More stories

  • in

    Biogeography of marine giant viruses reveals their interplay with eukaryotes and ecological functions

    1.
    Field, C. B., Behrenfeld, M. J., Randerson, J. T. & Falkowski, P. Primary production of the biosphere: integrating terrestrial and oceanic components. Science 281, 237–240 (1998).
    CAS  PubMed  Google Scholar 
    2.
    Worden, A. Z. et al. Environmental science. Rethinking the marine carbon cycle: factoring in the multifarious lifestyles of microbes. Science 347, 1257594 (2015).
    PubMed  Google Scholar 

    3.
    Brum, J. R. & Sullivan, M. B. Rising to the challenge: accelerated pace of discovery transforms marine virology. Nat. Rev. Microbiol. 13, 147–159 (2015).
    CAS  PubMed  Google Scholar 

    4.
    Selosse, M.-A., Charpin, M. & Not, F. Mixotrophy everywhere on land and in water: the grand écart hypothesis. Ecol. Lett. 20, 246–263 (2017).
    PubMed  Google Scholar 

    5.
    Weitz, J. S. et al. A multitrophic model to quantify the effects of marine viruses on microbial food webs and ecosystem processes. ISME J. 9, 1352–1364 (2015).
    PubMed  PubMed Central  Google Scholar 

    6.
    Mojica, K. D., Huisman, J., Wilhelm, S. W. & Brussaard, C. P. Latitudinal variation in virus-induced mortality of phytoplankton across the North Atlantic Ocean. ISME J. 10, 500–513 (2016).
    CAS  PubMed  Google Scholar 

    7.
    Suttle, C. A. Marine viruses–major players in the global ecosystem. Nat. Rev. Microbiol. 5, 801–812 (2007).
    CAS  PubMed  Google Scholar 

    8.
    Guidi, L. et al. Plankton networks driving carbon export in the oligotrophic ocean. Nature 532, 465–470 (2016).
    CAS  PubMed  PubMed Central  Google Scholar 

    9.
    Laber, C. P. et al. Coccolithovirus facilitation of carbon export in the North Atlantic. Nat. Microbiol. 3, 537–547 (2018).
    CAS  PubMed  Google Scholar 

    10.
    Colson, P. et al. “Megavirales”, a proposed new order for eukaryotic nucleocytoplasmic large DNA viruses. Arch. Virol. 158, 2517–2521 (2013).
    PubMed  PubMed Central  Google Scholar 

    11.
    Fischer, M. G. Giant viruses come of age. Curr. Opin. Microbiol. 31, 50–57 (2016).
    PubMed  Google Scholar 

    12.
    Koonin, E. V. & Yutin, N. Evolution of the large nucleocytoplasmic DNA viruses of eukaryotes and convergent origins of viral gigantism. Adv. Virus Res. 103, 167–202 (2019).
    PubMed  Google Scholar 

    13.
    Monier, A., Claverie, J. M. & Ogata, H. Taxonomic distribution of large DNA viruses in the sea. Genome Biol. 9, R106 (2008).
    PubMed  PubMed Central  Google Scholar 

    14.
    Hingamp, P. et al. Exploring nucleo-cytoplasmic large DNA viruses in Tara Oceans microbial metagenomes. ISME J. 7, 1678–1695 (2013).
    CAS  PubMed  PubMed Central  Google Scholar 

    15.
    Clerissi, C. et al. Deep sequencing of amplified Prasinovirus and host green algal genes from an Indian Ocean transect reveals interacting trophic dependencies and new genotypes. Environ. Microbiol. Rep. 7, 979–989 (2015).
    CAS  PubMed  Google Scholar 

    16.
    Li, Y. et al. The earth is small for “Leviathans”: long distance dispersal of giant viruses across aquatic environments. Microbes Environ. 34, 334–339 (2019).
    PubMed  PubMed Central  Google Scholar 

    17.
    Mihara, T. et al. Taxon richness of “Megaviridae” exceeds those of bacteria and archaea in the ocean. Microbes Environ. 33, 162–171 (2018).
    PubMed  PubMed Central  Google Scholar 

    18.
    Li, Y. et al. Degenerate PCR primers to reveal the diversity of giant viruses in coastal waters. Viruses 10, 496 (2018).
    PubMed Central  Google Scholar 

    19.
    Schulz, F. et al. Giant virus diversity and host interactions through global metagenomics. Nature 578, 432–436 (2020).
    CAS  PubMed  PubMed Central  Google Scholar 

    20.
    Moniruzzaman, M., Martinez-Gutierrez, C. A., Weinheimer, A. R. & Aylward, F. O. Dynamic genome evolution and complex virocell metabolism of globally-distributed giant viruses. Nat. Commun. 11, 1710 (2020).
    CAS  PubMed  PubMed Central  Google Scholar 

    21.
    Cottrell, M. T. & Suttle, C. A. Wide-spread occurrence and clonal variation in viruses which cause lysis of a cosmopolitan, eukaryotic marine phytoplankter, Micromonas pusilla. Mar. Ecol. Prog. Ser. 78, 1–9 (1991).

    22.
    Bratbak, G., Egge, J. K. & Heldal, M. Viral mortality of the marine alga Emiliania huxleyi (Haptophyceae) and termination of algal blooms. Mar. Ecol. Prog. Ser. 93, 39–48 (1993).
    Google Scholar 

    23.
    Kenji, T., Keizo, N., Shigeru, I. & Mineo, Y. Isolation of a virus infecting the novel shellfish-killing dinoflagellate Heterocapsa circularisquama. Aquat. Microb. Ecol. 23, 103–111 (2001).
    Google Scholar 

    24.
    Fischer, M. G., Allen, M. J., Wilson, W. H. & Suttle, C. A. Giant virus with a remarkable complement of genes infects marine zooplankton. Proc. Natl Acad. Sci. USA 107, 19508–19513 (2010).
    CAS  PubMed  Google Scholar 

    25.
    Needham, D. M. et al. A distinct lineage of giant viruses brings a rhodopsin photosystem to unicellular marine predators. Proc. Natl Acad. Sci. USA 116, 20574–20583 (2019).
    CAS  PubMed  Google Scholar 

    26.
    Pesant, S. et al. Open science resources for the discovery and analysis of Tara Oceans data. Sci. Data 2, 150023 (2015).
    CAS  PubMed  PubMed Central  Google Scholar 

    27.
    Gregory, A. C. et al. Marine DNA viral macro- and microdiversity from pole to pole. Cell 177, e1114 (2019).
    Google Scholar 

    28.
    Salazar, G. et al. Gene expression changes and community turnover differentially shape the global ocean metatranscriptome. Cell 179, e1021 (2019).
    Google Scholar 

    29.
    Matsen, F. A., Kodner, R. B. & Armbrust, E. V. pplacer: linear time maximum-likelihood and Bayesian phylogenetic placement of sequences onto a fixed reference tree. BMC Bioinform. 11, 538 (2010).
    Google Scholar 

    30.
    Gallot-Lavallee, L., Blanc, G. & Claverie, J. M. Comparative genomics of Chrysochromulina ericina virus and other microalga-infecting large DNA viruses highlights their intricate evolutionary relationship with the established Mimiviridae family. J. Virol. 91, e00230–17 (2017).
    CAS  PubMed  PubMed Central  Google Scholar 

    31.
    Ibarbalz, F. M. et al. Global trends in marine plankton diversity across kingdoms of life. Cell 179, e1021 (2019).
    Google Scholar 

    32.
    Mihara, T. et al. Linking virus genomes with host taxonomy. Viruses 8, 66 (2016).
    PubMed  PubMed Central  Google Scholar 

    33.
    Ogata, H. et al. Remarkable sequence similarity between the dinoflagellate-infecting marine girus and the terrestrial pathogen African swine fever virus. Virol. J. 6, 178 (2009).
    PubMed  PubMed Central  Google Scholar 

    34.
    Andreani, J. et al. Pacmanvirus, a new giant icosahedral virus at the crossroads between Asfarviridae and Faustoviruses. J. Virol. 91, e00212–e00217 (2017).
    PubMed  PubMed Central  Google Scholar 

    35.
    Barton, A. D., Dutkiewicz, S., Flierl, G., Bragg, J. & Follows, M. J. Patterns of diversity in marine phytoplankton. Science 327, 1509–1511 (2010).
    CAS  PubMed  Google Scholar 

    36.
    Lima-Mendez, G. et al. Ocean plankton. Determinants of community structure in the global plankton interactome. Science 348, 1262073 (2015).
    PubMed  Google Scholar 

    37.
    Zhou, J. & Ning, D. Stochastic community assembly: does it matter in microbial ecology? Microbiol. Mol. Biol. Rev. 81, e00002–e00017 (2017).
    PubMed  PubMed Central  Google Scholar 

    38.
    Chow, C. E. & Suttle, C. A. Biogeography of viruses in the sea. Annu Rev. Virol. 2, 41–66 (2015).
    CAS  PubMed  Google Scholar 

    39.
    Yoshida, T. et al. Locality and diel cycling of viral production revealed by a 24 h time course cross-omics analysis in a coastal region of Japan. ISME J. 12, 1287–1295 (2018).
    CAS  PubMed  PubMed Central  Google Scholar 

    40.
    Sunagawa, S. et al. Ocean plankton. Structure and function of the global ocean microbiome. Science 348, 1261359 (2015).
    Google Scholar 

    41.
    Syed, T. H., Famiglietti, J. S., Zlotnicki, V. & Rodell, M. Contemporary estimates of Pan-Arctic freshwater discharge from GRACE and reanalysis. Geophys. Res. Lett. 34, L19404 (2007).
    Google Scholar 

    42.
    Wommack, K. E. & Colwell, R. R. Virioplankton: viruses in aquatic ecosystems. Microbiol. Mol. Biol. Rev. 64, 69–114 (2000).
    CAS  PubMed  PubMed Central  Google Scholar 

    43.
    Bellec, L. et al. Cophylogenetic interactions between marine viruses and eukaryotic picophytoplankton. BMC Evol. Biol. 14, 59 (2014).
    PubMed  PubMed Central  Google Scholar 

    44.
    Brussaard, C. P. D., Kempers, R. S., Kop, A. J., Riegman, R. & Heldal, M. Virus-like particles in a summer bloom of Emiliania huxleyi in the North Sea. Aquat. Microb. Ecol. 10, 105–113 (1996).
    Google Scholar 

    45.
    Stephan, J. et al. Flow cytometric analysis of an Emiliana huxleyi bloom terminated by viral infection. Aquat. Microb. Ecol. 27, 111–124 (2002).
    Google Scholar 

    46.
    Hurwitz, B. L., Westveld, A. H., Brum, J. R. & Sullivan, M. B. Modeling ecological drivers in marine viral communities using comparative metagenomics and network analyses. Proc. Natl Acad. Sci. USA 111, 10714–10719 (2014).
    CAS  PubMed  Google Scholar 

    47.
    Herndl, G. J. & Reinthaler, T. Microbial control of the dark end of the biological pump. Nat. Geosci. 6, 718–724 (2013).
    CAS  PubMed  PubMed Central  Google Scholar 

    48.
    Giering, S. L. et al. Reconciliation of the carbon budget in the ocean’s twilight zone. Nature 507, 480–483 (2014).
    CAS  PubMed  Google Scholar 

    49.
    Boyd, P. W., Claustre, H., Levy, M., Siegel, D. A. & Weber, T. Multi-faceted particle pumps drive carbon sequestration in the ocean. Nature 568, 327–335 (2019).
    CAS  PubMed  Google Scholar 

    50.
    Janice, E. L. & Curtis, A. S. Effect of viral infection on sinking rates of Heterosigma akashiwo and its implications for bloom termination. Aquat. Microb. Ecol. 37, 1–7 (2004).
    Google Scholar 

    51.
    Close, H. G. et al. Export of submicron particulate organic matter to mesopelagic depth in an oligotrophic gyre. Proc. Natl Acad. Sci. USA 110, 12565–12570 (2013).
    CAS  PubMed  Google Scholar 

    52.
    Mestre, M. et al. Sinking particles promote vertical connectivity in the ocean microbiome. Proc. Natl Acad. Sci. USA 115, E6799–E6807 (2018).
    CAS  PubMed  Google Scholar 

    53.
    Hurwitz, B. L., Brum, J. R. & Sullivan, M. B. Depth-stratified functional and taxonomic niche specialization in the ‘core’ and ‘flexible’ Pacific Ocean Virome. ISME J. 9, 472–484 (2015).
    CAS  PubMed  Google Scholar 

    54.
    Sancetta, C., Villareal, T. & Falkowski, P. Massive fluxes of rhizosolenid diatoms: a common occurrence? Limnol. Oceanogr. 36, 1452–1457 (1991).
    Google Scholar 

    55.
    Kawakami, H. & Honda, M. C. Time-series observation of POC fluxes estimated from 234Th in the northwestern North Pacific. Deep Sea Res. I 54, 1070–1090 (2007).
    Google Scholar 

    56.
    Richardson, T. L. & Jackson, G. A. Small phytoplankton and carbon export from the surface ocean. Science 315, 838–840 (2007).
    CAS  PubMed  Google Scholar 

    57.
    Blanc-Mathieu, R. et al. Viruses of the eukaryotic plankton are predicted to increase carbon export efficiency in the global sunlit ocean. Preprint at bioRxiv https://doi.org/10.1101/710228 (2019).

