More stories

  • in

    Pesticide dosing must be guided by ecological principles

    1.
    van Klink, R. et al. Science 368, 417–420 (2020).
    PubMed  Google Scholar 
    2.
    Goulson, D. J. Appl. Ecol. 50, 977–987 (2013).
    Article  Google Scholar 

    3.
    Goulson, D., Nicholls, E., Botías, C. & Rotheray, E. L. Science. 347, 1435–1445 (2015).
    CAS  Article  Google Scholar 

    4.
    Siviter, H., Brown, M. J. F. & Leadbeater, E. Nature 561, 109–112 (2018).
    CAS  Article  Google Scholar 

    5.
    Hendrichs, J., Kenmore, P., Robinson, A. S. & Vreysen, M. J. B. in Area-Wide Control of Insect Pests (eds Vreysen, M. J. B. et al.) 3–33 (Springer, 2007).

    6.
    Boyd, I. L. Nat. Ecol. Evol. 2, 920–921 (2018).
    Article  Google Scholar 

    7.
    Goulson, D., Thompson, J. & Croombs, A. PeerJ 6, e5255 (2018).
    Article  Google Scholar 

    8.
    Sánchez-Bayo, F. Science 346, 806–807 (2014).
    Article  Google Scholar 

    9.
    PUS STATS (Fera Science Limited, accessed 12 May 2020); https://secure.fera.defra.gov.uk/pusstats/index.cfm

    10.
    Krieger, R. (ed.) Hayes’ Handbook of Pesticide Toxicology 2nd edn, Vol. 1 (Academic Press, 2001).

    11.
    Desneux, N., Decourtye, A. & Delpuech, J. Annu. Rev. Entomol. 52, 81–106 (2007).
    CAS  Article  Google Scholar 

    12.
    Rundlöf, M. et al. Nature 521, 77–80 (2015).
    Article  Google Scholar 

    13.
    Woodcock, B. A. et al. Science 356, 1393–1395 (2017).
    CAS  Article  Google Scholar 

    14.
    Wang, B., Gao, R., Mastro, V. C. & Reardon, R. C. J. Econ. Entomol. 98, 2292–2300 (2005).
    CAS  Article  Google Scholar 

    15.
    Poland, T. M. et al. J. Econ. Entomol. 99, 383–392 (2009).
    Article  Google Scholar 

    16.
    He, Y. et al. Int. J. Biol. Sci. 9, 246–255 (2013).
    Article  Google Scholar 

    17.
    Michaelides, P. K. & Wright, D. J. Crop Prot. 16, 431–438 (1997).
    CAS  Article  Google Scholar 

    18.
    Pedigo, L. Annu. Rev. Entomol. 31, 341–368 (1986).
    Article  Google Scholar 

    19.
    Allee, W. C. The Social Life of Animals (W.W. Norton & Company, 1938).

    20.
    Berec, L., Angulo, E. & Courchamp, F. Trends Ecol. Evol. 22, 185–191 (2007).
    Article  Google Scholar 

    21.
    Zubrod, J. P. et al. Environ. Sci. Technol. 53, 3347–3365 (2019).
    CAS  Article  Google Scholar 

    22.
    Clements, J. et al. Sci. Rep. 8, 13282 (2018).
    Article  Google Scholar 

    23.
    Rohr, J. R., Kerby, J. L. & Sih, A. Trends Ecol. Evol. 21, 606–613 (2006).
    Article  Google Scholar 

    24.
    Nathan, C. Nat. Rev. Microbiol. 18, 259–260 (2020).
    CAS  Article  Google Scholar 

    25.
    Whalon, M. E., Mota-Sanchez, D. & Hollingworth, R. M. Global Pesticide Resistance in Arthropods (CABI, 2008); https://doi.org/10.1079/9781845933531.0000

    26.
    Alkassab, A. T. & Kirchner, W. H. Ecotoxicology 25, 1000–1010 (2016).
    CAS  Article  Google Scholar 

    27.
    Suchail, S., Guez, D. & Belzunces, L. P. Environ. Toxicol. Chem. 19, 1901–1905 (2000).
    CAS  Article  Google Scholar 

    28.
    Chahbar, N., Chahbar, M. & Doumandji, S. Int. J. Zool. Res. 4, 29–40 (2014).
    Google Scholar 

    29.
    Wu-Smart, J. & Spivak, M. Environ. Entomol. 47, 55–62 (2018).
    CAS  Article  Google Scholar 

    30.
    Basley, K., Davenport, B., Vogiatzis, K. & Goulson, D. PeerJ 6, e4258 (2018).
    Article  Google Scholar 

    31.
    Tomé, H. V. V., Martins, G. F., Lima, M. A. P., Campos, L. A. O. & Guedes, R. N. C. PLoS ONE 7, e38406 (2012).
    Article  Google Scholar 

    32.
    Horowitz, A. R., Mendelson, Z., Weintraub, P. G. & Ishaaya, I. Bull. Entomol. Res. 88, 437–442 (1998).
    CAS  Article  Google Scholar 

    33.
    Hunter White, W. et al. J. Econ. Entomol. 100, 155–163 (2007).
    Article  Google Scholar 

    34.
    Wasserberg, G. et al. J. Vector Ecol. 36, S148–S156 (2011).
    Article  Google Scholar 

    35.
    Ramakrishnan, R., Suiter, D. R., Nakatsu, C. H. & Bennett, G. W. J. Econ. Entomol. 93, 422–428 (2000).
    CAS  Article  Google Scholar 

    36.
    Klein, S., Cabirol, A., Devaud, J. M., Barron, A. B. & Lihoreau, M. Trends Ecol. Evol. 32, 268–278 (2017).
    Article  Google Scholar  More

  • in

    Wireworm (Coleoptera: Elateridae) genomic analysis reveals putative cryptic species, population structure, and adaptation to pest control

    1.
    Traugott, M., Benefer, C. M., Blackshaw, R. P., van Herk, W. G. & Vernon, R. S. Biology, ecology, and control of elaterid beetles in agricultural land. Annu. Rev. Entomol. 60, 313–334 (2015).
    CAS  PubMed  Google Scholar 
    2.
    Knodel, J. J. & Shrestha, G. Pulse crops: pest management of wireworms and cutworms in the Northern Great Plains of United States and Canada. Ann. Entomological Soc. Am. 111, 195–204 (2018).
    Google Scholar 

    3.
    Vernon, R. S. et al. Transitional sublethal and lethal effects of insecticides after dermal exposures to five economic species of wireworms (Coleoptera: Elateridae). J. Economic Entomol. 101, 365–374 (2008).
    CAS  Google Scholar 

    4.
    Reddy, G. V. P. & Tangtrakulwanich, K. Potential application of pheromones in monitoring, mating disruption, and control of click beetles (Coleoptera: Elateridae). ISRN Entomol. 2014, 1–8 (2014).
    Google Scholar 

    5.
    Morales-Rodriguez, A. & Wanner, K. W. Efficacy of thiamethoxam and fipronil, applied alone and in combination, to control Limonius californicus and Hypnoidus bicolor (Coleoptera: Elateridae). Pest Manag. Sci. 71, 584–591 (2015).
    CAS  PubMed  Google Scholar 

    6.
    van Herk, W. G., Vernon, R. S., Tolman, J. H. & Saavedra, H. O. Mortality of a wireworm, Agriotes obscurus (Coleoptera: Elateridae), after topical application of various insecticides. J. Economic Entomol. 101, 375–383 (2008).
    Google Scholar 

    7.
    Vernon, R. S., Van Herk, W. G., Clodius, M. & Harding, C. Wireworm management I: stand protection versus wireworm mortality with wheat seed treatments. J. Economic Entomol. 102, 2126–2136 (2009).
    CAS  Google Scholar 

    8.
    Vernon, R. S., Van Herk, W. G., Clodius, M. & Harding, C. Further studies on wireworm management in Canada: damage protection versus wireworm mortality in potatoes. J. Economic Entomol. 106, 786–799 (2013).
    CAS  Google Scholar 

    9.
    van Herk, W. G. et al. Contact behaviour and mortality of wireworms exposed to six classes of insecticide applied to wheat seed. J. Pest Sci. 88, 717–739 (2015).
    Google Scholar 

    10.
    van Herk, W. G., Labun, T. J. & Vernon, R. S. Efficacy of diamide, neonicotinoid, pyrethroid, and phenyl pyrazole insecticide seed treatments for controlling the sugar beet wireworm, Limonius californicus (Coleoptera: Elateridae), in spring wheat. J. Entomological Soc. Br. Columbia 115, 86–100 (2019).
    Google Scholar 

    11.
    Ensafi, P. et al. Soil type mediates the effectiveness of biological control against Limonius californicus (Coleoptera: Elateridae). J. Economic Entomol. 111, 2053–2058 (2018).
    CAS  Google Scholar 

    12.
    Stern, V. M. S. R., van den Bosch, R. & Hagen, K. S. The integrated control concept. Hilgardia 29, 81–101 (1959).
    CAS  Google Scholar 

    13.
    Barzman, M. et al. Eight principles of integrated pest management. Agron. Sustain. Dev. 35, 1199–1215 (2015).
    Google Scholar 

    14.
    Hebert, P. D. N., Cywinska, A., Ball, S. L. & DeWaard, J. R. Biological identifications through DNA barcodes. Proc. R. Soc. B-Biol. Sci. 270, 313–321 (2003).
    CAS  Google Scholar 

    15.
    Zhang, S. K. et al. DNA barcoding identification and genetic diversity of bamboo shoot wireworms (Coleoptera: Elateridae) in South China. J. Asia-Pac. Entomol. 22, 140–150 (2019).
    Google Scholar 

    16.
    Ellis, J. S., Blackshaw, R., Parker, W., Hicks, H. & Knight, M. E. Genetic identification of morphologically cryptic agricultural pests. Agric. For. Entomol. 11, 115–121 (2009).
    Google Scholar 

    17.
    Benefer, C. M. et al. The molecular identification and genetic diversity of economically important wireworm species (Coleoptera: Elateridae) in Canada. J. Pest Sci. 86, 19–27 (2013).
    Google Scholar 

    18.
    Etzler, F. E., Wanner, K. W., Morales-Rodriguez, A. & Ivie, M. A. DNA barcoding to improve the species-level management of wireworms (Coleoptera: Elateridae). J. Economic Entomol. 107, 1476–1485 (2014).
    Google Scholar 

    19.
    Lindroth, E. & Clark, T. L. Phylogenetic analysis of an economically important species complex of wireworms (Coleoptera: Elateridae) in the midwest. J. Economic Entomol. 102, 743–749 (2009).
    CAS  Google Scholar 

    20.
    Allendorf, F. W. Genetics and the conservation of natural populations: allozymes to genomes. Mol. Ecol. 26, 420–430 (2017).
    CAS  PubMed  Google Scholar 

    21.
    Savolainen, O., Lascoux, M. & Merila, J. Ecological genomics of local adaptation. Nat. Rev. Genet. 14, 807–820 (2013).
    CAS  PubMed  Google Scholar 

    22.
    Rashed, A., Etzler, F., Rogers, C. W. & Marshall, J. M. Wireworms in Idaho Cereals: Monitoring and Identification 898 (University of Idaho Extension Bulletin, 2015).

    23.
    Milosavljevic I., Esser A. D. & Crowder D. W. Identifying Wireworms in Cereal Crops FS175E (Washington State University Extension, 2015).

    24.
    Stone, M. W. Life History of the Sugar-beet Wireworm in Southern California. Tech. Bull. No. 744 (1941).

    25.
    Andrews, K., Good, J., Miller, M., Luikart, G. & Hohenlohe, P. Harnessing the power of RADseq for ecological and evolutionary genomics. Nat. Rev. Genet. 17, 81–92 (2016).
    CAS  PubMed  PubMed Central  Google Scholar 

    26.
    Coissac, E., Hollingsworth, P. M., Lavergne, S. & Taberlet, P. From barcodes to genomes: extending the concept of DNA barcoding. Mol. Ecol. 25, 1423–1428 (2016).
    CAS  PubMed  Google Scholar 

    27.
    Miller, J. M., Malenfant, R. M., Moore, S. S. & Coltman, D. W. Short reads, circular genome: Skimming SOLiD sequence to construct the bighorn sheep mitochondrial genome. J. Heredity 103, 140–146 (2012).
    CAS  Google Scholar 

    28.
    McVean, G. A genealogical interpretation of principal components analysis. PLoS Genet. 5, e1000686 (2009).

    29.
    Wang, J. Triadic IBD coefficients and applications to estimating pairwise relatedness. Genet. Res. 89, 135–153 (2007).
    CAS  PubMed  Google Scholar 

    30.
    Papadopoulou, A., Anastasiou, I. & Vogler, A. P. Revisiting the insect mitochondrial molecular clock: The mid-Aegean trench calibration. Mol. Biol. Evolution 27, 1659–1672 (2010).
    CAS  Google Scholar 

    31.
    Hebert, P. D. N., Ratnasingham, S. & deWaard, J. R. Barcoding animal life: cytochrome c oxidase subunit 1 divergences among closely related species. Proc. R. Soc. B-Biol. Sci. 270, S96–S99, (2003).
    CAS  Google Scholar 

    32.
    Huemer, P. et al. Large geographic distance versus small DNA barcode divergence: insights from a comparison of European to South Siberian Lepidoptera. PLoS One 13, e0206668 (2018).

