

    14.
    Zhang, J. H., Kim, J. K., Yarish, C. & He, P. The expansion of Ulva prolifera O.F. Müller macroalgal blooms in the Yellow Sea, PR China, through asexual reproduction. Mar. Poll. Bull. 104, 101–106 (2016).
    CAS  Article  Google Scholar 

    15.
    Xu, J. et al. Evidence of coexistence of C3 and C4 photosynthetic pathways in a green-tide-forming alga, Ulva prolifera. PLoS ONE 7, e37438 (2012).
    CAS  Article  Google Scholar 

    16.
    Valiela, I., Liu, D., Lloret, J., Chenoweth, K. & Hanacek, D. Stable isotopic evidence of nitrogen sources and C4 metabolism driving the worldʼs largest macroalgal green tides in the Yellow Sea. Sci. Rep. 8, 17437 (2018).
    Article  Google Scholar 

    17.
    Hatch, M. D. C4 photosynthesis: a unique blend of modified biochemistry, anatomy and ultrastructure. Biochim. Biophys. Acta Rev. Bioenerg. 895, 81–106 (1987).
    CAS  Article  Google Scholar 

    18.
    Haimovich-Dayan, M. et al. The role of C4 metabolism in the marine diatom Phaeodactylum tricornutum. N. Phytol. 197, 177–185 (2013).
    CAS  Article  Google Scholar 

    19.
    OʼLeary, M. H. Carbon isotopes in photosynthesis. BioScience 38, 328–336 (1988).
    Article  Google Scholar 

    20.
    Fry, B. 13C/12C fractionation by marine diatoms. Mar. Ecol. Prog. Ser. 134, 283–294 (1996).
    CAS  Article  Google Scholar 

    21.
    Carvalho, M. C. & Eyre, B. D. Carbon stable isotope discrimination during respiration in three seaweed species. Mar. Ecol. Prog. Ser. 437, 41–49 (2011).
    CAS  Article  Google Scholar 

    22.
    Cornwall, C. E. et al. Inorganic carbon physiology underpins macroalgal responses to elevated CO2. Sci. Rep. 7, 46297 (2017).
    CAS  Article  Google Scholar 

    23.
    Carvalho, M. C., Hayashizaki, K. & Ogawa, H. Short-term measurement of carbon stable isotope discrimination in photosynthesis and respiration by aquatic macrophytes, with marine macroalgal examples. J. Phycol. 45, 761–770 (2009).
    Article  Google Scholar 

    24.
    Raven, J. A., Giordano, M., Beardall, J. & Maberly, S. C. Algal evolution in relation to atmospheric CO2: carboxylases, carbon-concentrating mechanisms and carbon oxidation cycles. Philos. Trans. Roy. Soc. B 367, 493–507 (2012).
    CAS  Article  Google Scholar 

    25.
    Roberts, K., Granum, E., Leegood, R. C. & Raven, J. A. C3 and C4 pathways of photosynthetic carbon assimilation in marine diatoms are under genetic, not environmental control. Plant Physiol. 145, 230–235 (2007).
    CAS  Article  Google Scholar 

    26.
    Roberts, K., Granum, E., Leegood, R. C. & Raven, J. A. Carbon acquisition by diatoms. Photosynth. Res. 93, 79–88 (2007).
    CAS  Article  Google Scholar 

    27.
    Beardall, J. & Giordano, M. Ecological implications of microalgal and cyanobacterial CO2 concentrating mechanisms, and their regulation. Funct. Plant Biol. 29, 335–347 (2002).
    CAS  Article  Google Scholar 

    28.
    Palmqvist, K., Yu, J. W. & Badger, M. R. Carbonic anhydrase activity and inorganic carbon fluxes in low- and high-Ci cells of Chlamydomonas reinhardtü and Scenedesmus obliquus. Physiol. Plant. 90, 537–547 (1994).
    CAS  Article  Google Scholar 

    29.
    Reinfelder, J. R. Carbon concentrating mechanisms in eukaryotic marine phytoplankton. Ann. Rev. Mar. Sci. 3, 291–315 (2011).
    Article  Google Scholar 

    30.
    Beardall, J. Effects of photon flux density on the CO2-concentrating mechanism of the cyanobacterium Anabaena variabilis. J. Plankton Res. 13, 133–141 (1991).
    Google Scholar 

    31.
    Kargul, J. & Barber, J. Photosynthetic acclimation: structural reorganization of light harvesting antenna-role of redox-dependent phosphorylation of major and minor chlorophyll a/b binding proteins. FEBS J. 275, 1056–1068 (2008).
    CAS  Article  Google Scholar 

    32.
    Zhao, X., Tang, X., Zhang, H., Qu, T. & Wang, Y. Photosynthetic adaptation strategy of Ulva prolifera floating on the sea surface to environmental changes. Plant Physiol. Biochem. 107, 116–125 (2016).
    CAS  Article  Google Scholar 

    33.
    Xu, J. & Gao, K. Future CO2-induced ocean acidification mediates the physiological performance of a green tide alga. Plant Physiol. 160, 1762–1769 (2012).
    CAS  Article  Google Scholar 

    34.
    Li, J., Sun, X. & Zheng, S. In situ study on photosynthetic characteristics of phytoplankton in the Yellow Sea and East China Sea in summer 2013. J. Mar. Syst. 160, 94–106 (2016).
    Article  Google Scholar 

    35.
    Qin, B. Y., Tao, Z., Li, Z. W. & Yang, X. F. Seasonal changes and controlling factors of sea surface pCO2 in the Yellow Sea. IOP Conf. Ser. 17, 012025 (2014).
    Article  Google Scholar 

    36.
    Krause-Jensen, D., McGlathery, K., Rysgaard, S. & Christensen, P. B. Production within dense mats of the filamentous macroalga Chaetomorpha linum in relation to light and nutrient availability. Mar. Ecol. Prog. Ser. 134, 207–216 (1996).
    Article  Google Scholar 

    37.
    Keesing, J. K., Liu, D., Shi, Y. & Wang, Y. Abiotic factors influencing biomass accumulation of green tide causing Ulva spp. on Pyropia culture rafts in the Yellow Sea, China. Mar. Poll. Bull. 105, 88–97 (2016).
    CAS  Article  Google Scholar 

    38.
    Pierrot, D., Lewis, E. & Wallace, D. W. R. MS Excel Program Developed for CO2System Calculations. ORNL/CDIAC−105a. (Carbon Dioxide Information Analysis Center, Oak Ridge National Laboratory, US Department of Energy, Oak Ridge, Tennessee, 2006).

    39.
    Wilbur, K. M. & Anderson, N. G. Electronic and colorimetric determination of carbonic anhydrase. J. Biol. Chem. 176, 147–154 (1948).
    CAS  PubMed  Google Scholar  More