    58.
    Iversen, M. H. & Ploug, H. Ballast minerals and the sinking carbon flux in the ocean: carbon-specific respiration rates and sinking velocity of marine snow aggregates. Biogeosciences 7, 2613–2624 (2010).
    CAS  Google Scholar 

    59.
    Alberti, A. et al. Viral to metazoan marine plankton nucleotide sequences from the Tara Oceans expedition. Sci. Data 4, 170093 (2017).
    CAS  PubMed  PubMed Central  Google Scholar 

    60.
    Eddy, S. R. Profile hidden Markov models. Bioinformatics 14, 755–763 (1998).
    CAS  PubMed  Google Scholar 

    61.
    Katoh, K. & Standley, D. M. MAFFT multiple sequence alignment software version 7: improvements in performance and usability. Mol. Biol. Evol. 30, 772–780 (2013).
    CAS  PubMed  PubMed Central  Google Scholar 

    62.
    Stamatakis, A. RAxML-VI-HPC: maximum likelihood-based phylogenetic analyses with thousands of taxa and mixed models. Bioinformatics 22, 2688–2690 (2006).
    CAS  PubMed  Google Scholar 

    63.
    Koonin, E. V. & Yutin, N. Multiple evolutionary origins of giant viruses. F1000Res. 7, 1840 (2018).

    64.
    Yoshikawa, G. et al. Medusavirus, a novel large DNA virus discovered from hot spring water. J. Virol. 93, e02130–18 (2019).
    CAS  PubMed  PubMed Central  Google Scholar 

    65.
    Longhurst, A. R. in Ecological Geography of the Sea 2nd edn (ed. Longhurst, A. R.) Ch. 6 (Academic Press, 2007).

    66.
    Letunic, I. & Bork, P. Interactive tree of life (iTOL) v3: an online tool for the display and annotation of phylogenetic and other trees. Nucleic Acids Res. 44, W242–W245 (2016).
    CAS  PubMed  PubMed Central  Google Scholar 

    67.
    Besemer, J., Lomsadze, A. & Borodovsky, M. GeneMarkS: a self-training method for prediction of gene starts in microbial genomes. Implications for finding sequence motifs in regulatory regions. Nucleic Acids Res. 29, 2607–2618 (2001).
    CAS  PubMed  PubMed Central  Google Scholar 

    68.
    Keeling, P. J. et al. The Marine Microbial Eukaryote Transcriptome Sequencing Project (MMETSP): illuminating the functional diversity of eukaryotic life in the oceans through transcriptome sequencing. PLoS Biol. 12, e1001889 (2014).
    PubMed  PubMed Central  Google Scholar 

    69.
    Jain, C., Rodriguez, R. L., Phillippy, A. M., Konstantinidis, K. T. & Aluru, S. High throughput ANI analysis of 90K prokaryotic genomes reveals clear species boundaries. Nat. Commun. 9, 5114 (2018).
    PubMed  PubMed Central  Google Scholar 

    70.
    Anderson, M. J. A new method for non-parametric multivariate analysis of variance. Austral. Ecol. 26, 32–46 (2001).
    Google Scholar 

    71.
    de Vargas, C. et al. Ocean plankton. Eukaryotic plankton diversity in the sunlit ocean. Science 348, 1261605 (2015).
    PubMed  Google Scholar 

    72.
    Benjamini, Y. & Hochberg, Y. Controlling the false discovery rate: a practical and powerful approach to multiple testing. J. R. Stat. Soc. B 57, 289–300 (1995).
    Google Scholar  More

  • in

    Role of C4 carbon fixation in Ulva prolifera, the macroalga responsible for the world’s largest green tides

    1.
    Raven, J. A. Carbon dioxide fixation. in Algal Physiology and Biochemistry (ed Stewart, W. D. P.) 434–455 (Blackwell Scientific Publications, Oxford, 1974).
    2.
    Cooper, T. G., Filmer, D., Wishnick, M. & Lane, M. D. The active species of “CO2” utilized by ribulose diphosphate carboxylase. J. Biol. Chem. 244, 1081–1083 (1969).
    CAS  PubMed  Google Scholar 

    3.
    Badger, M. R. et al. The diversity and coevolution of Rubisco, plastids, pyrenoids, and chloroplast-based CO2-concentrating mechanisms in algae. Can. J. Bot. 76, 1052–1071 (1998).
    CAS  Google Scholar 

    4.
    Burkhardt, S., Amoroso, G., Riebesell, U. & Sültemeyerl, D. CO2 and HCO3− uptake in marine diatoms acclimated to different CO2 concentrations. Limnol. Oceanogr. 46, 1378–1391 (2001).
    CAS  Article  Google Scholar 

    5.
    Giordano, M., Beardall, J. & Raven, J. A. CO2 concentrating mechanisms in algae: mechanisms, environmental modulation, and evolution. Ann. Rev. Plant Biol. 56, 99–131 (2005).
    CAS  Article  Google Scholar 

    6.
    Reiskind, J. B. & Bowes, G. The role of phosphoenolpyruvate carboxykinase in a marine macroalga with C4-like photosynthetic characteristics. Proc. Natl Acad. Sci. USA 88, 2883–2887 (1991).
    CAS  Article  Google Scholar 

    7.
    Reinfelder, J. R., Kraepiel, A. M. L. & Morel, F. M. M. Unicellular C4 photosynthesis in a marine diatom. Nature 407, 996–999 (2000).
    CAS  Article  Google Scholar 

    8.
    Reinfelder, J. R., Milligan, A. J. & Morel, F. M. M. The role of the C4 pathway in carbon accumulation and fixation in a marine diatom. Plant Physiol. 135, 2106–2111 (2004).
    CAS  Article  Google Scholar 

    9.
    Shao, H. et al. Responses of Ottelia alismoides, an aquatic plant with three CCMs, to variable CO2 and light. J. Exp. Bot. 68, 3985–3995 (2017).
    CAS  Article  Google Scholar 

    10.
    Han, S. et al. Structural basis for C4 photosynthesis without Kranz anatomy in leaves of the submerged freshwater plant Ottelia alismoides. Ann. Bot. 125, 869–879 (2020).
    Article  Google Scholar 

    11.
    Liu, D., Keesing, J. K., Xing, Q. & Shi, P. Worldʼs largest macroalgal bloom caused by expansion of seaweed aquaculture in China. Mar. Poll. Bull. 58, 888–895 (2009).
    CAS  Article  Google Scholar 

    12.
    Keesing, J. K., Liu, D. Y., Fearns, P. & Garcia, R. Inter-and intra-annual patterns of Ulva prolifera green tides in the Yellow Sea during 2007–2009, their origin and relationship to the expansion of coastal seaweed aquaculture in China. Mar. Poll. Bull. 62, 1169–1182 (2011).
    CAS  Article  Google Scholar 

    13.
    Liu, D. et al. The worldʼs largest macroalgal bloom in the Yellow Sea, China: formation and implications. Estuar. Coast. Shelf Sci. 129, 2–10 (2013).
    CAS  Article  Google Scholar 

    14.
    Zhang, J. H., Kim, J. K., Yarish, C. & He, P. The expansion of Ulva prolifera O.F. Müller macroalgal blooms in the Yellow Sea, PR China, through asexual reproduction. Mar. Poll. Bull. 104, 101–106 (2016).
    CAS  Article  Google Scholar 

    15.
    Xu, J. et al. Evidence of coexistence of C3 and C4 photosynthetic pathways in a green-tide-forming alga, Ulva prolifera. PLoS ONE 7, e37438 (2012).
    CAS  Article  Google Scholar 

    16.
    Valiela, I., Liu, D., Lloret, J., Chenoweth, K. & Hanacek, D. Stable isotopic evidence of nitrogen sources and C4 metabolism driving the worldʼs largest macroalgal green tides in the Yellow Sea. Sci. Rep. 8, 17437 (2018).
    Article  Google Scholar 

    17.
    Hatch, M. D. C4 photosynthesis: a unique blend of modified biochemistry, anatomy and ultrastructure. Biochim. Biophys. Acta Rev. Bioenerg. 895, 81–106 (1987).
    CAS  Article  Google Scholar 

    18.
    Haimovich-Dayan, M. et al. The role of C4 metabolism in the marine diatom Phaeodactylum tricornutum. N. Phytol. 197, 177–185 (2013).
    CAS  Article  Google Scholar 

    19.
    OʼLeary, M. H. Carbon isotopes in photosynthesis. BioScience 38, 328–336 (1988).
    Article  Google Scholar 

    20.
    Fry, B. 13C/12C fractionation by marine diatoms. Mar. Ecol. Prog. Ser. 134, 283–294 (1996).
    CAS  Article  Google Scholar 

    21.
    Carvalho, M. C. & Eyre, B. D. Carbon stable isotope discrimination during respiration in three seaweed species. Mar. Ecol. Prog. Ser. 437, 41–49 (2011).
    CAS  Article  Google Scholar 

    22.
    Cornwall, C. E. et al. Inorganic carbon physiology underpins macroalgal responses to elevated CO2. Sci. Rep. 7, 46297 (2017).
    CAS  Article  Google Scholar 

    23.
    Carvalho, M. C., Hayashizaki, K. & Ogawa, H. Short-term measurement of carbon stable isotope discrimination in photosynthesis and respiration by aquatic macrophytes, with marine macroalgal examples. J. Phycol. 45, 761–770 (2009).
    Article  Google Scholar 

    24.
    Raven, J. A., Giordano, M., Beardall, J. & Maberly, S. C. Algal evolution in relation to atmospheric CO2: carboxylases, carbon-concentrating mechanisms and carbon oxidation cycles. Philos. Trans. Roy. Soc. B 367, 493–507 (2012).
    CAS  Article  Google Scholar 

    25.
    Roberts, K., Granum, E., Leegood, R. C. & Raven, J. A. C3 and C4 pathways of photosynthetic carbon assimilation in marine diatoms are under genetic, not environmental control. Plant Physiol. 145, 230–235 (2007).
    CAS  Article  Google Scholar 

    26.
    Roberts, K., Granum, E., Leegood, R. C. & Raven, J. A. Carbon acquisition by diatoms. Photosynth. Res. 93, 79–88 (2007).
    CAS  Article  Google Scholar 

    27.
    Beardall, J. & Giordano, M. Ecological implications of microalgal and cyanobacterial CO2 concentrating mechanisms, and their regulation. Funct. Plant Biol. 29, 335–347 (2002).
    CAS  Article  Google Scholar 

    28.
    Palmqvist, K., Yu, J. W. & Badger, M. R. Carbonic anhydrase activity and inorganic carbon fluxes in low- and high-Ci cells of Chlamydomonas reinhardtü and Scenedesmus obliquus. Physiol. Plant. 90, 537–547 (1994).
    CAS  Article  Google Scholar 

    29.
    Reinfelder, J. R. Carbon concentrating mechanisms in eukaryotic marine phytoplankton. Ann. Rev. Mar. Sci. 3, 291–315 (2011).
    Article  Google Scholar 

    30.
    Beardall, J. Effects of photon flux density on the CO2-concentrating mechanism of the cyanobacterium Anabaena variabilis. J. Plankton Res. 13, 133–141 (1991).
    Google Scholar 

    31.
    Kargul, J. & Barber, J. Photosynthetic acclimation: structural reorganization of light harvesting antenna-role of redox-dependent phosphorylation of major and minor chlorophyll a/b binding proteins. FEBS J. 275, 1056–1068 (2008).
    CAS  Article  Google Scholar 

    32.
    Zhao, X., Tang, X., Zhang, H., Qu, T. & Wang, Y. Photosynthetic adaptation strategy of Ulva prolifera floating on the sea surface to environmental changes. Plant Physiol. Biochem. 107, 116–125 (2016).
    CAS  Article  Google Scholar 

    33.
    Xu, J. & Gao, K. Future CO2-induced ocean acidification mediates the physiological performance of a green tide alga. Plant Physiol. 160, 1762–1769 (2012).
    CAS  Article  Google Scholar 

    34.
    Li, J., Sun, X. & Zheng, S. In situ study on photosynthetic characteristics of phytoplankton in the Yellow Sea and East China Sea in summer 2013. J. Mar. Syst. 160, 94–106 (2016).
    Article  Google Scholar 

    35.
    Qin, B. Y., Tao, Z., Li, Z. W. & Yang, X. F. Seasonal changes and controlling factors of sea surface pCO2 in the Yellow Sea. IOP Conf. Ser. 17, 012025 (2014).
    Article  Google Scholar 

    36.
    Krause-Jensen, D., McGlathery, K., Rysgaard, S. & Christensen, P. B. Production within dense mats of the filamentous macroalga Chaetomorpha linum in relation to light and nutrient availability. Mar. Ecol. Prog. Ser. 134, 207–216 (1996).
    Article  Google Scholar 

    37.
    Keesing, J. K., Liu, D., Shi, Y. & Wang, Y. Abiotic factors influencing biomass accumulation of green tide causing Ulva spp. on Pyropia culture rafts in the Yellow Sea, China. Mar. Poll. Bull. 105, 88–97 (2016).
    CAS  Article  Google Scholar 

    38.
    Pierrot, D., Lewis, E. & Wallace, D. W. R. MS Excel Program Developed for CO2System Calculations. ORNL/CDIAC−105a. (Carbon Dioxide Information Analysis Center, Oak Ridge National Laboratory, US Department of Energy, Oak Ridge, Tennessee, 2006).