    33.
    Sun, S. E. et al. DNA barcoding reveal patterns of species diversity among northwestern Pacific molluscs. Sci. Rep. 6, 33367 (2016).

    34.
    Ward, R. D., Zemlak, T. S., Innes, B. H., Last, P. R. & Hebert, P. D. N. DNA barcoding Australia’s fish species. Philos. Trans. R. Soc. B-Biol. Sci. 360, 1847–1857 (2005).
    CAS  Google Scholar 

    35.
    Brunsfeld, S. J., Sullivan, J., Soltis, D. E. & Soltis, P. S. in Integrating Ecological and Evolutionary Processes in A Spatial Context Vol. 14 (eds Silvertown, J. & Antonovics, J.) 319–339 (Blackwell Science, Oxford, 2001).

    36.
    Rankin, A. M. et al. Complex interplay of ancient vicariance and recent patterns of geographical speciation in north-western North American temperate rainforests explains the phylogeny of jumping slugs (Hemphillia spp.). Biol. J. Linn. Soc. 127, 876–889 (2019).
    Google Scholar 

    37.
    Maroja, L. S., Bogdanowicz, S. M., Wallin, K. F., Raffa, K. F. & Harrison, R. G. Phylogeography of spruce beetles (Dendroctonus rufipennis Kirby) (Curculionidae: Scolytinae) in north america. Mol. Ecol. 16, 2560–2573 (2007).
    CAS  PubMed  Google Scholar 

    38.
    Arakaki, N., Hokama, Y. & Yamamura, K. Estimation of the dispersal ability of Melanotus okinawensis (Coleoptera: Elateridae) larvae in soil. Appl. Entomol. Zool. 45, 297–302 (2010).
    Google Scholar 

    39.
    Schallhart, N., Tusch, M. J., Staudacher, K., Wallinger, C. & Traugott, M. Stable isotope analysis reveals whether soil-living elaterid larvae move between agricultural crops. Soil Biol. Biochem. 43, 1612–1614 (2011).
    CAS  PubMed  PubMed Central  Google Scholar 

    40.
    Arakaki, N. et al. Estimation of abundance and dispersal distance of the sugarcane click beetle Melanotus sakishimensis Ohira (Coleoptera: Elateridae) on Kurima Island, Okinawa, by mark-recapture experiments. Appl. Entomol. Zool. 43, 409–419 (2008).
    Google Scholar 

    41.
    Schallhart, N., Wallinger, C., Juen, A. & Traugott, M. Dispersal abilities of adult click beetles in arable land revealed by analysis of carbon stable isotopes. Agric. For. Entomol. 11, 333–339 (2009).
    Google Scholar 

    42.
    Blackshaw, R. P., Vernon, R. S. & Thiebaud, F. Large scale Agriotes spp. click beetle (Coleoptera: Elateridae) invasion of crop land from field margin reservoirs. Agric. For. Entomol. 20, 51–61 (2018).
    Google Scholar 

    43.
    Hicks, H. & Blackshaw, R. P. Differential responses of three Agriotes click beetle species to pheromone traps. Agric. For. Entomol. 10, 443–448 (2008).
    Google Scholar 

    44.
    Rondon, S. I., Pantoja, A., Hagerty, A. & Horneck, D. A. Ground beelte (Coleoptera: Carabidae) populations in commercial organic and conventional potato production. Fla. Entomologist 96, 1492–1499 (2013).
    Google Scholar 

    45.
    Horton, D. R. & Landolt, P. J. Use of Japanese-beetle traps to monitor flight of the Pacific coast wireworm, Limonius canus (Coleoptera: Elateridae), and effects of trap height and color. J. Entomological Soc. Br. Columbia 98, 235–242 (2001).
    Google Scholar 

    46.
    Balkenhol, N., Cushman, S. A., Storfer, A. & Waits, L. P. Landscape Genetics—Concepts, Methods, Applications (John Wiley & Sons Ltd, West Sussex, 2016).

    47.
    Milosavljevic, I., Esser, A. D. & Crowder, D. W. Seasonal population dynamics of wireworms in wheat crops in the Pacific Northwestern United States. J. Pest Sci. 90, 77–86 (2017).
    Google Scholar 

    48.
    Gerritsen, A. T. et al. Full mitochondrial genome sequence of the sugar beet wireworm Limonius californicus (Coleoptera: Elateridae), a common agricultural pest. Microbiology Resource Announcements 4 (2016).

    49.
    Voskoboynik, A. et al. The genome sequence of the colonial chordate, Botryllus schlosseri. Elife 2, e00569 (2013).

    50.
    McCoy, R. C. et al. Illumina TruSeq synthetic long-reads empower de novo assembly and resolve complex, highly-repetitive transposable elements. PLoS ONE 9, e106689 (2014).

    51.
    Marzachi, C., Veratti, F. & Bosco, D. Direct PCR detection of phytoplasmas in experimentally infected insects. Ann. Appl. Biol. 133, 45–54 (1998).
    CAS  Google Scholar 

    52.
    Ali, O. A. et al. RAD Capture (Rapture): flexible and efficient sequence-based genotyping. Genetics 202, 389–400 (2016).
    CAS  PubMed  Google Scholar 

    53.
    Baym, M. et al. Inexpensive multiplexed library preparation for megabase-sized genomes. PLoS ONE 10, e0128036 (2015).

    54.
    Zimin, A. V. et al. Hybrid assembly of the large and highly repetitive genome of Aegilops tauschii, a progenitor of bread wheat, with the MaSuRCA mega-reads algorithm. Genome Res. 27, 787–792 (2017).
    CAS  PubMed  PubMed Central  Google Scholar 

    55.
    Simão, F. A., Waterhouse, R. M., Ioannidis, P., Kriventseva, E. V. & Zdobnov, E. M. BUSCO: assessing genome assembly and annotation completeness with single-copy orthologs. Bioinformatics 31, 3210–3212 (2015).
    PubMed  Google Scholar 

    56.
    Catchen, J., Hohenlohe, P. A., Bassham, S., Amores, A. & Cresko, W. A. Stacks: an analysis tool set for population genomics. Mol. Ecol. 22, 3124–3140 (2013).
    PubMed  PubMed Central  Google Scholar 

    57.
    Li, H. & Durbin, R. Fast and accurate short read alignment with Burrows-Wheeler transform. Bioinformatics 25, 1754–1760 (2009).
    CAS  PubMed  PubMed Central  Google Scholar 

    58.
    Poplin, R. et al. Scaling accurate genetic variant discovery to tens of thousands of samples. bioRxiv https://doi.org/10.1101/201178 (2017).

    59.
    Danecek, P. et al. The variant call format and VCFtools. Bioinformatics 27, 2156–2158 (2011).

    60.
    Frichot, E. & Francois, O. LEA: an R package for landscape and ecological association studies. Methods Ecol. Evolution 6, 925–929 (2015).
    Google Scholar 

    61.
    R_Core_Team. R: A Language and Environment for Statistical Computing. http://www.R-project.org/ (R Foundation for Statistical Computing, Vienna, 2018).

    62.
    Excoffier, L., Laval, L. G. & Schneider, S. Arlequin ver. 3.0: an integrated software package for population genetics data analysis. Evolut. Bioinforma. Online 1, 47–50 (2005).
    CAS  Google Scholar 

    63.
    Jombart, T. & Ahmed, I. adegenet 1.3-1: new tools for the analysis of genome-wide SNP data. Bioinformatics 27, 3070–3071 (2011).
    CAS  PubMed  PubMed Central  Google Scholar 

    64.
    Wang, J. L. COANCESTRY: a program for simulating, estimating and analysing relatedness and inbreeding coefficients. Mol. Ecol. Resour. 11, 141–145 (2011).
    PubMed  Google Scholar 

    65.
    Whitlock, M. C. & Lotterhos, K. E. Reliable detection of loci responsible for local adaptation: Inference of a null model through trimming the distribution of FST. Am. Naturalist 186, S24–S36 (2015).
    Google Scholar 

    66.
    Foll, M. & Gaggiotti, O. A genome-scan method to identify selected loci appropriate for both dominant and codominant markers: a Bayesian perspective. Genetics 180, 977–993 (2008).
    PubMed  PubMed Central  Google Scholar 

    67.
    Beaumont, M. A. & Nichols, R. A. Evaluating loci for use in the genetic analysis of population structure. Proc. R. Soc. Ser. B, Biol. Sci. 263, 1619–1626 (1996).
    Google Scholar 

    68.
    Edgar, R. C. MUSCLE: multiple sequence alignment with high accuracy and high throughput. Nucleic Acids Res. 32, 1792–1797 (2004).
    CAS  PubMed  PubMed Central  Google Scholar 

    69.
    Stamatakis, A. RAxML version 8: a tool for phylogenetic analysis and post-analysis of large phylogenies. Bioinformatics 30, 1312–1313 (2014).
    CAS  PubMed  PubMed Central  Google Scholar 

    70.
    Bouckaert, R. et al. BEAST 2.5: an advanced software platform for Bayesian evolutionary analysis. PLoS Comput. Biol. 15, e1006650 (2019).

    71.
    Darriba, D., Taboada, G., Doallo, R. & Posada, D. jModelTest 2: more models, new heuristics and parallel computing. Nat. Methods 9, 772 (2012).
    CAS  PubMed  PubMed Central  Google Scholar 

    72.
    Rambaut, A., Drummond, A. J., Xie, D., Baele, G. & Suchard, M. A. Posterior summarization in Bayesian phylogenetics using Tracer 1.7. Syst. Biol. 67, 901–904 (2018).
    CAS  PubMed  PubMed Central  Google Scholar  More

  • in

    Discovering the indigenous microbial communities associated with the natural fermentation of sap from the cider gum Eucalyptus gunnii

    1.
    Legras, J. L., Merdinoglu, D., Cornuet, J. M. & Karst, F. Bread, beer and wine: Saccharomyces cerevisiae diversity reflects human history. Mol. Ecol. 16, 2091–2102 (2007).
    CAS  Article  Google Scholar 
    2.
    McGovern, P. E. et al. Fermented beverages of pre- and proto-historic China. Proc. Natl. Acad. Sci. U.S.A. 101, 17593–17598. https://doi.org/10.1073/pnas.0407921102 (2004).
    ADS  CAS  Article  PubMed  PubMed Central  Google Scholar 

    3.
    Cavalieri, D., McGovern, P., Hartl, D., Mortimer, R. & Polsinelli, M. Evidence for S. cerevisiae fermentation in ancient wine. J. Mol. Evol. 57, S226–S232 (2003).
    ADS  CAS  Article  Google Scholar 

    4.
    McGovern, P., Hartung, U., Badler, V., Glusker, D. & Exner, L. The beginnings of winemaking and viniculture in the ancient Near East and Egypt. Expedition 39, 3–21 (1997).
    Google Scholar 

    5.
    Dudley, R. Ethanol, fruit ripening, and the historical origins of human alcoholism in primate frugivory. Integr. Comp. Biol. 44, 315–323 (2004).
    CAS  Article  Google Scholar 

    6.
    Dudley, R. Fermenting fruit and the historical ecology of ethanol ingestion: is alcoholism in modern humans an evolutionary hangover?. Addiction 97, 381–388. https://doi.org/10.1046/j.1360-0443.2002.00002.x (2002).
    Article  PubMed  Google Scholar 

    7.
    Carrigan, M. A. et al. Hominids adapted to metabolize ethanol long before human-directed fermentation. Proc. Natl. Acad. Sci. U.S.A. 112, 458–463. https://doi.org/10.1073/pnas.1404167111 (2015).
    ADS  CAS  Article  PubMed  Google Scholar 

    8.
    Alba-Lois, L. & Segal-Kischinevzky, C. Yeast fermentation and the making of beer and wine https://www.nature.com/scitable/topicpage/yeast-fermentation-and-the-making-of-beer-14372813 (2010).

