Running performance with emphasis on low temperatures in a Patagonian lizard, Liolaemus lineomaculatus
1.
Robert Feldmeth, C., Stone, E. A. & Brown, J. H. An increased scope for thermal tolerance upon acclimating pupfish (Cyprinodon) to cycling temperatures. J. Comp. Physiol. 89, 39â44 (1974).
Google ScholarÂ
2.
Hertz, P. E. Adaptation to altitude in two West Indian anoles. Animals 195, 25â37 (1981).
Google ScholarÂ
3.
Hertz, P. E. & Huey, R. B. Compensation for altitudinal changes in the thermal environment by some anolis lizards on Hispaniola. Ecology 62, 515â521 (1981).
Google ScholarÂ
4.
Hertz, P. E., Huey, R. B. & Nevo, E. Fight versus flight: body temperature influences defensive responses of lizards. Anim. Behav. 30, 676â679 (1982).
Google ScholarÂ
5.
Stillman, J. H. Acclimation capacity underlies susceptibility to climate change. Science 301, 65 (2003).
CAS PubMed Google ScholarÂ
6.
Chown, S. L., Gaston, K. J. & Robinson, D. Macrophysiology: large-scale patterns in physiological traits and their ecological implications. Funct. Ecol. 18, 159â167 (2004).
Google ScholarÂ
7.
Chown, S. L. et al. Adapting to climate change: a perspective from evolutionary physiology. Clim. Res. 43, 3â15 (2010).
Google ScholarÂ
8.
Clusella-Trullas, S., Blackburn, T. M. & Chown, S. L. Climatic predictors of temperature performance curve parameters in ectotherms imply complex responses to climate change. Am. Nat. 177, 738â751 (2011).
PubMed Google ScholarÂ
9.
Bowler, K. & Terblanche, J. S. Insect thermal tolerance: what is the role of ontogeny, ageing and senescence?. Biol. Rev. 83, 339â355 (2008).
PubMed Google ScholarÂ
10.
Huey, R. B. et al. Why tropical forest lizards are vulnerable to climate warming. Proc. R. Soc. B 276, 1939â1948 (2009).
PubMed Google ScholarÂ
11.
Waldschmidt, S. & Tracy, C. R. Interactions between a lizard and its thermal environment: implications for sprint performance and space utilization in the lizard Uta stansburiana. Ecology 64, 476â484 (1983).
Google ScholarÂ
12.
Huey, R. B. & Bennett, A. F. Phylogenetic studies of coadaptation: preferred temperatures versus optimal performance temperature of lizards. Evolution 41, 1098â1115 (1987).
PubMed Google ScholarÂ
13.
Huey, R. B. & Stevenson, R. D. Intergrating thermal physiology and ecology of ecotherms: a discussion of approaches. Am. Zool. 19, 357â366 (1979).
Google ScholarÂ
14.
Huey, R. B. & Kingsolver, J. G. Evolution of thermal sensitivity of ectotherm performance. Trends Ecol. Evol. 4, 131â135 (1989).
CAS PubMed Google ScholarÂ
15.
Huey, R. B. & Kingsolver, J. G. Evolution of resistance to high temperature in ectotherms. Am. Nat. 142, 21â46 (1993).
Google ScholarÂ
16.
Angilletta, M. J., Wilson, R. S., Navas, C. A. & James, R. S. Tradeoffs and the evolution of thermal reaction norms. Trends Ecol. Evol. 18, 234â240 (2003).
Google ScholarÂ
17.
Angilletta, M. J. Thermal Adaptation: A Theoretical and Empirical Synthesis (Oxford University Press, Oxford, 2009).
Google ScholarÂ
18.
Kingsolver, J. G. et al. Complex life cycles and the responses of insects to climate change. Integr. Comp. Biol. 51, 719â732 (2011).
PubMed Google ScholarÂ
19.