    39.
    Wilbur, K. M. & Anderson, N. G. Electronic and colorimetric determination of carbonic anhydrase. J. Biol. Chem. 176, 147–154 (1948).
    CAS  PubMed  Google Scholar  More

  • in

    Functional groups of rotifers and an exotic species in a tropical shallow lake

    Our study on a shallow tropical lake identified fluctuations and interactions of rotifer assemblage, based on trophic guild analysis, comparable to those found in temperate lakes. We also highlighted that trophic guilds, based on trophi structure, has broad application to both temperate and tropical water bodies, which shows the universality of this approach. In addition, our analysis on the interaction between the exotic species Kellicottia bostoniensis and other microphagous rotifers were sufficient to demonstrate that it does not have invasive characteristics.
    The Guild Ratio (GR), based on the density of raptorial and microphagous functional groups of rotifers, revealed to be an appropriate tool in the evaluation of possible interactions with other planktonic groups, as well as in the evaluation of temporal changes of functional groups. Unlike Obertegger and Manca5 and Obertegger et al.11, we used the database of densities of functional groups instead of biomass, according to Smith et al.10. The significant correlation between GR and cladocerans showed that GR, based on number of individuals, indicated interaction between microphagous rotifers and cladocerans like that reported by Obertegger and Manca5 and Obertegger et al.11 in temperate lakes, based on biomass (GR′). The relationship GR-cladocerans showed a similar trend with monthly and bimonthly data, indicating its adequacy even when data are less frequently obtained, which agrees with results from Obertegger et al.11 in Lake Washington, USA. Given this point, our findings reinforce that other studies may be designed with lower sampling frequency and certainly achieve satisfactory results, allowing a cheaper logistic planning in further research.
    The significant positive correlation between GR and cladoceran densities indicates competition between the groups, corroborating the initial hypothesis. The predominance of microphagous rotifers (i.e. lower GR values) when cladoceran densities decreased, represented mainly by Daphnia gessneri (max. size 1.22 mm) and Ceriodaphnia richardi (max. 0.70 mm)29, is a sign of competition between both groups. Therefore, when cladocerans were more abundant during the cool season (May–September), the raptorial rotifers species predominated, which coexist with filtering cladocerans, similarly to results obtained by Obertegger et al.11, in lakes Washington (USA) and Caldonazzo (Italy). Exploitative competition between cladocerans and rotifers, particularly microphagous species, which occupy a similar niche, may even lead to competitive exclusion of rotifers. Herbivorous cyclopoid nauplii could compete with rotifers and make our analysis meaningful, however there was no evidence of interaction between them and microphagous rotifers, which does not support our hypothesis.
    Several studies report the competitive superiority of cladocerans4,30,31. The inferiority of rotifers may be partly due to lower clearance rate (1–10 µL ind.−1 h−1) than cladocerans (10–150 µL ind.−1 h−1) as well as a more limited size food range (ca. 4–17 µm)1. The maximum clearance rate of cladocerans may be much higher than that already mentioned by Nogrady et al.1 and dependent on various factors such as temperature, food concentration and body size9. Rotifer populations may be suppressed by more efficient cladocerans through exploitative competition, although rotifers may also suffer effects from interference competition32,33. Cladocerans larger than 1.2 mm may suppress small rotifer populations by interference34. In Lake Monte Alegre, cladoceran species are relatively small and probably exploitative competition is the most important interaction in this community.
    The increase in algal carbon and temperature in the Lake Monte Alegre during the warm season (October–April) was not followed by increase of the total rotifer densities, indicating a preponderant influence of another factor. However, as mentioned above, there was an increase in the abundance of microphagous species and a decrease in densities of raptorial species in this season. Raptorial species, particularly large species (e.g., Synchaeta spp.), prefer larger items ( > 50 µm) such as algae, ciliates and other rotifers13. Species of the genus Ascomorpha feed on dinophytes, such as Peridinium and Ceratium, which are grasped, and the content sucked1. In Lake Monte Alegre, an increase of Peridinium in the fall and winter (March–September) was already reported35,36, which would benefit some raptorial rotifers, including Ascomorpha. However, in this study in 2011–2012, dinophytes were not abundant (L.H.S. Silva, unpublished data), representing about 1.4% of the total phytoplankton density, chlorophytes predominating, increasing the contribution of cyanobacteria in the warm season. Therefore, higher densities of raptorial species in the cool season were unrelated to phytoplankton composition and, on the other hand, higher temperatures in the warm season did not favor the increase in populations of this group.
    The distribution of organisms can be a strategy to avoid competition and predation. In Lake Monte Alegre, several species of Colotheca, Keratella, Polyarthra, and Trichocerca occupied the entire water column in the cool season (A. J. Meschiatti et al. unpublished data). In the warm season, species of these genera, in addition to Brachionus, Hexarthra and Ptygura were limited to the oxygenated layer, avoiding the anoxic hypolimnion. Another feature of the vertical distribution of rotifers in this lake was the frequent occupation of the most superficial layer, even during the day, which is rarely occupied by cladocerans37, reducing overlap and possible interactions with other organisms.
    Direct predation on rotifers by chaoborid larvae is low in Lake Monte Alegre, representing 9% of the prey number for instars I and II, 4% for instar III, not being preyed on by instar IV38. In an experiment with mesocosm in this lake, no predation effect by Chaoborus larvae on Keratella spp. densities was detected39. Zooplankton predation by fish in the lake is mainly exerted by adult of the exotic cichlid Tilapia rendalli (current name Coptodon rendalli), a pump filter-feeder40, which collects organisms with lower evasion to the filtering current, which, however, are not abundant in the lake. Although Keratella sp. was not rejected by tilápia, its consumption is low by this fish species, whose predation is higher on cladocerans40.
    Temporal variations of functional groups of rotifers in Lake Monte Alegre indicated the indirect effect of cladoceran predation by invertebrates, such as Chaoborus brasiliensis larvae and the aquatic mite, Krendowskia sp., in 2011–201241. Predation pressure by invertebrates is generally higher in the warm season when their populations increased, resulting in declining cladoceran populations29,41. Consequently, there is a decrease in exploitative competition by cladocerans and the possibility of competitive exclusion when resources are limiting. Predation by invertebrates has emerged as the main structuring factor of the lake zooplankton29, and this study highlights the indirect effect of this factor on rotifers.
    The high frequency of occurrence of the exotic species Kellicottia bostoniensis in the present study, combined with the weekly sampling strategy adopted, demonstrates the great persistence capacity of this species in the environment, with rare occasions when it is excluded from the water column. This feature indicates success of the exotic species in the new habitat22. The characteristics of an invasive species are not always scientifically proven, and many failures are not reported in publications, introducing a bias in evaluating the success of exotic species19. The presence of this exotic species in Lake Monte Alegre had not been detected in previous studies conducted in the 1980s42,43. Although very common, according to Josefsson and Andersson18 it is not invasive in the lake, as it did not constitute a threat to the local community of rotifers. It does not outcompete other microphagous rotifers and, on the contrary, there is evidence of being competitively inferior, as its population decreased in periods of dominance of other microphagous species. A laboratory experiment showed that K. bostoniensis had no effect on zooplankton composed of native copepods, cladocerans, and rotifers, affecting only ciliates, which are part of its food resources23, reinforcing the idea that it does not constitute a threat to the whole planktonic community.
    This exotic species was caught in lakes from River Doce valley44 and in Furnas Reservoir45, in Brazil, at lower densities than those of Lake Monte Alegre (max. 127 ind. L−1). The vertical distribution in Nado Reservoir, located in Brazil, showed its highest abundance in the anoxic hypolimnion, on a diel cycle46, indicating resistance of this species to adverse conditions. In some Swedish lakes, the exotic species K. bostoniensis was also found in deeper layers18, as well as in Mirror Lake, United States, where the production of K. bostoniensis, a native species, was higher at the bottom47. Apparently, this species maintains similar distribution in its original habitat and a new habitat. The ability to occupy lower layers, often anoxic, where few microcrustaceans and rotifers are found, would lower negative interactions with other populations and even constitutes a defense strategy against predation by most invertebrates and filtering fish48. More

  • in

    Wrong-way migrations of benthic species driven by ocean warming and larval transport

    1.
    Perry, A. L., Low, P. J., Ellis, J. R. & Reynolds, J. D. Climate change and distribution shifts in marine fishes. Science 308, 1912–1915 (2005).
    CAS  Google Scholar 
    2.
    Dulvy, N. K. et al. Climate change and deepening of the North Sea fish assemblage: a biotic indicator of warming seas. J. Appl. Ecol. 45, 1029–1039 (2008).
    Google Scholar 

    3.
    Sunday, J. M., Bates, A. E. & Dulvy, N. K. Thermal tolerance and the global redistribution of animals. Nat. Clim. Change 2, 686–690 (2012).
    Google Scholar 

    4.
    Pinsky, M. L., Worm, B., Fogarty, M. J., Sarmiento, J. L. & Levin, S. A. Marine taxa track local climate velocities. Science 341, 1239–1242 (2013).
    CAS  Google Scholar 

    5.
    Hutchins, L. W. The bases for temperature zonation in geographical distribution. Ecol. Monogr. 17, 325–335 (1947).
    Google Scholar 

    6.
    Pineda, J., Reyns, N. B. & Starczak, V. R. Complexity and simplification in understanding recruitment in benthic populations. Pop. Ecol. 51, 17–32 (2009).
    Google Scholar 

    7.
    Morgan, S. G., Shanks, A. L., MacMahan, J. H., Reniers, A. J. H. M. & Feddersen, F. Planktonic subsidies to surf-zone and intertidal communities. Annu. Rev. Mar. Sci. 10, 345–369 (2018).
    Google Scholar 

    8.
    Gaylord, B. & Gaines, S. D. Temperature or transport? Range limits in marine species mediated solely by flow. Am. Nat. 155, 769–789 (2000).
    Google Scholar 

    9.
    García Molinos, J., Burrows, M. T. & Poloczanska, E. S. Ocean currents modify the coupling between climate change and biogeographical shifts. Sci. Rep. 7, 1332 (2017).
    Google Scholar 

    10.
    Kumagai, N. H. et al. Ocean currents and herbivory drive macroalgae-to-coral community shift under climate warming. Proc. Natl Acad. Sci. USA 115, 8990–8995 (2017).
    Google Scholar 

    11.
    Harley, C. D. G. et al. The impacts of climate change in coastal marine systems. Ecol. Lett. 9, 228–241 (2006).
    Google Scholar 

    12.
    Strathmann, M. F. Reproduction and Development of Marine Invertebrates of the Northern Pacific Coast (Univ. of Washington Press, 1987).

    13.
    Thorson, G. Reproductive and larval ecology of marine bottom invertebrates. Biol. Rev. 25, 1–45 (1950).
    CAS  Google Scholar 

    14.
    Olive, P. J. W. Annual breeding cycles in marine invertebrates and environmental temperature: probing the proximate and ultimate causes of reproductive synchrony. J. Therm. Biol. 20, 79–90 (1995).
    Google Scholar 

    15.
    Philippart, C. J. M. et al. Climate-related changes in recruitment of the bivalve Macoma balthica. Limnol. Oceanogr. 48, 2171–2185 (2003).
    Google Scholar 

    16.
    Asch, R. G. Climate change and decadal shifts in the phenology of larval fishes in the California Current Ecosystem. Proc. Natl Acad. Sci. USA 112, E4065–E4074 (2015).
    CAS  Google Scholar 

    17.
    Shearman, R. K. & Lentz, S. J. Long-term sea surface temperature variability along the U.S. East Coast. J. Phys. Oceanogr. 40, 1004–1017 (2010).
    Google Scholar 

    18.
    Saba, V. S. et al. Enhanced warming of the northwest Atlantic Ocean under climate change. J. Geophys. Res. Oceans 121, 118–132 (2016).
    Google Scholar 

    19.
    Castelao, R., Glenn, S. & Schofield, O. Temperature, salinity, and density variability in the central Middle Atlantic Bight. J. Geophys. Res. 115, C10005 (2010).
    Google Scholar 

    20.
    Richaud, B., Kwon, Y.-O., Joyce, T. M., Fratantoni, P. S. & Lentz, S. J. Surface and bottom temperature and salinity climatology along the continental shelf off the Canadian and U.S. East Coasts. Cont. Shelf Res. 124, 165–181 (2016).
    Google Scholar 

    21.
    Roughgarden, J., Gaines, S. & Possingham, H. Recruitment dynamics in complex life cycles. Science 241, 1460–1466 (1988).
    CAS  Google Scholar 

    22.
    Connolly, S. R., Menge, B. A. & Roughgarden, J. A latitudinal gradient in recruitment of intertidal invertebrates in the northeast Pacific Ocean. Ecology 82, 1799–1813 (2001).
    Google Scholar 