    9.
    Malacarne, M., Martuzzi, F., Summer, A. & Mariani, P. Protein and fat composition of mare’s milk: some nutritional remarks with reference to human and cow’s milk. Int. Dairy J. 12, 869–877. https://doi.org/10.1016/S0958-6946(02)00120-6 (2002).
    CAS  Article  Google Scholar 

    10.
    Brady, M. First Taste. How Indigenous Australians Learned About Grog (Alcohol Education and Rehabilitation Foundation Ltd, Canberra, 2008).
    Google Scholar 

    11.
    Brady, M. & McGrath, V. Making Tuba in the Torres Strait islands: the cultural diffusion and geographic mobility of an alcoholic drink. J. Pac. Hist. 45, 315–330. https://doi.org/10.1080/00223344.2010.530811 (2010).
    Article  PubMed  Google Scholar 

    12.
    Varela, C. The impact of non-Saccharomyces yeasts in the production of alcoholic beverages. Appl. Microbiol. Biotechnol. 100, 9861–9874. https://doi.org/10.1007/s00253-016-7941-6 (2016).
    CAS  Article  PubMed  Google Scholar 

    13.
    Jolly, N. P., Varela, C. & Pretorius, I. S. Not your ordinary yeast: non-Saccharomyces yeasts in wine production uncovered. FEMS Yeast Res. 14, 215–237. https://doi.org/10.1111/1567-1364.12111 (2014).
    CAS  Article  PubMed  Google Scholar 

    14.
    Steinkraus, K. H. Handbook of Indigenous Fermented Foods, Second Edition, Revised and Expanded (Marcel Dekker, New York, 1995).
    Google Scholar 

    15.
    Tamang, J. P., Watanabe, K. & Holzapfel, W. H. Review: diversity of microorganisms in global fermented foods and beverages. Front. Microbiol. https://doi.org/10.3389/fmicb.2016.00377 (2016).
    Article  PubMed  PubMed Central  Google Scholar 

    16.
    Bahiru, B., Mehari, T. & Ashenafi, M. Yeast and lactic acid flora of tej, an indigenous Ethiopian honey wine: variations within and between production units. Food Microbiol. 23, 277–282. https://doi.org/10.1016/j.fm.2005.05.007 (2006).
    CAS  Article  PubMed  Google Scholar 

    17.
    Vallejo, J. A. et al. Atypical yeasts identified as Saccharomyces cerevisiae by MALDI-TOF MS and gene sequencing are the main responsible of fermentation of chicha, a traditional beverage from Peru. Syst. Appl. Microbiol. 36, 560–564. https://doi.org/10.1016/j.syapm.2013.09.002 (2013).
    CAS  Article  PubMed  Google Scholar 

    18.
    Puerari, C., Magalhães-Guedes, K. T. & Schwan, R. F. Physicochemical and microbiological characterization of chicha, a rice-based fermented beverage produced by Umutina Brazilian Amerindians. Food Microbiol. 46, 210–217. https://doi.org/10.1016/j.fm.2014.08.009 (2015).
    CAS  Article  PubMed  Google Scholar 

    19.
    Escalante, A. et al. Characterization of bacterial diversity in Pulque, a traditional Mexican alcoholic fermented beverage, as determined by 16S rDNA analysis. FEMS Microbiol. Lett. 235, 273–279. https://doi.org/10.1016/j.femsle.2004.04.045 (2004).
    CAS  Article  PubMed  Google Scholar 

    20.
    Lappe-Oliveras, P. et al. Yeasts associated with the production of Mexican alcoholic nondistilled and distilled Agave beverages. FEMS Yeast Res. 8, 1037–1052. https://doi.org/10.1111/j.1567-1364.2008.00430.x (2008).
    CAS  Article  PubMed  Google Scholar 

    21.
    Jung, M. J., Nam, Y. D., Roh, S. W. & Bae, J. W. Unexpected convergence of fungal and bacterial communities during fermentation of traditional Korean alcoholic beverages inoculated with various natural starters. Food Microbiol. 30, 112–123. https://doi.org/10.1016/j.fm.2011.09.008 (2012).
    Article  PubMed  Google Scholar 

    22.
    Greppi, A. et al. Determination of yeast diversity in ogi, mawe, gowe and tchoukoutou by using culture-dependent and -independent methods. Int. J. Food Microbiol. 165, 84–88. https://doi.org/10.1016/j.ijfoodmicro.2013.05.005 (2013).
    CAS  Article  PubMed  Google Scholar 

    23.
    Spitaels, F. et al. The microbial diversity of traditional spontaneously fermented lambic beer. PLoS ONE https://doi.org/10.1371/journal.pone.0095384 (2014).
    Article  PubMed  PubMed Central  Google Scholar 

    24.
    Tapsoba, F., Legras, J. L., Savadogo, A., Dequin, S. & Traore, A. S. Diversity of Saccharomyces cerevisiae strains isolated from Borassus akeassii palm wines from Burkina Faso in comparison to other African beverages. Int. J. Food Microbiol. 211, 128–133. https://doi.org/10.1016/j.ijfoodmicro.2015.07.010 (2015).
    Article  PubMed  Google Scholar 

    25.
    Bokulich, N. A., Bamforth, C. W. & Mills, D. A. Brewhouse-resident microbiota are responsible for multi-stage fermentation of American coolship ale. PLoS ONE 7, e35507. https://doi.org/10.1371/journal.pone.0035507 (2012).
    ADS  CAS  Article  PubMed  PubMed Central  Google Scholar 

    26.
    Bokulich, N. A., Thorngate, J. H., Richardson, P. M. & Mills, D. A. Microbial biogeography of wine grapes is conditioned by cultivar, vintage, and climate. Proc. Natl. Acad. Sci. U.S.A. 111, E139–E148. https://doi.org/10.1073/pnas.1317377110 (2014).
    ADS  CAS  Article  PubMed  Google Scholar 

    27.
    Siren, K. et al. Taxonomic and functional characterization of the microbial community during spontaneous in vitro fermentation of Riesling must. Front. Microbiol. https://doi.org/10.3389/fmicb.2019.00697 (2019).
    Article  PubMed  PubMed Central  Google Scholar 

    28.
    Morgan, H. H., du Toit, M. & Setati, M. E. The grapevine and wine microbiome: insights from high-throughput amplicon sequencing. Front. Microbiol. https://doi.org/10.3389/fmicb.2017.00820 (2017).
    Article  PubMed  PubMed Central  Google Scholar 

    29.
    Williams, K. J. & Potts, B. M. The natural distribution of Eucalyptus species in Tasmania. Tasforests 8, 39–165 (1996).
    Google Scholar 

    30.
    Calder, J. A. & Kirkpatrick, J. B. Climate change and other factors influencing the decline of the Tasmanian cider gum (Eucalyptus gunnii). Aust. J. Bot. 56, 684–692. https://doi.org/10.1071/BT08105 (2008).
    Article  Google Scholar 

    31.
    Sanger, J. C., Davidson, N. J., O’Grady, A. P. & Close, D. C. Are the patterns of regeneration in the endangered Eucalyptus gunnii ssp. divaricata shifting in response to climate?. Austral. Ecol. 36, 612–620. https://doi.org/10.1111/j.1442-9993.2010.02194.x (2011).
    Article  Google Scholar 

    32.
    Lahti, L. & Shetty, S. Tools for microbiome analysis in R. Version 1.9.1 https://microbiome.github.com/microbiome (2017).

    33.
    Morrison-Whittle, P. & Goddard, M. R. Quantifying the relative roles of selective and neutral processes in defining eukaryotic microbial communities. ISME J. 9, 2003–2011. https://doi.org/10.1038/ismej.2015.18 (2015).
    CAS  Article  PubMed  PubMed Central  Google Scholar 

    34.
    Morrison-Whittle, P. & Goddard, M. R. From vineyard to winery: a source map of microbial diversity driving wine fermentation. Environ. Microbiol. 20, 75–84. https://doi.org/10.1111/1462-2920.13960 (2018).
    Article  PubMed  Google Scholar 

    35.
    Brooker, M. I. H. A Key to Eucalypts in Britain and Ireland. (Forestry Commission Booklet 50: The Stationery Office, 1983).

    36.
    Forrest, M. & Moore, T. Eucalyptus gunnii: a possible source of bioenergy?. Biomass Bioenerg. 32, 978–980. https://doi.org/10.1016/j.biombioe.2008.01.010 (2008).
    CAS  Article  Google Scholar 

    37.
    Guimarães, R. et al. Aromatic plants as a source of important phytochemicals: vitamins, sugars and fatty acids in Cistus ladanifer, Cupressus lusitanica and Eucalyptus gunnii leaves. Ind. Crop Prod. 30, 427–430. https://doi.org/10.1016/j.indcrop.2009.08.002 (2009).
    CAS  Article  Google Scholar 

    38.
    Bugarin, D. et al. Essential oil of Eucalyptus gunnii hook. As a novel source of antioxidant, antimutagenic and antibacterial agents. Molecules 19, 19007–19020. https://doi.org/10.3390/molecules191119007 (2014).
    CAS  Article  PubMed  PubMed Central  Google Scholar 

    39.
    Leborgne, N. et al. Introduction of specific carbohydrates into Eucalyptus gunnii cells increases their freezing tolerance. Eur. J. Biochem. 229, 710–717. https://doi.org/10.1111/j.1432-1033.1995.0710j.x (1995).
    CAS  Article  PubMed  Google Scholar 

    40.
    Stuckel, J. G. & Low, N. H. The chemical composition of 80 pure maple syrup samples produced in North America. Food Res. Int. 29, 373–379. https://doi.org/10.1016/0963-9969(96)00000-2 (1996).
    CAS  Article  Google Scholar 

    41.
    Taylor, M. W., Tsai, P., Anfang, N., Ross, H. A. & Goddard, M. R. Pyrosequencing reveals regional differences in fruit-associated fungal communities. Environ. Microbiol. 16, 2848–2858 (2014).
    CAS  Article  Google Scholar 

    42.
    Pinto, C. et al. Wine fermentation microbiome: a landscape from different Portuguese wine appellations. Front. Microbiol. https://doi.org/10.3389/fmicb.2015.00905 (2015).
    Article  PubMed  PubMed Central  Google Scholar 

    43.
    Miura, T., Sanchez, R., Castaneda, L. E., Godoy, K. & Barbosa, O. Is microbial terroir related to geographic distance between vineyards?. Environ. Microbiol. Rep. 9, 742–749. https://doi.org/10.1111/1758-2229.12589 (2017).
    CAS  Article  PubMed  Google Scholar 

    44.
    Knight, S. J., Karon, O. & Goddard, M. R. Small scale fungal community differentiation in a vineyard system. Food Microbiol. https://doi.org/10.1016/j.fm.2019.103358 (2019).
    Article  PubMed  Google Scholar 

    45.
    Tedersoo, L. et al. Global diversity and geography of soil fungi. Science 346, 1256688. https://doi.org/10.1126/science.1256688 (2014).
    CAS  Article  PubMed  Google Scholar 

    46.
    Lin, Y. T., Whitman, W. B., Coleman, D. C. & Chiu, C. Y. Effects of reforestation on the structure and diversity of bacterial communities in subtropical low mountain forest soils. Front. Microbiol. https://doi.org/10.3389/fmicb.2018.01968 (2018).
    Article  PubMed  PubMed Central  Google Scholar 

    47.
    Grangeteau, C. et al. Wine microbiology is driven by vineyard and winery anthropogenic factors. Microb. Biotechnol. 10, 354–370. https://doi.org/10.1111/1751-7915.12428 (2017).
    CAS  Article  PubMed  Google Scholar 

    48.
    Burns, K. N. et al. Vineyard soil bacterial diversity and composition revealed by 16S rRNA genes: differentiation by geographic features. Soil Biol. Biochem. 91, 232–247. https://doi.org/10.1016/j.soilbio.2015.09.002 (2015).
    CAS  Article  Google Scholar 

    49.
    Portillo, M. D. C., Franquès, J., Araque, I., Reguant, C. & Bordons, A. Bacterial diversity of Grenache and Carignan grape surface from different vineyards at Priorat wine region (Catalonia, Spain). Int. J. Food Microbiol. 219, 56–63. https://doi.org/10.1016/j.ijfoodmicro.2015.12.002 (2016).
    Article  Google Scholar 

    50.
    Castaneda, L. E. & Barbosa, O. Metagenomic analysis exploring taxonomic and functional diversity of soil microbial communities in Chilean vineyards and surrounding native forests. PeerJ 5, e3098. https://doi.org/10.7717/peerj.3098 (2017).
    CAS  Article  PubMed  PubMed Central  Google Scholar 

    51.
    Setati, M. E., Jacobson, D. & Bauer, F. F. Sequence-based analysis of the Vitis vinifera L. cv Cabernet Sauvignon grape must Mycobiome in three South African vineyards employing distinct agronomic systems. Front. Microbiol. https://doi.org/10.3389/fmicb.2015.01358 (2015).
    Article  PubMed  PubMed Central  Google Scholar 

    52.
    Miura, T. et al. Shifts in the composition and potential functions of soil microbial communities responding to a no-tillage practice and bagasse mulching on a sugarcane plantation. Biol. Fertil. Soils 52, 307–322. https://doi.org/10.1007/s00374-015-1077-1 (2016).
    CAS  Article  Google Scholar 

    53.
    Miura, T., Sanchez, R., Castaneda, L. E., Godoy, K. & Barbosa, O. Shared and unique features of bacterial communities in native forest and vineyard phyllosphere. Ecol. Evol. 9, 3295–3305. https://doi.org/10.1002/ece3.4949 (2019).
    Article  PubMed  PubMed Central  Google Scholar 

    54.
    Hendgen, M. et al. Effects of different management regimes on microbial biodiversity in vineyard soils. Sci. Rep. https://doi.org/10.1038/s41598-018-27743-0 (2018).
    Article  PubMed  PubMed Central  Google Scholar 

    55.
    Montecchia, M. S. et al. Pyrosequencing reveals changes in soil bacterial communities after conversion of Yungas forests to agriculture. PLoS ONE 10, 18. https://doi.org/10.1371/journal.pone.0119426 (2015).
    CAS  Article  Google Scholar 

    56.
    Gleeson, D., Mathes, F., Farrell, M. & Leopold, M. Environmental drivers of soil microbial community structure and function at the Avon River Critical Zone Observatory. Sci. Total Environ. 571, 1407–1418. https://doi.org/10.1016/j.scitotenv.2016.05.185 (2016).
    ADS  CAS  Article  PubMed  Google Scholar 