Logan, M. L., Cox, R. M. & Calsbeek, R. Natural selection on thermal performance in a novel thermal environment. Proc. Natl. Acad. Sci. 111, 14165â14169 (2014).
ADS CAS PubMed Google ScholarÂ
20.
Sinclair, B. J. et al. Can we predict ectotherm responses to climate change using thermal performance curves and body temperatures?. Ecol. Lett. 19, 1372â1385 (2016).
PubMed Google ScholarÂ
21.
Izem, R. & Kingsolver, J. G. Variation in continuous reaction norms: quantifying directions of biological interest. Am. Nat. 166, 277â289 (2005).
PubMed Google ScholarÂ
22.
Frazier, M. R., Huey, R. B. & Berrigan, D. Thermodynamics constrains the evolution of insect population growth rates: âwarmer is betterâ. Am. Nat. 168, 512â520 (2006).
CAS PubMed Google ScholarÂ
23.
Kingsolver, J. G. The well-temperatured biologist. Am. Nat. 174, 755â768 (2009).
PubMed Google ScholarÂ
24.
Bennett, A. F. Thermal dependence of locomotor capacity. Am. J. Physiol. Regul. Integr. Comp. Physiol. 259, 253â258 (1990).
Google ScholarÂ
25.
van Damme, R., Bauwens, D. & Verheyen, R. F. Evolutionary rigidity of thermal physiology: the case of the cool temperate lizard Lacerta vivipara. Oikos 57, 61 (1990).
Google ScholarÂ
26.
Swoap, S. J., Johnson, T. P., Josephson, R. K. & Bennett, A. F. Temperature, muscle power output and limitations on burst locomotor performance of the lizard Dipsosaurus dorsalis. J. Exp. Biol. 174, 199â213 (1993).
Google ScholarÂ
27.
Vicenzi, N., CorbalĂĄn, V., Miles, D., Sinervo, B. & IbargĂŒengoytĂa, N. Range increment or range detriment? Predicting potential changes in distribution caused by climate change for the endemic high-Andean lizard Phymaturus palluma. Biol. Conserv. 206, 151â160 (2017).
Google ScholarÂ
28.
Vicenzi, N., Kubisch, E., IbargĂŒengoytĂa, N. & CorbalĂĄn, V. Thermal sensitivity of performance of Phymaturus palluma (Liolaemidae) in the highlands of AconcaguaâŻ: vulnerability to global warming in the Andes. Amphibia-Reptilia 01, 1â12 (2018).
Google ScholarÂ
29.
Brattstrom, B. H. Thermal acclimation in anuran amphibians as a function of latitude and altitude. Comp. Biochem. Physiol. 24, 93â111 (1968).
CAS PubMed Google ScholarÂ
30.
Bauwens, D., Castilla, A. M., Van Damme, R. & Verheyen, R. F. Field body temperatures and thermoregulatory behavior of the high altitude lizard, Lacerta bedriagae. J. Herpetol. 24, 88â91 (1990).
Google ScholarÂ
31.
Adolph, S. C. & Porter, W. P. Temperature, activity, and lizard life histories. Am. Nat. 142, 273â295 (1993).
CAS PubMed Google ScholarÂ
32.
DĂaz, J. A. & Cabezas-DĂaz, S. Seasonal variation in the contribution of different behavioural mechanisms to lizard thermoregulation. Funct. Ecol. 18, 867â875 (2004).
Google ScholarÂ
33.
Munoz, M. M. et al. Evolutionary stasis and lability in thermal physiology in a group of tropical lizards. Proc. R. Soc. B 281, 20132433â20132433 (2014).
PubMed Google ScholarÂ
34.
Cei, J. M. Reptiles del centro, centro-oeste y sur de la Argentina. Herpetofauna de las zonas ĂĄridas y semiĂĄridas. Mitt. zool. Mus. vol. 64 (Torino: Museo Regionale di Scienze Naturali, 1988).
35.