  • in

    Functional groups of rotifers and an exotic species in a tropical shallow lake

    Our study on a shallow tropical lake identified fluctuations and interactions of rotifer assemblage, based on trophic guild analysis, comparable to those found in temperate lakes. We also highlighted that trophic guilds, based on trophi structure, has broad application to both temperate and tropical water bodies, which shows the universality of this approach. In addition, our analysis on the interaction between the exotic species Kellicottia bostoniensis and other microphagous rotifers were sufficient to demonstrate that it does not have invasive characteristics.
    The Guild Ratio (GR), based on the density of raptorial and microphagous functional groups of rotifers, revealed to be an appropriate tool in the evaluation of possible interactions with other planktonic groups, as well as in the evaluation of temporal changes of functional groups. Unlike Obertegger and Manca5 and Obertegger et al.11, we used the database of densities of functional groups instead of biomass, according to Smith et al.10. The significant correlation between GR and cladocerans showed that GR, based on number of individuals, indicated interaction between microphagous rotifers and cladocerans like that reported by Obertegger and Manca5 and Obertegger et al.11 in temperate lakes, based on biomass (GR′). The relationship GR-cladocerans showed a similar trend with monthly and bimonthly data, indicating its adequacy even when data are less frequently obtained, which agrees with results from Obertegger et al.11 in Lake Washington, USA. Given this point, our findings reinforce that other studies may be designed with lower sampling frequency and certainly achieve satisfactory results, allowing a cheaper logistic planning in further research.
    The significant positive correlation between GR and cladoceran densities indicates competition between the groups, corroborating the initial hypothesis. The predominance of microphagous rotifers (i.e. lower GR values) when cladoceran densities decreased, represented mainly by Daphnia gessneri (max. size 1.22 mm) and Ceriodaphnia richardi (max. 0.70 mm)29, is a sign of competition between both groups. Therefore, when cladocerans were more abundant during the cool season (May–September), the raptorial rotifers species predominated, which coexist with filtering cladocerans, similarly to results obtained by Obertegger et al.11, in lakes Washington (USA) and Caldonazzo (Italy). Exploitative competition between cladocerans and rotifers, particularly microphagous species, which occupy a similar niche, may even lead to competitive exclusion of rotifers. Herbivorous cyclopoid nauplii could compete with rotifers and make our analysis meaningful, however there was no evidence of interaction between them and microphagous rotifers, which does not support our hypothesis.
    Several studies report the competitive superiority of cladocerans4,30,31. The inferiority of rotifers may be partly due to lower clearance rate (1–10 µL ind.−1 h−1) than cladocerans (10–150 µL ind.−1 h−1) as well as a more limited size food range (ca. 4–17 µm)1. The maximum clearance rate of cladocerans may be much higher than that already mentioned by Nogrady et al.1 and dependent on various factors such as temperature, food concentration and body size9. Rotifer populations may be suppressed by more efficient cladocerans through exploitative competition, although rotifers may also suffer effects from interference competition32,33. Cladocerans larger than 1.2 mm may suppress small rotifer populations by interference34. In Lake Monte Alegre, cladoceran species are relatively small and probably exploitative competition is the most important interaction in this community.
    The increase in algal carbon and temperature in the Lake Monte Alegre during the warm season (October–April) was not followed by increase of the total rotifer densities, indicating a preponderant influence of another factor. However, as mentioned above, there was an increase in the abundance of microphagous species and a decrease in densities of raptorial species in this season. Raptorial species, particularly large species (e.g., Synchaeta spp.), prefer larger items ( > 50 µm) such as algae, ciliates and other rotifers13. Species of the genus Ascomorpha feed on dinophytes, such as Peridinium and Ceratium, which are grasped, and the content sucked1. In Lake Monte Alegre, an increase of Peridinium in the fall and winter (March–September) was already reported35,36, which would benefit some raptorial rotifers, including Ascomorpha. However, in this study in 2011–2012, dinophytes were not abundant (L.H.S. Silva, unpublished data), representing about 1.4% of the total phytoplankton density, chlorophytes predominating, increasing the contribution of cyanobacteria in the warm season. Therefore, higher densities of raptorial species in the cool season were unrelated to phytoplankton composition and, on the other hand, higher temperatures in the warm season did not favor the increase in populations of this group.
    The distribution of organisms can be a strategy to avoid competition and predation. In Lake Monte Alegre, several species of Colotheca, Keratella, Polyarthra, and Trichocerca occupied the entire water column in the cool season (A. J. Meschiatti et al. unpublished data). In the warm season, species of these genera, in addition to Brachionus, Hexarthra and Ptygura were limited to the oxygenated layer, avoiding the anoxic hypolimnion. Another feature of the vertical distribution of rotifers in this lake was the frequent occupation of the most superficial layer, even during the day, which is rarely occupied by cladocerans37, reducing overlap and possible interactions with other organisms.
    Direct predation on rotifers by chaoborid larvae is low in Lake Monte Alegre, representing 9% of the prey number for instars I and II, 4% for instar III, not being preyed on by instar IV38. In an experiment with mesocosm in this lake, no predation effect by Chaoborus larvae on Keratella spp. densities was detected39. Zooplankton predation by fish in the lake is mainly exerted by adult of the exotic cichlid Tilapia rendalli (current name Coptodon rendalli), a pump filter-feeder40, which collects organisms with lower evasion to the filtering current, which, however, are not abundant in the lake. Although Keratella sp. was not rejected by tilápia, its consumption is low by this fish species, whose predation is higher on cladocerans40.
    Temporal variations of functional groups of rotifers in Lake Monte Alegre indicated the indirect effect of cladoceran predation by invertebrates, such as Chaoborus brasiliensis larvae and the aquatic mite, Krendowskia sp., in 2011–201241. Predation pressure by invertebrates is generally higher in the warm season when their populations increased, resulting in declining cladoceran populations29,41. Consequently, there is a decrease in exploitative competition by cladocerans and the possibility of competitive exclusion when resources are limiting. Predation by invertebrates has emerged as the main structuring factor of the lake zooplankton29, and this study highlights the indirect effect of this factor on rotifers.
    The high frequency of occurrence of the exotic species Kellicottia bostoniensis in the present study, combined with the weekly sampling strategy adopted, demonstrates the great persistence capacity of this species in the environment, with rare occasions when it is excluded from the water column. This feature indicates success of the exotic species in the new habitat22. The characteristics of an invasive species are not always scientifically proven, and many failures are not reported in publications, introducing a bias in evaluating the success of exotic species19. The presence of this exotic species in Lake Monte Alegre had not been detected in previous studies conducted in the 1980s42,43. Although very common, according to Josefsson and Andersson18 it is not invasive in the lake, as it did not constitute a threat to the local community of rotifers. It does not outcompete other microphagous rotifers and, on the contrary, there is evidence of being competitively inferior, as its population decreased in periods of dominance of other microphagous species. A laboratory experiment showed that K. bostoniensis had no effect on zooplankton composed of native copepods, cladocerans, and rotifers, affecting only ciliates, which are part of its food resources23, reinforcing the idea that it does not constitute a threat to the whole planktonic community.
    This exotic species was caught in lakes from River Doce valley44 and in Furnas Reservoir45, in Brazil, at lower densities than those of Lake Monte Alegre (max. 127 ind. L−1). The vertical distribution in Nado Reservoir, located in Brazil, showed its highest abundance in the anoxic hypolimnion, on a diel cycle46, indicating resistance of this species to adverse conditions. In some Swedish lakes, the exotic species K. bostoniensis was also found in deeper layers18, as well as in Mirror Lake, United States, where the production of K. bostoniensis, a native species, was higher at the bottom47. Apparently, this species maintains similar distribution in its original habitat and a new habitat. The ability to occupy lower layers, often anoxic, where few microcrustaceans and rotifers are found, would lower negative interactions with other populations and even constitutes a defense strategy against predation by most invertebrates and filtering fish48. More

  • in

    Wrong-way migrations of benthic species driven by ocean warming and larval transport

    1.
    Perry, A. L., Low, P. J., Ellis, J. R. & Reynolds, J. D. Climate change and distribution shifts in marine fishes. Science 308, 1912–1915 (2005).
    CAS  Google Scholar 
    2.
    Dulvy, N. K. et al. Climate change and deepening of the North Sea fish assemblage: a biotic indicator of warming seas. J. Appl. Ecol. 45, 1029–1039 (2008).
    Google Scholar 

    3.
    Sunday, J. M., Bates, A. E. & Dulvy, N. K. Thermal tolerance and the global redistribution of animals. Nat. Clim. Change 2, 686–690 (2012).
    Google Scholar 

    4.
    Pinsky, M. L., Worm, B., Fogarty, M. J., Sarmiento, J. L. & Levin, S. A. Marine taxa track local climate velocities. Science 341, 1239–1242 (2013).
    CAS  Google Scholar 

    5.
    Hutchins, L. W. The bases for temperature zonation in geographical distribution. Ecol. Monogr. 17, 325–335 (1947).
    Google Scholar 

    6.
    Pineda, J., Reyns, N. B. & Starczak, V. R. Complexity and simplification in understanding recruitment in benthic populations. Pop. Ecol. 51, 17–32 (2009).
    Google Scholar 

    7.
    Morgan, S. G., Shanks, A. L., MacMahan, J. H., Reniers, A. J. H. M. & Feddersen, F. Planktonic subsidies to surf-zone and intertidal communities. Annu. Rev. Mar. Sci. 10, 345–369 (2018).
    Google Scholar 

    8.
    Gaylord, B. & Gaines, S. D. Temperature or transport? Range limits in marine species mediated solely by flow. Am. Nat. 155, 769–789 (2000).
    Google Scholar 

    9.
    García Molinos, J., Burrows, M. T. & Poloczanska, E. S. Ocean currents modify the coupling between climate change and biogeographical shifts. Sci. Rep. 7, 1332 (2017).
    Google Scholar 

    10.
    Kumagai, N. H. et al. Ocean currents and herbivory drive macroalgae-to-coral community shift under climate warming. Proc. Natl Acad. Sci. USA 115, 8990–8995 (2017).
    Google Scholar 

    11.
    Harley, C. D. G. et al. The impacts of climate change in coastal marine systems. Ecol. Lett. 9, 228–241 (2006).
    Google Scholar 

    12.
    Strathmann, M. F. Reproduction and Development of Marine Invertebrates of the Northern Pacific Coast (Univ. of Washington Press, 1987).

    13.
    Thorson, G. Reproductive and larval ecology of marine bottom invertebrates. Biol. Rev. 25, 1–45 (1950).
    CAS  Google Scholar 

    14.
    Olive, P. J. W. Annual breeding cycles in marine invertebrates and environmental temperature: probing the proximate and ultimate causes of reproductive synchrony. J. Therm. Biol. 20, 79–90 (1995).
    Google Scholar 

    15.
    Philippart, C. J. M. et al. Climate-related changes in recruitment of the bivalve Macoma balthica. Limnol. Oceanogr. 48, 2171–2185 (2003).
    Google Scholar 

    16.
    Asch, R. G. Climate change and decadal shifts in the phenology of larval fishes in the California Current Ecosystem. Proc. Natl Acad. Sci. USA 112, E4065–E4074 (2015).
    CAS  Google Scholar 

    17.
    Shearman, R. K. & Lentz, S. J. Long-term sea surface temperature variability along the U.S. East Coast. J. Phys. Oceanogr. 40, 1004–1017 (2010).
    Google Scholar 

    18.
    Saba, V. S. et al. Enhanced warming of the northwest Atlantic Ocean under climate change. J. Geophys. Res. Oceans 121, 118–132 (2016).
    Google Scholar 

    19.
    Castelao, R., Glenn, S. & Schofield, O. Temperature, salinity, and density variability in the central Middle Atlantic Bight. J. Geophys. Res. 115, C10005 (2010).
    Google Scholar 

    20.
    Richaud, B., Kwon, Y.-O., Joyce, T. M., Fratantoni, P. S. & Lentz, S. J. Surface and bottom temperature and salinity climatology along the continental shelf off the Canadian and U.S. East Coasts. Cont. Shelf Res. 124, 165–181 (2016).
    Google Scholar 

    21.
    Roughgarden, J., Gaines, S. & Possingham, H. Recruitment dynamics in complex life cycles. Science 241, 1460–1466 (1988).
    CAS  Google Scholar 

    22.
    Connolly, S. R., Menge, B. A. & Roughgarden, J. A latitudinal gradient in recruitment of intertidal invertebrates in the northeast Pacific Ocean. Ecology 82, 1799–1813 (2001).
    Google Scholar 

    23.
    Ma, H., Grassle, J. P. & Chant, R. J. Vertical distribution of bivalve larvae along a cross-shelf transect during summer upwelling and downwelling. Mar. Biol. 149, 1123–1138 (2006).
    Google Scholar 

    24.
    Shanks, A. L. & Brink, L. Upwelling, downwelling, and cross-shelf transport of bivalve larvae: test of a hypothesis. Mar. Ecol. Prog. Ser. 302, 1–12 (2005).
    Google Scholar 

    25.
    Drake, P. T., Edwards, C. A., Morgan, S. G. & Dever, E. P. Influence of larval behavior on transport and population connectivity in a realistic simulation of the California Current System. J. Mar. Res. 71, 317–350 (2013).
    Google Scholar 