    57.
    Kemler, M. et al. Ion Torrent PGM as tool for fungal community analysis: a case study of Endophytes in Eucalyptus grandis reveals high taxonomic diversity. PLoS ONE https://doi.org/10.1371/journal.pone.0081718 (2013).
    Article  PubMed  PubMed Central  Google Scholar 

    58.
    Piškur, J., Rozpędowska, E., Polakova, S., Merico, A. & Compagno, C. How did Saccharomyces evolve to become a good brewer?. Trends Genet. 22, 183–186. https://doi.org/10.1016/j.tig.2006.02.002 (2006).
    CAS  Article  PubMed  Google Scholar 

    59.
    Lloyd, K. G., Steen, A. D., Ladau, J., Yin, J. Q. & Crosby, L. Phylogenetically novel uncultured microbial cells dominate Earth microbiomes. Msystems https://doi.org/10.1128/mSystems.00055-18 (2018).
    Article  PubMed  PubMed Central  Google Scholar 

    60.
    Steen, A. D. et al. High proportions of bacteria and archaea across most biomes remain uncultured. ISME J. 13, 3126–3130. https://doi.org/10.1038/s41396-019-0484-y (2019).
    Article  PubMed  PubMed Central  Google Scholar 

    61.
    Thrash, J. C. Culturing the uncultured: Risk versus reward. Msystems https://doi.org/10.1128/mSystems.00130-19 (2019).
    Article  PubMed  PubMed Central  Google Scholar 

    62.
    Varela, C., Pizarro, F. & Agosin, E. Biomass content governs fermentation rate in nitrogen-deficient wine musts. Appl. Environ. Microbiol. 70, 3392–3400. https://doi.org/10.1128/Aem.70.6.3392-3400.2004 (2004).
    CAS  Article  PubMed  PubMed Central  Google Scholar 

    63.
    Parker, M. et al. Factors contributing to interindividual variation in retronasal odor perception from aroma glycosides: The tole of odorant sensory detection threshold, oral microbiota, and hydrolysis in saliva. J. Agric. Food Chem. https://doi.org/10.1021/acs.jafc.9b05450 (2019).
    Article  PubMed  Google Scholar 

    64.
    Bokulich, N. A. & Mills, D. A. Improved selection of internal transcribed spacer-specific primers enables quantitative, ultra-high-throughput profiling of fungal communities. Appl. Environ. Microbiol. 79, 2519–2526. https://doi.org/10.1128/AEM.03870-12 (2013).
    CAS  Article  PubMed  PubMed Central  Google Scholar 

    65.
    Sternes, P. R., Lee, D., Kutyna, D. R. & Borneman, A. R. A combined meta-barcoding and shotgun metagenomic analysis of spontaneous wine fermentation. bioRxiv https://doi.org/10.1101/098061 (2017).
    Article  Google Scholar 

    66.
    Bolger, A. M., Lohse, M. & Usadel, B. Trimmomatic: a flexible trimmer for Illumina sequence data. Bioinformatics 30, 2114–2120. https://doi.org/10.1093/bioinformatics/btu170 (2014).
    CAS  Article  PubMed  PubMed Central  Google Scholar 

    67.
    Martin, M. Cutadapt removes adapter sequences from high-throughput sequencing reads. EMBnet J. https://doi.org/10.14806/ej.17.1.200 (2011).
    Article  Google Scholar 

    68.
    Magoc, T. & Salzberg, S. L. FLASH: fast length adjustment of short reads to improve genome assemblies. Bioinformatics 27, 2957–2963. https://doi.org/10.1093/bioinformatics/btr507 (2011).
    CAS  Article  PubMed  PubMed Central  Google Scholar 

    69.
    Mahe, F., Rognes, T., Quince, C., de Vargas, C. & Dunthorn, M. Swarm: robust and fast clustering method for amplicon-based studies. PeerJ 2, e593. https://doi.org/10.7717/peerj.593 (2014).
    Article  PubMed  PubMed Central  Google Scholar 

    70.
    Caporaso, J. G. et al. QIIME allows analysis of high-throughput community sequencing data. Nat. Methods 7, 335–336. https://doi.org/10.1038/nmeth.f.303 (2010).
    CAS  Article  PubMed  PubMed Central  Google Scholar 

    71.
    McMurdie, P. J. & Holmes, S. phyloseq: an R package for reproducible interactive analysis and graphics of microbiome census data. PLoS ONE 8, e61217. https://doi.org/10.1371/journal.pone.0061217 (2013).
    ADS  CAS  Article  PubMed  PubMed Central  Google Scholar 

    72.
    Oksanen, J. et al. vegan: Community Ecology Package. R package version 2.5.4 https://CRAN.R-project.org/package=vegan (2019).

    73.
    Li, C., Yu, G. & Zhu, C. microbiomeViz—an R package for visualizing microbiome data https://github.com/lch14forever/microbiomeViz (2018).

    74.
    Kahle, D. & Wickham, H. ggmap: spatial visualization with ggplot2. R J. 5, 144–161 (2013).
    Article  Google Scholar 

    75.
    Kassambara, A. ggpubr: ‘ggplot2’ based publication eady plots. R package version 0.2 https://CRAN.R-project.org/package=ggpubr (2018).

    76.
    Wickham, H. ggplot2: Elegant Graphics for Data Analysis (SpringerVerlag, New York, 2009).
    Google Scholar 

    77.
    Team, R. C. R: a language and environment for statistical computing https://www.R-project.org/ (2017). More

  • in

    The carbon opportunity cost of animal-sourced food production on land

    1.
    IPCC Special Report on Climate Change and Land (eds Shukla, P. R. et al.) (WMO and UNEP, 2019).
    2.
    Erb, K. H. et al. Unexpectedly large impact of forest management and grazing on global vegetation biomass. Nature 553, 73–76 (2018).
    CAS  Article  Google Scholar 

    3.
    Searchinger, T. D., Wirsenius, S., Beringer, T. & Dumas, P. Assessing the efficiency of changes in land use for mitigating climate change. Nature 564, 249–253 (2018).
    CAS  Article  Google Scholar 

    4.
    West, P. C. et al. Trading carbon for food: global comparison of carbon stocks vs. crop yields on agricultural land. Proc. Natl Acad. Sci. USA 107, 19645–19648 (2010).
    CAS  Article  Google Scholar 

    5.
    Shepon, A., Eshel, G., Noor, E. & Milo, R. The opportunity cost of animal based diets exceeds all food losses. Proc. Natl Acad. Sci. USA https://doi.org/10.1073/pnas.1713820115 (2018).

    6.
    Poore, J. & Nemecek, T. Reducing food’s environmental impacts through producers and consumers. Science 992, 987–992 (2018).
    Article  Google Scholar 

    7.
    Tilman, D. & Clark, M. Global diets link environmental sustainability and human health. Nature 515, 518–522 (2014).
    CAS  Article  Google Scholar 

    8.
    Springmann, M. et al. Health and nutritional aspects of sustainable diet strategies and their association with environmental impacts: a global modelling analysis with country-level detail. Lancet Planet. Health 2, e451–e461 (2018).
    Article  Google Scholar 

    9.
    Herrero, M. et al. Greenhouse gas mitigation potentials in the livestock sector. Nat. Clim. Change 6, 452–461 (2016).
    Article  Google Scholar 

    10.
    Batchelor, J. L., Ripple, W. J., Wilson, T. M. & Painter, L. E. Restoration of riparian areas following the removal of cattle in the northwestern great basin. Environ. Manage. 55, 930–942 (2014).
    Article  Google Scholar 

    11.
    Sitters, J., Kimuyu, D. M., Young, T. P., Claeys, P. & Olde Venterink, H. Negative effects of cattle on soil carbon and nutrient pools reversed by megaherbivores. Nat. Sustain. 3, 360–366 (2020).
    Article  Google Scholar 

    12.
    Alexandratos, N. & Bruinsma, J. World Agriculture Towards 2030/2050: The 2012 Revision (FAO, 2012).

    13.
    Willett, W. et al. Food in the Anthropocene: the EAT–Lancet Commission on healthy diets from sustainable food systems. Lancet 6736, 3–49 (2019).
    Google Scholar 

    14.
    IPCC Special Report on Global Warming of 1.5 °C (eds Masson-Delmotte, V. et al.) (WMO, 2018).

    15.
    Fry, J. P., Mailloux, N. A., Love, D. C., Milli, M. C. & Cao, L. Feed conversion efficiency in aquaculture: do we measure it correctly? Environ. Res. Lett. 13, 024017 (2018).
    Article  Google Scholar 

    16.
    Van Zanten, H. H. E. et al. Defining a land boundary for sustainable livestock consumption. Glob. Change Biol. https://doi.org/10.1111/gcb.14321 (2018).

    17.
    Griscom, B. W. et al. Natural climate solutions. Proc. Natl Acad. Sci. USA 114, 11645–11650 (2017).
    CAS  Article  Google Scholar 

    18.
    Randerson, J. T. et al. Multicentury changes in ocean and land contributions to the climate–carbon feedback. Glob. Biogeochem. Cycles 29, 744–759 (2015).
    CAS  Article  Google Scholar 

    19.
    Smith, P. et al. How much land-based greenhouse gas mitigation can be achieved without compromising food security and environmental goals? Glob. Change Biol. 19, 2285–2302 (2013).
    Article  Google Scholar 

    20.
    Schmidinger, K. & Stehfest, E. Including CO2 implications of land occupation in LCAs-method and example for livestock products. Int. J. Life Cycle Assess. 17, 962–972 (2012).
    CAS  Article  Google Scholar 

    21.
    Stehfest, E. et al. Climate benefits of changing diet. Clim. Change 95, 83–102 (2009).
    CAS  Article  Google Scholar 

    22.
    Ramankutty, N., Evan, A. T., Monfreda, C. & Foley, J. A. Farming the planet: 1. Geographic distribution of global agricultural lands in the year 2000. Glob. Biogeochem. Cycles 22, GB1003 (2008).
    Article  Google Scholar 

    23.
    Monfreda, C., Ramankutty, N. & Foley, J. A. Farming the planet: 2. Geographic distribution of crop areas, yields, physiological types, and net primary production in the year 2000. Glob. Biogeochem. Cycles 22, GB1022 (2008).
    Article  Google Scholar 

    24.
    Cassidy, E. S., West, P. C., Gerber, J. S. & Foley, J. A. Redefining agricultural yields: from tonnes to people nourished per hectare. Environ. Res. Lett. 8, 034015 (2013).
    Article  Google Scholar 

    25.
    Bouwman, A. F., Van der Hoek, K. W., Eickhout, B. & Soenario, I. Exploring changes in world ruminant production systems. Agric. Syst. 84, 121–153 (2005).
    Article  Google Scholar 

    26.
    Hansen, M. C. et al. High-resolution global maps of 21st-century forest cover change. Science 342, 850–853 (2013).
    CAS  Article  Google Scholar 

    27.
    Herrero, M. et al. Biomass use, production, feed efficiencies, and greenhouse gas emissions from global livestock systems. Proc. Natl Acad. Sci. USA 110, 20888–20893 (2013).
    CAS  Article  Google Scholar 

    28.
    Erb, K. H. et al. Biomass turnover time in terrestrial ecosystems halved by land use. Nat. Geosci. 9, 674–678 (2016).
    CAS  Article  Google Scholar 

    29.
    Fetzel, T. et al. Quantification of uncertainties in global grazing systems assessment. Glob. Biogeochem. Cycles 31, 1089–1102 (2017).
    CAS  Article  Google Scholar  More

  • in

    Biodegradability of poly(3-hydroxyalkanoate) and poly(ε-caprolactone) via biological carbon cycles in marine environments

    1.
    Plastics Europe. Plastics—the Facts 2019; 2019. https://www.plasticseurope.org/application/files/9715/7129/9584/FINAL_web_version_Plastics_the_facts2019_14102019.pdf.
    2.
    Ritchie H, Roser M. Plastic pollution. Our World in Data; 2018. https://ourworldindata.org/plastic-pollution.

    3.
    UNEP. Single-use plastics: a roadmap for sustainability; 2018. https://wedocs.unep.org/bitstream/handle/20.500.11822/25496/singleUsePlastic_sustainability.pdf?sequence=1&isAllowed=y.

    4.
    Geyer R, Jambeck JR, Law KL. Production, use, and fate of all plastics ever made. Sci Adv. 2017;3:e1700782. https://doi.org/10.1126/sciadv.1700782.
    CAS  Article  PubMed  PubMed Central  Google Scholar 

    5.
    Jambeck JR, Geyer R, Wilcox C, Siegler TR, Perryman M, Andrady A, et al. Plastic waste inputs from land into the ocean. Science. 2015;347:768–71. https://doi.org/10.1126/science.1260352.
    CAS  Article  PubMed  Google Scholar 

    6.
    Derraik JGB. The pollution of the marine environment by plastic debris: a review. Mar Pollut Bull. 2002;44:842–52.
    CAS  PubMed  Google Scholar 

    7.
    World Economic Forum. Ellen MacArthur Foundation. The new plastics economy: rethinking the future of plastics; 2016. www3.weforum.org/docs/WEF_The_New_Plastics_Economy.pdf.