    23.
    Ma, H., Grassle, J. P. & Chant, R. J. Vertical distribution of bivalve larvae along a cross-shelf transect during summer upwelling and downwelling. Mar. Biol. 149, 1123–1138 (2006).
    Google Scholar 

    24.
    Shanks, A. L. & Brink, L. Upwelling, downwelling, and cross-shelf transport of bivalve larvae: test of a hypothesis. Mar. Ecol. Prog. Ser. 302, 1–12 (2005).
    Google Scholar 

    25.
    Drake, P. T., Edwards, C. A., Morgan, S. G. & Dever, E. P. Influence of larval behavior on transport and population connectivity in a realistic simulation of the California Current System. J. Mar. Res. 71, 317–350 (2013).
    Google Scholar 

    26.
    Shanks, A. L. & Morgan, S. G. Testing the intermittent upwelling hypothesis: upwelling, downwelling, and subsidies to the intertidal zone. Ecol. Monogr. 88, 22–35 (2018).
    Google Scholar 

    27.
    Menge, B. A. & Menge, D. N. L. Testing the intermittent upwelling hypothesis: comment. Ecology 100, e02476 (2019).
    Google Scholar 

    28.
    Lentz, S. J. Seasonal variations in the circulation over the Middle Atlantic Bight continental shelf. J. Phys. Oceanogr. 38, 1486–1500 (2008).
    Google Scholar 

    29.
    Gong, D., Kohut, J. T. & Glenn, S. M. Seasonal climatology of wind-driven circulation on the New Jersey Shelf. J. Geophys. Res. 115, C04006 (2010).
    Google Scholar 

    30.
    Whitney, M. M. & Garvine, R. W. Wind influence on a coastal buoyant outflow. J. Geophys. Res. 110, C03014 (2005).
    Google Scholar 

    31.
    Largier, J. L. Considerations in estimating larval dispersal distances from oceanographic data. Ecol. Appl. 13, S71–S89 (2003).
    Google Scholar 

    32.
    Byers, J. E. & Pringle, J. M. Going against the flow: retention, range limits and invasions in advective environments. Mar. Ecol. Prog. Ser. 313, 27–41 (2006).
    Google Scholar 

    33.
    Fuchs, H. L., Gerbi, G. P., Hunter, E. J. & Christman, A. J. Waves cue distinct behaviors and differentiate transport of congeneric snail larvae from sheltered versus wavy habitats. Proc. Natl Acad. Sci. USA 115, E7532–E7540 (2018).
    CAS  Google Scholar 

    34.
    Sunday, J. M., Bates, A. E. & Dulvy, N. K. Global analysis of thermal tolerance and latitude in ectotherms. Proc. R. Soc. B 278, 1823–1830 (2011).
    Google Scholar 

    35.
    Wilson, R. J. et al. Changes to the elevational limits and extent of species ranges associated with climate change. Ecol. Lett. 8, 1138–1146 (2005).
    Google Scholar 

    36.
    Freeman, B. G., Scholer, M. N., Ruiz-Guttierrez, V. & Fitzpatrick, J. W. Climate change causes upslope shifts and mountaintop extirpations in a tropical bird community. Proc. Natl Acad. Sci. USA 115, 11982–11987 (2018).
    CAS  Google Scholar 

    37.
    Free, C. M. et al. Impacts of historical warming on fisheries production. Science 363, 979–983 (2019).
    CAS  Google Scholar 

    38.
    Young, I. R. & Ribal, A. Multiplatform evaluation of global trends in wind speed and wave height. Science 364, 548–552 (2019).
    CAS  Google Scholar 

    39.
    Ocean Biogeographic Information System (Intergovernmental Oceanographic Commission of UNESCO, 2018); www.iobis.org

    40.
    Tingley, M. W. & Beissinger, S. R. Detecting range shifts from historical species occurrences: new perspectives on old data. Trends Ecol. Evol. 24, 625–633 (2009).
    Google Scholar 

    41.
    Wigley, R. L. & Theroux, R. B. Atlantic Continental Shelf and Slope of the United States; Macrobenthic Invertebrate Fauna of the Middle Atlantic Bight Region; Faunal Composition and Quantitative Distribution Professional Paper No. 529-N (USGS, 1981).

    42.
    Amante, C. & Eakins, B. W. ETOPO1 1 Arc-Minute Global Relief Model: Procedures, Data Sources and Analysis Technical Memorandum NESDIS NGDC-24 (National Geophysical Data Center, NOAA, 2009); https://doi.org/10.7289/V5C8276M

    43.
    Loarie, S. R. et al. The velocity of climate change. Nature 462, 1052–1057 (2009).
    CAS  Google Scholar 

    44.
    Kang, D. & Curchitser, E. N. Gulf stream eddy characteristics in a high-resolution ocean model. J. Geophys. Res. Oceans 118, 4474–4487 (2013).
    Google Scholar 

    45.
    Narváez, D. A. et al. Long-term dynamics in Atlantic surfclam (Spisula solidissima) populations: the role of bottom water temperature. J. Mar. Sys. 141, 136–148 (2015).
    Google Scholar 

    46.
    Chen, Z., Curchitser, E., Chant, R. & Kang, D. Seasonal variability of the cold pool over the Mid-Atlantic Bight continental shelf. J. Geophys. Res. Oceans 123, 8203–8226 (2018).
    Google Scholar 

    47.
    D’Errico, J. inpaint_nans (MATLAB Central File Exchange, 2019); https://www.mathworks.com/matlabcentral/fileexchange/4551-inpaint_nans

    48.
    Gypaets trigradient2 (GitHub, 2020); https://www.github.com/Gypaets/trigradient2

    49.
    Yeager, S. & NCAR Staff The Climate Data Guide: COREv2 Air-Sea Surface Fluxes (UCAR, 2016); https://climatedataguide.ucar.edu/climate-data/corev2-air-sea-surface-fluxes

    50.
    National Water Information System Data (USGS, 2016); http://waterdata.usgs.gov/nwis/

    51.
    Lentz, S. J. Observations and a model of the mean circulation over the Middle Atlantic Bight continental shelf. J. Phys. Oceanogr. 38, 1203–1221 (2008).
    Google Scholar 

    52.
    Shanks, A. L. Pelagic larval duration and dispersal distance revisited. Biol. Bull. 216, 373–385 (2009).
    Google Scholar  More

  • in

    Effects of environmental factors on microbiota of fruits and soil of Coffea arabica in Brazil

    1.
    USDA. Coffee Annual Coffee. https://gain.fas.usda.gov/RecentGAINPublications/LOCK-UPREPORT_Pretoria_SouthAfrica-Republicof_10-29-2009.pdf (2019).
    2.
    Carvalho Guarçoni, R. et al. Influence of solar radiation and wet processing on the final quality of Arabica coffee. J. Food Qual. https://doi.org/10.1155/2018/6408571 (2018).
    Article  Google Scholar 

    3.
    Iamanaka, B. T. et al. Reprint of ‘The mycobiota of coffee beans and its influence on the coffee beverage’. Food Res. Int. 61, 33–38. https://doi.org/10.1016/j.foodres.2014.05.023 (2014).
    Article  Google Scholar 

    4.
    Barnes, E. C., Jumpathong, J., Lumyong, S., Voigt, K. & Hertweck, C. Daldionin, an unprecedented binaphthyl derivative, and diverse polyketide congeners from a fungal orchid endophyte. Chem. A Eur. J. 22, 4551–4555. https://doi.org/10.1002/chem.201504005 (2016).
    Article  CAS  Google Scholar 

    5.
    Descroix, F. & Snoeck, J. Environmental factors suitable for coffee cultivation. In Coffee: Growing, Processing, Sustainable Production 164–177, https://doi.org/10.1002/9783527619627.ch6 (2008).

    6.
    De Bruyn, F. et al. Exploring the impacts of postharvest processing on the microbiota and metabolite profiles during green coffee bean production. Am. Soc. Microbiol. https://doi.org/10.1128/AEM.02398-16 (2016).
    Article  Google Scholar 

    7.
    Hamdouche, Y. et al. Discrimination of post-harvest coffee processing methods by microbial ecology analyses. Food Control 65, 112–120. https://doi.org/10.1016/j.foodcont.2016.01.022 (2016).
    Article  CAS  Google Scholar 

    8.
    Zhao, Q. et al. Long-term coffee monoculture alters soil chemical properties and microbial communities. Sci. Rep. 8, 1–11. https://doi.org/10.1038/s41598-018-24537-2 (2018).
    ADS  Article  CAS  Google Scholar 

    9.
    Júnior, P. P. et al. Agroecological coffee management increases arbuscular mycorrhizal fungi diversity. PLoS ONE 14, 1–19. https://doi.org/10.1371/journal.pone.0209093 (2019).
    Article  CAS  Google Scholar 

    10.
    Melloni, R. et al. Sistemas Agroflorestais cafeeiro-araucária e seu efeito na microbiota do solo e seus processos. Ciência Florest. 28, 784–795. https://doi.org/10.5902/1980509832392 (2018).
    Article  Google Scholar 

    11.
    Oliveira, M. N. V. et al. Endophytic microbial diversity in coffee cherries of Coffea arabica from southeastern Brazil. Can. J. Microbiol. 59, 221–230. https://doi.org/10.1139/cjm-2012-0674 (2013).
    Article  PubMed  CAS  Google Scholar 

    12.
    Nasanit, R. & Satayawut, K. Microbiological study during coffee fermentation of Coffea arabica var chiangmai 80 in Thailand. Kasetsart J. Nat. Sci. 49, 32–41 (2015).
    CAS  Google Scholar 

    13.
    Evangelista, S. R. et al. Improvement of coffee beverage quality by using selected yeasts strains during the fermentation in dry process. Food Res. Int. 61, 183–195. https://doi.org/10.1016/j.foodres.2013.11.033 (2014).
    Article  CAS  Google Scholar 

    14.
    Pereira, G. V. D. M. et al. Potential of lactic acid bacteria to improve the fermentation and quality of coffee during on-farm processing. Int. J. Food Sci. Technol. 51, 1689–1695. https://doi.org/10.1111/ijfs.13142 (2016).
    Article  CAS  Google Scholar 

    15.
    Sahu, N., Duraisamy, V., Sahu, A., Lal, N. & K. Singh, S. Strength of microbes in nutrient cycling: A key to soil health. In Agriculturally Important Microbes for Sustainable Agriculture 69–86, https://doi.org/10.1007/978-981-10-5589-8_4 (2017).

    16.
    Zhang, S. J. et al. Following coffee production from cherries to cup: Microbiological and metabolomic analysis of wet processing of Coffea arabica. Appl. Environ. Microbiol. 85, 1–22. https://doi.org/10.1128/AEM.02635-18 (2019).
    Article  CAS  Google Scholar 

    17.
    Ramos, C. L. et al. Determination of dynamic characteristics of microbiota in a fermented beverage produced by Brazilian Amerindians using culture-dependent and culture-independent methods. Int. J. Food Microbiol. 140, 225–231. https://doi.org/10.1016/j.ijfoodmicro.2010.03.029 (2010).
    Article  PubMed  CAS  Google Scholar 

    18.
    Faoro, H. et al. Influence of soil characteristics on the diversity of bacteria in the Southern Brazilian Atlantic Forest. Appl. Environ. Microbiol. 76, 4744–4749. https://doi.org/10.1128/AEM.03025-09a (2010).
    Article  PubMed  PubMed Central  CAS  Google Scholar 

    19.
    Defelipo, B. V. & Ribeiro, A. C. Análise química do solo (metodologia). Bol. Extensão 28, 1–26 (1997).
    Google Scholar 

    20.
    Walters, W. et al. Improved bacterial 16S rRNA gene (V4 and V4–5) and fungal internal transcribed spacer marker gene primers for microbial community surveys. Am. Soc. Microbiol. https://doi.org/10.1128/msystems.00009-15 (2015).
    Article  Google Scholar 

    21.
    Pylro, V. S. et al. Data analysis for 16S microbial profiling from different benchtop sequencing platforms. J. Microbiol. Methods 107, 30–37. https://doi.org/10.1016/j.mimet.2014.08.018 (2014).
    Article  PubMed  CAS  Google Scholar 

    22.
    Edgar, R. C. UPARSE: Highly accurate OTU sequences from microbial amplicon reads. Nat. Methods 10, 996–998. https://doi.org/10.1038/nmeth.2604 (2013).
    Article  CAS  Google Scholar 

    23.
    Caporaso, J. G. et al. QIIME allows analysis of high-throughput community sequencing data. Nat. Methods 7, 335–336. https://doi.org/10.1038/nmeth.f.303 (2010).
    Article  PubMed  PubMed Central  CAS  Google Scholar 

    24.
    Edgar, R. C. UCHIME2: Improved chimera prediction for amplicon sequencing. BioRxiv https://doi.org/10.1101/074252 (2016).
    Article  Google Scholar 

    25.
    Quast, C. et al. The SILVA ribosomal RNA gene database project: Improved data processing and web-based tools. Nucleic Acids Res. 41, D590–D596. https://doi.org/10.1093/nar/gks1219 (2013).
    Article  PubMed  PubMed Central  CAS  Google Scholar 

    26.
    Lozupone, C., Lladser, M. E., Knights, D., Stombaugh, J. & Knight, R. UniFrac: An effective distance metric for microbial community comparison. ISME J. 5, 169–172. https://doi.org/10.1038/ismej.2010.133 (2011).
    Article  PubMed  Google Scholar 

    27.
    Edgar, R. C. Search and clustering orders of magnitude faster than BLAST. Bioinformatics 26, 2460–2461. https://doi.org/10.1093/bioinformatics/btq461 (2010).
    Article  PubMed  PubMed Central  CAS  Google Scholar 

    28.
    Bengtsson-Palme, J. et al. Improved software detection and extraction of ITS1 and ITS2 from ribosomal ITS sequences of fungi and other eukaryotes for analysis of environmental sequencing data. Methods Ecol. Evol. 4, 914–919. https://doi.org/10.1111/2041-210X.12073 (2013).
    Article  Google Scholar 

    29.
    Nilsson, R. H. et al. The UNITE database for molecular identification of fungi: Handling dark taxa and parallel taxonomic classifications. Nucleic Acids Res. 47, D259–D264. https://doi.org/10.1093/nar/gky1022 (2019).
    Article  PubMed  CAS  Google Scholar 

    30.
    Oksanen, J. et al. Community Ecology Package. 1–296, https://cran.r-project.org/web/packages/vegan/vegan.pdf (2019).

