1.
Dolmatova, A. V. & Demina, N. A. Les phlébotomes (Phlebotominae) et les maladies qu’ils transmettent. ORSTOM 20, 1–169 (1966).
Google Scholar
2.
Bichaud, L. et al. Epidemiologic relationship between toscana virus infection and Leishmania infantum due to common exposure to Phlebotomus perniciosus sandfly vector. PLoS Negl. Trop. Dis. 5(9), e1328 (2011).
PubMed PubMed Central Google Scholar
3.
Rioux, J.-A., Killick-Kendrick, R., Perieres, J., Turner, D. & Lanotte, G. Ecologie des Leishmanioses dans le sud de la France. 13. Les sites de “flanc de coteau”, biotopes de transmission privilégiés de la Leishmaniose viscérale en Cévennes. Ann . Parasitol. Hum. Comp. 55(4), 445–453 (1980).
CAS PubMed Google Scholar
4.
Rioux, J.-A. et al. Ecology of leishmaniasis in the South of France. 22. Reliability and representativeness of 12 Phlebotomus ariasi, P. perniciosus and Sergentomyia minuta (Diptera: Psychodidae) sampling stations in Vallespir (eastern French Pyrenees region). Parasite 20, 34 (2013).
PubMed PubMed Central Google Scholar
5.
Rioux, J.-A. et al. Epidémiologie des leishmanioses dans le Sud de la France. Monogr. l’Inst. Natl. Santé Rech. Méd. 20, 1–228 (1969).
Google Scholar
6.
Lewis, D. J. A taxonomic review of the genus Phlebotomus (Diptera: Psychodidae). Bull. Br. Museum 45(2), 121–209 (1982).
Google Scholar
7.
Rossi, E. et al. Mapping the main Leishmania phlebotomine vector in the endemic focus of the Mt. Vesuvius in southern Italy. Geospat. Health 1(2), 191–198 (2007).
PubMed Google Scholar
8.
Ballart, C., Barón, S., Alcover, M. M., Portus, M. & Gallego, M. Distribution of phlebotomine sand flies (Diptera: Psychodidae) in Andorra: First finding of P. perniciosus and wide distribution of P. ariasi. Acta Trop. 122(1), 155–159 (2012).
CAS PubMed Google Scholar
9.
Ballart, C. et al. Importance of individual analysis of environmental and climatic factors affecting the density of Leishmania vectors living in the same geographical area: The example of Phlebotomus ariasi and P. perniciosus in northeast Spain. Geospat. Health 8(2), 389–403 (2014).
PubMed Google Scholar
10.
Boussaa, S., Neffa, M., Pesson, B. & Boumezzough, A. Phlebotomine sandflies (Diptera: Psychodidae) of southern Morocco: Results of entomological surveys along the Marrakech-Ouarzazat and Marrakech-Azilal roads. Ann. Trop. Med. Parasitol. 104(2), 163–170 (2010).
CAS PubMed Google Scholar
11.
Franco, F. et al. Genetic structure of Phlebotomus (Larroussius) ariasi populations, the vector of Leishmania infantum in the western Mediterranean: Epidemiological implications. Int. J. Parasitol. 40(11), 1335–1346 (2010).
PubMed Google Scholar
12.
Ready, P. Leishmaniasis emergence in Europe. Euro Surveill. 15(10), 19505 (2010).
CAS PubMed Google Scholar
13.
Branco, S. et al. Entomological and ecological studies in a new potential zoonotic leishmaniasis focus in Torres Novas municipality, Central Region, Portugal. Acta Trop. 125(3), 339–348 (2013).
CAS PubMed Google Scholar
14.
Barón, S. D. et al. Risk maps for the presence and absence of Phlebotomus perniciosus in an endemic area of leishmaniasis in southern Spain: Implications for the control of the disease. Parasitology 138(10), 1234–1244 (2011).
PubMed Google Scholar
15.
Boudabous, R. et al. The phlebotomine fauna (Diptera: Psychodidae) of the eastern coast of Tunisia. J. Med. Entomol. 46(1), 1–8 (2009).
CAS PubMed Google Scholar
16.
European Centre for Disease Prevention and Control E. Phlebotomine sand flies maps [internet] 2019 [10/01/19]. https://www.ecdc.europa.eu/en/disease-vectors/surveillance-and-disease-data/phlebotomine-maps.
17.
Dedet, J.-P. Les leishmanioses en France métropolitaine. BEH Hors-Sér. 2010, 9–12 (2020).
Google Scholar
18.
Depaquit, J., Grandadam, M., Fouque, F., Andry, P.-E. & Peyrefitte, C. Arthropod-borne viruses transmitted by Phlebotomine sandflies in Europe: A review. Euro Surveill. 15(10), 19507 (2010).