    8.
    Stelfox M, Hudgins J, Sweet M. A review of ghost gear entanglement amongst marine mammals, reptiles and elasmobranchs. Mar Pollut Bull. 2016;11:6–17.
    Google Scholar 

    9.
    Rios LM, Moore C, Jones PR. Persistent organic pollutants carried by synthetic polymers in the ocean environment. Mar Pollut Bull. 2007;54:1230–7.
    CAS  PubMed  Google Scholar 

    10.
    Rochman CM, Hoh E, Kurobe T, Teh SJ. Ingested plastic transfers hazardous chemicals to fish and induces hepatic stress. Sci Rep. 2013;3:32632. https://doi.org/10.1038/srep03263.
    Article  Google Scholar 

    11.
    Setala O, Fleming-Lehtinen V, Lehtiniemi M. Ingestion and transfer of microplastics in the planktonic food web. Environ Pollut. 2014;185:77–83.
    CAS  PubMed  Google Scholar 

    12.
    Lucas N, Bienaime C, Belloy C, Queneudec M, Silvestre F, Nava-Saucedo JE. Polymer biodegradation: mechanisms and estimation techniques. Chemosphere. 2008;73:429–42.
    CAS  PubMed  Google Scholar 

    13.
    Harrison JP, Boardman C, O’Callaghan K, Delort AM, Song J. Biodegradability standards for carrier bags and plastic films in aquatic environments: a critical review. R Soc Open Sci. 2018;5:171792. https://doi.org/10.1098/rsos.171792.
    CAS  Article  PubMed  PubMed Central  Google Scholar 

    14.
    Sudesh K, Abe H, Doi Y. Synthesis, structure and properties of polyhydroxyalkanoates: biological polyesters. Prog Polym Sci. 2000;25:1503–55.
    CAS  Google Scholar 

    15.
    Labet M, Thielemans W. Synthesis of polycaprolactone: a review. Chem Soc Rev. 2009;38:3484–504.
    CAS  PubMed  Google Scholar 

    16.
    Tserki V, Matzinos P, Pavlidou E, Vachliotis D, Panayiotou C. Biodegradable aliphatic polyesters. Part I. Properties and biodegradation of poly(butylene succinate-co-butylene adipate). Polym Degrad Stabil. 2006;91:367–76.
    CAS  Google Scholar 

    17.
    Yamamoto M, Witt U, Skupin G, Beimborn D, Müller J. Biodegradable aliphatic-aromatic polyesters: “Ecoflex®”. Biopolymers Online; 2005.

    18.
    Nampoothiri KM, Nair NR, John RP. An overview of the recent developments in polylactide (PLA) research. Bioresour Technol. 2010;101:8493–501.
    Google Scholar 

    19.
    Ku H, Wang H, Pattarachaiyakoop N, Trada M. A review on the tensile properties of natural fiber reinforced polymer composites. Compos B Eng. 2011;42:856–73.
    Google Scholar 

    20.
    Jendrossek D, Schirmer A, Schlegel HG. Biodegradation polyhydroxyalkanoic acids. Appl Microbiol Biot. 1996;46:451–63.
    CAS  Google Scholar 

    21.
    Kasuya K, Ohura T, Masuda K, Doi Y. Substrate and binding specificities of bacterial polyhydroxybutyrate depolymerases. Int J Biol Macromol. 1999;24:329–36.
    CAS  PubMed  Google Scholar 

    22.
    Tokiwa Y, Suzuki T. Hydrolysis of polyesters by lipases. Nature. 1977;270:76–78.
    CAS  PubMed  Google Scholar 

    23.
    Jaeger KE, Steinbuchel A, Jendrossek D. Substrate specificities of bacterial polyhydroxyalkanoate depolymerases and lipases: bacterial lipases hydrolyze poly(omega-hydroxyalkanoates). Appl Environ Microbiol. 1995;61:3113–8.
    CAS  PubMed  PubMed Central  Google Scholar 

    24.
    Murphy CA, Cameron JA, Huang SJ, Vinopal RT. Fusarium polycaprolactone depolymerase is cutinase. Appl Environ Microbiol. 1996;62:456–60.
    CAS  PubMed  PubMed Central  Google Scholar 

    25.
    Maeda H, Yamagata Y, Abe K, Hasegawa F, Machida M, Ishioka R, et al. Purification and characterization of a biodegradable plastic-degrading enzyme from Aspergillus oryzae. Appl Microbiol Biotechnol. 2005;67:778–88.
    CAS  PubMed  Google Scholar 

    26.
    Murphy CA, Cameron JA, Huang SJ, Vinopal RT. A second polycaprolactone depolymerase from Fusarium, a lipase distinct from cutinase. Appl Microbiol Biotechnol. 1998;50:692–6.
    CAS  Google Scholar 

    27.
    Ando Y, Yoshikawa K, Yoshikawa T, Nishioka M, Ishioka R, Yakabe Y. Biodegradability of poly(tetramethylene succinate-co-tetramethylene adipate): I. Enzymatic hydrolysis. Polym Degrad Stabil. 1998;61:129–37.
    CAS  Google Scholar 

    28.
    Shinozaki Y, Morita T, Cao X, Yoshida S, Koitabashi M, Watanabe T, et al. Biodegradable plastic-degrading enzyme from Pseudozyma antarctica: cloning, sequencing, and characterization. Appl Microbiol Biotechnol. 2013;97:2951–9.
    CAS  PubMed  Google Scholar 

    29.
    Muroi F, Tachibana Y, Soulenthone P, Yamamoto K, Mizuno T, Sakurai T, et al. Characterization of a poly(butylene adipate-co-terephthalate) hydrolase from the aerobic mesophilic bacterium Bacillus pumilus. Polym Degrad Stabil. 2017;137:11–22.
    CAS  Google Scholar 

    30.
    Tokiwa Y, Calabia BP. Biodegradability and biodegradation of poly(lactide). Appl Microbiol Biotechnol. 2006;72:244–51.
    CAS  PubMed  Google Scholar 

    31.
    Williams DF. Enzymic hydrolysis of polylactic acid. Eng Med. 1981;10:5–7.
    Google Scholar 

    32.
    Nakayama A, Yamano N, Kawasaki N. Biodegradation in seawater of aliphatic polyesters. Polym Degrad Stabil. 2019;166:290–9.
    CAS  Google Scholar 

    33.
    Luzier WD. Materials derived from biomass biodegradable materials. Proc Natl Acad Sci USA. 1992;89:839–42.
    CAS  PubMed  Google Scholar 

    34.
    Kasuya K, Takagi K, Ishiwatari S, Yoshida Y, Doi Y. Biodegradabilities of various aliphatic polyesters in natural waters. Polym Degrad Stabil. 1998;59:327–32.
    CAS  Google Scholar 

    35.
    Teramoto N, Urata K, Ozawa K, Shibata M. Biodegradation of aliphatic polyester composites reinforced by abaca fiber. Polym Degrad Stabil. 2004;86:401–9.
    CAS  Google Scholar 

    36.
    Sekiguchi T, Saika A, Nomura K, Watanabe T, Fujimoto Y, Enoki M, et al. Biodegradation of aliphatic polyesters soaked in deep seawaters and isolation of poly(ε-caprolactone)-degrading bacteria. Polym Degrad Stabil. 2011;96:1397–403.
    CAS  Google Scholar 

    37.
    Fujimaki T. Processability and properties of aliphatic polyesters, ‘BIONOLLE’, synthesized by polycondensation reaction. Polym Degrad Stabil. 1998;59:209–14.
    CAS  Google Scholar 

    38.
    Witt U, Müller RJ, Deckwer WD. New biodegradable polyester-copolymers from commodity chemicals with favorable use properties. J Environ Polym Degrad. 1995;3:215–23.
    CAS  Google Scholar 

    39.
    Bagheri AR, Laforsch C, Greiner A, Agarwal S. Fate of so‐called biodegradable polymers in seawater and freshwater. Glob Chall. 2017;1:1700048. https://doi.org/10.1002/gch2.201700048.
    Article  PubMed  PubMed Central  Google Scholar 

    40.
    Zambrano MC, Pawlak JJ, Daystar J, Ankeny M, Goller CC, Venditti RA. Aerobic biodegradation in freshwater and marine environments of textile microfibers generated in clothes laundering: effects of cellulose and for polyester-based microfibers on the microbiome. Mar Pollut Bull. 2020;151:110826. https://doi.org/10.1016/j.marpolbul.2019.110826.
    CAS  Article  PubMed  Google Scholar 

    41.
    Taylor LE, Henrissat B, Coutinho PM, Ekborg NA, Hutcheson SW, Weiner RA. Complete cellulase system in the marine bacterium Saccharophagus degradans strain 2-40T. J Bacteriol. 2006;188:3849–61.
    CAS  PubMed  PubMed Central  Google Scholar 

    42.
    Yang JC, Madupu R, Durkin SA, Ekborg NA, Pedamallu CS, Hostetler JB, et al. The Complete genome of Teredinibacter turnerae T7901: an intracellular endosymbiont of marine wood-boring bivalves (shipworms). PLoS ONE. 2009;4:e6085. https://doi.org/10.1371/journal.pone.0006085.
    CAS  Article  PubMed  PubMed Central  Google Scholar 

    43.
    Sawant SS, Salunke BK, Taylor LE, Kim BS. Enhanced agarose and xylan degradation for production of polyhydroxyalkanoates by co-culture of marine bacterium, Saccharophagus degradans and its contaminant, Bacillus cereus. Appl Sci. 2017;7. https://doi.org/10.3390/app7030225.

    44.
    Liu G, Wu SM, Jin WH, Sun CM. Amy63, a novel type of marine bacterial multifunctional enzyme possessing amylase, agarase and carrageenase activities. Sci Rep. 2016;6:18726. https://doi.org/10.1038/srep18726.
    CAS  Article  PubMed  PubMed Central  Google Scholar 

    45.
    Ramesh S, Mathivanan N. Screening of marine actinomycetes isolated from the Bay of Bengal, India for antimicrobial activity and industrial enzymes. World J Microb Biotechnol. 2009;25:2103–11.
    CAS  Google Scholar 

    46.
    Nogi Y, Yoshizumi M, Miyazaki M. Thalassospira povalilytica sp. nov., a polyvinyl-alcohol-degrading marine bacterium. Int J Syst Evol Microbiol. 2014;64:1149–53.
    CAS  PubMed  Google Scholar 

    47.
    Sedlacek P, Slaninova E, Enev V, Koller M, Nebesarova J, Marova I, et al. What keeps polyhydroxyalkanoates in bacterial cells amorphous? A derivation from stress exposure experiments. Appl Microbiol Biot. 2019;103:1905–17.
    CAS  Google Scholar 

    48.
    Steinbüchel A, Valentin HE. Diversity of bacterial polyhydroxyalkanoic acids. FEMS Microbiol Lett. 1995;128:219–28.
    Google Scholar 

    49.
    Madison LL, Huisman GW. Metabolic engineering of poly(3-hydroxyalkanoates): From DNA to plastic. Microbiol Mol Biol Rev 1999;63:21–53.
    CAS  PubMed  PubMed Central  Google Scholar 

    50.
    Kunioka M, Tamaki A, Doi Y. Crystalline and thermal properties of bacterial copolyesters: poly(3-hydroxybutyrate-co-3-hydroxyvalerate) and poly(3-hydroxybutyrate-co-4-hydroxybutyrate). Macromolecules. 1989;22:694–7.
    CAS  Google Scholar 

    51.
    Doi Y, Kitamura S, Abe H. Microbial synthesis and characterization of poly(3-hydroxybutyrate-co-3-hydroxyhexanoate). Macromolecules. 1995;28:4822–8.
    CAS  Google Scholar 

    52.
    Abe H, Doi Y. Side-chain effect of second monomer units on crystalline morphology, thermal properties, and enzymatic degradability for random copolyesters of (R)-3-hydroxybutyric acid with (R)-3-hydroxyalkanoic acids. Biomacromolecules. 2002;3:133–8.
    CAS  PubMed  Google Scholar 

    53.
    Shimamura E, Kasuya K, Kobayashi G, Shiotani T, Shima Y, Doi Y. Physical-properties and biodegradability of microbial poly(3-hydroxybutyrate-co-3-hydroxyhexanoate). Macromolecules. 1994;27:878–80.
    CAS  Google Scholar 

    54.
    Suriyamongkol P, Weselake R, Narine S, Moloney M, Shah S. Biotechnological approaches for the production of polyhydroxyalkanoates in microorganisms and plants—a review. Biotechnol Adv. 2007;25:148–75.
    CAS  PubMed  Google Scholar 

    55.
    Rehm BHA, Kruger N, Steinbüchel A. A new metabolic link between fatty acid de novo synthesis and polyhydroxyalkanoic acid synthesis—the phaG gene from Pseudomonas putida KT2440 encodes a 3-hydroxyacyl-acyl carrier protein coenzyme A transferase. J Biol Chem. 1998;273:24044–51.
    CAS  PubMed  Google Scholar 

    56.
    Rehm BHA, Mitsky TA, Steinbüchel A. Role of fatty acid de novo biosynthesis in polyhydroxyalkanoic acid (PHA) and rhamnolipid synthesis by pseudomonads: establishment of the transacylase (PhaG)-mediated pathway for PHA biosynthesis in Escherichia coli. Appl Environ Microbiol. 2001;67:3102–9.
    CAS  PubMed  PubMed Central  Google Scholar 