    31.
    R Core Team. R: A Language and Environment for Statistical Computing. https://www.r-project.org/ (2018).

    32.
    Borcard, D. et al. Canonical ordination. In Numerical Ecology with R 153–225, https://doi.org/10.1007/978-1-4419-7976-6_6 (2011).

    33.
    Gomes, D. G. E. et al. Bats perceptually weight prey cues across sensory systems when hunting in noise. Science 353, 1277–1280. https://doi.org/10.1126/science.aaf7934 (2016).
    ADS  Article  PubMed  CAS  Google Scholar 

    34.
    Friedman, J. & Alm, E. J. Inferring correlation networks from genomic survey data. PLOS Comput. Biol. 8, 1–11. https://doi.org/10.1371/journal.pcbi.1002687 (2012).
    Article  CAS  Google Scholar 

    35.
    Watts, S. C., Ritchie, S. C., Inouye, M. & Holt, K. E. FastSpar: Rapid and scalable correlation estimation for compositional data. Bioinformatics 35, 1064–1066. https://doi.org/10.1093/bioinformatics/bty734 (2019).
    Article  PubMed  CAS  Google Scholar 

    36.
    Csardi, G. & Nepusz, T. The igraph software package for complex network research. InterJournal Complex Syst 1695, 1–9 (2006).
    Google Scholar 

    37.
    Avelino, J. et al. Effects of slope exposure, altitude and yield on coffee quality in two altitude terroirs of Costa Rica, Orosi and Santa María de Dota. J. Sci. Food Agric. 85, 1869–1876. https://doi.org/10.1002/jsfa.2188 (2005).
    Article  CAS  Google Scholar 

    38.
    Wei, L., Wai, M., Curran, P., Yu, B. & Quan, S. Coffee fermentation and flavor—An intricate and delicate relationship. Food Chem. 185, 182–191. https://doi.org/10.1016/j.foodchem.2015.03.124 (2015).
    Article  CAS  Google Scholar 

    39.
    Fulthorpe, R., Martin, A. R. & Isaac, M. E. Root endophytes of coffee ( Coffea arabica): Variation across climatic gradients and relationships with functional traits. Phytobiomes J. 4, 27–39. https://doi.org/10.1094/PBIOMES-04-19-0021-R (2020).
    Article  Google Scholar 

    40.
    Chu, H. et al. Effects of slope aspects on soil bacterial and arbuscular fungal communities in a boreal forest in China. Pedosphere 26, 226–234. https://doi.org/10.1016/S1002-0160(15)60037-6 (2016).
    Article  Google Scholar 

    41.
    Karungi, J. et al. Elevation and cropping system as drivers of microclimate and abundance of soil macrofauna in coffee farmlands in mountainous ecologies. Appl. Soil Ecol. 132, 126–134. https://doi.org/10.1016/J.APSOIL.2018.08.003 (2018).
    Article  Google Scholar 

    42.
    Ferreira, W. P. M., Queiroz, D. M., Silvac, S. A., Tomaz, R. S. & Corrêa, P. C. Effects of the orientation of the mountainside, altitude and varieties on the quality of the coffee beverage from the “Matas de Minas” region, Brazilian Southeast. Am. J. Plant Sci. 7, 1291–1303. https://doi.org/10.4236/ajps.2016.78124 (2016).
    Article  Google Scholar 

    43.
    Velmourougane, K. Impact of organic and conventional systems of coffee farming on soil properties and culturable microbial diversity. Scientifica 1–9, 2016. https://doi.org/10.1155/2016/3604026 (2016).
    Article  CAS  Google Scholar 

    44.
    Siles, J. A. & Margesin, R. Abundance and diversity of bacterial, archaeal, and fungal communities along an altitudinal gradient in alpine forest soils: What are the driving factors?. Soil Microbiol. 72, 207–220. https://doi.org/10.1007/s00248-016-0748-2 (2016).
    Article  Google Scholar 

    45.
    Frank, A., Saldierna Guzmán, J. & Shay, J. Transmission of bacterial endophytes. Microorganisms 5, 70. https://doi.org/10.3390/microorganisms5040070 (2017).
    Article  PubMed Central  CAS  Google Scholar 

    46.
    Haile, M. & Kang, W. H. The role of microbes in coffee fermentation and their impact on coffee quality. J. Food Qual. 2019, 6. https://doi.org/10.1155/2019/4836709 (2019).
    Article  CAS  Google Scholar 

    47.
    Decazy, F. et al. Quality of different Honduran coffees in relation to several environments. J. Food Sci. 68, 2356–2361. https://doi.org/10.1111/j.1365-2621.2003.tb05772.x (2003).
    Article  CAS  Google Scholar 

    48.
    de Melo Pereira, G. V. et al. Conducting starter culture-controlled fermentations of coffee beans during on-farm wet processing: Growth, metabolic analyses and sensorial effects. Food Res. Int. 75, 348–356. https://doi.org/10.1016/j.foodres.2015.06.027 (2015).
    Article  PubMed  CAS  Google Scholar 

    49.
    Zhang, W. et al. Microbial diversity in two traditional bacterial douchi from Gansu province in northwest China using Illumina sequencing. PLoS ONE 13, 1–16. https://doi.org/10.1371/journal.pone.0194876 (2018).
    Article  CAS  Google Scholar 

    50.
    Tolessa, K., D’heer, J., Duchateau, L. & Boeckx, P. Influence of growing altitude, shade and harvest period on quality and biochemical composition of Ethiopian specialty coffee. J. Sci. Food Agric. 97, 2849–2857. https://doi.org/10.1002/jsfa.8114 (2017).
    Article  PubMed  CAS  Google Scholar 

    51.
    Batista, D. et al. Legitimacy and implications of reducing Colletotrichum kahawae to subspecies in plant pathology. Front. Plant Sci. 7, 1–9. https://doi.org/10.3389/fpls.2016.02051 (2017).
    Article  CAS  Google Scholar 

    52.
    Wei, Z. et al. Trophic network architecture of root-associated bacterial communities determines pathogen invasion and plant health. Nat. Commun. 6, 1–9. https://doi.org/10.1038/ncomms9413 (2015).
    ADS  Article  CAS  Google Scholar  More

  • in

    Pesticide dosing must be guided by ecological principles

    1.
    van Klink, R. et al. Science 368, 417–420 (2020).
    PubMed  Google Scholar 
    2.
    Goulson, D. J. Appl. Ecol. 50, 977–987 (2013).
    Article  Google Scholar 

    3.
    Goulson, D., Nicholls, E., Botías, C. & Rotheray, E. L. Science. 347, 1435–1445 (2015).
    CAS  Article  Google Scholar 

    4.
    Siviter, H., Brown, M. J. F. & Leadbeater, E. Nature 561, 109–112 (2018).
    CAS  Article  Google Scholar 

    5.
    Hendrichs, J., Kenmore, P., Robinson, A. S. & Vreysen, M. J. B. in Area-Wide Control of Insect Pests (eds Vreysen, M. J. B. et al.) 3–33 (Springer, 2007).

    6.
    Boyd, I. L. Nat. Ecol. Evol. 2, 920–921 (2018).
    Article  Google Scholar 

    7.
    Goulson, D., Thompson, J. & Croombs, A. PeerJ 6, e5255 (2018).
    Article  Google Scholar 

    8.
    Sánchez-Bayo, F. Science 346, 806–807 (2014).
    Article  Google Scholar 

    9.
    PUS STATS (Fera Science Limited, accessed 12 May 2020); https://secure.fera.defra.gov.uk/pusstats/index.cfm

    10.
    Krieger, R. (ed.) Hayes’ Handbook of Pesticide Toxicology 2nd edn, Vol. 1 (Academic Press, 2001).

    11.
    Desneux, N., Decourtye, A. & Delpuech, J. Annu. Rev. Entomol. 52, 81–106 (2007).
    CAS  Article  Google Scholar 

    12.
    Rundlöf, M. et al. Nature 521, 77–80 (2015).
    Article  Google Scholar 

    13.
    Woodcock, B. A. et al. Science 356, 1393–1395 (2017).
    CAS  Article  Google Scholar 

    14.
    Wang, B., Gao, R., Mastro, V. C. & Reardon, R. C. J. Econ. Entomol. 98, 2292–2300 (2005).
    CAS  Article  Google Scholar 

    15.
    Poland, T. M. et al. J. Econ. Entomol. 99, 383–392 (2009).
    Article  Google Scholar 

    16.
    He, Y. et al. Int. J. Biol. Sci. 9, 246–255 (2013).
    Article  Google Scholar 

    17.
    Michaelides, P. K. & Wright, D. J. Crop Prot. 16, 431–438 (1997).
    CAS  Article  Google Scholar 

    18.
    Pedigo, L. Annu. Rev. Entomol. 31, 341–368 (1986).
    Article  Google Scholar 

    19.
    Allee, W. C. The Social Life of Animals (W.W. Norton & Company, 1938).

    20.
    Berec, L., Angulo, E. & Courchamp, F. Trends Ecol. Evol. 22, 185–191 (2007).
    Article  Google Scholar 

    21.
    Zubrod, J. P. et al. Environ. Sci. Technol. 53, 3347–3365 (2019).
    CAS  Article  Google Scholar 

    22.
    Clements, J. et al. Sci. Rep. 8, 13282 (2018).
    Article  Google Scholar 

    23.
    Rohr, J. R., Kerby, J. L. & Sih, A. Trends Ecol. Evol. 21, 606–613 (2006).
    Article  Google Scholar 

    24.
    Nathan, C. Nat. Rev. Microbiol. 18, 259–260 (2020).
    CAS  Article  Google Scholar 

    25.
    Whalon, M. E., Mota-Sanchez, D. & Hollingworth, R. M. Global Pesticide Resistance in Arthropods (CABI, 2008); https://doi.org/10.1079/9781845933531.0000

    26.
    Alkassab, A. T. & Kirchner, W. H. Ecotoxicology 25, 1000–1010 (2016).
    CAS  Article  Google Scholar 

    27.
    Suchail, S., Guez, D. & Belzunces, L. P. Environ. Toxicol. Chem. 19, 1901–1905 (2000).
    CAS  Article  Google Scholar 

    28.
    Chahbar, N., Chahbar, M. & Doumandji, S. Int. J. Zool. Res. 4, 29–40 (2014).
    Google Scholar 

    29.
    Wu-Smart, J. & Spivak, M. Environ. Entomol. 47, 55–62 (2018).
    CAS  Article  Google Scholar 

    30.
    Basley, K., Davenport, B., Vogiatzis, K. & Goulson, D. PeerJ 6, e4258 (2018).
    Article  Google Scholar 

    31.
    Tomé, H. V. V., Martins, G. F., Lima, M. A. P., Campos, L. A. O. & Guedes, R. N. C. PLoS ONE 7, e38406 (2012).
    Article  Google Scholar 

    32.
    Horowitz, A. R., Mendelson, Z., Weintraub, P. G. & Ishaaya, I. Bull. Entomol. Res. 88, 437–442 (1998).
    CAS  Article  Google Scholar 

    33.
    Hunter White, W. et al. J. Econ. Entomol. 100, 155–163 (2007).
    Article  Google Scholar 

    34.
    Wasserberg, G. et al. J. Vector Ecol. 36, S148–S156 (2011).
    Article  Google Scholar 

    35.
    Ramakrishnan, R., Suiter, D. R., Nakatsu, C. H. & Bennett, G. W. J. Econ. Entomol. 93, 422–428 (2000).
    CAS  Article  Google Scholar 

    36.
    Klein, S., Cabirol, A., Devaud, J. M., Barron, A. B. & Lihoreau, M. Trends Ecol. Evol. 32, 268–278 (2017).
    Article  Google Scholar  More

  • in

    Wireworm (Coleoptera: Elateridae) genomic analysis reveals putative cryptic species, population structure, and adaptation to pest control