CAS PubMed Google Scholar
19.
Kamhawi, S. et al. Two populations of Phlebotomus ariasi in the Cévennes focus of leishmaniasis in the south of France revealed by analysis of cuticular hydrocarbons. Med. Vet. Entomol. 1(1), 97–102 (1987).
CAS PubMed Google Scholar
20.
Pesson, B., Wallon, M., Floer, M. & Kristensen, A. Étude isoenzymatique de populations méditerranéennes de phlébotomes du sous-genre Larroussius. Parassitologia 33, 471–476 (1991).
PubMed Google Scholar
21.
Ballart, C., Pesson, B. & Gallego, M. Isoenzymatic characterization of Phlebotomus ariasi and P. perniciosus of canine leishmaniasis foci from Eastern Pyrenean regions and comparison with other populations from Europe. Parasite. 25, 3 (2018).
PubMed PubMed Central Google Scholar
22.
Martin-Sanchez, J., Gramiccia, M., Pesson, B. & Morillas-Marquez, F. Genetic polymorphism in sympatric species of the genus Phlebotomus, with special reference to Phlebotomus perniciosus and Phlebotomus longicuspis (Diptera, Phlebotomidae). Parasite 7(4), 247–254 (2000).
CAS PubMed Google Scholar
23.
Mahamdallie, S. S., Pesson, B. & Ready, P. D. Multiple genetic divergences and population expansions of a Mediterranean sandfly, Phlebotomus ariasi, in Europe during the Pleistocene glacial cycles. Heredity 106(5), 714–726 (2010).
PubMed PubMed Central Google Scholar
24.
Prudhomme, J. et al. Ecology and spatiotemporal dynamics of sandflies in the Mediterranean Languedoc region (Roquedur area, Gard, France). Parasit. Vectors 8(1), 1–14 (2015).
Google Scholar
25.
Prudhomme, J. et al. Ecology and morphological variations in wings of Phlebotomus ariasi (Diptera: Psychodidae) in the region of Roquedur (Gard, France): A geometric morphometrics approach. Parasit. Vectors 9(1), 578 (2016).
PubMed PubMed Central Google Scholar
26.
Lachaud, L. et al. Surveillance of leishmaniases in France, 1999 to 2012. Euro Surveill. 18(29), 20534 (2013).
CAS PubMed Google Scholar
27.
Prudhomme, J. et al. New microsatellite markers for multi-scale genetic studies on Phlebotomus ariasi Tonnoir, vector of Leishmania infantum in the Mediterranean area. Acta Trop. 142, 79–85 (2015).
CAS PubMed Google Scholar
28.
Wattier, R., Engel, C. R., Saumitou-Laprade, P. & Valero, M. Short allele dominance as a source of heterozygote deficiency at microsatellite loci: Experimental evidence at the dinucleotide locus Gv1CT in Gracilaria gracilis (Rhodophyta). Mol. Ecol. 7(11), 1569–1573 (1998).
CAS Google Scholar
29.
De Meeûs T, Chan CT, Ludwig JM, Tsao JI, Patel J, Bhagatwala J, Beati L. Deceptive combined effects of short allele dominance and stuttering: An example with Ixodes scapularis, the main vector of Lyme disease in the U.S.A. peerreviewed and recommended by PCI Evolutionary Biology. 2019.
30.
De Meeûs, T. Revisiting, FIS, FST, Wahlund Effects, and Null Alleles. J. Hered. 109(4), 446–456 (2018).
PubMed Google Scholar
31.
Teriokhin, A. T., De Meeûs, T. & Guegan, J. F. On the power of some binomial modifications of the Bonferroni multiple test. J. Gener. Biol. 68(5), 332–340 (2007).
CAS Google Scholar
32.
De Meeûs, T., Guégan, J.-F. & Teriokhin, A. T. MultiTest V.1.2., a program to binomially combine independent tests and performance comparison with other related methods on proportional data. BMC Bioinform. 10(1), 443 (2009).
Google Scholar
33.
Nei, M. & Chesser, R. K. Estimation of fixation indices and gene diversities. Ann. Hum. Genet. 47(3), 253–259 (1983).
CAS PubMed MATH Google Scholar
34.
Meirmans, P. G. & Hedrick, P. W. Assessing population structure: FST and related measures. Mol. Ecol. Resour. 11(1), 5–18 (2011).
PubMed Google Scholar
35.
Wang, J. Does GST underestimate genetic differentiation from marker data? Mol. Ecol. 24(14), 3546–3558 (2015).