    57.
    Fukui T, Shiomi N, Doi Y. Expression and characterization of (R)-specific enoyl coenzyme A hydratase involved in polyhydroxyalkanoate biosynthesis by Aeromonas caviae. J Bacteriol. 1998;180:667–73.
    CAS  PubMed  PubMed Central  Google Scholar 

    58.
    Chek MF, Kim SY, Mori T, Arsad H, Samian MR, Sudesh K, et al. Structure of polyhydroxyalkanoate (PHA) synthase PhaC from Chromobacterium sp. USM2, producing biodegradable plastics. Sci Rep. 2017;7:5312. https://doi.org/10.1038/s41598-017-05509-4.
    CAS  Article  PubMed  PubMed Central  Google Scholar 

    59.
    Mezzolla V, D’Urso OF, Poltronieri P. Role of PhaC type I and type II enzymes during PHA biosynthesis. Polymer. 2018;10:910. https://doi.org/10.3390/polym10080910.
    CAS  Article  Google Scholar 

    60.
    Rehm BHA. Polyester synthases: natural catalysts for plastics. Biochem J. 2003;376:15–33.
    CAS  PubMed  PubMed Central  Google Scholar 

    61.
    Tsuge T, Hyakutake M, Mizuno K. Class IV polyhydroxyalkanoate (PHA) synthases and PHA-producing Bacillus. Appl Microbiol Biotechnol. 2015;99:6231–40.
    CAS  PubMed  Google Scholar 

    62.
    Lenz RW, Marchessault RH. Bacterial polyesters: biosynthesis, biodegradable plastics and biotechnology. Biomacromolecules. 2005;6:1–8.
    CAS  PubMed  Google Scholar 

    63.
    Higuchi-Takeuchi M, Morisaki K, Numata K. A Screening method for the isolation of polyhydroxyalkanoate-producing purple non-sulfur photosynthetic bacteria from natural seawater. Front Microbiol. 2016;7:1509. https://doi.org/10.3389/fmicb.2016.01509.
    Article  PubMed  PubMed Central  Google Scholar 

    64.
    Sabirova JS, Ferrer M, Regenhardt D, Timmis KN, Golyshin PN. Proteomic insights into metabolic adaptations in Alcanivorax borkumensis induced by alkane utilization. J Bacteriol. 2006;188:3763–73.
    CAS  PubMed  PubMed Central  Google Scholar 

    65.
    Shi XL, Wu YH, Jin XB, Wang CS, Xu XW. Alteromonas lipolytica sp. nov., a poly-beta-hydroxybutyrateproducing bacterium isolated from surface seawater. Int J Syst Evol Microbiol. 2017;67:237–42.
    CAS  PubMed  Google Scholar 

    66.
    Mohandas SP, Balan L, Jayanath G, Anoop BS, Philip R, Cubelio SS, et al. Biosynthesis and characterization of polyhydroxyalkanoate from marine Bacillus cereus MCCB 281 utilizing glycerol as carbon source. Int J Biol Macromol. 2018;119:380–92.
    CAS  PubMed  Google Scholar 

    67.
    Sathiyanarayanan G, Saibaba G, Kiran GS, Selvin J. Process optimization and production of polyhydroxybutyrate using palm jaggery as economical carbon source by marine sponge-associated Bacillus licheniformis MSBN12. Bioproc. Biosyst Eng. 2013;36:1817–27.
    CAS  Google Scholar 

    68.
    Lopez-Cortes A, Lanz-Landazuri A, Garcia-Maldonado JQ. Screening and isolation of PHB-producing bacteria in a polluted marine microbial mat. Microbiol Ecol. 2008;56:112–20.
    CAS  Google Scholar 

    69.
    Prabhu NN, Santimano MC, Mavinkurve S, Bhosle SN, Garg S. Native granule associated short chain length polyhydroxyalkanoate synthase from a marine derived Bacillus sp. NQ-11/A2. Anton Leeuw. 2010;97:41–50.
    CAS  Google Scholar 

    70.
    Hong JW, Song HS, Moon YM, Hong YG, Bhatia SK, Jung HR, et al. Polyhydroxybutyrate production in halophilic marine bacteria Vibrio proteolyticus isolated from the Korean peninsula. Bioprocess Biosyst Eng. 2019;42:603–10.
    CAS  PubMed  Google Scholar 

    71.
    Kiran GS, Lipton AN, Priyadharshini S, Anitha K, Suarez LEC, Arasu MV, et al. Antiadhesive activity of poly-hydroxy butyrate biopolymer from a marine Brevibacterium casei MSI04 against shrimp pathogenic vibrios. Microb Cell Fact. 2014;13:114. https://doi.org/10.1186/s12934-014-0114-3.
    CAS  Article  PubMed  PubMed Central  Google Scholar 

    72.
    Yamada M, Yukita A, Hanazumi Y, Yamahata Y, Moriya H, Miyazaki M, et al. Poly(3-hydroxybutyrate) production using mannitol as a sole carbon source by Burkholderia sp. AIU M5M02 isolated from a marine environment. Fish Sci. 2018;84:405–12.
    CAS  Google Scholar 

    73.
    Methe BA, Nelson KE, Deming JW, Momen B, Melamud E, Zhang XJ, et al. The psychrophilic lifestyle as revealed by the genome sequence of Colwellia psychrerythraea 34H through genomic and proteomic analyses. Proc Natl Acid Sci USA. 2005;102:10913–8.
    CAS  Google Scholar 

    74.
    Numata K, Morisaki K, Tomizawa S, Ohtani M, Demura T, Miyazaki M. Synthesis of poly- and oligo(hydroxyalkanoate)s by deep-sea bacteria, Colwellia spp., Moritella spp., and Shewanella spp. Polym J. 2013;45:1094–100.
    CAS  Google Scholar 

    75.
    Hai T, Lange D, Rabus R, Steinbüchel A. Polyhydroxyalkanoate (PHA) accumulation in sulfate-reducing bacteria and identification of a class III PHA synthase (PhaEC) in Desulfococcus multivorans. Appl Environ Microbiol. 2004;70:4440–8.
    CAS  PubMed  PubMed Central  Google Scholar 

    76.
    Wang H, Tomasch J, Jarek M, Wagner-Dobler I. A dual-species co-cultivation system to study the interactions between Roseobacters and dinoflagellates. Front Microbiol. 2014;5:311. https://doi.org/10.3389/fmicb.2014.00311.
    Article  PubMed  PubMed Central  Google Scholar 

    77.
    Xiao N, Jiao NZ. Formation of polyhydroxyalkanoate in aerobic anoxygenic phototrophic bacteria and its relationship to carbon source and light availability. Appl Environ Microbiol. 2011;77:7445–50.
    CAS  PubMed  PubMed Central  Google Scholar 

    78.
    Shrivastav A, Mishra SK, Shethia B, Pancha I, Jain D, Mishra S. Isolation of promising bacterial strains from soil and marine environment for polyhydroxyalkanoates (PHAs) production utilizing Jatropha biodiesel byproduct. Int J Biol Macromol. 2010;47:283–7.
    CAS  PubMed  Google Scholar 

    79.
    Simon-Colin C, Raguénès G, Cozien J, Guezennec JG. Halomonas profundus sp. nov., a new PHA-producing bacterium isolated from a deep-sea hydrothermal vent shrimp. J Appl Microbiol. 2008;104:1425–32.
    CAS  PubMed  Google Scholar 

    80.
    Lemechko P, Le Fellic M, Bruzaud S. Production of poly(3-hydroxybutyrate-co-3-hydroxyvalerate) using agro-industrial effluents with tunable proportion of 3-hydroxyvalerate monomer units. Int J Biol Macromol. 2019;128:429–34.
    CAS  PubMed  Google Scholar 

    81.
    Han X, Satoh Y, Kuriki Y, Seino T, Fujita S, Suda T, et al. Polyhydroxyalkanoate production by a novel bacterium Massilia sp. UMI-21 isolated from seaweed, and molecular cloning of its polyhydroxyalkanoate synthase gene. J Biosci Bioeng. 2014;118:514–9.
    CAS  PubMed  Google Scholar 

    82.
    Doronina NV, Trotsenko YA, Tourova TP. Methylarcula marina gen. nov., sp. nov. and Methylarcula terricola sp. nov.: novel aerobic, moderately halophilic, facultatively methylotrophic bacteria from coastal saline environments. Int J Syst Evol Microbiol. 2000;50:1849–59.
    CAS  PubMed  Google Scholar 

    83.
    Liu XJ, Zhang J, Hong PH, Li ZJ. Microbial production and characterization of poly-3-hydroxybutyrate by Neptunomonas antarctica. Peerj. 2016;4:e2291. https://doi.org/10.7717/peerj.2291.
    CAS  Article  PubMed  PubMed Central  Google Scholar 

    84.
    Cho JC, Giovannoni SJ. Oceanicola granulosus gen. nov., sp. nov. and Oceanicola batsensis sp. nov., poly-β-hydroxybutyrate-producing marine bacteria in the order ‘Rhodobacterales’. Int J Syst Evol Microbiol. 2004;54:1129–36.
    CAS  PubMed  Google Scholar 

    85.
    Numata K, Morisaki K. Screening of marine bacteria to synthesize polyhydroxyalkanoate from lignin: contribution of lignin derivatives to biosynthesis by Oceanimonas doudoroffii. ACS Sustain Chem Eng. 2015;3:569–73.
    CAS  Google Scholar 

    86.
    Boyandin AN, Kalacheva GS, Rodicheva EK, Volova TG. Synthesis of reserve polyhydroxyalkanoates by luminescent bacteria. Microbiology. 2008;77:318–23.
    CAS  Google Scholar 

    87.
    Wang Q, Zhang HX, Chen Q, Chen XL, Zhang YZ, Qi QS. A marine bacterium accumulates polyhydroxyalkanoate consisting of mainly 3-hydroxydodecanoate and 3-hydroxydecanoate. World J Microbiol Biotechnol. 2010;26:1149–53.
    Google Scholar 

    88.
    Simon-Colin C, Alain K, Colin S, Cozien J, Costa B, Guezennec JG, et al. A novel mcl PHA-producing bacterium, Pseudomonas guezennei sp. nov., isolated from a ‘kopara’ mat located in Rangiroa, an atoll of French Polynesia. J Appl Microbiol. 2008;104:581–6.
    CAS  PubMed  Google Scholar 

    89.
    Jamil N, Ahmed N, Edwards DH. Characterization of biopolymer produced by Pseudomonas sp. CMG607w of marine origin. J Gen Appl Microbiol. 2007;53:105–9.
    CAS  PubMed  Google Scholar 

    90.
    Higuchi-Takeuchi M, Numata K. Acetate-inducing metabolic states enhance polyhydroxyalkanoate production in marine purple non-sulfur bacteria under aerobic conditions. Front Bioeng Biotechnol. 2019;7:118. https://doi.org/10.3389/fbioe.2019.00118.
    Article  PubMed  PubMed Central  Google Scholar 

    91.
    Higuchi-Takeuchi M, Morisaki K, Toyooka K, Numata K. Synthesis of high-molecular-weight polyhydroxyalkanoates by marine photosynthetic purple bacteria. PLoS ONE. 2016;11. https://doi.org/10.1371/journal.pone.0160981.

    92.
    Gonzalez-Garcia Y, Nungaray J, Cordova J, Gonzalez-Reynoso O, Koller M, Atlic A, et al. Biosynthesis and characterization of polyhydroxyalkanoates in the polysaccharide-degrading marine bacterium Saccharophagus degradans ATCC 43961. J Ind Microbiol Biotechnol. 2008;35:629–33.
    CAS  PubMed  Google Scholar 

    93.
    Ting L, Williams TJ, Cowley MJ, Lauro FM, Guilhaus M, Raftery MJ, et al. Cold adaptation in the marine bacterium, Sphingopyxis alaskensis, assessed using quantitative proteomics. Environ Microbiol. 2010;12:2658–76.
    CAS  PubMed  Google Scholar 

    94.
    Shrivastav A, Mishra SK, Mishra S. Polyhydroxyalkanoate (PHA) synthesis by Spirulina subsalsa from Gujarat coast of India. Int J Biol Macromol. 2010;46:255–60.
    CAS  PubMed  Google Scholar 

    95.
    Sasidharan RS, Bhat SG, Chandrasekaran M. Biocompatible polyhydroxybutyrate (PHB) production by marine Vibrio azureus BTKB33 under submerged fermentation. Ann Microbiol. 2015;65:455–65.
    CAS  Google Scholar 

    96.
    Mohandas SP, Balan L, Lekshmi N, Cubelio SS, Philip R, Bright SIS. Production and characterization of polyhydroxybutyrate from Vibrio harveyi MCCB 284 utilizing glycerol as carbon source. J Appl Microbiol. 2017;122:698–707.
    CAS  PubMed  Google Scholar 

    97.
    Wei YH, Chen WC, Wu HS, Janarthanan OM. Biodegradable and biocompatible biomaterial, polyhydroxybutyrate, produced by an indigenous Vibrio sp. BM-1 isolated from marine environment. Mar Drugs. 2011;9:615–24.
    CAS  PubMed  PubMed Central  Google Scholar 