    1.
    Traugott, M., Benefer, C. M., Blackshaw, R. P., van Herk, W. G. & Vernon, R. S. Biology, ecology, and control of elaterid beetles in agricultural land. Annu. Rev. Entomol. 60, 313–334 (2015).
    CAS  PubMed  Google Scholar 
    2.
    Knodel, J. J. & Shrestha, G. Pulse crops: pest management of wireworms and cutworms in the Northern Great Plains of United States and Canada. Ann. Entomological Soc. Am. 111, 195–204 (2018).
    Google Scholar 

    3.
    Vernon, R. S. et al. Transitional sublethal and lethal effects of insecticides after dermal exposures to five economic species of wireworms (Coleoptera: Elateridae). J. Economic Entomol. 101, 365–374 (2008).
    CAS  Google Scholar 

    4.
    Reddy, G. V. P. & Tangtrakulwanich, K. Potential application of pheromones in monitoring, mating disruption, and control of click beetles (Coleoptera: Elateridae). ISRN Entomol. 2014, 1–8 (2014).
    Google Scholar 

    5.
    Morales-Rodriguez, A. & Wanner, K. W. Efficacy of thiamethoxam and fipronil, applied alone and in combination, to control Limonius californicus and Hypnoidus bicolor (Coleoptera: Elateridae). Pest Manag. Sci. 71, 584–591 (2015).
    CAS  PubMed  Google Scholar 

    6.
    van Herk, W. G., Vernon, R. S., Tolman, J. H. & Saavedra, H. O. Mortality of a wireworm, Agriotes obscurus (Coleoptera: Elateridae), after topical application of various insecticides. J. Economic Entomol. 101, 375–383 (2008).
    Google Scholar 

    7.
    Vernon, R. S., Van Herk, W. G., Clodius, M. & Harding, C. Wireworm management I: stand protection versus wireworm mortality with wheat seed treatments. J. Economic Entomol. 102, 2126–2136 (2009).
    CAS  Google Scholar 

    8.
    Vernon, R. S., Van Herk, W. G., Clodius, M. & Harding, C. Further studies on wireworm management in Canada: damage protection versus wireworm mortality in potatoes. J. Economic Entomol. 106, 786–799 (2013).
    CAS  Google Scholar 

    9.
    van Herk, W. G. et al. Contact behaviour and mortality of wireworms exposed to six classes of insecticide applied to wheat seed. J. Pest Sci. 88, 717–739 (2015).
    Google Scholar 

    10.
    van Herk, W. G., Labun, T. J. & Vernon, R. S. Efficacy of diamide, neonicotinoid, pyrethroid, and phenyl pyrazole insecticide seed treatments for controlling the sugar beet wireworm, Limonius californicus (Coleoptera: Elateridae), in spring wheat. J. Entomological Soc. Br. Columbia 115, 86–100 (2019).
    Google Scholar 

    11.
    Ensafi, P. et al. Soil type mediates the effectiveness of biological control against Limonius californicus (Coleoptera: Elateridae). J. Economic Entomol. 111, 2053–2058 (2018).
    CAS  Google Scholar 

    12.
    Stern, V. M. S. R., van den Bosch, R. & Hagen, K. S. The integrated control concept. Hilgardia 29, 81–101 (1959).
    CAS  Google Scholar 

    13.
    Barzman, M. et al. Eight principles of integrated pest management. Agron. Sustain. Dev. 35, 1199–1215 (2015).
    Google Scholar 

    14.
    Hebert, P. D. N., Cywinska, A., Ball, S. L. & DeWaard, J. R. Biological identifications through DNA barcodes. Proc. R. Soc. B-Biol. Sci. 270, 313–321 (2003).
    CAS  Google Scholar 

    15.
    Zhang, S. K. et al. DNA barcoding identification and genetic diversity of bamboo shoot wireworms (Coleoptera: Elateridae) in South China. J. Asia-Pac. Entomol. 22, 140–150 (2019).
    Google Scholar 

    16.
    Ellis, J. S., Blackshaw, R., Parker, W., Hicks, H. & Knight, M. E. Genetic identification of morphologically cryptic agricultural pests. Agric. For. Entomol. 11, 115–121 (2009).
    Google Scholar 

    17.
    Benefer, C. M. et al. The molecular identification and genetic diversity of economically important wireworm species (Coleoptera: Elateridae) in Canada. J. Pest Sci. 86, 19–27 (2013).
    Google Scholar 

    18.
    Etzler, F. E., Wanner, K. W., Morales-Rodriguez, A. & Ivie, M. A. DNA barcoding to improve the species-level management of wireworms (Coleoptera: Elateridae). J. Economic Entomol. 107, 1476–1485 (2014).
    Google Scholar 

    19.
    Lindroth, E. & Clark, T. L. Phylogenetic analysis of an economically important species complex of wireworms (Coleoptera: Elateridae) in the midwest. J. Economic Entomol. 102, 743–749 (2009).
    CAS  Google Scholar 

    20.
    Allendorf, F. W. Genetics and the conservation of natural populations: allozymes to genomes. Mol. Ecol. 26, 420–430 (2017).
    CAS  PubMed  Google Scholar 

    21.
    Savolainen, O., Lascoux, M. & Merila, J. Ecological genomics of local adaptation. Nat. Rev. Genet. 14, 807–820 (2013).
    CAS  PubMed  Google Scholar 

    22.
    Rashed, A., Etzler, F., Rogers, C. W. & Marshall, J. M. Wireworms in Idaho Cereals: Monitoring and Identification 898 (University of Idaho Extension Bulletin, 2015).

    23.
    Milosavljevic I., Esser A. D. & Crowder D. W. Identifying Wireworms in Cereal Crops FS175E (Washington State University Extension, 2015).

    24.
    Stone, M. W. Life History of the Sugar-beet Wireworm in Southern California. Tech. Bull. No. 744 (1941).

    25.
    Andrews, K., Good, J., Miller, M., Luikart, G. & Hohenlohe, P. Harnessing the power of RADseq for ecological and evolutionary genomics. Nat. Rev. Genet. 17, 81–92 (2016).
    CAS  PubMed  PubMed Central  Google Scholar 

    26.
    Coissac, E., Hollingsworth, P. M., Lavergne, S. & Taberlet, P. From barcodes to genomes: extending the concept of DNA barcoding. Mol. Ecol. 25, 1423–1428 (2016).
    CAS  PubMed  Google Scholar 

    27.
    Miller, J. M., Malenfant, R. M., Moore, S. S. & Coltman, D. W. Short reads, circular genome: Skimming SOLiD sequence to construct the bighorn sheep mitochondrial genome. J. Heredity 103, 140–146 (2012).
    CAS  Google Scholar 

    28.
    McVean, G. A genealogical interpretation of principal components analysis. PLoS Genet. 5, e1000686 (2009).

    29.
    Wang, J. Triadic IBD coefficients and applications to estimating pairwise relatedness. Genet. Res. 89, 135–153 (2007).
    CAS  PubMed  Google Scholar 

    30.
    Papadopoulou, A., Anastasiou, I. & Vogler, A. P. Revisiting the insect mitochondrial molecular clock: The mid-Aegean trench calibration. Mol. Biol. Evolution 27, 1659–1672 (2010).
    CAS  Google Scholar 

    31.
    Hebert, P. D. N., Ratnasingham, S. & deWaard, J. R. Barcoding animal life: cytochrome c oxidase subunit 1 divergences among closely related species. Proc. R. Soc. B-Biol. Sci. 270, S96–S99, (2003).
    CAS  Google Scholar 

    32.
    Huemer, P. et al. Large geographic distance versus small DNA barcode divergence: insights from a comparison of European to South Siberian Lepidoptera. PLoS One 13, e0206668 (2018).

    33.
    Sun, S. E. et al. DNA barcoding reveal patterns of species diversity among northwestern Pacific molluscs. Sci. Rep. 6, 33367 (2016).

    34.
    Ward, R. D., Zemlak, T. S., Innes, B. H., Last, P. R. & Hebert, P. D. N. DNA barcoding Australia’s fish species. Philos. Trans. R. Soc. B-Biol. Sci. 360, 1847–1857 (2005).
    CAS  Google Scholar 

    35.
    Brunsfeld, S. J., Sullivan, J., Soltis, D. E. & Soltis, P. S. in Integrating Ecological and Evolutionary Processes in A Spatial Context Vol. 14 (eds Silvertown, J. & Antonovics, J.) 319–339 (Blackwell Science, Oxford, 2001).

    36.
    Rankin, A. M. et al. Complex interplay of ancient vicariance and recent patterns of geographical speciation in north-western North American temperate rainforests explains the phylogeny of jumping slugs (Hemphillia spp.). Biol. J. Linn. Soc. 127, 876–889 (2019).
    Google Scholar 

    37.
    Maroja, L. S., Bogdanowicz, S. M., Wallin, K. F., Raffa, K. F. & Harrison, R. G. Phylogeography of spruce beetles (Dendroctonus rufipennis Kirby) (Curculionidae: Scolytinae) in north america. Mol. Ecol. 16, 2560–2573 (2007).
    CAS  PubMed  Google Scholar 

    38.
    Arakaki, N., Hokama, Y. & Yamamura, K. Estimation of the dispersal ability of Melanotus okinawensis (Coleoptera: Elateridae) larvae in soil. Appl. Entomol. Zool. 45, 297–302 (2010).
    Google Scholar 

    39.
    Schallhart, N., Tusch, M. J., Staudacher, K., Wallinger, C. & Traugott, M. Stable isotope analysis reveals whether soil-living elaterid larvae move between agricultural crops. Soil Biol. Biochem. 43, 1612–1614 (2011).
    CAS  PubMed  PubMed Central  Google Scholar 

    40.
    Arakaki, N. et al. Estimation of abundance and dispersal distance of the sugarcane click beetle Melanotus sakishimensis Ohira (Coleoptera: Elateridae) on Kurima Island, Okinawa, by mark-recapture experiments. Appl. Entomol. Zool. 43, 409–419 (2008).
    Google Scholar 

    41.
    Schallhart, N., Wallinger, C., Juen, A. & Traugott, M. Dispersal abilities of adult click beetles in arable land revealed by analysis of carbon stable isotopes. Agric. For. Entomol. 11, 333–339 (2009).
    Google Scholar 

    42.
    Blackshaw, R. P., Vernon, R. S. & Thiebaud, F. Large scale Agriotes spp. click beetle (Coleoptera: Elateridae) invasion of crop land from field margin reservoirs. Agric. For. Entomol. 20, 51–61 (2018).
    Google Scholar 

    43.
    Hicks, H. & Blackshaw, R. P. Differential responses of three Agriotes click beetle species to pheromone traps. Agric. For. Entomol. 10, 443–448 (2008).
    Google Scholar 

    44.
    Rondon, S. I., Pantoja, A., Hagerty, A. & Horneck, D. A. Ground beelte (Coleoptera: Carabidae) populations in commercial organic and conventional potato production. Fla. Entomologist 96, 1492–1499 (2013).
    Google Scholar 

    45.
    Horton, D. R. & Landolt, P. J. Use of Japanese-beetle traps to monitor flight of the Pacific coast wireworm, Limonius canus (Coleoptera: Elateridae), and effects of trap height and color. J. Entomological Soc. Br. Columbia 98, 235–242 (2001).
    Google Scholar 

    46.
    Balkenhol, N., Cushman, S. A., Storfer, A. & Waits, L. P. Landscape Genetics—Concepts, Methods, Applications (John Wiley & Sons Ltd, West Sussex, 2016).

    47.
    Milosavljevic, I., Esser, A. D. & Crowder, D. W. Seasonal population dynamics of wireworms in wheat crops in the Pacific Northwestern United States. J. Pest Sci. 90, 77–86 (2017).
    Google Scholar 

    48.
    Gerritsen, A. T. et al. Full mitochondrial genome sequence of the sugar beet wireworm Limonius californicus (Coleoptera: Elateridae), a common agricultural pest. Microbiology Resource Announcements 4 (2016).

    49.
    Voskoboynik, A. et al. The genome sequence of the colonial chordate, Botryllus schlosseri. Elife 2, e00569 (2013).

    50.
    McCoy, R. C. et al. Illumina TruSeq synthetic long-reads empower de novo assembly and resolve complex, highly-repetitive transposable elements. PLoS ONE 9, e106689 (2014).

    51.
    Marzachi, C., Veratti, F. & Bosco, D. Direct PCR detection of phytoplasmas in experimentally infected insects. Ann. Appl. Biol. 133, 45–54 (1998).
    CAS  Google Scholar 

    52.
    Ali, O. A. et al. RAD Capture (Rapture): flexible and efficient sequence-based genotyping. Genetics 202, 389–400 (2016).
    CAS  PubMed  Google Scholar 

    53.
    Baym, M. et al. Inexpensive multiplexed library preparation for megabase-sized genomes. PLoS ONE 10, e0128036 (2015).