CAS PubMed Google Scholar
36.
Chapuis, M. P. & Estoup, A. Microsatellite null alleles and estimation of population differentiation. Mol. Biol. Evol. 24(3), 621–631 (2007).
CAS PubMed Google Scholar
37.
Maingon, R. et al. Genetic identification of two sibling species of Lutzomyia longipalpis (Diptera: Psychodidae) that produce distinct male sex pheromones in Sobral, Ceará State, Brazil. Mol. Ecol. 12(7), 1879–1894 (2003).
CAS PubMed Google Scholar
38.
Bauzer, L. G., Souza, N. A., Maingon, R. D. & Peixoto, A. A. Lutzomyia longipalpis in Brazil: A complex or a single species? A mini-review. Mem. Inst. Oswaldo Cruz. 102(1), 1–12 (2007).
PubMed Google Scholar
39.
Scarpassa, V. M. & Alencar, R. B. Lutzomyia umbratilis, the main vector of Leishmania guyanensis, represents a novel species complex? PLoS One 7(5), e37341 (2012).
ADS CAS PubMed PubMed Central Google Scholar
40.
Tharmatha, T., Gajapathy, K., Ramasamy, R. & Surendran, S. N. Morphological and molecular identification of cryptic species in the Sergentomyia bailyi (Sinton, 1931) complex in Sri Lanka. Bull. Entomol. Res. 107(1), 58–65 (2016).
PubMed Google Scholar
41.
Balloux, F. Heterozygote excess in small populations and the heterozygote-excess effective population size. Evolution 58(9), 1891–1900 (2004).
PubMed Google Scholar
42.
Manangwa, O. et al. Detecting Wahlund effects together with amplification problems: Cryptic species, null alleles and short allele dominance in Glossina pallidipes populations from Tanzania. Mol. Ecol. Resour. 19(3), 757–772 (2019).
PubMed Google Scholar
43.
Hartl, D. L. & Clarck, A. G. Principles of Population Genetics 2nd edn. (Sinauer Associates Inc, Sunderland, 1989).
Google Scholar
44.
Araki, A. S. et al. Multilocus analysis of divergence and introgression in sympatric and allopatric sibling species of the Lutzomyia longipalpis complex in Brazil. PLoS Negl Trop Dis. 7(10), e2495 (2013).
PubMed PubMed Central Google Scholar
45.
Kyriacou, C. Sex and rhythms in sandflies and mosquitoes: an appreciation of the work of Alexandre Afranio Peixoto (1963–2013). Infect. Genet. Evol. 28, 662–665 (2014).
PubMed PubMed Central Google Scholar
46.
Abonnenc E. Les phlébotomes de la région éthiopienne (Diptera, Psychodidae): Cahiers de l’ORSTOM, série Entomologie médicale et Parasitologie; 1972 01/01. 239.
47.
Rougeron, V. et al. Reproductive strategies and population structure in Leishmania: Substantial amount of sex in Leishmania Viannia guyanensis. Mol. Ecol. 20(15), 3116–3127 (2011).
PubMed Google Scholar
48.
Rougeron, V. et al. Multifaceted population structure and reproductive strategy in Leishmania donovani complex in one Sudanese village. PLoS Negl. Trop. Dis. 5(12), e1448 (2011).
PubMed PubMed Central Google Scholar
49.
Rioux, J.-A. et al. Ecologie des Leishmanioses dans le sud de la France. 12. Dispersion horizontale de Phlebotomus ariasi Tonnoir, 1921. Experiences préliminaires. Ann. Parasitol. Hum. Comp. 54(6), 673–682 (1979).
CAS PubMed Google Scholar
50.
Latch, E. K., Dharmarajan, G., Glaubitz, J. C. & Rhodes, O. E. Relative performance of Bayesian clustering software for inferring population substructure and individual assignment at low levels of population differentiation. Conserv. Genet. 7(2), 295–302 (2006).
Google Scholar
51.
Kaeuffer, R., Réale, D., Coltman, D. & Pontier, D. Detecting population structure using STRUCTURE software: Effect of background linkage disequilibrium. Heredity 99(4), 374–380 (2007).
CAS PubMed Google Scholar
52.
Frantz, A. C., Cellina, S., Krier, A., Schley, L. & Burke, T. Using spatial Bayesian methods to determine the genetic structure of a continuously distributed population: Clusters or isolation by distance? J. Appl. Ecol. 46(2), 493–505 (2009).
Google Scholar
53.
Blair, C. et al. A simulation-based evaluation of methods for inferring linear barriers to gene flow. Mol. Ecol. Resour. 12(5), 822–833 (2012).