    98.
    Numata K, Doi Y. Biosynthesis of Polyhydroxyalkanaotes by a novel facultatively anaerobic Vibrio sp. under marine conditions. Mar Biotechnol. 2012;14:323–31.
    CAS  PubMed  Google Scholar 

    99.
    Stabili L, Cardone F, Alifano P, Tredici SM, Piraino S, Corriero G, et al. Epidemic Mortality of the sponge Ircinia variabilis (Schmidt, 1862) associated to proliferation of a Vibrio Bacterium. Microb Ecol. 2012;64:802–13.
    PubMed  Google Scholar 

    100.
    Foong CP, Lau NS, Deguchi S, Toyofuku T, Taylor TD, Sudesh K, et al. Whole genome amplification approach reveals novel polyhydroxyalkanoate synthases (PhaCs) from Japan Trench and Nankai Trough seawater. BMC Microbiol. 2014;14:318. https://doi.org/10.1186/s12866-014-0318-z.
    CAS  Article  PubMed  PubMed Central  Google Scholar 

    101.
    Doi Y, Kanesawa Y, Tanahashi N, Kumagai Y. Biodegradation of microbial polyesters in the marine-environment. Polym Degrad Stabil. 1992;36:173–7.
    CAS  Google Scholar 

    102.
    Tsuji H, Suzuyoshi K. Environmental degradation of biodegradable polyesters 2. Poly(ε-caprolactone), poly[(R)-3-hydroxybutyrate], and poly(L-lactide) films in natural dynamic seawater. Polym Degrad Stabil. 2002;75:357–65.
    CAS  Google Scholar 

    103.
    Tsuji H, Suzuyoshi K. Environmental degradation of biodegradable polyesters 1. Poly(ε-caprolactone), poly[(R)-3-hydroxybutyrate], and poly(L-lactide) films in controlled static seawater. Polym Degrad Stabil. 2002;75:347–55.
    CAS  Google Scholar 

    104.
    Rutkowska M, Krasowska K, Heimowska A, Adamus G, Sobota M, Musiol M, et al. Environmental degradation of blends of atactic poly (R,S)-3-hydroxybutyrate with natural PHBV in Baltic sea water and compost with activated sludge. J Polym Environ. 2008;16:183–91.
    CAS  Google Scholar 

    105.
    Volova TG, Boyandin AN, Vasil’ev AD, Karpov VA, Kozhevnikov IV, Prudnikova SV, et al. Biodegradation of polyhydroxyalkanoates (PHAs) in the South China Sea and identification of PHA-degrading bacteria. Microbiology. 2011;80:252. https://doi.org/10.1134/S0026261711020184.
    CAS  Article  Google Scholar 

    106.
    Thellen C, Coyne M, Froio D, Auerbach M, Wirsen C, Ratto JA. A processing, characterization and marine biodegradation study of melt-extruded polyhydroxyalkanoate (PHA) films. J Polym Environ. 2008;16:1–11.
    CAS  Google Scholar 

    107.
    Deroine M, Cesar G, Le Duigou A, Davies P, Bruzaud S. Natural degradation and biodegradation of poly(3-hydroxybutyrate-co-3-hydroxyvalerate) in liquid and solid marine environments. J Polym Environ. 2015;23:493–505.
    CAS  Google Scholar 

    108.
    Imam SH, Gordon SH, Shogren RL, Tosteson TR, Govind NS, Greene RV. Degradation of starch-poly(beta-hydroxybutyrate-co-beta-hydroxyvalerate) bioplastic in tropical coastal waters. Appl Environ Microbiol. 1999;65:431–7.
    CAS  PubMed  PubMed Central  Google Scholar 

    109.
    Suzuki M, Tachibana Y, Kazahaya J, Takizawa R, Muroi F, Kasuya K. Difference in environmental degradability between poly(ethylene succinate) and poly(3-hydroxybutyrate). J Polym Res. 2017;24:217. https://doi.org/10.1007/s10965-017-1383-4.
    CAS  Article  Google Scholar 

    110.
    Dilkes-Hoffman LS, Lant PA, Laycock B, Pratt S. The rate of biodegradation of PHA bioplastics in the marine environment: a meta-study. Mar Pollut Bull. 2019;142:15–24.
    CAS  PubMed  Google Scholar 

    111.
    Zettler ER, Mincer TJ, Amaral-Zettler LA. Life in the “Plastisphere”: microbial communities on plastic marine debris. Environ Sci Technol. 2013;47:7137–46.
    CAS  PubMed  Google Scholar 

    112.
    Morohoshi T, Ogata K, Okura T, Sato S. Molecular characterization of the bacterial community in biofilms for degradation of poly(3-hydroxybutyrate-co-3-hydroxyhexanoate) films in seawater. Microbes Environ. 2018;33:19–25.
    PubMed  PubMed Central  Google Scholar 

    113.
    Pinnell LJ, Turner JW. Shotgun metagenomics reveals the benthic microbial community response to plastic and bioplastic in a coastal marine environment. Front Microbiol. 2019;10:1252. https://doi.org/10.3389/fmicb.2019.01252.
    Article  PubMed  PubMed Central  Google Scholar 

    114.
    Zadjelovic V, Chhun A, Quareshy M, Silvano E, Hernandez-Fernaud JR, Aguilo-Ferretjans MM, et al. Beyond oil degradation: enzymatic potential of Alcanivorax to degrade natural and synthetic polyesters. Environ Microbiol. 2020;22:1356–69.
    CAS  PubMed  PubMed Central  Google Scholar 

    115.
    Kita K, Ishimaru K, Teraoka M, Yanase H, Kato N. Properties of poly(3-hydroxybutyrate) depolymerase from a marine bacterium, Alcaligenes faecalis AE122. Appl Environ Microbiol. 1995;61:1727–30.
    CAS  PubMed  PubMed Central  Google Scholar 

    116.
    Mergaert J, Wouters A, Anderson C, Swings J. In-situ biodegradation of poly(3-hydroxybutyrate) and poly(3-hydroxybutyrate-co-3-hydroxyvalerate) in natural-waters. Can J Microbiol. 1995;41:154–9.
    CAS  PubMed  Google Scholar 

    117.
    Kato C, Honma A, Sato S, Okura T, Fukuda R, Nogi Y. Poly 3-hydroxybutyrate-co-3-hydroxyhexanoate films can be degraded by the deep-sea microbes at high pressure and low temperature conditions. High Press Res. 2019;39:248–57.
    CAS  Google Scholar 

    118.
    Volova TG, Boyandin AN, Vasiliev AD, Karpov VA, Prudnikova SV, Mishukova OV, et al. Biodegradation of polyhydroxyalkanoates (PHAs) in tropical coastal waters and identification of PHA-degrading bacteria. Polym Degrad Stabil. 2010;95:2350–9.
    CAS  Google Scholar 

    119.
    Ma WT, Lin JH, Chen HJ, Chen SY, Shaw GC. Identification and characterization of a novel class of extracellular poly(3-hydroxybutyrate) depolymerase from Bacillus sp Strain NRRL B-14911. Appl Environ Microbiol. 2011;77:7924–32.
    CAS  PubMed  PubMed Central  Google Scholar 

    120.
    Kasuya K, Mitomo H, Nakahara M, Akiba A, Kudo T, Doi Y. Identification of a marine benthic P(3HB)-degrading bacterium isolate and characterization of its P(3HB) depolymerase. Biomacromolecules. 2000;1:194–201.
    CAS  PubMed  Google Scholar 

    121.
    Ghanem NB, Mabrouk MES, Sabry SA, El-Badan DES. Degradation of polyesters by a novel marine Nocardiopsis aegyptia sp. nov.: Application of Plackett-Burman experimental design for the improvement of PHB depolymerase activity. J Gen Appl Microbiol. 2005;51:151–8.
    CAS  PubMed  Google Scholar 

    122.
    Leathers TD, Govind NS, Greene RV. Biodegradation of poly(3-hydroxybutyrate-co-3-hydroxyvalerate) by a tropical marine bacterium, Pseudoalteromonas sp. NRRL b-30083. J Polym Environ. 2000;8:119–24.
    CAS  Google Scholar 

    123.
    Uefuji M, Kasuya K, Doi Y. Enzymatic degradation of poly (R)-3-hydroxybutyrate: secretion and properties of PHB depolymerase from Pseudomonas stutzeri. Polym Degrad Stabil. 1997;58:275–81.
    CAS  Google Scholar 

    124.
    Sung CC, Tachibana Y, Suzuki M, Hsieh WC, Kasuya K. Identification of a poly(3-hydroxybutyrate)-degrading bacterium isolated from coastal seawater in Japan as Shewanella sp. Polym Degrad Stabil. 2016;129:268–74.
    CAS  Google Scholar 

    125.
    Mabrouk MM, Sabry SA. Degradation of poly (3-hydroxybutyrate) and its copolymer poly (3-hydroxybutyrate-co-3-hydroxyvalerate) by a marine Streptomyces sp. SNG9. Microbiol Res. 2001;156:323–35.
    CAS  PubMed  Google Scholar 

    126.
    Kita K, Mashiba S, Nagita M, Ishimaru K, Okamoto K, Yanase H, et al. Cloning of poly(3-hydroxybutyrate) depolymerase from a marine bacterium, Alcaligenes faecalis AE122, and characterization of its gene product. BBA-Gene Struct Expr. 1997;1352:113–22.
    CAS  Google Scholar 

    127.
    Kasuya K, Takano T, Tezuka Y, Hsieh WC, Mitomo H, Doi Y. Cloning, expression and characterization of a poly(3-hydroxybutyrate) depolymerase from Marinobacter sp. NK-1. Int J Biol Macromol. 2003;33:221–6.
    CAS  PubMed  Google Scholar 

    128.
    Ohura T, Kasuya K, Doi Y. Cloning and characterization of the polyhydroxybutyrate depolymerase gene of Pseudomonas stutzeri and analysis of the function of substrate-binding domains. Appl Environ Microbiol. 1999;65:189–97.
    CAS  PubMed  PubMed Central  Google Scholar 

    129.
    Hisano T, Kasuya K, Tezuka Y, Ishii N, Kobayashi T, Shiraki M, et al. The crystal structure of polyhydroxybutyrate depolymerase from Penicillium funiculosum provides insights into the recognition and degradation of biopolyesters. J Mol Biol. 2006;356:993–1004.
    CAS  PubMed  Google Scholar 

    130.
    Kasuya K, Inoue Y, Tanaka T, Akehata T, Iwata T, Fukui T, et al. Biochemical and molecular characterization of the polyhydroxybutyrate depolymerase of Comamonas acidovorans YM1609, isolated from freshwater. Appl Environ Microbiol. 1997;63:4844–52.
    CAS  PubMed  PubMed Central  Google Scholar 

    131.
    Sung CC, Tachibana Y, Kasuya K. Characterization of a thermolabile poly(3-hydroxybutyrate) depolymerase from the marine bacterium Shewanella sp. JKCM-AJ-6,1α. Polym Degrad Stabil. 2016;129:212–21.
    CAS  Google Scholar 

    132.
    NOAA. Sea surface temperature (sst) contour charts. 2020. https://www.ospo.noaa.gov/Products/ocean/sst/contour/.

    133.
    Kroeker KJ, Kordas RL, Crim R, Hendriks IE, Ramajo L, Singh GS, et al. Impacts of ocean acidification on marine organisms: quantifying sensitivities and interaction with warming. Glob Change Biol. 2013;19:1884–96.
    Google Scholar 

    134.
    Xue DW, Zhang XQ, Lu XL, Chen G, Chen ZH. Molecular and evolutionary mechanisms of cuticular wax for plant drought tolerance. Front Plant Sci. 2017;8:621. https://doi.org/10.3389/fpls.2017.00621.
    Article  PubMed  PubMed Central  Google Scholar 

    135.
    Yeats TH, Rose JKC. The formation and function of plant cuticles. Plant Physiol. 2013;163:5–20.
    CAS  PubMed  PubMed Central  Google Scholar 

    136.
    Philippe G, Sørensen I, Jiao C, Sun X, Fei Z, Domozych DS, et al. Cutin and suberin: assembly and origins of specialized lipidic cell wall scaffolds. Curr Opin Plant Biol. 2020;55:11–20.
    CAS  PubMed  Google Scholar 

    137.
    Broder L, Tesi T, Salvado JA, Semiletov IP, Dudarev OV, Gustafsson O. Fate of terrigenous organic matter across the Laptev Sea from the mouth of the Lena River to the deep sea of the Arctic interior. Biogeosciences. 2016;13:5003–19.
    Google Scholar 

    138.
    Broder L, Tesi T, Andersson A, Eglinton TI, Semiletov IP, Dudarev OV, et al. Historical records of organic matter supply and degradation status in the East Siberian Sea. Org Geochem. 2016;91:16–30.
    Google Scholar 

    139.
    Goni MA, Yunker MB, Macdonald RW, Eglinton TI. Distribution and sources of organic biomarkers in arctic sediments from the Mackenzie River and Beaufort Shelf. Mar Chem. 2000;71:23–51.
    CAS  Google Scholar 

    140.
    Prahl FG, Ertel JR, Goni MA, Sparrow MA, Eversmeyer B. Terrestrial organic-carbon contributions to sediments on the Washington margin. Geochim Cosmochim Acta. 1994;58:3035–48.
    CAS  Google Scholar 