    54.
    Zimin, A. V. et al. Hybrid assembly of the large and highly repetitive genome of Aegilops tauschii, a progenitor of bread wheat, with the MaSuRCA mega-reads algorithm. Genome Res. 27, 787–792 (2017).
    CAS  PubMed  PubMed Central  Google Scholar 

    55.
    Simão, F. A., Waterhouse, R. M., Ioannidis, P., Kriventseva, E. V. & Zdobnov, E. M. BUSCO: assessing genome assembly and annotation completeness with single-copy orthologs. Bioinformatics 31, 3210–3212 (2015).
    PubMed  Google Scholar 

    56.
    Catchen, J., Hohenlohe, P. A., Bassham, S., Amores, A. & Cresko, W. A. Stacks: an analysis tool set for population genomics. Mol. Ecol. 22, 3124–3140 (2013).
    PubMed  PubMed Central  Google Scholar 

    57.
    Li, H. & Durbin, R. Fast and accurate short read alignment with Burrows-Wheeler transform. Bioinformatics 25, 1754–1760 (2009).
    CAS  PubMed  PubMed Central  Google Scholar 

    58.
    Poplin, R. et al. Scaling accurate genetic variant discovery to tens of thousands of samples. bioRxiv https://doi.org/10.1101/201178 (2017).

    59.
    Danecek, P. et al. The variant call format and VCFtools. Bioinformatics 27, 2156–2158 (2011).

    60.
    Frichot, E. & Francois, O. LEA: an R package for landscape and ecological association studies. Methods Ecol. Evolution 6, 925–929 (2015).
    Google Scholar 

    61.
    R_Core_Team. R: A Language and Environment for Statistical Computing. http://www.R-project.org/ (R Foundation for Statistical Computing, Vienna, 2018).

    62.
    Excoffier, L., Laval, L. G. & Schneider, S. Arlequin ver. 3.0: an integrated software package for population genetics data analysis. Evolut. Bioinforma. Online 1, 47–50 (2005).
    CAS  Google Scholar 

    63.
    Jombart, T. & Ahmed, I. adegenet 1.3-1: new tools for the analysis of genome-wide SNP data. Bioinformatics 27, 3070–3071 (2011).
    CAS  PubMed  PubMed Central  Google Scholar 

    64.
    Wang, J. L. COANCESTRY: a program for simulating, estimating and analysing relatedness and inbreeding coefficients. Mol. Ecol. Resour. 11, 141–145 (2011).
    PubMed  Google Scholar 

    65.
    Whitlock, M. C. & Lotterhos, K. E. Reliable detection of loci responsible for local adaptation: Inference of a null model through trimming the distribution of FST. Am. Naturalist 186, S24–S36 (2015).
    Google Scholar 

    66.
    Foll, M. & Gaggiotti, O. A genome-scan method to identify selected loci appropriate for both dominant and codominant markers: a Bayesian perspective. Genetics 180, 977–993 (2008).
    PubMed  PubMed Central  Google Scholar 

    67.
    Beaumont, M. A. & Nichols, R. A. Evaluating loci for use in the genetic analysis of population structure. Proc. R. Soc. Ser. B, Biol. Sci. 263, 1619–1626 (1996).
    Google Scholar 

    68.
    Edgar, R. C. MUSCLE: multiple sequence alignment with high accuracy and high throughput. Nucleic Acids Res. 32, 1792–1797 (2004).
    CAS  PubMed  PubMed Central  Google Scholar 

    69.
    Stamatakis, A. RAxML version 8: a tool for phylogenetic analysis and post-analysis of large phylogenies. Bioinformatics 30, 1312–1313 (2014).
    CAS  PubMed  PubMed Central  Google Scholar 

    70.
    Bouckaert, R. et al. BEAST 2.5: an advanced software platform for Bayesian evolutionary analysis. PLoS Comput. Biol. 15, e1006650 (2019).

    71.
    Darriba, D., Taboada, G., Doallo, R. & Posada, D. jModelTest 2: more models, new heuristics and parallel computing. Nat. Methods 9, 772 (2012).
    CAS  PubMed  PubMed Central  Google Scholar 

    72.
    Rambaut, A., Drummond, A. J., Xie, D., Baele, G. & Suchard, M. A. Posterior summarization in Bayesian phylogenetics using Tracer 1.7. Syst. Biol. 67, 901–904 (2018).
    CAS  PubMed  PubMed Central  Google Scholar  More

  • in

    Discovering the indigenous microbial communities associated with the natural fermentation of sap from the cider gum Eucalyptus gunnii

    1.
    Legras, J. L., Merdinoglu, D., Cornuet, J. M. & Karst, F. Bread, beer and wine: Saccharomyces cerevisiae diversity reflects human history. Mol. Ecol. 16, 2091–2102 (2007).
    CAS  Article  Google Scholar 
    2.
    McGovern, P. E. et al. Fermented beverages of pre- and proto-historic China. Proc. Natl. Acad. Sci. U.S.A. 101, 17593–17598. https://doi.org/10.1073/pnas.0407921102 (2004).
    ADS  CAS  Article  PubMed  PubMed Central  Google Scholar 

    3.
    Cavalieri, D., McGovern, P., Hartl, D., Mortimer, R. & Polsinelli, M. Evidence for S. cerevisiae fermentation in ancient wine. J. Mol. Evol. 57, S226–S232 (2003).
    ADS  CAS  Article  Google Scholar 

    4.
    McGovern, P., Hartung, U., Badler, V., Glusker, D. & Exner, L. The beginnings of winemaking and viniculture in the ancient Near East and Egypt. Expedition 39, 3–21 (1997).
    Google Scholar 

    5.
    Dudley, R. Ethanol, fruit ripening, and the historical origins of human alcoholism in primate frugivory. Integr. Comp. Biol. 44, 315–323 (2004).
    CAS  Article  Google Scholar 

    6.
    Dudley, R. Fermenting fruit and the historical ecology of ethanol ingestion: is alcoholism in modern humans an evolutionary hangover?. Addiction 97, 381–388. https://doi.org/10.1046/j.1360-0443.2002.00002.x (2002).
    Article  PubMed  Google Scholar 

    7.
    Carrigan, M. A. et al. Hominids adapted to metabolize ethanol long before human-directed fermentation. Proc. Natl. Acad. Sci. U.S.A. 112, 458–463. https://doi.org/10.1073/pnas.1404167111 (2015).
    ADS  CAS  Article  PubMed  Google Scholar 

    8.
    Alba-Lois, L. & Segal-Kischinevzky, C. Yeast fermentation and the making of beer and wine https://www.nature.com/scitable/topicpage/yeast-fermentation-and-the-making-of-beer-14372813 (2010).

    9.
    Malacarne, M., Martuzzi, F., Summer, A. & Mariani, P. Protein and fat composition of mare’s milk: some nutritional remarks with reference to human and cow’s milk. Int. Dairy J. 12, 869–877. https://doi.org/10.1016/S0958-6946(02)00120-6 (2002).
    CAS  Article  Google Scholar 

    10.
    Brady, M. First Taste. How Indigenous Australians Learned About Grog (Alcohol Education and Rehabilitation Foundation Ltd, Canberra, 2008).
    Google Scholar 

    11.
    Brady, M. & McGrath, V. Making Tuba in the Torres Strait islands: the cultural diffusion and geographic mobility of an alcoholic drink. J. Pac. Hist. 45, 315–330. https://doi.org/10.1080/00223344.2010.530811 (2010).
    Article  PubMed  Google Scholar 

    12.
    Varela, C. The impact of non-Saccharomyces yeasts in the production of alcoholic beverages. Appl. Microbiol. Biotechnol. 100, 9861–9874. https://doi.org/10.1007/s00253-016-7941-6 (2016).
    CAS  Article  PubMed  Google Scholar 

    13.
    Jolly, N. P., Varela, C. & Pretorius, I. S. Not your ordinary yeast: non-Saccharomyces yeasts in wine production uncovered. FEMS Yeast Res. 14, 215–237. https://doi.org/10.1111/1567-1364.12111 (2014).
    CAS  Article  PubMed  Google Scholar 

    14.
    Steinkraus, K. H. Handbook of Indigenous Fermented Foods, Second Edition, Revised and Expanded (Marcel Dekker, New York, 1995).
    Google Scholar 

    15.
    Tamang, J. P., Watanabe, K. & Holzapfel, W. H. Review: diversity of microorganisms in global fermented foods and beverages. Front. Microbiol. https://doi.org/10.3389/fmicb.2016.00377 (2016).
    Article  PubMed  PubMed Central  Google Scholar 

    16.
    Bahiru, B., Mehari, T. & Ashenafi, M. Yeast and lactic acid flora of tej, an indigenous Ethiopian honey wine: variations within and between production units. Food Microbiol. 23, 277–282. https://doi.org/10.1016/j.fm.2005.05.007 (2006).
    CAS  Article  PubMed  Google Scholar 

    17.
    Vallejo, J. A. et al. Atypical yeasts identified as Saccharomyces cerevisiae by MALDI-TOF MS and gene sequencing are the main responsible of fermentation of chicha, a traditional beverage from Peru. Syst. Appl. Microbiol. 36, 560–564. https://doi.org/10.1016/j.syapm.2013.09.002 (2013).
    CAS  Article  PubMed  Google Scholar 

    18.
    Puerari, C., Magalhães-Guedes, K. T. & Schwan, R. F. Physicochemical and microbiological characterization of chicha, a rice-based fermented beverage produced by Umutina Brazilian Amerindians. Food Microbiol. 46, 210–217. https://doi.org/10.1016/j.fm.2014.08.009 (2015).
    CAS  Article  PubMed  Google Scholar 

    19.
    Escalante, A. et al. Characterization of bacterial diversity in Pulque, a traditional Mexican alcoholic fermented beverage, as determined by 16S rDNA analysis. FEMS Microbiol. Lett. 235, 273–279. https://doi.org/10.1016/j.femsle.2004.04.045 (2004).
    CAS  Article  PubMed  Google Scholar 

    20.
    Lappe-Oliveras, P. et al. Yeasts associated with the production of Mexican alcoholic nondistilled and distilled Agave beverages. FEMS Yeast Res. 8, 1037–1052. https://doi.org/10.1111/j.1567-1364.2008.00430.x (2008).
    CAS  Article  PubMed  Google Scholar 

    21.
    Jung, M. J., Nam, Y. D., Roh, S. W. & Bae, J. W. Unexpected convergence of fungal and bacterial communities during fermentation of traditional Korean alcoholic beverages inoculated with various natural starters. Food Microbiol. 30, 112–123. https://doi.org/10.1016/j.fm.2011.09.008 (2012).
    Article  PubMed  Google Scholar 

    22.
    Greppi, A. et al. Determination of yeast diversity in ogi, mawe, gowe and tchoukoutou by using culture-dependent and -independent methods. Int. J. Food Microbiol. 165, 84–88. https://doi.org/10.1016/j.ijfoodmicro.2013.05.005 (2013).
    CAS  Article  PubMed  Google Scholar 

    23.
    Spitaels, F. et al. The microbial diversity of traditional spontaneously fermented lambic beer. PLoS ONE https://doi.org/10.1371/journal.pone.0095384 (2014).
    Article  PubMed  PubMed Central  Google Scholar 

    24.
    Tapsoba, F., Legras, J. L., Savadogo, A., Dequin, S. & Traore, A. S. Diversity of Saccharomyces cerevisiae strains isolated from Borassus akeassii palm wines from Burkina Faso in comparison to other African beverages. Int. J. Food Microbiol. 211, 128–133. https://doi.org/10.1016/j.ijfoodmicro.2015.07.010 (2015).
    Article  PubMed  Google Scholar 

    25.
    Bokulich, N. A., Bamforth, C. W. & Mills, D. A. Brewhouse-resident microbiota are responsible for multi-stage fermentation of American coolship ale. PLoS ONE 7, e35507. https://doi.org/10.1371/journal.pone.0035507 (2012).
    ADS  CAS  Article  PubMed  PubMed Central  Google Scholar 

    26.
    Bokulich, N. A., Thorngate, J. H., Richardson, P. M. & Mills, D. A. Microbial biogeography of wine grapes is conditioned by cultivar, vintage, and climate. Proc. Natl. Acad. Sci. U.S.A. 111, E139–E148. https://doi.org/10.1073/pnas.1317377110 (2014).
    ADS  CAS  Article  PubMed  Google Scholar 

    27.
    Siren, K. et al. Taxonomic and functional characterization of the microbial community during spontaneous in vitro fermentation of Riesling must. Front. Microbiol. https://doi.org/10.3389/fmicb.2019.00697 (2019).
    Article  PubMed  PubMed Central  Google Scholar 

    28.
    Morgan, H. H., du Toit, M. & Setati, M. E. The grapevine and wine microbiome: insights from high-throughput amplicon sequencing. Front. Microbiol. https://doi.org/10.3389/fmicb.2017.00820 (2017).
    Article  PubMed  PubMed Central  Google Scholar 

    29.
    Williams, K. J. & Potts, B. M. The natural distribution of Eucalyptus species in Tasmania. Tasforests 8, 39–165 (1996).
    Google Scholar 

    30.
    Calder, J. A. & Kirkpatrick, J. B. Climate change and other factors influencing the decline of the Tasmanian cider gum (Eucalyptus gunnii). Aust. J. Bot. 56, 684–692. https://doi.org/10.1071/BT08105 (2008).
    Article  Google Scholar 

    31.
    Sanger, J. C., Davidson, N. J., O’Grady, A. P. & Close, D. C. Are the patterns of regeneration in the endangered Eucalyptus gunnii ssp. divaricata shifting in response to climate?. Austral. Ecol. 36, 612–620. https://doi.org/10.1111/j.1442-9993.2010.02194.x (2011).
    Article  Google Scholar 

    32.
    Lahti, L. & Shetty, S. Tools for microbiome analysis in R. Version 1.9.1 https://microbiome.github.com/microbiome (2017).

