1.
Moore, M. P., Whiteman, H. H. & Martin, R. A. A mother’s legacy: The strength of maternal effects in animal populations. Ecol. Lett. 22, 1620–1628 (2019).
PubMed Google Scholar
2.
Yin, J. J., Zhou, M., Lin, Z. R., Li, Q. S. Q. & Zhang, Y. Y. Transgenerational effects benefit offspring across diverse environments: A meta-analysis in plants and animals. Ecol. Lett. 22, 1976–1986 (2019).
PubMed Google Scholar
3.
Groothuis, T. G. G., Hsu, B.-Y., Kumar, N. & Tschirren, B. Revisiting mechanisms and functions of prenatal hormone-mediated maternal effects using avian species as a model. Philos. Trans. R. Soc. B 374, 20180115 (2019).
CAS Google Scholar
4.
Ruuskanen, S. & Hsu, B.-Y. Maternal thyroid hormones: An unexplored mechanism underlying maternal effects in an ecological framework. Physiol. Biochem. Zool. 91, 904–916 (2018).
PubMed Google Scholar
5.
Meylan, S., Miles, D. B. & Clobert, J. Hormonally mediated maternal effects, individual strategy and global change. Philos. Trans. R. Soc. B 367, 1647–1664 (2012).
Google Scholar
6.
Donelson, J. M., Salinas, S., Munday, P. L. & Shama, L. N. S. Transgenerational plasticity and climate change experiments: Where do we go from here?. Glob. Change Biol. 24, 13–34 (2018).
ADS Google Scholar
7.
Ruuskanen, S., Hsu, B.-Y. & Nord, A. Endocrinology of thermoregulation of birds in a changing climate. https://doi.org/10.32942/osf.io/jzam3 (2020).
8.
Sheriff, M. J. et al. Integrating ecological and evolutionary context in the study of maternal stress. Integr. Comp. Biol. 57, 437–449 (2017).
PubMed PubMed Central Google Scholar
9.
Schoech, S. J., Rensel, M. A. & Heiss, R. S. Short- and long-term effects of developmental corticosterone exposure on avian physiology, behavioral phenotype, cognition, and fitness: A review. Curr. Zool. 57, 514–530 (2011).
CAS Google Scholar
10.
Love, O. P. & Williams, T. D. The adaptive value of stress-induced phenotypes: Effects of maternally derived corticosterone on sex-biased investment, cost of reproduction, and maternal fitness. Am. Nat. 172, E135–E149 (2008).
PubMed Google Scholar
11.
Weber, B. M. et al. Pre- and postnatal effects of experimentally manipulated maternal corticosterone on growth, stress reactivity and survival of nestling house wrens. Funct. Ecol. 32, 1995–2007 (2018).
PubMed PubMed Central Google Scholar
12.
Dantzer, B. et al. Density triggers maternal hormones that increase adaptive offspring growth in a wild mammal. Science 340, 1215–1217 (2013).
ADS CAS PubMed Google Scholar
13.
Zimmer, C., Boogert, N. J. & Spencer, K. A. Developmental programming: Cumulative effects of increased pre-hatching corticosterone levels and post-hatching unpredictable food availability on physiology and behaviour in adulthood. Horm. Behav. 64, 494–500 (2013).
CAS PubMed PubMed Central Google Scholar
14.
Muriel, J. et al. Context-dependent effects of yolk androgens on nestling growth and immune function in a multibrooded passerine. J. Evol. Biol. 28, 1476–1488 (2015).
CAS PubMed Google Scholar
15.
Gil, D. Hormones in avian eggs: Physiology, ecology and behavior. Adv. Study Behav. 38, 337–398 (2008).
Google Scholar
16.
Hsu, B.-Y., Doligez, B., Gustafsson, L. & Ruuskanen, S. Transient growth-enhancing effects of elevated maternal thyroid hormones at no apparent oxidative cost during early postnatal period. J. Avian Biol. 50, jav-01919 (2019).
Google Scholar
17.
Sarraude, T., Hsu, B.-Y., Groothuis, T. G. G. & Ruuskanen, S. Manipulation of prenatal thyroid hormones does not influence growth or physiology in nestling pied flycatchers. Physiol. Biochem. Zool. 93, 255–266 (2020).
PubMed Google Scholar
18.
Hsu, B.-Y., Dijkstra, C., Darras, V. M., de Vries, B. & Groothuis, T. G. G. Maternal thyroid hormones enhance hatching success but decrease nestling body mass in the rock pigeon (Columba livia). Gen. Comp. Endocrinol. 240, 174–181 (2017).