PubMed Google Scholar
54.
Bohling, J. H. et al. Describing a developing hybrid zone between red wolves and coyotes in eastern North Carolina, USA. Evol. Appl. 9(6), 791–804 (2016).
PubMed PubMed Central Google Scholar
55.
Le, D. P. bioclimat Mediterraneen: Analyse des formes climatiques par le systeme d’Emberger. Vegetation 34(2), 87–103 (1977).
Google Scholar
56.
Alten, B. et al. Sampling strategies for phlebotomine sand flies (Diptera: Psychodidae) in Europe. Bull. Entomol. Res. 105(6), 664–678 (2015).
CAS PubMed Google Scholar
57.
Ayhan, N. et al. Practical guidelines for studies on sandfly-borne phleboviruses: Part I: Important points to consider ante field work. Vector Borne Zoonot. Dis. 17(1), 73–80 (2017).
Google Scholar
58.
Killick-Kendrick, R. et al. The identification of female sandflies of the subgenus Larroussius by the morphology of the spermathecal ducts. Parassitologia 33, 335–347 (1991).
PubMed Google Scholar
59.
Wang, Q. & Wang, X. Comparison of methods for DNA extraction from a single chironomid for PCR analysis. Pak. J. Zool. 44(2), 421–426 (2012).
CAS Google Scholar
60.
Esseghir, S., Ready, P. D., Killick-Kendrick, R. & Ben-Ismail, R. Mitochondrial haplotypes and phylogeography of Phlebotomus vectors of Leishmania major. Insect. Mol. Biol. 6(3), 221–225 (1997).
Google Scholar
61.
Depaquit, J., Leger, N. & Randrianambinintsoa, F. J. Paraphyly of the subgenus Anaphlebotomus and creation of Madaphlebotomus subg. Nov. (Phlebotominae: Phlebotomus). Med. Vet. Entomol. 29(2), 159–170 (2015).
CAS PubMed Google Scholar
62.
Coombs, J. A., Letcher, B. H. & Nislow, K. H. Create: A software to create input files from diploid genotypic data for 52 genetic software programs. Mol. Ecol. Resour. 8(3), 578–580 (2008).
CAS PubMed Google Scholar
63.
Bohling, J. H., Adams, J. R. & Waits, L. P. Evaluating the ability of Bayesian clustering methods to detect hybridization and introgression using an empirical red wolf data set. Mol. Ecol. 22(1), 74–86 (2013).
PubMed Google Scholar
64.
Jombart, T., Devillard, S. & Balloux, F. Discriminant analysis of principal components: A new method for the analysis of genetically structured populations. BMC Genet. 11(1), 94 (2010).
PubMed PubMed Central Google Scholar
65.
Jombart, T. adegenet: A R package for the multivariate analysis of genetic markers. Bioinformatics 24(11), 1403–1405 (2008).
CAS Google Scholar
66.
R Development Core Team RT. R: A language and environment for statistical computing. R Foundation for Statistical Computing, Vienna, Austria, 2012. https://www.R-project.org/. 2018.
67.
Corander, J. & Marttinen, P. Bayesian identification of admixture events using multilocus molecular markers. Mol. Ecol. 15(10), 2833–2843 (2006).
PubMed Google Scholar
68.
Corander, J., Marttinen, P., Siren, J. & Tang, J. Enhanced Bayesian modelling in BAPS software for learning genetic structures of populations. BMC Bioinform. 9, 539 (2008).
Google Scholar
69.
Pritchard, J. K., Stephens, M. & Donnelly, P. Inference of population structure using multilocus genotype data. Genetics 155(2), 945–959 (2000).
CAS PubMed PubMed Central Google Scholar
70.
Earl, D. A. & vonHoldt, B. M. STRUCTURE HARVESTER: A website and program for visualizing STRUCTURE output and implementing the Evanno method. Conserv. Genet. Resourc. 4(2), 359–361 (2012).
Google Scholar
71.
Kumar, S., Stecher, G. & Tamura, K. MEGA7: Molecular evolutionary genetics analysis version 7.0 for bigger datasets. Mol. Biol. Evol. 33(7), 1870–1874 (2016).
CAS Google Scholar
72.
Cavalli-Sforza, L. L. & Edwards, A. W. F. Phylogenetic analysis. Models and estimation procedures. Am. J. Hum. Genet. 19(3 Pt 1), 233–257 (1967).
CAS PubMed PubMed Central Google Scholar
73.
Takezaki, N. & Nei, M. Genetic distances and reconstruction of phylogenetic trees from microsatellite DNA. Genetics 144(1), 389–399 (1996).
CAS PubMed PubMed Central Google Scholar
74.