    26.
    Shanks, A. L. & Morgan, S. G. Testing the intermittent upwelling hypothesis: upwelling, downwelling, and subsidies to the intertidal zone. Ecol. Monogr. 88, 22–35 (2018).
    Google Scholar 

    27.
    Menge, B. A. & Menge, D. N. L. Testing the intermittent upwelling hypothesis: comment. Ecology 100, e02476 (2019).
    Google Scholar 

    28.
    Lentz, S. J. Seasonal variations in the circulation over the Middle Atlantic Bight continental shelf. J. Phys. Oceanogr. 38, 1486–1500 (2008).
    Google Scholar 

    29.
    Gong, D., Kohut, J. T. & Glenn, S. M. Seasonal climatology of wind-driven circulation on the New Jersey Shelf. J. Geophys. Res. 115, C04006 (2010).
    Google Scholar 

    30.
    Whitney, M. M. & Garvine, R. W. Wind influence on a coastal buoyant outflow. J. Geophys. Res. 110, C03014 (2005).
    Google Scholar 

    31.
    Largier, J. L. Considerations in estimating larval dispersal distances from oceanographic data. Ecol. Appl. 13, S71–S89 (2003).
    Google Scholar 

    32.
    Byers, J. E. & Pringle, J. M. Going against the flow: retention, range limits and invasions in advective environments. Mar. Ecol. Prog. Ser. 313, 27–41 (2006).
    Google Scholar 

    33.
    Fuchs, H. L., Gerbi, G. P., Hunter, E. J. & Christman, A. J. Waves cue distinct behaviors and differentiate transport of congeneric snail larvae from sheltered versus wavy habitats. Proc. Natl Acad. Sci. USA 115, E7532–E7540 (2018).
    CAS  Google Scholar 

    34.
    Sunday, J. M., Bates, A. E. & Dulvy, N. K. Global analysis of thermal tolerance and latitude in ectotherms. Proc. R. Soc. B 278, 1823–1830 (2011).
    Google Scholar 

    35.
    Wilson, R. J. et al. Changes to the elevational limits and extent of species ranges associated with climate change. Ecol. Lett. 8, 1138–1146 (2005).
    Google Scholar 

    36.
    Freeman, B. G., Scholer, M. N., Ruiz-Guttierrez, V. & Fitzpatrick, J. W. Climate change causes upslope shifts and mountaintop extirpations in a tropical bird community. Proc. Natl Acad. Sci. USA 115, 11982–11987 (2018).
    CAS  Google Scholar 

    37.
    Free, C. M. et al. Impacts of historical warming on fisheries production. Science 363, 979–983 (2019).
    CAS  Google Scholar 

    38.
    Young, I. R. & Ribal, A. Multiplatform evaluation of global trends in wind speed and wave height. Science 364, 548–552 (2019).
    CAS  Google Scholar 

    39.
    Ocean Biogeographic Information System (Intergovernmental Oceanographic Commission of UNESCO, 2018); www.iobis.org

    40.
    Tingley, M. W. & Beissinger, S. R. Detecting range shifts from historical species occurrences: new perspectives on old data. Trends Ecol. Evol. 24, 625–633 (2009).
    Google Scholar 

    41.
    Wigley, R. L. & Theroux, R. B. Atlantic Continental Shelf and Slope of the United States; Macrobenthic Invertebrate Fauna of the Middle Atlantic Bight Region; Faunal Composition and Quantitative Distribution Professional Paper No. 529-N (USGS, 1981).

    42.
    Amante, C. & Eakins, B. W. ETOPO1 1 Arc-Minute Global Relief Model: Procedures, Data Sources and Analysis Technical Memorandum NESDIS NGDC-24 (National Geophysical Data Center, NOAA, 2009); https://doi.org/10.7289/V5C8276M

    43.
    Loarie, S. R. et al. The velocity of climate change. Nature 462, 1052–1057 (2009).
    CAS  Google Scholar 

    44.
    Kang, D. & Curchitser, E. N. Gulf stream eddy characteristics in a high-resolution ocean model. J. Geophys. Res. Oceans 118, 4474–4487 (2013).
    Google Scholar 

    45.
    Narváez, D. A. et al. Long-term dynamics in Atlantic surfclam (Spisula solidissima) populations: the role of bottom water temperature. J. Mar. Sys. 141, 136–148 (2015).
    Google Scholar 

    46.
    Chen, Z., Curchitser, E., Chant, R. & Kang, D. Seasonal variability of the cold pool over the Mid-Atlantic Bight continental shelf. J. Geophys. Res. Oceans 123, 8203–8226 (2018).
    Google Scholar 

    47.
    D’Errico, J. inpaint_nans (MATLAB Central File Exchange, 2019); https://www.mathworks.com/matlabcentral/fileexchange/4551-inpaint_nans

    48.
    Gypaets trigradient2 (GitHub, 2020); https://www.github.com/Gypaets/trigradient2

    49.
    Yeager, S. & NCAR Staff The Climate Data Guide: COREv2 Air-Sea Surface Fluxes (UCAR, 2016); https://climatedataguide.ucar.edu/climate-data/corev2-air-sea-surface-fluxes

    50.
    National Water Information System Data (USGS, 2016); http://waterdata.usgs.gov/nwis/

    51.
    Lentz, S. J. Observations and a model of the mean circulation over the Middle Atlantic Bight continental shelf. J. Phys. Oceanogr. 38, 1203–1221 (2008).
    Google Scholar 

    52.
    Shanks, A. L. Pelagic larval duration and dispersal distance revisited. Biol. Bull. 216, 373–385 (2009).
    Google Scholar  More

  • in

    Effects of environmental factors on microbiota of fruits and soil of Coffea arabica in Brazil

    1.
    USDA. Coffee Annual Coffee. https://gain.fas.usda.gov/RecentGAINPublications/LOCK-UPREPORT_Pretoria_SouthAfrica-Republicof_10-29-2009.pdf (2019).
    2.
    Carvalho Guarçoni, R. et al. Influence of solar radiation and wet processing on the final quality of Arabica coffee. J. Food Qual. https://doi.org/10.1155/2018/6408571 (2018).
    Article  Google Scholar 

    3.
    Iamanaka, B. T. et al. Reprint of ‘The mycobiota of coffee beans and its influence on the coffee beverage’. Food Res. Int. 61, 33–38. https://doi.org/10.1016/j.foodres.2014.05.023 (2014).
    Article  Google Scholar 

    4.
    Barnes, E. C., Jumpathong, J., Lumyong, S., Voigt, K. & Hertweck, C. Daldionin, an unprecedented binaphthyl derivative, and diverse polyketide congeners from a fungal orchid endophyte. Chem. A Eur. J. 22, 4551–4555. https://doi.org/10.1002/chem.201504005 (2016).
    Article  CAS  Google Scholar 

    5.
    Descroix, F. & Snoeck, J. Environmental factors suitable for coffee cultivation. In Coffee: Growing, Processing, Sustainable Production 164–177, https://doi.org/10.1002/9783527619627.ch6 (2008).

    6.
    De Bruyn, F. et al. Exploring the impacts of postharvest processing on the microbiota and metabolite profiles during green coffee bean production. Am. Soc. Microbiol. https://doi.org/10.1128/AEM.02398-16 (2016).
    Article  Google Scholar 

    7.
    Hamdouche, Y. et al. Discrimination of post-harvest coffee processing methods by microbial ecology analyses. Food Control 65, 112–120. https://doi.org/10.1016/j.foodcont.2016.01.022 (2016).
    Article  CAS  Google Scholar 

    8.
    Zhao, Q. et al. Long-term coffee monoculture alters soil chemical properties and microbial communities. Sci. Rep. 8, 1–11. https://doi.org/10.1038/s41598-018-24537-2 (2018).
    ADS  Article  CAS  Google Scholar 

    9.
    Júnior, P. P. et al. Agroecological coffee management increases arbuscular mycorrhizal fungi diversity. PLoS ONE 14, 1–19. https://doi.org/10.1371/journal.pone.0209093 (2019).
    Article  CAS  Google Scholar 

    10.
    Melloni, R. et al. Sistemas Agroflorestais cafeeiro-araucária e seu efeito na microbiota do solo e seus processos. Ciência Florest. 28, 784–795. https://doi.org/10.5902/1980509832392 (2018).
    Article  Google Scholar 

    11.
    Oliveira, M. N. V. et al. Endophytic microbial diversity in coffee cherries of Coffea arabica from southeastern Brazil. Can. J. Microbiol. 59, 221–230. https://doi.org/10.1139/cjm-2012-0674 (2013).
    Article  PubMed  CAS  Google Scholar 

    12.
    Nasanit, R. & Satayawut, K. Microbiological study during coffee fermentation of Coffea arabica var chiangmai 80 in Thailand. Kasetsart J. Nat. Sci. 49, 32–41 (2015).
    CAS  Google Scholar 

    13.
    Evangelista, S. R. et al. Improvement of coffee beverage quality by using selected yeasts strains during the fermentation in dry process. Food Res. Int. 61, 183–195. https://doi.org/10.1016/j.foodres.2013.11.033 (2014).
    Article  CAS  Google Scholar 

    14.
    Pereira, G. V. D. M. et al. Potential of lactic acid bacteria to improve the fermentation and quality of coffee during on-farm processing. Int. J. Food Sci. Technol. 51, 1689–1695. https://doi.org/10.1111/ijfs.13142 (2016).
    Article  CAS  Google Scholar 

    15.
    Sahu, N., Duraisamy, V., Sahu, A., Lal, N. & K. Singh, S. Strength of microbes in nutrient cycling: A key to soil health. In Agriculturally Important Microbes for Sustainable Agriculture 69–86, https://doi.org/10.1007/978-981-10-5589-8_4 (2017).