Scolaro, J. A. Reptiles PatagĂłnicos Sur: Una GuĂa de Campo (Universidad Nacional de la Patagonia, Comodoro Rivadavia, 2005).
Google ScholarÂ
36.
Cecchetto, N. R., Medina, S. M., Taussig, S. & IbargĂŒengoytĂa, N. R. The lizard abides: cold hardiness and winter refuges of Liolaemus pictus argentinus in Patagonia, Argentina. Can. J. Zool. 782, 773â782 (2019).
Google ScholarÂ
37.
IbargĂŒengoytĂa, N. R. et al. Thermal biology of the southernmost lizards in the world: Liolaemus sarmientoi and Liolaemus magellanicus from Patagonia, Argentina. J. Therm. Biol. 35, 21â27 (2010).
Google ScholarÂ
38.
FernĂĄndez, J., Smith, J., Scolaro, A. & IbargĂŒengoytĂa, N. R. Performance and thermal sensitivity of the southernmost lizards in the world, Liolaemus sarmientoi and Liolaemus magellanicus. J. Therm. Biol. 36, 15â22 (2011).
Google ScholarÂ
39.
Piantoni, C., IbargĂŒengoytĂa, N. R. & Cussac, V. E. Age and growth of the Patagonian lizard Phymaturus patagonicus. Amphibia-Reptilia 27, 385â392 (2006).
Google ScholarÂ
40.
Boretto, J. M. & IbargĂŒengoytĂa, N. R. Phymaturus of Patagonia, Argentina: reproductive biology of Phymaturus zapalensis (Liolaemidae) and a comparison of sexual dimorphism within the genus. J. Herpetol. 43, 96â104 (2009).
Google ScholarÂ
41.
GutiĂ©rrez, J. A., Piantoni, C. & IbargĂŒengoytĂa, N. R. Altitudinal effects on life history parameters in populations of Liolaemus pictus argentinus (Sauria:Liolaemidae). Acta Herpetol. 8, 9â17 (2013).
Google ScholarÂ
42.
Pianka, E. R. Comparative autecology of the lizard Cnemidophorus tigris in different parts of its georgraphic range. Ecology 51, 703â720 (1970).
Google ScholarÂ
43.
James, C. & Shine, R. Life-history strategies of australian lizards: a comparison between the tropics and the temperate zone. Oecologia 75, 307â316 (1988).
ADS PubMed Google ScholarÂ
44.
Piantoni, C., Navas, C. A. & IbargĂŒengoytĂa, N. R. A real tale of Godzilla: impact of climate warming on the growth of a lizard. Biol. J. Linn. Soc. 126, 768â782 (2019).
Google ScholarÂ
45.
GutiĂ©rrez, J. A., Krenz, J. D. & IbargĂŒengoytĂa, N. R. Effect of altitude on thermal responses of Liolaemus pictus argentinus in Argentina. J. Therm. Biol. 35, 332â337 (2010).
Google ScholarÂ
46.
Medina, M. et al. Thermal biology of genus Liolaemus: a phylogenetic approach reveals advantages of the genus to survive climate change. J. Therm. Biol. 37, 579â586 (2012).
Google ScholarÂ
47.
Huey, R. B. Physiological consequences of habitat selection. Am. Nat. 137, 91â115 (1991).
Google ScholarÂ
48.
Sunday, J. M., Bates, A. E. & Dulvy, N. K. Global analysis of thermal tolerance and latitude in ectotherms. Proc. R. Soc. B 278, 1823â1830 (2011).
PubMed Google ScholarÂ
49.
Irschick, D. J. & Meyers, J. J. An analysis of the relative roles of plasticity and natural selection in the morphology and performance of a lizard (Urosaurus ornatus). Oecologia 153, 489â499 (2007).
ADS PubMed Google ScholarÂ
50.
Strobbe, F., McPeek, M. A., De Block, M., De Meester, L. & Stoks, R. Survival selection on escape performance and its underlying phenotypic traits: a case of many-to-one mapping. J. Evol. Biol. 22, 1172â1182 (2009).