Goudet, J. FSTAT (Version 1.2): A computer program to calculate F-statistics. J. Hered. 86(6), 485–486 (1995).
Google Scholar
75.
Benjamini, Y. & Yekutieli, D. The control of the false discovery rate in multiple testing under dependency. Ann. Stat. 29(4), 1165–1188 (2001).
MathSciNet MATH Google Scholar
76.
Wright, S. The interpretation of population structure by F-statistics with special regard to systems of mating. Evolution 19(3), 395–420 (1965).
Google Scholar
77.
Weir, B. S. & Cockerham, C. C. Estimating F-statistics for the analysis of population structure. Evolution 38(6), 1358–1370 (1984).
CAS PubMed Google Scholar
78.
Goudet, J., Raymond, M., De Meeûs, T. & Rousset, F. Testing differentiation in diploid populations. Genetics 20, 144 (1996).
Google Scholar
79.
De Meeûs, T. et al. Population genetics and molecular epidemiology or how to “débusquer la bête”. Infect. Genet. Evol. 20, 7 (2007).
Google Scholar
80.
Van Oosterhout, C., Hutchinson, W. F., Wills, D. P. & Shipley, P. MICRO-CHECKER: Software for identifying and correcting genotyping errors in microsatellite data. Mol. Ecol. Notes. 4(3), 535–538 (2004).
Google Scholar
81.
Brookfield, J. F. A simple new method for estimating null allele frequency from heterozygote deficiency. Mol. Ecol. 5(3), 453–455 (1996).
CAS PubMed Google Scholar
82.
Frontier, S. Étude de la décroissance des valeurs propres dans une analyse en composantes principales: Comparaison avec le modèle du bâton brisé. J. Exp. Mar. Biol. Ecol. 25, 67–75 (1976).
Google Scholar
83.
Fox, J. & The, R. Commander: A basic-statistics graphical user interface to R. J. Stat. Softw. 14(9), 1–42 (2005).
Google Scholar
84.
Fox, J. Extending the R Commander by “Plug-In” Packages. R News 7(3), 46–52 (2007).
Google Scholar
85.
Akaïke, H. A new look at the statistical model identification. IEEE Trans. Autom. Control 19(6), 716–723 (1974).
ADS MathSciNet MATH Google Scholar
86.
Rousset, F. GENEPOP’007: A complete re-implementation of the GENEPOP software for Windows and Linux. Mol. Ecol. Resour. 20, 8 (2008).
Google Scholar
87.
Séré, M., Thevenon, S., Belem, A. M. G. & De Meeus, T. Comparison of different genetic distances to test isolation by distance between populations. Heredity 119(2), 55–63 (2017).
PubMed PubMed Central Google Scholar
88.
Mantel, N. The detection of disease clustering and a generalized regression approach. Cancer Res. 27(2), 209–220 (1967).
CAS PubMed Google Scholar
89.
De Meeûs, T. Statistical decision from k test series with particular focus on population genetics tools: A DIY notice. Infect. Genet. Evol. 22, 91–93 (2014).
PubMed Google Scholar
90.
Do, C. et al. NeEstimator v2: Re-implementation of software for the estimation of contemporary effective population size (Ne) from genetic data. Mol. Ecol. Resour. 14(1), 209–214 (2014).
CAS PubMed Google Scholar
91.
Waples, R. S. A bias correction for estimates of effective population size based on linkage disequilibrium at unlinked gene loci*. Conserv. Genet. 7(2), 167–184 (2006).
Google Scholar
92.
Waples, R. S. & Do, C. ldne: A program for estimating effective population size from data on linkage disequilibrium. Mol. Ecol. Resour. 8(4), 753–756 (2008).
PubMed Google Scholar
93.
Peel, D., Waples, R. S., Macbeth, G. M., Do, C. & Ovenden, J. R. Accounting for missing data in the estimation of contemporary genetic effective population size (Ne). Mol. Ecol. Resour. 13(2), 243–253 (2013).
CAS PubMed Google Scholar
94.
Nomura, T. Estimation of effective number of breeders from molecular coancestry of single cohort sample. Evol. Appl. 1(3), 462–474 (2008).
PubMed PubMed Central Google Scholar
95.
Vitalis, R. & Couvet, D. Estimation of effective population size and migration rate from one- and two-locus identity measures. Genetics 157(2), 911–925 (2001).
CAS PubMed PubMed Central Google Scholar
96.
Vitalis, R. & Couvet, D. Estim 1.0: A computer program to infer population parameters from one- and two-locus gene identity probabilities. Mol. Ecol. Notes 1(4), 354–356 (2005).
Google Scholar More