CAS PubMed Google Scholar
19.
Auer, S. K., Salin, K., Rudolf, A. M., Anderson, G. J. & Metcalfe, N. B. The optimal combination of standard metabolic rate and aerobic scope for somatic growth depends on food availability. Funct. Ecol. 29, 479–486 (2015).
Google Scholar
20.
McNabb, F. M. A. The hypothalamic–pituitary–thyroid (HPT) axis in birds and its role in bird development and reproduction. Crit. Rev. Toxicol. 37, 163–193 (2007).
CAS PubMed Google Scholar
21.
Price, E. R. & Dzialowski, E. M. Development of endothermy in birds: Patterns and mechanisms. J. Comp. Physiol. B 188, 373–391 (2018).
CAS PubMed Google Scholar
22.
Ruuskanen, S. et al. Temperature-induced variation in yolk androgen and thyroid hormone levels in avian eggs. Gen. Comp. Endocrinol. 235, 29–37 (2016).
CAS PubMed Google Scholar
23.
Stier, A., Bize, P., Hsu, B.-Y. & Ruuskanen, S. Plastic but repeatable: Rapid adjustments of mitochondrial function and density during reproduction in a wild bird species. Biol. Lett. 15, 20190536 (2019).
CAS PubMed Google Scholar
24.
Salin, K., Auer, S. K., Rey, B., Selman, C. & Metcalfe, N. B. Variation in the link between oxygen consumption and ATP production, and its relevance for animal performance. Proc. R. Soc. B 282, 20151028 (2015).
PubMed Google Scholar
25.
Lassiter, K., Dridi, S., Greene, E., Kong, B. & Bottje, W. G. Identification of mitochondrial hormone receptors in avian muscle cells. Poult. Sci. 97, 2926–2933 (2018).
CAS PubMed Google Scholar
26.
Lanni, A., Moreno, M. & Goglia, F. Mitochondrial actions of thyroid hormone. Compr. Physiol. 6, 1591–1607 (2016).
PubMed Google Scholar
27.
Weitzel, J. M. & Iwen, K. A. Coordination of mitochondrial biogenesis by thyroid hormone. Mol. Cell. Endocrinol. 342, 1–7 (2011).
CAS PubMed Google Scholar
28.
Clarke, A. & Portner, H. O. Temperature, metabolic power and the evolution of endothermy. Biol. Rev. 85, 703–727 (2010).
PubMed Google Scholar
29.
Xia, T., Zhang, X., Wang, Y. & Deng, D. Effect of maternal hypothyroidism during pregnancy on insulin resistance, lipid accumulation, and mitochondrial dysfunction in skeletal muscle of fetal rats. Biosci. Rep. 38, BSR20171731 (2018).
PubMed PubMed Central Google Scholar
30.
Halliwell, B. & Gutteridge, J. M. C. Free Radicals in Biology and Medicine (Oxford University Press, New York, 2015).
Google Scholar
31.
Villanueva, I., Alva-Sanchez, C. & Pacheco-Rosado, J. The role of thyroid hormones as inductors of oxidative stress and neurodegeneration. Oxid. Med. Cell. Longev. 2013, 218145 (2013).
CAS PubMed PubMed Central Google Scholar
32.
Stier, A. et al. Elevation impacts the balance between growth and oxidative stress in coal tits. Oecologia 175, 791–800 (2014).
ADS PubMed Google Scholar
33.
Stier, A., Massemin, S. & Criscuolo, F. Chronic mitochondrial uncoupling treatment prevents acute cold-induced oxidative stress in birds. J. Comp. Physiol. B 184, 1021–1029 (2014).
CAS PubMed Google Scholar
34.
Andreasson, F., Nord, A. & Nilsson, J. -Å. Experimentally increased nest temperature affects body temperature, growth and apparent survival in blue tit nestlings. J. Avian Biol. 49, jav-01620 (2018).
Google Scholar
35.
Podmokła, E., Drobniak, S. M. & Rutkowska, J. Chicken or egg? Outcomes of experimental manipulations of maternally transmitted hormones depend on administration method—a meta-analysis. Biol. Rev. 93, 1499–1517 (2018).
PubMed Google Scholar
36.
Lundberg, A. & Alatalo, R. The Pied Flycatcher (Poyser, London, 1992).
Google Scholar
37.
Haggerty, T. M. Effects of nestling age and brood size on nestling care in the Bachman’s sparrow (Aimophila aestivalis). Am. Midl. Nat. 128, 115–125 (1992).
Google Scholar
38.