    16.
    Zhang, S. J. et al. Following coffee production from cherries to cup: Microbiological and metabolomic analysis of wet processing of Coffea arabica. Appl. Environ. Microbiol. 85, 1–22. https://doi.org/10.1128/AEM.02635-18 (2019).
    Article  CAS  Google Scholar 

    17.
    Ramos, C. L. et al. Determination of dynamic characteristics of microbiota in a fermented beverage produced by Brazilian Amerindians using culture-dependent and culture-independent methods. Int. J. Food Microbiol. 140, 225–231. https://doi.org/10.1016/j.ijfoodmicro.2010.03.029 (2010).
    Article  PubMed  CAS  Google Scholar 

    18.
    Faoro, H. et al. Influence of soil characteristics on the diversity of bacteria in the Southern Brazilian Atlantic Forest. Appl. Environ. Microbiol. 76, 4744–4749. https://doi.org/10.1128/AEM.03025-09a (2010).
    Article  PubMed  PubMed Central  CAS  Google Scholar 

    19.
    Defelipo, B. V. & Ribeiro, A. C. Análise química do solo (metodologia). Bol. Extensão 28, 1–26 (1997).
    Google Scholar 

    20.
    Walters, W. et al. Improved bacterial 16S rRNA gene (V4 and V4–5) and fungal internal transcribed spacer marker gene primers for microbial community surveys. Am. Soc. Microbiol. https://doi.org/10.1128/msystems.00009-15 (2015).
    Article  Google Scholar 

    21.
    Pylro, V. S. et al. Data analysis for 16S microbial profiling from different benchtop sequencing platforms. J. Microbiol. Methods 107, 30–37. https://doi.org/10.1016/j.mimet.2014.08.018 (2014).
    Article  PubMed  CAS  Google Scholar 

    22.
    Edgar, R. C. UPARSE: Highly accurate OTU sequences from microbial amplicon reads. Nat. Methods 10, 996–998. https://doi.org/10.1038/nmeth.2604 (2013).
    Article  CAS  Google Scholar 

    23.
    Caporaso, J. G. et al. QIIME allows analysis of high-throughput community sequencing data. Nat. Methods 7, 335–336. https://doi.org/10.1038/nmeth.f.303 (2010).
    Article  PubMed  PubMed Central  CAS  Google Scholar 

    24.
    Edgar, R. C. UCHIME2: Improved chimera prediction for amplicon sequencing. BioRxiv https://doi.org/10.1101/074252 (2016).
    Article  Google Scholar 

    25.
    Quast, C. et al. The SILVA ribosomal RNA gene database project: Improved data processing and web-based tools. Nucleic Acids Res. 41, D590–D596. https://doi.org/10.1093/nar/gks1219 (2013).
    Article  PubMed  PubMed Central  CAS  Google Scholar 

    26.
    Lozupone, C., Lladser, M. E., Knights, D., Stombaugh, J. & Knight, R. UniFrac: An effective distance metric for microbial community comparison. ISME J. 5, 169–172. https://doi.org/10.1038/ismej.2010.133 (2011).
    Article  PubMed  Google Scholar 

    27.
    Edgar, R. C. Search and clustering orders of magnitude faster than BLAST. Bioinformatics 26, 2460–2461. https://doi.org/10.1093/bioinformatics/btq461 (2010).
    Article  PubMed  PubMed Central  CAS  Google Scholar 

    28.
    Bengtsson-Palme, J. et al. Improved software detection and extraction of ITS1 and ITS2 from ribosomal ITS sequences of fungi and other eukaryotes for analysis of environmental sequencing data. Methods Ecol. Evol. 4, 914–919. https://doi.org/10.1111/2041-210X.12073 (2013).
    Article  Google Scholar 

    29.
    Nilsson, R. H. et al. The UNITE database for molecular identification of fungi: Handling dark taxa and parallel taxonomic classifications. Nucleic Acids Res. 47, D259–D264. https://doi.org/10.1093/nar/gky1022 (2019).
    Article  PubMed  CAS  Google Scholar 

    30.
    Oksanen, J. et al. Community Ecology Package. 1–296, https://cran.r-project.org/web/packages/vegan/vegan.pdf (2019).

    31.
    R Core Team. R: A Language and Environment for Statistical Computing. https://www.r-project.org/ (2018).

    32.
    Borcard, D. et al. Canonical ordination. In Numerical Ecology with R 153–225, https://doi.org/10.1007/978-1-4419-7976-6_6 (2011).

    33.
    Gomes, D. G. E. et al. Bats perceptually weight prey cues across sensory systems when hunting in noise. Science 353, 1277–1280. https://doi.org/10.1126/science.aaf7934 (2016).
    ADS  Article  PubMed  CAS  Google Scholar 

    34.
    Friedman, J. & Alm, E. J. Inferring correlation networks from genomic survey data. PLOS Comput. Biol. 8, 1–11. https://doi.org/10.1371/journal.pcbi.1002687 (2012).
    Article  CAS  Google Scholar 

    35.
    Watts, S. C., Ritchie, S. C., Inouye, M. & Holt, K. E. FastSpar: Rapid and scalable correlation estimation for compositional data. Bioinformatics 35, 1064–1066. https://doi.org/10.1093/bioinformatics/bty734 (2019).
    Article  PubMed  CAS  Google Scholar 

    36.
    Csardi, G. & Nepusz, T. The igraph software package for complex network research. InterJournal Complex Syst 1695, 1–9 (2006).
    Google Scholar 

    37.
    Avelino, J. et al. Effects of slope exposure, altitude and yield on coffee quality in two altitude terroirs of Costa Rica, Orosi and Santa María de Dota. J. Sci. Food Agric. 85, 1869–1876. https://doi.org/10.1002/jsfa.2188 (2005).
    Article  CAS  Google Scholar 

    38.
    Wei, L., Wai, M., Curran, P., Yu, B. & Quan, S. Coffee fermentation and flavor—An intricate and delicate relationship. Food Chem. 185, 182–191. https://doi.org/10.1016/j.foodchem.2015.03.124 (2015).
    Article  CAS  Google Scholar 

    39.
    Fulthorpe, R., Martin, A. R. & Isaac, M. E. Root endophytes of coffee ( Coffea arabica): Variation across climatic gradients and relationships with functional traits. Phytobiomes J. 4, 27–39. https://doi.org/10.1094/PBIOMES-04-19-0021-R (2020).
    Article  Google Scholar 

    40.
    Chu, H. et al. Effects of slope aspects on soil bacterial and arbuscular fungal communities in a boreal forest in China. Pedosphere 26, 226–234. https://doi.org/10.1016/S1002-0160(15)60037-6 (2016).
    Article  Google Scholar 

    41.
    Karungi, J. et al. Elevation and cropping system as drivers of microclimate and abundance of soil macrofauna in coffee farmlands in mountainous ecologies. Appl. Soil Ecol. 132, 126–134. https://doi.org/10.1016/J.APSOIL.2018.08.003 (2018).
    Article  Google Scholar 

    42.
    Ferreira, W. P. M., Queiroz, D. M., Silvac, S. A., Tomaz, R. S. & Corrêa, P. C. Effects of the orientation of the mountainside, altitude and varieties on the quality of the coffee beverage from the “Matas de Minas” region, Brazilian Southeast. Am. J. Plant Sci. 7, 1291–1303. https://doi.org/10.4236/ajps.2016.78124 (2016).
    Article  Google Scholar 

    43.
    Velmourougane, K. Impact of organic and conventional systems of coffee farming on soil properties and culturable microbial diversity. Scientifica 1–9, 2016. https://doi.org/10.1155/2016/3604026 (2016).
    Article  CAS  Google Scholar 

    44.
    Siles, J. A. & Margesin, R. Abundance and diversity of bacterial, archaeal, and fungal communities along an altitudinal gradient in alpine forest soils: What are the driving factors?. Soil Microbiol. 72, 207–220. https://doi.org/10.1007/s00248-016-0748-2 (2016).
    Article  Google Scholar 

    45.
    Frank, A., Saldierna Guzmán, J. & Shay, J. Transmission of bacterial endophytes. Microorganisms 5, 70. https://doi.org/10.3390/microorganisms5040070 (2017).
    Article  PubMed Central  CAS  Google Scholar 

    46.
    Haile, M. & Kang, W. H. The role of microbes in coffee fermentation and their impact on coffee quality. J. Food Qual. 2019, 6. https://doi.org/10.1155/2019/4836709 (2019).
    Article  CAS  Google Scholar 

    47.
    Decazy, F. et al. Quality of different Honduran coffees in relation to several environments. J. Food Sci. 68, 2356–2361. https://doi.org/10.1111/j.1365-2621.2003.tb05772.x (2003).
    Article  CAS  Google Scholar 

    48.
    de Melo Pereira, G. V. et al. Conducting starter culture-controlled fermentations of coffee beans during on-farm wet processing: Growth, metabolic analyses and sensorial effects. Food Res. Int. 75, 348–356. https://doi.org/10.1016/j.foodres.2015.06.027 (2015).
    Article  PubMed  CAS  Google Scholar 

    49.
    Zhang, W. et al. Microbial diversity in two traditional bacterial douchi from Gansu province in northwest China using Illumina sequencing. PLoS ONE 13, 1–16. https://doi.org/10.1371/journal.pone.0194876 (2018).
    Article  CAS  Google Scholar 

    50.
    Tolessa, K., D’heer, J., Duchateau, L. & Boeckx, P. Influence of growing altitude, shade and harvest period on quality and biochemical composition of Ethiopian specialty coffee. J. Sci. Food Agric. 97, 2849–2857. https://doi.org/10.1002/jsfa.8114 (2017).
    Article  PubMed  CAS  Google Scholar 

    51.
    Batista, D. et al. Legitimacy and implications of reducing Colletotrichum kahawae to subspecies in plant pathology. Front. Plant Sci. 7, 1–9. https://doi.org/10.3389/fpls.2016.02051 (2017).
    Article  CAS  Google Scholar 

    52.
    Wei, Z. et al. Trophic network architecture of root-associated bacterial communities determines pathogen invasion and plant health. Nat. Commun. 6, 1–9. https://doi.org/10.1038/ncomms9413 (2015).
    ADS  Article  CAS  Google Scholar  More