CAS PubMed Google ScholarÂ
51.
Lima, S. L. Putting predators back into behavioral predatorâprey interactions. Trends Ecol. Evol. 17, 70â75 (2002).
Google ScholarÂ
52.
Herczeg, G. et al. Experimental support for the costâbenefit model of lizard thermoregulation: the effects of predation risk and food supply. Oecologia 155, 1â10 (2008).
ADS PubMed Google ScholarÂ
53.
Lopez-Darias, M., Schoener, T. W., Spiller, D. A. & Losos, J. B. Predators determine how weather affects the spatial niche of lizard prey: exploring niche dynamics at a fine scale. Ecology 93, 2512â2518 (2012).
PubMed Google ScholarÂ
54.
Bakken, G. S. & Angilletta, M. J. How to avoid errors when quantifying thermal environments. Funct. Ecol. 28, 96â107 (2014).
Google ScholarÂ
55.
Zagar, A., Carretero, M. A., Marguc, D., Simcic, T. & Vrezec, A. A metabolic syndrome in terrestrial ectotherms with different elevational and distribution patterns. Ecography 41, 1728â1739 (2018).
Google ScholarÂ
56.
Bartheld, J. L., Artacho, P. & Bacigalupe, L. Thermal performance curves under daily thermal fluctuation: a study in helmeted water toad tadpoles. J. Therm. Biol. 70, 80â85 (2017).
PubMed Google ScholarÂ
57.
Kingsolver, J. G. & Huey, R. B. Introduction: the evolution of morphology, performance, and fitness. Integr. Comp. Biol. 43, 361â366 (2006).
Google ScholarÂ
58.
Bonino, M. F. et al. Running in cold weather: Morphology, thermal biology, and performance in the southernmost lizard clade in the world (Liolaemus lineomaculatus section: Liolaemini: Iguania). J. Exp. Zool. A. 315, 495â503 (2011).
Google ScholarÂ
59.
Kubisch, E. L., FernĂĄndez, J. & IbargĂŒengoytĂa, N. R. Is locomotor performance optimised at preferred body temperature? A study of Liolaemus pictus argentinus from northern Patagonia, Argentina. J. Therm. Biol. 36, 328â333 (2011).
Google ScholarÂ
60.
Angilletta, M. J. Jr. Thermal and physiological constraints on energy assimilation in a widespread lizard (Sceloporus undulatus). Ecology 82, 3044â3056 (2001).
Google ScholarÂ
61.
Buckley, L. B., Ehrenberger, J. C. & Angilletta, M. J. Jr. Thermoregulatory behaviour limits local adaptation of thermal niches and confers sensitivity to climate change. Funct. Ecol. 29, 1038â1047 (2015).
Google ScholarÂ
62.
Taucare-Rios, A., Veloso, C. & Bustamante, R. O. Thermal niche conservatism in an environmental gradient in the spider Sicarius thomisoides (Araneae: Sicariidae): implications for microhabitat selection. J. Therm. Biol. 78, 298â303 (2018).
CAS PubMed Google ScholarÂ
63.
Medina, M., Scolaro, J. A., MĂ©ndez-de la Cruz, F., Sinervo, B. & IbargĂŒengoytĂa, N. R. Thermal relationships between body temperature and environment conditions set upper distributional limits on oviparous species. J. Therm. Biol. 36, 527â534 (2011).
Google ScholarÂ
64.
IbargĂŒengoytĂa, N. R., Renner, M. L. & Boretto, J. M. Thermal effects on locomotion in the nocturnal gecko Homonota darwini (Gekkonidae). Amphibia-Reptilia 28, 235â246 (2007).
Google ScholarÂ
65.
Medina, S. M. & IbargĂŒengoytĂa, N. R. How do viviparous and oviparous lizards reproduce in Patagonia? A comparative study of three species of Liolaemus. J. Arid Environ. 74, 1024â1032 (2010).