    33.
    Morrison-Whittle, P. & Goddard, M. R. Quantifying the relative roles of selective and neutral processes in defining eukaryotic microbial communities. ISME J. 9, 2003–2011. https://doi.org/10.1038/ismej.2015.18 (2015).
    CAS  Article  PubMed  PubMed Central  Google Scholar 

    34.
    Morrison-Whittle, P. & Goddard, M. R. From vineyard to winery: a source map of microbial diversity driving wine fermentation. Environ. Microbiol. 20, 75–84. https://doi.org/10.1111/1462-2920.13960 (2018).
    Article  PubMed  Google Scholar 

    35.
    Brooker, M. I. H. A Key to Eucalypts in Britain and Ireland. (Forestry Commission Booklet 50: The Stationery Office, 1983).

    36.
    Forrest, M. & Moore, T. Eucalyptus gunnii: a possible source of bioenergy?. Biomass Bioenerg. 32, 978–980. https://doi.org/10.1016/j.biombioe.2008.01.010 (2008).
    CAS  Article  Google Scholar 

    37.
    Guimarães, R. et al. Aromatic plants as a source of important phytochemicals: vitamins, sugars and fatty acids in Cistus ladanifer, Cupressus lusitanica and Eucalyptus gunnii leaves. Ind. Crop Prod. 30, 427–430. https://doi.org/10.1016/j.indcrop.2009.08.002 (2009).
    CAS  Article  Google Scholar 

    38.
    Bugarin, D. et al. Essential oil of Eucalyptus gunnii hook. As a novel source of antioxidant, antimutagenic and antibacterial agents. Molecules 19, 19007–19020. https://doi.org/10.3390/molecules191119007 (2014).
    CAS  Article  PubMed  PubMed Central  Google Scholar 

    39.
    Leborgne, N. et al. Introduction of specific carbohydrates into Eucalyptus gunnii cells increases their freezing tolerance. Eur. J. Biochem. 229, 710–717. https://doi.org/10.1111/j.1432-1033.1995.0710j.x (1995).
    CAS  Article  PubMed  Google Scholar 

    40.
    Stuckel, J. G. & Low, N. H. The chemical composition of 80 pure maple syrup samples produced in North America. Food Res. Int. 29, 373–379. https://doi.org/10.1016/0963-9969(96)00000-2 (1996).
    CAS  Article  Google Scholar 

    41.
    Taylor, M. W., Tsai, P., Anfang, N., Ross, H. A. & Goddard, M. R. Pyrosequencing reveals regional differences in fruit-associated fungal communities. Environ. Microbiol. 16, 2848–2858 (2014).
    CAS  Article  Google Scholar 

    42.
    Pinto, C. et al. Wine fermentation microbiome: a landscape from different Portuguese wine appellations. Front. Microbiol. https://doi.org/10.3389/fmicb.2015.00905 (2015).
    Article  PubMed  PubMed Central  Google Scholar 

    43.
    Miura, T., Sanchez, R., Castaneda, L. E., Godoy, K. & Barbosa, O. Is microbial terroir related to geographic distance between vineyards?. Environ. Microbiol. Rep. 9, 742–749. https://doi.org/10.1111/1758-2229.12589 (2017).
    CAS  Article  PubMed  Google Scholar 

    44.
    Knight, S. J., Karon, O. & Goddard, M. R. Small scale fungal community differentiation in a vineyard system. Food Microbiol. https://doi.org/10.1016/j.fm.2019.103358 (2019).
    Article  PubMed  Google Scholar 

    45.
    Tedersoo, L. et al. Global diversity and geography of soil fungi. Science 346, 1256688. https://doi.org/10.1126/science.1256688 (2014).
    CAS  Article  PubMed  Google Scholar 

    46.
    Lin, Y. T., Whitman, W. B., Coleman, D. C. & Chiu, C. Y. Effects of reforestation on the structure and diversity of bacterial communities in subtropical low mountain forest soils. Front. Microbiol. https://doi.org/10.3389/fmicb.2018.01968 (2018).
    Article  PubMed  PubMed Central  Google Scholar 

    47.
    Grangeteau, C. et al. Wine microbiology is driven by vineyard and winery anthropogenic factors. Microb. Biotechnol. 10, 354–370. https://doi.org/10.1111/1751-7915.12428 (2017).
    CAS  Article  PubMed  Google Scholar 

    48.
    Burns, K. N. et al. Vineyard soil bacterial diversity and composition revealed by 16S rRNA genes: differentiation by geographic features. Soil Biol. Biochem. 91, 232–247. https://doi.org/10.1016/j.soilbio.2015.09.002 (2015).
    CAS  Article  Google Scholar 

    49.
    Portillo, M. D. C., Franquès, J., Araque, I., Reguant, C. & Bordons, A. Bacterial diversity of Grenache and Carignan grape surface from different vineyards at Priorat wine region (Catalonia, Spain). Int. J. Food Microbiol. 219, 56–63. https://doi.org/10.1016/j.ijfoodmicro.2015.12.002 (2016).
    Article  Google Scholar 

    50.
    Castaneda, L. E. & Barbosa, O. Metagenomic analysis exploring taxonomic and functional diversity of soil microbial communities in Chilean vineyards and surrounding native forests. PeerJ 5, e3098. https://doi.org/10.7717/peerj.3098 (2017).
    CAS  Article  PubMed  PubMed Central  Google Scholar 

    51.
    Setati, M. E., Jacobson, D. & Bauer, F. F. Sequence-based analysis of the Vitis vinifera L. cv Cabernet Sauvignon grape must Mycobiome in three South African vineyards employing distinct agronomic systems. Front. Microbiol. https://doi.org/10.3389/fmicb.2015.01358 (2015).
    Article  PubMed  PubMed Central  Google Scholar 

    52.
    Miura, T. et al. Shifts in the composition and potential functions of soil microbial communities responding to a no-tillage practice and bagasse mulching on a sugarcane plantation. Biol. Fertil. Soils 52, 307–322. https://doi.org/10.1007/s00374-015-1077-1 (2016).
    CAS  Article  Google Scholar 

    53.
    Miura, T., Sanchez, R., Castaneda, L. E., Godoy, K. & Barbosa, O. Shared and unique features of bacterial communities in native forest and vineyard phyllosphere. Ecol. Evol. 9, 3295–3305. https://doi.org/10.1002/ece3.4949 (2019).
    Article  PubMed  PubMed Central  Google Scholar 

    54.
    Hendgen, M. et al. Effects of different management regimes on microbial biodiversity in vineyard soils. Sci. Rep. https://doi.org/10.1038/s41598-018-27743-0 (2018).
    Article  PubMed  PubMed Central  Google Scholar 

    55.
    Montecchia, M. S. et al. Pyrosequencing reveals changes in soil bacterial communities after conversion of Yungas forests to agriculture. PLoS ONE 10, 18. https://doi.org/10.1371/journal.pone.0119426 (2015).
    CAS  Article  Google Scholar 

    56.
    Gleeson, D., Mathes, F., Farrell, M. & Leopold, M. Environmental drivers of soil microbial community structure and function at the Avon River Critical Zone Observatory. Sci. Total Environ. 571, 1407–1418. https://doi.org/10.1016/j.scitotenv.2016.05.185 (2016).
    ADS  CAS  Article  PubMed  Google Scholar 

    57.
    Kemler, M. et al. Ion Torrent PGM as tool for fungal community analysis: a case study of Endophytes in Eucalyptus grandis reveals high taxonomic diversity. PLoS ONE https://doi.org/10.1371/journal.pone.0081718 (2013).
    Article  PubMed  PubMed Central  Google Scholar 

    58.
    Piškur, J., Rozpędowska, E., Polakova, S., Merico, A. & Compagno, C. How did Saccharomyces evolve to become a good brewer?. Trends Genet. 22, 183–186. https://doi.org/10.1016/j.tig.2006.02.002 (2006).
    CAS  Article  PubMed  Google Scholar 

    59.
    Lloyd, K. G., Steen, A. D., Ladau, J., Yin, J. Q. & Crosby, L. Phylogenetically novel uncultured microbial cells dominate Earth microbiomes. Msystems https://doi.org/10.1128/mSystems.00055-18 (2018).
    Article  PubMed  PubMed Central  Google Scholar 

    60.
    Steen, A. D. et al. High proportions of bacteria and archaea across most biomes remain uncultured. ISME J. 13, 3126–3130. https://doi.org/10.1038/s41396-019-0484-y (2019).
    Article  PubMed  PubMed Central  Google Scholar 

    61.
    Thrash, J. C. Culturing the uncultured: Risk versus reward. Msystems https://doi.org/10.1128/mSystems.00130-19 (2019).
    Article  PubMed  PubMed Central  Google Scholar 

    62.
    Varela, C., Pizarro, F. & Agosin, E. Biomass content governs fermentation rate in nitrogen-deficient wine musts. Appl. Environ. Microbiol. 70, 3392–3400. https://doi.org/10.1128/Aem.70.6.3392-3400.2004 (2004).
    CAS  Article  PubMed  PubMed Central  Google Scholar 

    63.
    Parker, M. et al. Factors contributing to interindividual variation in retronasal odor perception from aroma glycosides: The tole of odorant sensory detection threshold, oral microbiota, and hydrolysis in saliva. J. Agric. Food Chem. https://doi.org/10.1021/acs.jafc.9b05450 (2019).
    Article  PubMed  Google Scholar 

    64.
    Bokulich, N. A. & Mills, D. A. Improved selection of internal transcribed spacer-specific primers enables quantitative, ultra-high-throughput profiling of fungal communities. Appl. Environ. Microbiol. 79, 2519–2526. https://doi.org/10.1128/AEM.03870-12 (2013).
    CAS  Article  PubMed  PubMed Central  Google Scholar 

    65.
    Sternes, P. R., Lee, D., Kutyna, D. R. & Borneman, A. R. A combined meta-barcoding and shotgun metagenomic analysis of spontaneous wine fermentation. bioRxiv https://doi.org/10.1101/098061 (2017).
    Article  Google Scholar 

    66.
    Bolger, A. M., Lohse, M. & Usadel, B. Trimmomatic: a flexible trimmer for Illumina sequence data. Bioinformatics 30, 2114–2120. https://doi.org/10.1093/bioinformatics/btu170 (2014).
    CAS  Article  PubMed  PubMed Central  Google Scholar 

    67.
    Martin, M. Cutadapt removes adapter sequences from high-throughput sequencing reads. EMBnet J. https://doi.org/10.14806/ej.17.1.200 (2011).
    Article  Google Scholar 

    68.
    Magoc, T. & Salzberg, S. L. FLASH: fast length adjustment of short reads to improve genome assemblies. Bioinformatics 27, 2957–2963. https://doi.org/10.1093/bioinformatics/btr507 (2011).
    CAS  Article  PubMed  PubMed Central  Google Scholar 

    69.
    Mahe, F., Rognes, T., Quince, C., de Vargas, C. & Dunthorn, M. Swarm: robust and fast clustering method for amplicon-based studies. PeerJ 2, e593. https://doi.org/10.7717/peerj.593 (2014).
    Article  PubMed  PubMed Central  Google Scholar 

    70.
    Caporaso, J. G. et al. QIIME allows analysis of high-throughput community sequencing data. Nat. Methods 7, 335–336. https://doi.org/10.1038/nmeth.f.303 (2010).
    CAS  Article  PubMed  PubMed Central  Google Scholar 

    71.
    McMurdie, P. J. & Holmes, S. phyloseq: an R package for reproducible interactive analysis and graphics of microbiome census data. PLoS ONE 8, e61217. https://doi.org/10.1371/journal.pone.0061217 (2013).
    ADS  CAS  Article  PubMed  PubMed Central  Google Scholar 

    72.
    Oksanen, J. et al. vegan: Community Ecology Package. R package version 2.5.4 https://CRAN.R-project.org/package=vegan (2019).

    73.
    Li, C., Yu, G. & Zhu, C. microbiomeViz—an R package for visualizing microbiome data https://github.com/lch14forever/microbiomeViz (2018).

    74.
    Kahle, D. & Wickham, H. ggmap: spatial visualization with ggplot2. R J. 5, 144–161 (2013).
    Article  Google Scholar 

    75.
    Kassambara, A. ggpubr: ‘ggplot2’ based publication eady plots. R package version 0.2 https://CRAN.R-project.org/package=ggpubr (2018).

    76.
    Wickham, H. ggplot2: Elegant Graphics for Data Analysis (SpringerVerlag, New York, 2009).
    Google Scholar 

    77.
    Team, R. C. R: a language and environment for statistical computing https://www.R-project.org/ (2017). More