  • in

    Environmental stability impacts the differential sensitivity of marine microbiomes to increases in temperature and acidity

    1.
    Hutchins DA, Fu F. Microorganisms and ocean global change. Nat Microbiol. 2017;2:17058.
    CAS  PubMed  Google Scholar 
    2.
    Shade A, Peter H, Allison SD, Baho DL, Berga M, Bürgmann H, et al. Fundamentals of microbial community resistance and resilience. Front Microbiol. 2012;3:417.
    PubMed  PubMed Central  Google Scholar 

    3.
    Allison SD, Martiny JBH. Resistance, resilience, and redundancy in microbial communities. Proc Natl Acad Sci USA. 2008;105:11512–9.
    CAS  Google Scholar 

    4.
    Eppley RW. Temperature and phytoplankton growth in the sea. Fish Bull. 1972;70:1063–85.
    Google Scholar 

    5.
    Hawkes CV, Keitt TH. Resilience vs. historical contingency in microbial responses to environmental change. Ecol Lett. 2015;18:612–25.
    PubMed  Google Scholar 

    6.
    Stegen JC, Bottos EM, Jansson JK. A unified conceptual framework for prediction and control of microbiomes. Curr Opin Microbiol. 2018;44:20–7.
    PubMed  Google Scholar 

    7.
    Kling JD, Lee MD, Fu F, Phan MD, Wang X, Qu P, et al. Transient exposure to novel high temperatures reshapes coastal phytoplankton communities. ISME J. 2020;14:413–24.
    CAS  PubMed  Google Scholar 

    8.
    Izem R, Kingsolver JG. Variation in continuous reaction norms: quantifying directions of biological interest. Am Naturalist. 2005;166:277–89.
    Google Scholar 

    9.
    Thomas MK, Kremer CT, Klausmeier CA, Litchman E. A global pattern of thermal adaptation in marine phytoplankton. Science. 2012;338:1085–8.
    CAS  PubMed  Google Scholar 

    10.
    Lomas M, Hopkinson B, Ryan JLD, Shi D, Xu Y, Morel F. Effect of ocean acidification on cyanobacteria in the subtropical North Atlantic. Aquat Microb Ecol. 2012;66:211–22.
    Google Scholar 

    11.
    Dutkiewicz S, Morris JJ, Follows MJ, Scott J, Levitan O, Dyhrman ST, et al. Impact of ocean acidification on the structure of future phytoplankton communities. Nat Clim Change. 2015;5:1002–6.
    CAS  Google Scholar 

    12.
    Hunt DE, Ward CS. A network-based approach to disturbance transmission through microbial interactions. Front Microbiol. 2015;6:1182. http://www.frontiersin.org/Journal/Abstract.aspx?s=53&name=aquatic_microbiology&ART_DOI=10.3389/fmicb.2015.01182.

    13.
    Hennon GM, Morris JJ, Haley ST, Zinser ER, Durrant AR, Entwistle E, et al. The impact of elevated CO2 on Prochlorococcus and microbial interactions with ‘helper’ bacterium Alteromonas. The ISME J. 2017;12:520–31.
    Google Scholar 

    14.
    von Scheibner M, Dörge P, Biermann A, Sommer U, Hoppe HG, Jürgens K. Impact of warming on phyto‐bacterioplankton coupling and bacterial community composition in experimental mesocosms. Environ Microbiol. 2014;16:718–33.
    Google Scholar 

    15.
    Toseland A, Daines SJ, Clark JR, Kirkham A, Strauss J, Uhlig C, et al. The impact of temperature on marine phytoplankton resource allocation and metabolism. Nat Clim Change. 2013;3:979–84.
    CAS  Google Scholar 

    16.
    Ward CS, Yung C-M, Davis KM, Blinebry SK, Williams TC, Johnson ZI, et al. Annual community patterns are driven by seasonal switching between closely related marine bacteria. ISME J. 2017;11:1412–22.
    PubMed  PubMed Central  Google Scholar 

    17.
    Johnson ZI, Zinser ER, Coe A, McNulty NP, Woodward EMS, Chisholm SW. Niche partitioning among Prochlorococcus ecotypes along ocean-scale environmental gradients. Science. 2006;311:1737–40.
    CAS  PubMed  Google Scholar 

    18.
    Fuhrman JA, Steele JA, Hewson I, Schwalbach MS, Brown MV, Green JL, et al. A latitudinal diversity gradient in planktonic marine bacteria. Proc Natl Acad Sci USA. 2008;105:7774–8.
    CAS  PubMed  PubMed Central  Google Scholar 

    19.
    Doo SS, Kealoha A, Andersson A, Cohen AL, Hicks TL, Johnson ZI, et al. The challenges of detecting and attributing ocean acidification impacts on marine ecosystems. ICES J Mar Sci. 2020. https://doi.org/10.1093/icesjms/fsaa094.

    20.
    Lindh MV, Riemann L, Baltar F, Romero‐Oliva C, Salomon PS, Granéli E, et al. Consequences of increased temperature and acidification on bacterioplankton community composition during a mesocosm spring bloom in the Baltic Sea. Environ Microbiol Rep. 2013;5:252–62.
    CAS  PubMed  Google Scholar 

    21.
    Roy A-S, Gibbons S, Schunck H, Owens S, Caporaso J, Sperling M, et al. Ocean acidification shows negligible impacts on high-latitude bacterial community structure in coastal pelagic mesocosms. Biogeosciences. 2013;10:555–66.
    Google Scholar 

    22.
    Oliver AE, Newbold LK, Whiteley AS, van der Gast CJ. Marine bacterial communities are resistant to elevated carbon dioxide levels. Environ Microbiol Rep. 2014;6:574–82.
    CAS  PubMed  Google Scholar 

    23.
    Newbold LK, Oliver AE, Booth T, Tiwari B, DeSantis T, Maguire M, et al. The response of marine picoplankton to ocean acidification. Environ Microbiol. 2012;14:2293–307.
    CAS  PubMed  Google Scholar 

    24.
    Bergen B, Endres S, Engel A, Zark M, Dittmar T, Sommer U, et al. Acidification and warming affect prominent bacteria in two seasonal phytoplankton bloom mesocosms. Environ Microbiol. 2016;18:4579–95.
    CAS  PubMed  Google Scholar 

    25.
    Bunse C, Lundin D, Karlsson CM, Akram N, Vila-Costa M, Palovaara J, et al. Response of marine bacterioplankton pH homeostasis gene expression to elevated CO2. Nat Clim Change. 2016;6:483–7.
    CAS  Google Scholar 

    26.
    Xia X, Wang Y, Yang Y, Luo T, Van Nostrand JD, Zhou J, et al. Ocean acidification regulates the activity, community structure, and functional potential of heterotrophic bacterioplankton in an oligotrophic gyre. J Geophys Res. 2019;124:1001–17.
    CAS  Google Scholar 

    27.
    Crawfurd KJ, Alvarez-Fernandez S, Mojica KD, Riebesell U, Brussaard CP. Alterations in microbial community composition with increasing fCO2: a mesocosm study in the eastern Baltic Sea. Biogeosciences. 2017;14:3831–49.
    CAS  Google Scholar 

    28.
    Johnson ZI, Wheeler BJ, Blinebry SK, Carlson CM, Ward CS, Hunt DE. Dramatic variability of the carbonate system at a temperate coastal ocean site (Beaufort, North Carolina, USA) is regulated by physical and biogeochemical processes on multiple timescales. PLoS ONE. 2013;8:e85117.
    PubMed  PubMed Central  Google Scholar 

    29.
    Wang Z, Juarez DL, Pan JF, Blinebry SK, Gronniger J, Clark JS, et al. Microbial communities across nearshore to offshore coastal transects are primarily shaped by distance and temperature. Environ Microbiol. 2019;21:3862–72.
    CAS  PubMed  Google Scholar 

    30.
    Dore JE, Lukas R, Sadler DW, Church MJ, Karl DM. Physical and biogeochemical modulation of ocean acidification in the central North Pacific. Proc Natl Acad Sci USA. 2009;106:12235–40.
    CAS  PubMed  Google Scholar 

    31.
    Giovannoni SJ, Thrash JC, Temperton B. Implications of streamlining theory for microbial ecology. ISME J. 2014;8:1553–65.
    PubMed  PubMed Central  Google Scholar 

    32.
    Caldeira K, Wickett ME. Anthropogenic carbon and ocean pH. Nature. 2003;425:365.
    CAS  PubMed  Google Scholar 

    33.
    Clayton TD, Byrne RH. Spectrophotometric seawater pH measurements: total hydrogen ion concentration scale calibration of m-cresol purple and at-sea results. Deep Sea Res Part I. 1993;40:2115–29.
    CAS  Google Scholar 

    34.
    Barber RT, Marra J, Bidigare RC, Codispoti LA, Halpern D, Johnson Z, et al. Primary productivity and its regulation in the Arabian Sea during 1995. Deep Sea Res Part II. 2001;48:1127–72.
    CAS  Google Scholar 

    35.
    Labasque T, Chaumery C, Aminot A, Kergoat G. Spectrophotometric Winkler determination of dissolved oxygen: re-examination of critical factors and reliability. Marine Chemistry. 2004;88:53–60.