ADSÂ Google ScholarÂ
66.
Boretto, J. M., Cabezas-Cartes, F. & IbargĂŒengoytĂa, N. R. Slow life histories in lizards living in the highlands of the Andes Mountains. J. Comp. Physiol. B 188, 491â503 (2018).
PubMed Google ScholarÂ
67.
Nussey, D. H., Wilson, A. J. & Brommer, J. E. The evolutionary ecology of individual phenotypic plasticity in wild populations. J. Evol. Biol. 20, 831â844 (2007).
CAS PubMed Google ScholarÂ
68.
Artacho, P., Jouanneau, I. & Le Galliard, J.-F. Interindividual variation in thermal sensitivity of maximal sprint speed, thermal behavior, and resting metabolic rate in a lizard. Physiol. Biochem. Zool. 86, 458â469 (2013).
PubMed Google ScholarÂ
69.
Bonino, M. F., Moreno AzĂłcar, D. L., Schulte, J. A. & Cruz, F. B. Climate change and lizards: changing speciesâ geographic ranges in Patagonia. Reg. Environ. Chang. 15, 1121â1132 (2015).
Google ScholarÂ
70.
GvozdĂk, L. & Castilla, A. M. A comparative study of preferred body temperatures and critical thermal tolerance limits among populations of Zootoca vivipara (Squamata: Lacertidae) along an altitudinal gradient. J. Herpetol. 35, 486â492 (2001).
Google ScholarÂ
71.
Angilletta, M. J. Estimating and comparing thermal performance curves. J. Therm. Biol. 31, 541â545 (2006).
Google ScholarÂ
72.
Hertz, P. E., Huey, R. B. & Nevo, E. Homage to Santa Anita: thermal sensitivity of sprint speed in agamid lizards. Evolution 37, 1075â1084 (1983).
PubMed Google ScholarÂ
73.
Zamora-Camacho, F. J., Rubiño-HispĂĄn, M. V., Reguera, S. & Moreno-Rueda, G. Thermal dependence of sprint performance in the lizard Psammodromus algirus along a 2200-meter elevational gradient: Cold-habitat lizards do not perform better at low temperatures. J. Therm. Biol. 52, 90â96 (2015).
PubMed Google ScholarÂ
74.
Huey, R. B. & Slatkin, M. Cost and benefits of lizard thermoregulation. Q. Rev. Biol. 51, 363â384 (1976).
CAS PubMed Google ScholarÂ
75.
Logan, M. L., Fernandez, S. G. & Calsbeek, R. Abiotic constraints on the activity of tropical lizards. Funct. Ecol. 29, 694â700 (2015).
Google ScholarÂ
76.
Sears, M. W. & Angilletta, M. J. Costs and benefits of thermoregulation revisited: both the heterogeneity and spatial structure of temperature drive energetic costs. Am. Nat. 185, E94âE102 (2015).
PubMed Google ScholarÂ
77.
Basson, C. H., Levy, O., Angilletta, M. J. & Clusella-Trullas, S. Lizards paid a greater opportunity cost to thermoregulate in a less heterogeneous environment. Funct. Ecol. 31, 856â865 (2017).
Google ScholarÂ
78.
Stankowich, T. & Blumstein, D. T. Fear in animals: a meta-analysis and review of risk assessment. Proc. R. Soc. B 272, 2627â2634 (2005).
PubMed Google ScholarÂ
79.
Stephens, D. W. & Charnov, E. L. Optimal foraging: some simple stochastic models. Behav. Ecol. Sociobiol. 10, 251â263 (1982).
Google ScholarÂ
80.
Kacelnik, A. & Bateson, M. Risky theories: the effects of variance on foraging decisions. Am. Zool. 36, 402â434 (1996).
Google ScholarÂ
81.
Lister, B. C. & Aguayo, A. G. Seasonality, predation, and the behaviour of a tropical mainland anole. J. Anim. Ecol. 61, 717â733 (1992).