Chastel, O. & Kersten, M. Brood size and body condition in the house sparrow Passer domesticus: The influence of brooding behaviour. Ibis 144, 284–292 (2002).
Google Scholar
39.
Ruuskanen, S. et al. A new method for measuring thyroid hormones using nano-LC-MS/MS. J. Chromatogr. B 1093–1094, 24–30 (2018).
Google Scholar
40.
Chang, H.-W. et al. High-throughput avian molecular sexing by SYBR green-based real-time PCR combined with melting curve analysis. BMC Biotechnol. 8, 12 (2008).
PubMed PubMed Central Google Scholar
41.
Bates, D., Maechler, M., Bolker, B. & Walker, S. Fitting linear mixed-effects models using lme4. J. Stat. Softw. 67, 1–48 (2015).
Google Scholar
42.
Halekoh, U. & Højsgaard, S. Kenward–Roger approximation and parametric bootstrap methods for tests in linear mixed models—the R package pbkrtest. J. Stat. Softw. 59, 1–32 (2014).
Google Scholar
43.
Schielzeth, H. Simple means to improve the interpretability of regression coefficients. Methods Ecol. Evol. 1, 103–113 (2010).
Google Scholar
44.
Ruuskanen, S., Darras, V. M., Visser, M. E. & Groothuis, T. G. G. Effects of experimentally manipulated yolk thyroid hormone levels on offspring development in a wild bird species. Horm. Behav. 81, 38–44 (2016).
CAS PubMed Google Scholar
45.
Rodríguez, S., Diez-Méndez, D. & Barba, E. Negative effects of high temperatures during development on immediate post-fledging survival in great tits Parus major. Acta Ornithol. 51, 235–244 (2016).
Google Scholar
46.
Rodríguez, S. & Barba, E. Nestling growth is impaired by heat stress: An experimental study in a Mediterranean great tit population. Zool. Stud. 55, 13 (2016).
Google Scholar
47.
Dawson, R. D., Lawrie, C. C. & O’Brien, E. L. The importance of microclimate variation in determining size, growth and survival of avian offspring: Experimental evidence from a cavity nesting passerine. Oecologia 144, 499–507 (2005).
ADS PubMed Google Scholar
48.
Stier, A., Massemin, S., Zahn, S., Tissier, M. L. & Criscuolo, F. Starting with a handicap: Effects of asynchronous hatching on growth rate, oxidative stress and telomere dynamics in free-living great tits. Oecologia 179, 999–1010 (2015).
ADS PubMed Google Scholar
49.
Wikelski, M. & Cooke, S. J. Conservation physiology. Trends Ecol. Evol. 21, 38–46 (2006).
PubMed Google Scholar
50.
Darras, V. M. The role of maternal thyroid hormones in avian embryonic development. Front. Endocrinol. 10, 66 (2019).
Google Scholar
51.
Huget-Penner, S. & Feig, D. S. Maternal thyroid disease and its effects on the fetus and perinatal outcomes. Prenat. Diagn. https://doi.org/10.1002/pd.5684 (2020).
Article PubMed Google Scholar
52.
Kulkami, S. S. & Buchholz, K. R. Beyond synergy: Corticosterone and thyroid hormone have numerous interaction effects on gene regulation in Xenopus tropicalis tadpoles. Endocrinology 153, 5309–5324 (2012).
Google Scholar
53.
Watanabe, Y., Grommern, S. V. H. & de Groef, B. Corticotropin-releasing hormone: Mediator of vertebrate life stage trasitions?. Gen. Comp. Endocrinol. 228, 60–68 (2016).
CAS PubMed Google Scholar
54.
Sechman, A. The role of thyroid hormones in regulation of chicken ovarian steroidogenesis. Gen. Comp. Endocrinol. 190, 68–75 (2013).
CAS PubMed Google Scholar
55.
Flood, D. E. K., Fernandino, J. I. & Langlois, V. S. Thyroid hormones in male reproductive develoment: Evidence for direct crosstalk between the androgen and thyroid hormones axes. Gen. Comp. Endocrinol. 192, 2–14 (2013).
CAS PubMed Google Scholar
56.
Duarte-Guterman, P., Navarro-Martín, L. & Trudeau, V. L. Mechanisms of crosstalk between endocrine systems: Regulation of sex steroid hormone synthesis and action by thyroid hormones. Gen. Comp. Endocrinol. 203, 69–85 (2014).
CAS PubMed Google Scholar
57.
Stier, A. et al. How to measure mitochondrial function in birds using red blood cells: A case study in the king penguin and perspectives in ecology and evolution. Methods Ecol. Evol. 8, 1172–1182 (2017).
Google Scholar More