    36.
    Johnson ZI, Shyam R, Ritchie AE, Mioni C, Lance VP, Murray JW, et al. The effect of iron-and light-limitation on phytoplankton communities of deep chlorophyll maxima of the western Pacific Ocean. J Mar Res. 2010;68:283–308.
    CAS  Google Scholar 

    37.
    Marie D, Partensky F, Jacquet S, Vaulot D. Enumeration and cell cycle analysis of natural populations of marine picoplankton by flow cytometry using the nucleic acid stain SYBR Green I. Appl Environ Microbiol. 1997;63:186–93.
    CAS  PubMed  PubMed Central  Google Scholar 

    38.
    Parada AE, Needham DM, Fuhrman JA. Every base matters: assessing small subunit rRNA primers for marine microbiomes with mock communities, time series and global field samples. Environ Microbiol. 2016;18:1403–14.
    CAS  PubMed  Google Scholar 

    39.
    Edgar RC. UPARSE: highly accurate OTU sequences from microbial amplicon reads. Nat Methods. 2013;10:996–8.
    CAS  PubMed  Google Scholar 

    40.
    Eren AM, Morrison HG, Lescault PJ, Reveillaud J, Vineis JH, Sogin ML. Minimum entropy decomposition: unsupervised oligotyping for sensitive partitioning of high-throughput marker gene sequences. ISME J. 2015;9:968–79.
    CAS  PubMed  Google Scholar 

    41.
    Oksanen J, Blanchet FG, Kindt R, Legendre P, Minchin PR, O’hara R, et al. Package ‘vegan’. Community ecology package, version. 2015;2.

    42.
    Tsementzi D, Poretsky R, Rodriguez-R LM, Luo C, Konstantinidis KT. Evaluation of metatranscriptomic protocols and application to the study of freshwater microbial communities. Environ Microbiol Rep. 2014;6:640–55.
    CAS  PubMed  Google Scholar 

    43.
    Cox MP, Peterson DA, Biggs PJ. SolexaQA: at-a-glance quality assessment of Illumina second-generation sequencing data. BMC Bioinform. 2010;11:485.
    Google Scholar 

    44.
    Bengtsson‐Palme J, Hartmann M, Eriksson KM, Pal C, Thorell K, Larsson DGJ, et al. METAXA2: improved identification and taxonomic classification of small and large subunit rRNA in metagenomic data. Mol Ecol Resour. 2015;15:1403–14.
    PubMed  Google Scholar 

    45.
    Kopylova E, Noé L, Touzet H. SortMeRNA: fast and accurate filtering of ribosomal RNAs in metatranscriptomic data. Bioinformatics. 2012;28:3211–7.
    CAS  PubMed  Google Scholar 

    46.
    Burge SW, Daub J, Eberhardt R, Tate J, Barquist L, Nawrocki EP, et al. Rfam 11.0: 10 years of RNA families. Nucleic Acids Res. 2012;41:D226–32.
    PubMed  PubMed Central  Google Scholar 

    47.
    Kent WJ. BLAT—the BLAST-like alignment tool. Genome Res. 2002;12:656–64.
    CAS  PubMed  PubMed Central  Google Scholar 

    48.
    Parks DH, Rinke C, Chuvochina M, Chaumeil P-A, Woodcroft BJ, Evans PN, et al. Recovery of nearly 8,000 metagenome-assembled genomes substantially expands the tree of life. Nat Microbiol. 2017;2:1533–42.
    CAS  PubMed  Google Scholar 

    49.
    Tully BJ, Graham ED, Heidelberg JF. The reconstruction of 2,631 draft metagenome-assembled genomes from the global oceans. Sci data. 2018;5:170203.
    CAS  PubMed  PubMed Central  Google Scholar 

    50.
    Rodriguez-R LM, Tsementzi D, Luo C, Konstantinidis KT. Iterative subtractive binning of freshwater chronoseries metagenomes identifies over 400 novel species and their ecologic preferences. Environ Microbiol. 2020;22:3394–412.
    CAS  PubMed  Google Scholar 

    51.
    Tsementzi D, Rodriguez-R LM, Ruiz-Perez CA, Meziti A, Hatt JK, Konstantinidis KT. Ecogenomic characterization of widespread, closely-related SAR11 clades of the freshwater genus “Candidatus Fonsibacter” and proposal of Ca. Fonsibacter lacus sp. nov. Syst Appl Microbiol. 2019;42:495–505.
    PubMed  Google Scholar 

    52.
    Wu CH, Apweiler R, Bairoch A, Natale DA, Barker WC, Boeckmann B, et al. The universal protein resource (UniProt): an expanding universe of protein information. Nucleic Acids Res. 2006;34:D187–91.
    CAS  PubMed  Google Scholar 

    53.
    Ashburner M, Ball CA, Blake JA, Botstein D, Butler H, Cherry JM, et al. Gene ontology: tool for the unification of biology. Nat Genet. 2000;25–29:25.
    Google Scholar 

    54.
    Overbeek R, Begley T, Butler RM, Choudhuri JV, Chuang H-Y, Cohoon M, et al. The subsystems approach to genome annotation and its use in the project to annotate 1000 genomes. Nucleic Acids Res. 2005;33:5691–702.
    CAS  PubMed  PubMed Central  Google Scholar 

    55.
    Buchfink B, Xie C, Huson DH. Fast and sensitive protein alignment using DIAMOND. Nat Methods. 2015;12:59.
    CAS  PubMed  Google Scholar 

    56.
    Love MI, Huber W, Anders S. Moderated estimation of fold change and dispersion for RNA-seq data with DESeq2. Genome Biol. 2014;15:1.
    Google Scholar 

    57.
    Wohlers J, Engel A, Zöllner E, Breithaupt P, Jürgens K, Hoppe HG, et al. Changes in biogenic carbon flow in response to sea surface warming. Proc Natl Acad Sci USA. 2009;106:7067–72.
    CAS  PubMed  Google Scholar 

    58.
    Fu F-X, Warner ME, Zhang Y, Feng Y, Hutchins DA. Effects of increased temperature and CO2 on photosynthesis, growth, and elemental rations in marine Synechoccocus and Prochlorococcus (Cyanobacteria). J Phycol. 2007;43:485–96.
    Google Scholar 

    59.
    Riebesell U, Wolf-Gladrow D, Smetacek V. Carbon dioxide limitation of marine phytoplankton growth rates. Nature. 1993;361:249–51.
    CAS  Google Scholar 

    60.
    McCarthy A, Rogers SP, Duffy SJ, Campbell DA. Elevated carbon dioxide differentially alters the photophysiology of Thalassiosira pseudonana (Bacillariophyceae) and Emiliania huxleyi (Haptophyta). J Phycol. 2012;48:635–46.
    CAS  PubMed  Google Scholar 

    61.
    Fuhrman JA, Hewson I, Schwalbach MS, Steele JA, Brown MV, Naeem S. Annually reoccurring bacterial communities are predictable from ocean conditions. Proc Natl Acad Sci USA. 2006;103:13104–9.
    CAS  PubMed  Google Scholar 

    62.
    Baltar F, Palovaara J, Vila-Costa M, Salazar G, Calvo E, Pelejero C, et al. Response of rare, common and abundant bacterioplankton to anthropogenic perturbations in a Mediterranean coastal site. FEMS Microbiol Ecol. 2015;91:fiv058.
    PubMed  Google Scholar 

    63.
    Paerl HW, Huisman J. Blooms like it hot. Science. 2008;320:57–8.
    CAS  PubMed  Google Scholar 

    64.
    Yung C-M, Vereen MK, Herbert A, Davis KM, Yang J, Kantorowska A, et al. Thermally adaptive tradeoffs in closely-related marine bacterial strains. Environ Microbiol. 2015;17:2421–9.
    PubMed  Google Scholar 

    65.
    Gao H, Wang Y, Liu X, Yan T, Wu L, Alm E, et al. Global transcriptome analysis of the heat shock response of Shewanella oneidensis. J Bacteriol. 2004;186:7796–803.
    CAS  PubMed  PubMed Central  Google Scholar 

    66.
    van der Veen S, Hain T, Wouters JA, Hossain H, de Vos WM, Abee T, et al. The heat-shock response of Listeria monocytogenes comprises genes involved in heat shock, cell division, cell wall synthesis, and the SOS response. Microbiology. 2007;153:3593–607.
    PubMed  Google Scholar 

    67.
    Hall EK, Singer GA, Kainz MJ, Lennon JT. Evidence for a temperature acclimation mechanism in bacteria: an empirical test of a membrane-mediated trade-off. Funct Ecol. 2010;24:898–908.
    Google Scholar 

    68.
    Lauro FM, McDougald D, Thomas T, Williams TJ, Egan S, Rice S, et al. The genomic basis of trophic strategy in marine bacteria. Proc Natl Acad Sci USA. 2009;106:15527–33.
    CAS  PubMed  Google Scholar 

    69.
    Yutin N, Puigbò P, Koonin EV, Wolf YI. Phylogenomics of prokaryotic ribosomal proteins. PLoS ONE. 2012;7:5.
    Google Scholar 

    70.
    Blazewicz SJ, Barnard RL, Daly RA, Firestone MK. Evaluating rRNA as an indicator of microbial activity in environmental communities: limitations and uses. ISME J. 2013;7:2061–8.
    CAS  PubMed  PubMed Central  Google Scholar 

    71.
    Hunt DE, Lin Y, Church MJ, Karl DM, Izzo LK, Tringe S, et al. Relationship between abundance and specific activity of bacterioplankton in open ocean surface waters. Appl Environ Microbiol. 2013;79:177–84.
    CAS  PubMed  PubMed Central  Google Scholar 

    72.
    Boeuf D, Edwards BR, Eppley JM, Hu SK, Poff KE, Romano AE, et al. Biological composition and microbial dynamics of sinking particulate organic matter at abyssal depths in the oligotrophic open ocean. Proc Natl Acad Sci USA. 2019;116:11824–32.
    CAS  PubMed  Google Scholar  More

  • in

    Activity-based cell sorting reveals responses of uncultured archaea and bacteria to substrate amendment

    To expand on previous BONCAT findings, we initially performed an experiment with E. coli, which demonstrated that translational activity as measured by BONCAT can only be detected when cultures were grown with glucose or sorbitol as the sole carbon and energy source but not with sucrose (Supplementary Fig. 1). This is consistent with the notion that E. coli is genetically incapable of sucrose utilization. Addition of chloramphenicol, an antibiotic targeting ribosome function, to the culture decreased the BONCAT fluorescence intensity to background levels, i.e., fluorescence values observed when cells were grown with HPG but without growth substrate. These results demonstrated that BONCAT can be used to study cell activity responses to substrate amendment and suggested that it could be used to study complex microbiomes.
    For this benchmark study, we selected a high temperature (74 °C), alkaline (pH 8.2) hot spring (Five Sisters 5, FS5) in the Lower Geyser Basin of YNP (Fig. 1). Hot springs harbor lower complexity microbial communities compared to other environments, such as soils and marine sediments, making them an ideal system for the development of novel approaches. As indicated by 16S rRNA gene amplicon sequencing, hot spring FS5 was dominated by the archaeal candidate phylum Aigarchaeota (41.9%), with the next most abundant community members belonging to bacterial candidate phylum Fervidibacteria (9.57%) and phylum Deinococcus-Thermus (7.98%) (Fig. 2). Members of the Aigarchaeota have been detected in many high temperature (65–88 °C) hot springs over a wide pH range (2.9–9.3) [25]. Despite multiple studies describing their versatile metabolic potential, Aigarchaeota remain recalcitrant to cultivation and no experimental data on their functional activity are currently available. Reconstructed genomes suggest the capacity for aerobic respiration or anaerobic respiration with nitrate as an electron acceptor [25]. In addition, a recent study found multiple endoglucanases and β-glucosidases that might be involved with degradation of cellulose and cellobiose in an Aigarchaeota metagenome bin [26]. One of the goals of our study was to test these functional predictions using BONCAT-FACS.
    Fig. 2: 16S rRNA gene relative abundances in averaged incubations.