Google ScholarÂ
82.
Broeckhoven, C. & Nortier, F. Some like it hot: camera traps unravel the effects of weather conditions and predator presence on the activity levels of two lizards. PLoS ONE 10, 1â15 (2015).
Google ScholarÂ
83.
Angilletta, M. J., Niewiarowski, P. H. & Navas, C. A. The evolution of thermal physiology in ectotherms. J. Therm. Biol. 27, 249â268 (2002).
Google ScholarÂ
84.
IbargĂŒengoytĂa, N. R. et al. Volcanic ash from Puyehue-Cordon Caulle eruptions affects running performance and body condition of Phymaturus lizards in Patagonia, Argentina. Biol. J. Linn. Soc. 118, 842â851 (2016).
Google ScholarÂ
85.
Geng, J., Dong, W., Wu, Q. & Lu, H.-L. Thermal tolerance for two cohorts of a native and an invasive freshwater turtle species. Acta Herpetol. 13, 83â88 (2018).
Google ScholarÂ
86.
Thompson, M. E., Halstead, B. J. & Donnelly, M. A. Thermal quality influences habitat use of two Anolis species. J. Therm. Biol. 18, 54â61 (2018).
Google ScholarÂ
87.
Bakken, G. S. Measurement and application of operative and standard operative temperatures in ecology. Am. Zool. 32, 194â216 (1992)
88.
Medina, S. M. Adaptaciones morfolĂłgicas y fisiolĂłgicas ligadas a la transiciĂłn oviparidad-viviparidad en lagartos de climas frĂos: reproducciĂłn y fisiologĂa tĂ©rmica. (PhD thesis, Universidad Nacional del Comahue, 2010).
89.
Lindsey, A. A. & Newman, J. E. Use of official wather data in spring time: temperature analysis of an Indiana phenological record. Ecology 37, 812â823 (1956).
Google ScholarÂ
90.
Guisan, A. & Hofer, U. Predicting reptile distributions at the mesoscale: relation to climate and topography. J. Biogeogr. 30, 1233â1243 (2003).
Google ScholarÂ
91.
Schwanz, L. E. & Janzen, F. J. Climate change and temperature-dependent sex determination: can individual plasticity in nesting phenology prevent extreme sex ratios?. Physiol. Biochem. Zool. 81, 826â834 (2008).
PubMed Google ScholarÂ
92.
Murphy, M. A., Evans, J. S. & Storfer, A. Quantifying Bufo boreas connectivity in Yellowstone National Park with landscape genetics. Ecology 91, 252â261 (2010).
PubMed Google ScholarÂ
93.
Boyero, L. et al. A global experiment suggests climate warming will not accelerate litter decomposition in streams but might reduce carbon sequestration. Ecol. Lett. 14, 289â294 (2011).
PubMed Google ScholarÂ
94.
Graae, B. J. et al. On the use of weather data in ecological studies along altitudinal and latitudinal gradients. Oikos 121, 3â19 (2012).
Google ScholarÂ
95.
Mitchell, N. et al. Linking eco-energetics and eco-hydrology to select sites for the assisted colonization of Australiaâs rarest reptile. Biology 2, 1â25 (2012).
PubMed PubMed Central Google ScholarÂ
96.
Peig, J. & Green, A. J. New perspectives for estimating body condition from mass/length data: the scaled mass index as an alternative method. Oikos 118, 1883â1891 (2009).
Google ScholarÂ
97.
Legendre, P. lmodel2: Model II Regression. (2014).
98.
R Core Team. R: A Language and Environment for Statistical Computing. (R Core Team, Vienna, 2019).
99.
Wood, S. & Wood, M. S. Package âmgcvâ. R Packag. version 1â7 (2015).
100.
Hastie, T. & Tibshirani, R. Generalized additive models: some applications. J. Am. Stat. Assoc. 82, 371â386 (1987).
MATH Google Scholar More