    Top panel, unamended FS5 community at the time of sampling (T0). Middle panel, community composition of presort samples, representing the extractable microbial community, after the incubation experiments. Bottom panel, composition of the sorted active cell fraction after incubation with substrate amendment. Only taxa that were represented above 1% in at least one sample are shown. Additional taxa were combined into “Other” category. Taxon level represents highest taxonomic resolution for each taxa (Silva 128). Some replicates did not pass the quality control steps of our bioinformatics pipeline (1% relative abundance of the total extractable community, ASVs collapsed to the genus level) were active in at least one condition, and most taxa were active under several conditions (Fig. 2). This demonstrates that BONCAT can be applied to a wide variety of phylogenetic groups, which is consistent with previous reports [5,6,7,8,9, 27]. The sorted, active fraction from incubations with different treatments contained no statistically significant difference when compared to the HPG-only control based on Bray–Curtis dissimilarity (MANOVA, p = 1) (Fig. 2). This result indicates that the microbial activity response to any treatment, as captured by BONCAT, was not large enough or consistent enough among replicates to significantly change the overall active community when compared to the HPG-only control.
    Although the overall composition of the active communities did not vary significantly in response to incubation conditions, changes within the richness and evenness of the communities were detected. To further describe the community composition, the Shannon’s diversity index of each incubation was calculated (Fig. 3). For each treatment, the bulk, presort fraction (representing the total, extractable cell community), and the sorted, active cell fraction were analyzed and compared to the respective HPG-only control. Overall, the variation in the presort fraction of Shannon’s diversity indices was less variable than the sorted fraction from the same treatment incubation (Fig. 3). This demonstrated that the BONCAT-FACS approach could detect changes in the diversity of the active community due to individual cell responses prior to shifts in cell abundance occurring in presort communities. We expected little variation in the presort community because the limited time of incubation should not have allowed for an overall shift in community composition on a bulk level. However, Fervidibacteria were observed in higher proportion in most presort populations as compared to the original T0 bulk sample. This could be attributed to either favorable growth of this yet uncultured lineage or be a result of preferential cell extraction or cell lysis during freeze–thaw cycles as compared to bulk sample DNA extraction. Alternatively, their increase in relative abundance could have resulted from sample cooling (72 to 55 °C) during transit from the field to the laboratory (4 h).
    Fig. 3: Change in Shannon’s diversity indices of each treatment standardized to HPG-only controls.

    The Shannon’s diversity indices for presort and sorted samples were compared relative to their respective HPG-only controls. The value for HPG-only was set to 0 and the difference for each sample is plotted. Overall, presort samples exhibited less variability than sorted samples. Sorted samples for cellobiose and anoxic conditions (100% N2 headspace) were significantly different from the sorted HPG-only (atmospheric air) control (p  More

  • in

    A global biophysical typology of mangroves and its relevance for ecosystem structure and deforestation

    1.
    Barbier, E. B. et al. The value of estuarine and coastal ecosystem services. Ecol. Monogr. 81, 169–193 (2011).
    Google Scholar 
    2.
    Brander, L. M. et al. Ecosystem service values for mangroves in Southeast Asia: A meta-analysis and value transfer application. Ecosyst. Serv. 1, 62–69 (2012).
    Google Scholar 

    3.
    UNEP. The Importance of Mangroves to People: A Call to Action (United Nations Environment Programme World Conservation Monitoring Centre, Cambridge, 2014).
    Google Scholar 

    4.
    Spalding, M. & Parrett, C. L. Global patterns in mangrove recreation and tourism. Mar. Policy 110, 103540 (2019).
    Google Scholar 

    5.
    Valiela, I., Bowen, J. L. & York, J. K. Mangrove forests: One of the world’s threatened major tropical environments. Bioscience 51, 807–815 (2001).
    Google Scholar 

    6.
    Richards, D. R. & Friess, D. A. Rates and drivers of mangrove deforestation in Southeast Asia, 2000–2012. Proc. Natl. Acad. Sci. 113, 344–349 (2016).
    ADS  CAS  PubMed  Google Scholar 

    7.
    Sloan, S. & Sayer, J. A. Forest Resources Assessment of 2015 shows positive global trends but forest loss and degradation persist in poor tropical countries. For. Ecol. Manag. 352, 134–145 (2015).
    Google Scholar 

    8.
    de Groot, R. et al. Global estimates of the value of ecosystems and their services in monetary units. Ecosyst. Serv. 1, 50–61 (2012).
    Google Scholar 

    9.
    Himes-Cornell, A., Pendleton, L. & Atiyah, P. Valuing ecosystem services from blue forests: A systematic review of the valuation of salt marshes, sea grass beds and mangrove forests. Ecosyst. Serv. 30, 36–48 (2018).
    Google Scholar 

    10.
    Simard, M. et al. Mangrove canopy height globally related to precipitation, temperature and cyclone frequency. Nat. Geosci. 12, 40–45 (2019).
    ADS  CAS  Google Scholar 

    11.
    Spalding, M. D., Kainumu, M. & Collins, L. World Atlas of Mangroves (Earthscan, London, 2010).
    Google Scholar 

    12.
    Ewel, K. C., Twilley, R. R. & Ong, J. Different kinds of mangrove forests provide different goods and services. Glob. Ecol. Biogeogr. Lett. 7, 83–94 (1998).
    Google Scholar 

    13.
    Twilley, R. R., Rovai, A. S. & Riul, P. Coastal morphology explains global blue carbon distributions. Front. Ecol. Environ. 16, 503–508 (2018).
    Google Scholar 

    14.
    Sanderman, J. et al. A global map of mangrove forest soil carbon at 30 m spatial resolution. Environ. Res. Lett. 13, 055002 (2018).
    ADS  Google Scholar 

    15.
    Rovai, A. S. et al. Global controls on carbon storage in mangrove soils. Nat. Clim. Chang. 8, 534–538 (2018).
    ADS  CAS  Google Scholar 

    16.
    Donato, D. C. et al. Mangroves among the most carbon-rich forests in the tropics. Nat. Geosci. 4, 293–297 (2011).
    ADS  CAS  Google Scholar 

    17.
    Koch, E. W. et al. Non-linearity in ecosystem services: Temporal and spatial variability in coastal protection. Front. Ecol. Environ. 7, 29–37 (2009).
    Google Scholar 

    18.
    Baker, R., Sheaves, M. & Johnston, R. Geographic variation in mangrove flooding and accessibility for fishes and nektonic crustaceans. Hydrobiologia 762, 1–14 (2015).
    CAS  Google Scholar 

    19.
    Ward, R. D., Friess, D. A., Day, R. H. & Mackenzie, R. A. Impacts of climate change on mangrove ecosystems: A region by region overview. Ecosyst. Heal. Sustain. 2, e01211 (2016).
    Google Scholar 

    20.
    Balke, T. & Friess, D. A. Geomorphic knowledge for mangrove restoration: A pan-tropical categorization. Earth Surf. Process. Landforms 41, 231–239 (2016).
    ADS  Google Scholar 

    21.
    Spalding, M. D., Brumbaugh, R. D. & Landis, E. Atlas of Ocean Wealth (The Nature Conservancy, Arlington, 2016).
    Google Scholar 

    22.
    Spalding, M., Blasco, F. & Field, C. World Mangrove Atlas (The International Society for Mangrove Ecosystems, Okinawa, 1997).
    Google Scholar 

    23.
    Giri, C. et al. Status and distribution of mangrove forests of the world using earth observation satellite data. Glob. Ecol. Biogeogr. 20, 154–159 (2011).
    Google Scholar 

    24.
    Mahoney, P. C. & Bishop, M. J. Are geomorphological typologies for estuaries also useful for classifying their ecosystems?. Aquat. Conserv. Mar. Freshw. Ecosyst. 28, 1200–1208 (2018).
    Google Scholar 

    25.
    Bunting, P. et al. The Global Mangrove Watch—A new 2010 global baseline of mangrove extent. Remote Sens. 10, 1669 (2018).
    ADS  Google Scholar 

    26.
    Thom, B. G. Coastal landforms and geomorphic processes. In The Mangrove Ecosystem: Research Methods (eds Snedaker, S. C. & Snedaker, J. G.) 18–35 (UNESCO, Paris, 1984).
    Google Scholar 

    27.
    Woodroffe, C. Mangrove sediments and geomorphology. In Tropical Mangrove Ecosystems (eds Robertson, A. I. & Alongi, D. M.) 7–41 (American Geophysical Union, Washington, 1992).
    Google Scholar 

    28.
    Twilley, R. R. & Rivera-Monroy, V. H. Ecogeomorphic models of nutrient biogeochemistry for mangrove wetlands. In Coastal Wetlands: An Integrated Ecosystem Approach (eds Perillo, G. M. E. et al.) 641–684 (Elsevier, New York, 2009).
    Google Scholar 

    29.
    Woodroffe, C. D. et al. Mangrove sedimentation and response to relative sea-level rise. Ann. Rev. Mar. Sci. 8, 243–266 (2016).
    CAS  PubMed  Google Scholar 

    30.
    Reed, D. J., Davidson-Arnott, R. & Perillo, G. M. Estuaries, coastal marshes, tidal flats and coastal dunes. In Geomorphology and Global Environmental Change (eds Slaymaker, O. et al.) 130–157 (Cambridge University Press, Cambridge, 2009).
    Google Scholar 

    31.
    Walsh, J. P. & Nittrouer, C. A. Mangrove-bank sedimentation in a mesotidal environment with large sediment supply, Gulf of Papua. Mar. Geol. 208, 225–248 (2004).
    ADS  CAS  Google Scholar 

    32.
    Swales, A., Bentley, S. J. & Lovelock, C. E. Mangrove-forest evolution in a sediment-rich estuarine system: Opportunists or agents of geomorphic change?. Earth Surf. Process. Landforms 40, 1672–1687 (2015).
    ADS  Google Scholar 

    33.
    Proisy, C. et al. Mud bank colonization by opportunistic mangroves: A case study from French Guiana using lidar data. Cont. Shelf Res. 29, 632–641 (2009).
    ADS  Google Scholar 

    34.
    Nascimento, W. R., Souza-Filho, P. W. M., Proisy, C., Lucas, R. M. & Rosenqvist, A. Mapping changes in the largest continuous Amazonian mangrove belt using object-based classification of multisensor satellite imagery. Estuar. Coast. Shelf Sci. 117, 83–93 (2013).
    ADS  Google Scholar 

    35.
    Murray, N. J. et al. The global distribution and trajectory of tidal flats. Nature 565, 222–225 (2019).
    ADS  CAS  PubMed  Google Scholar 

    36.
    McKee, K. L. Biophysical controls on accretion and elevation change in Caribbean mangrove ecosystems. Estuar. Coast. Shelf Sci. 91, 475–483 (2011).
    ADS  Google Scholar 

    37.
    McKee, K. L. & Vervaeke, W. C. W. C. Impacts of human disturbance on soil erosion potential and habitat stability of mangrove-dominated islands in the Pelican Cays and Twin Cays ranges, Belize. Smithson. Contrib. Mar. Sci. 38, 415–427 (2011).
    Google Scholar 

    38.
    Worthington, T. & Spalding, M. Mangrove Restoration Potential: A Global Map Highlighting a Critical Opportunity. https://doi.org/10.17863/CAM.39153 (2018).
    Article  Google Scholar 

    39.
    Kjerfve, B. et al. Morphodynamics of muddy environments along the Atlantic coasts of North and South America. In Muddy Coasts of the World: Processes, Deposits and Function (eds Healy, T. et al.) 479–532 (Elsevier, New York, 2002).
    Google Scholar 

    40.
    Adame, M. F. et al. Mangroves in arid regions: Ecology, threats, and opportunities. Estuarine Coast. Shelf Sci. https://doi.org/10.1016/j.ecss.2020.106796 (2020).
    Article  Google Scholar 

    41.
    Mahapatro, D., Panigrahy, R. C. & Panda, S. Coastal lagoon: Present status and future challenges. Int. J. Mar. Sci. 3, 178–186 (2013).
    Google Scholar 

    42.
    Gönenç, I. E. & Wolflin, J. P. Introduction. In Coastal Lagoons: Ecosystem Processes and Modeling for Sustainable Use and Development (eds. Wolflin, J. P. & Gönenç, I. E.) 1–6 (CRC Press, London, 2005).
    Google Scholar 

    43.
    Ericson, J. P., Vörösmarty, C. J., Dingman, S. L., Ward, L. G. & Meybeck, M. Effective sea-level rise and deltas: Causes of change and human dimension implications. Glob. Planet. Change 50, 63–82 (2006).
    ADS  Google Scholar 

    44.
    Syvitski, J. P. M. & Saito, Y. Morphodynamics of deltas under the influence of humans. Glob. Planet. Change 57, 261–282 (2007).
    ADS  Google Scholar 

    45.
    Tessler, Z. D. et al. Profiling risk and sustainability in coastal deltas of the world. Science 349, 638–643 (2015).
    ADS  CAS  PubMed  Google Scholar 

    46.
    Syvitski, J. P. M. et al. Sinking deltas due to human activities. Nat. Geosci. 2, 681–686 (2009).
    ADS  CAS  Google Scholar 

    47.
    Kovacs, J. M., Wang, J. & Blanco-Correa, M. Mapping disturbances in a mangrove forest using multi-date landsat TM imagery. Environ. Manage. 27, 763–776 (2001).
    CAS  PubMed  Google Scholar 

    48.
    Cahoon, D. R. et al. Mass tree mortality leads to mangrove peat collapse at Bay Islands, Honduras after Hurricane Mitch. J. Ecol. 91, 1093–1105 (2003).
    Google Scholar 

    49.
    Lovelock, C. E. et al. The vulnerability of Indo-Pacific mangrove forests to sea-level rise. Nature 526, 559–563 (2015).
    ADS  CAS  PubMed  Google Scholar 

    50.
    Wigand, C. et al. Varying inundation regimes differentially affect natural and sand-amended marsh sediments. PLoS ONE 11, e0164956 (2016).
    CAS  PubMed  PubMed Central  Google Scholar 

    51.
    Lewis, R. R. et al. Stress in mangrove forests: Early detection and preemptive rehabilitation are essential for future successful worldwide mangrove forest management. Mar. Pollut. Bull. 109, 764–771 (2016).
    CAS  PubMed  Google Scholar 

    52.
    Lagomasino, D. et al. Measuring mangrove carbon loss and gain in deltas. Environ. Res. Lett. 14, 025002 (2018).
    ADS  Google Scholar 

    53.
    Goldberg, L., Lagomasino, D., Thomas, N. & Fatoyinbo, T. Global declines in human-driven mangrove loss. Glob. Chang. Biol. https://doi.org/10.1111/gcb.15275 (2020).
    Article  PubMed  Google Scholar 

    54.
    Lacerda, L. D., Borges, R. & Ferreira, A. C. Neotropical mangroves: Conservation and sustainable use in a scenario of global climate change. Aquat. Conserv. Mar. Freshw. Ecosyst. 29, 1347–1364 (2019).
    Google Scholar 

    55.
    Bhargava, R., Sarkar, D. & Friess, D. A. A cloud computing-based approach to mapping mangrove erosion and progradation: Case studies from the Sundarbans and French Guiana. Estuar. Coast. Shelf Sci. 12, 106798. https://doi.org/10.1016/j.ecss.2020.106798 (2020).
    Article  Google Scholar 

    56.
    Hutchison, J., Manica, A., Swetnam, R., Balmford, A. & Spalding, M. Predicting global patterns in mangrove forest biomass. Conserv. Lett. 7, 233–240 (2014).
    Google Scholar 

    57.
    Castañeda-Moya, E. et al. Patterns of root dynamics in mangrove forests along environmental gradients in the Florida Coastal Everglades, USA. Ecosystems 14, 1178–1195 (2011).
    Google Scholar 

    58.
    Twilley, R. R., Rivera-Monroy, V. H., Chen, R. & Botero, L. Adapting an ecological mangrove model to simulate trajectories in restoration ecology. Mar. Pollut. Bull. 37, 404–419 (1998).
    CAS  Google Scholar 

    59.
    Huh, O. K., Coleman, J. M., Braud, D. & Kiage, L. World Deltas Database. Appendix A. The Major River Deltas Of The World. Report. (2004).

    60.
    Coleman, J. M. & Huh, O. K. Major World Deltas: A Perspective From Space (2003).

    61.
    Domisch, S., Amatulli, G. & Jetz, W. Near-global freshwater-specific environmental variables for biodiversity analyses in 1 km resolution. Sci. Data 2, 150073 (2015).
    CAS  PubMed  PubMed Central  Google Scholar 

    62.
    Liaw, A. & Wiener, M. Classification and regression by randomForest. R News 2, 18–22 (2002).
    Google Scholar 

    63.
    R Core Team. R: A Language and Environment for Statistical Computing (2019).

    64.
    Dürr, H. H. et al. Worldwide typology of nearshore coastal systems: Defining the estuarine filter of river inputs to the oceans. Estuaries Coasts 34, 441–458 (2011).
    Google Scholar 

    65.
    Simard, M. et al. Global mangrove aboveground biomass, maximum and basal area weighted canopy heights. https://doi.org/10.3334/ORNLDAAC/1665. (2019).

    66.
    Pinheiro, J., Bates, D., DebRoy, S., Sarkar, S. & Team, R. C. nlme: Linear and Nonlinear Mixed Effects Models (2019). https://cran.r-project.org/package=nlme.

    67.
    Zuur, A. F., Ieno, E. N. & Elphick, C. S. A protocol for data exploration to avoid common statistical problems. Methods Ecol. Evol. 1, 3–14 (2010).
    Google Scholar 

    68.
    Zuur, A. F., Saveliev, A. A. & Ieno, E. N. A Beginner’s Guide to Generalised Additive Mixed Models with R (Highland Statistics Ltd., Newburgh, 2014).
    Google Scholar 

    69.
    Zuur, A. F., Ieno, E. N., Walker, N., Saveliev, A. A. & Smith, G. M. Mixed Effects Models and Extensions in Ecology with R (Springer, New York, 2009).
    Google Scholar 

    70.
    Lenth, R. emmeans: Estimated Marginal Means, aka Least-Squares Means (2019).

    71.
    Mangiafico, S. rcompanion: Functions to Support Extension Education Program Evaluation. R package version 2.3.25 (2020). More