    141.
    Kaal J, Serrano O, Cortizas AM, Baldock JA, Lavery PS. Millennial-scale changes in the molecular composition of Posidonia australis seagrass deposits: Implications for Blue Carbon sequestration. Org Geochem. 2019;137:103898. https://doi.org/10.1016/j.orggeochem.2019.07.007.
    CAS  Article  Google Scholar 

    142.
    Moran KL, Bjorndal KA. Simulated green turtle grazing affects nutrient composition of the seagrass Thalassia testudinum. Mar Biol. 2007;150:1083–92.
    CAS  Google Scholar 

    143.
    Olsen JL, Rouze P, Verhelst B, Lin YC, Bayer T, Collen J, et al. The genome of the seagrass Zostera marina reveals angiosperm adaptation to the sea. Nature. 2016;530:331–5.
    CAS  PubMed  Google Scholar 

    144.
    Sugiura H, Kawasaki Y, Suzuki T, Maegawa M. The structural and histochemical analyses and chemical characters of the cuticle and epidermal walls of cotyledon in ungerminated seeds of Zostera marina L. Fish Sci. 2009;75:369–77.
    CAS  Google Scholar 

    145.
    Lu B, Wang GX, Huang D, Ren ZL, Wang XW, Zhen ZC, et al. Comparison of PCL degradation in different aquatic environments: effects of bacteria and inorganic salts. Polym Degrad Stabil. 2018;150:133–9.
    CAS  Google Scholar 

    146.
    Molitor R, Bollinger A, Kubicki S, Loeschcke A, Jaeger KE, Thies S. Agar plate-based screening methods for the identification of polyester hydrolysis by Pseudomonas species. Microb Biotechnol. 2020;13:274–84.
    CAS  PubMed  Google Scholar 

    147.
    Suzuki M, Tachibana Y, Oba K, Takizawa R, Kasuya K. Microbial degradation of poly(ε-caprolactone) in a coastal environment. Polym Degrad Stabil. 2018;149:1–8.
    CAS  Google Scholar 

    148.
    Almeida EL, AFC Rincon, Jackson SA, ADW Dobson. In silico screening and heterologous expression of a polyethylene terephthalate hydrolase (PETase)-like enzyme (SM14est) with polycaprolactone (PCL)-degrading activity, from the marine sponge-derived strain Streptomyces sp. SM14. Front Microbiol. 2019;10:2187. https://doi.org/10.3389/fmicb.2019.02187.
    Article  PubMed  Google Scholar 

    149.
    Sekiguchi T, Sato T, Enoki M, Kanehiro H, Uematsu K, Kato C. Isolation and characterization of biodegradable plastic degrading bacteria from deep-sea environments. JAMSTEC Rep. Res Dev. 2011;11:33–41.
    Google Scholar 

    150.
    Kovacic F, Babic N, Krauss U, Jaeger K. Classification of lipolytic enzymes from bacteria. In: Handbook of hydrocarbon and lipid microbiology. Cham: Springer; 2019;24. https://doi.org/10.1007/978-3-319-39782-5_39-1.

    151.
    Arpigny JL, Jaeger KE. Bacterial lipolytic enzymes: classification and properties. Biochem J. 1999;343:177–83.
    CAS  PubMed  PubMed Central  Google Scholar 

    152.
    Nikolaivits E, Kanelli M, Dimarogona M, Topakas E. A middle-aged enzyme still in its prime: recent advances in the field of cutinases. Catalysts. 2018;8:612. https://doi.org/10.3390/catal8120612.
    CAS  Article  Google Scholar 

    153.
    Chen S, Su LQ, Chen J, Wu J. Cutinase: characteristics, preparation, and application. Biotechnol Adv. 2013;31:1754–67.
    CAS  PubMed  Google Scholar 

    154.
    Chen S, Tong X, Woodard RW, Du GC, Wu J, Chen J. Identification and characterization of bacterial cutinase. J Biol Chem. 2008;283:25854–62.
    CAS  PubMed  PubMed Central  Google Scholar 

    155.
    Reis P, Holmberg K, Watzke H, Leser ME, Miller R. Lipases at interfaces: a review. Adv Colloid Interfac. 2009;147:237–50.
    Google Scholar 

    156.
    Zumstein MT, Rechsteiner D, Roduner N, Perz V, Ribitsch D, Guebitz GM, et al. Enzymatic hydrolysis of polyester thin films at the nanoscale: effects of polyester structure and enzyme active-site accessibility. Environ Sci Technol. 2017;51:7476–85.
    CAS  PubMed  Google Scholar 

    157.
    Shi K, Jing J, Song L, Su TT, Wang ZY. Enzymatic hydrolysis of polyester: Degradation of poly(ε-caprolactone) by Candida antarctica lipase and Fusarium solani cutinase. Int J Biol Macromol. 2020;144:183–9.
    CAS  PubMed  Google Scholar 

    158.
    Trodler P, Pleiss J. Modeling structure and flexibility of Candida antarctica lipase B in organic solvents. BMC Struct Biol. 2008;8:9. https://doi.org/10.1186/1472-6807-8-9.
    CAS  Article  PubMed  PubMed Central  Google Scholar 

    159.
    Hajighasemi M, Nocek BP, Tchigvintsev A, Brown G, Flick R, Xu XH, et al. Biochemical and structural insights into enzymatic depolymerization of polylactic acid and other polyesters by microbial carboxylesterases. Biomacromolecules. 2016;17:2027–39.
    CAS  PubMed  PubMed Central  Google Scholar 

    160.
    Danso D, Schmeisser C, Chow J, Zimmermann W, Wei R, Leggewie C, et al. New insights into the function and global distribution of polyethylene terephthalate (PET)-degrading bacteria and enzymes in marine and terrestrial metagenomes. Appl Environ Microbiol. 2018;84:e02773–17. https://doi.org/10.1128/AEM.02773-17.
    CAS  PubMed  PubMed Central  Google Scholar 

    161.
    Bollinger A, Thies S, Knieps-Grunhagen E, Gertzen C, Kobus S, Hoppner A, et al. A novel polyester hydrolase from the marine bacterium Pseudomonas aestusnigri – Structural and functional insights. Front Microbiol. 2020;11:114. https://doi.org/110.3389/fmicb.2020.00114.
    PubMed  PubMed Central  Google Scholar 

    162.
    Shinomiya M, Iwata T, Kasuya K, Doi Y. Cloning of the gene for poly(3-hydroxybutyric acid) depolymerase of Comamonas testosteroni and functional analysis of its substrate-binding domain. FEMS Microbiol Lett. 1997;154:89–94.
    CAS  PubMed  Google Scholar  More

  • in

    Development of a fast and user-friendly cryopreservation protocol for sweet potato genetic resources

    Plant material
    In vitro-grown plantlets of ten different Ipomoea batatas cultivars; Camote Mata Serrano (CAM; Cip-420530); Cinitavo (CIN,Cip-440669); CMR 1112 (CMR; Cip-440145); Espelma (ESP, Cip-421028); Ibarreno (IBA; Cip-400989); Jewel (JEW; Cip-440031); Manchester Hawk (MAN; Cip-400040); Tanzania (TAN; Cip-440166); Tis 87/0029 (TIS; Cip-442764); and Trujillano (TRUJ; Cip-420665) were supplied by CIP (Lima, Peru). These ten cultivars were chosen to represent the diversity of the cultivars present at the sweet potato genebank of CIP as they originate from a broad range of countries over 4 different continents.
    Plant multiplication
    In vitro plantlets were propagated on “CIP medium” and plain MS medium50). The CIP medium contains half strength MS salts (Duchefa Biochemie, M0221) supplemented with 30 g/L sucrose, 2.8 g/L gelrite, 2 mg/L calciumpanthotenate, 100 mg/L calciumnitrate, 200 mg/L ascorbic acid and 10 mg/L gibberellic acid, pH was set to 6.12 before autoclavation (b.a.). The MS medium contains MS salts and vitamins (Duchefa Biochemie, M0222) supplemented with 25 g/L sucrose and 2.8 g/L gelrite, pH was set to 6.12 b.a.. Nodal fragments from the in vitro plantlets were excised in a sterile laminar flow bench. This was done by removing the leaves and roots of the plantlet, after which 1 cm stem fragments were cut, each containing one axillary meristem in the middle. Three fragments were transferred to each culture tube and grown in a 24 °C growth room on a 16/8 h light/dark regime with the light being provided with 36 W (cool white)/ 840 Lumilux fluorescent lights. The material was subcultured every 5–6 weeks.
    Six weeks after initiation, the number of new nodes was counted. This experiment was initially executed on the following 4 cultivars: TIS, IBA, JEW and TAN. Further propagation of all 10 cultivars was done with the medium that proved to be the most productive.
    Meristem excision
    Two meristem types were excised using a binocular microscope; apical and axillary meristems. The apical meristems were excised by trimming the top leaves until the apical meristem is visible. Then a cut is made in the stem underneath the apical meristem, leaving the apical dome with 2 to 4 leaf primordia (Fig. 7). The axillary meristems were excised by first removing the leaves completely, including the petiole. From this a small cube of 1mm3 was excised containing the axillary meristem on one of the sides (Fig. 7) A movie demonstrating this process is added as supplementary information in the digital version of this paper (see Online Supplementary Resource 1). The exact position of the axillary meristem on the stem was not taken into account in this research, since it was proven that this had no significant impact on the survival rate after cryopreservation39.
    Figure 7

    Excised apical (left) and axillary meristem (right) from a CIN and ESP cultivar plantlet respectively, displayed on millimetre paper. The black bar represents 1 mm.

    Full size image

    Preculture
    In the “no preculture method”, the excised meristems are transferred on top of a sterile filter paper placed on a MS plate (MS, 30 g/L sucrose and 3 g/L gelrite, pH set to 6.12 b.a.). As soon as sufficient meristems for that specific experiment are excised, they are subjected on the same day to the cryopreservation procedure. In the “preculture method”, the excised meristems are transferred on top of a sterile filter paper placed on a 0.3 M MS plate (MS, 102.7 g/L sucrose; 3 g/L gelrite, pH set to 6.12 b.a.) and kept on this medium in the dark for14 to 16 h before cryopreservation takes place.
    The difference between precultured and non-precultured meristems was tested by comparing the post-thaw survival and regeneration rate of 950 of both axillary and apical meristems originating from 3 different cultivars (IBA, CIN, and CMR). These were cryopreserved via the droplet cryopreservation protocol using the following parameters: Loading solution (LS) 20 min; Plant Vitrification Solution (PVS2) 30 min; Recovery Solution (RS) 15 min and 2.22 µM BA regeneration medium.
    Droplet cryopreservation
    Precultured or non-precultured meristems were transferred to a sterile 30 ml plastic tube containing 15 ml of LS ( MS supplemented with 2 M glycerol and 0.4 M sucrose; pH 5.8), where they remain at room temperature for 20 min. Then the LS was removed from the tube with a sterile plastic boll pipette, taking care not to remove or damage the meristems.
    The empty tube was then filled with 15 ml chilled PVS251 with the Murashige- Tucker medium replaced by MS ( MS supplemented with 30% glycerol, 15% ethylene glycol, 15% DMSO and 0.4 M sucrose, pH 5.8) and subsequently placed in an ice bath for 30 min21,23.
    Of each sample of 10 meristems, 3 were directly transferred from the PVS2 to the RS (MS supplemented with 1.2 M sucrose, pH 5.8) at room temperature to act as a control. The remaining 7 meristems were transferred with a plastic boll pipet to a sterile aluminium foil strip (4 × 15 mm). From this strip, the remaining PVS2 fluid was removed until only a thin layer of PVS2 surrounds each meristem. Subsequently the aluminium strip was plunged into liquid nitrogen (LN). When the LN surrounding the aluminium strip stopped boiling, the strip containing the meristems was transferred to a 2 mL cryotube filled with liquid nitrogen where the meristems remained for at least 30 min. To warm the meristems, the aluminium strip with meristems was removed from the cryotube with liquid nitrogen and directly plunged in the RS at room temperature.
    Both control and cryopreserved meristems were exposed to the RS for 15 min. Following this, they were placed one by one with a plastic boll pipette onto a filter paper placed on a MS plate containing 0.3 M sucrose. The plates were then sealed with parafilm and stored overnight in darkness at a temperature of 24 °C. The next day, the meristems were transferred on to the regeneration medium in an upright position, with the meristematic domes not fully submerged in the medium. The meristems were left in the dark for 7 days, where after they were moved into the light.
    After 1 month they were moved from the regeneration medium to new MS plates (Fig. 8).
    Figure 8

    Step-by-step cryopreservation process of sweet potato.

    Full size image

    Effect of the age of the in vitro plantlet
    The effect of plant age was tested by comparing the post-thaw regeneration rates of 215 meristems, for both apical and axillary each, from 3, 6 and 9 weeks old plantlets from the JEW, IBA, MAN and CMR cultivars, using the following parameters: preculture (0.3 M sucrose); 20 min treatment with LS; 30 min with PVS2; 15 min with RS and regeneration on 0.3 M sucrose medium (1 day) followed by MS with 2.22 µM 6-Benzyladenine (BA) regeneration medium.
    Effect of toxicity of the loading solution
    For this experiment 24 apical and 72 axillary meristems of the cultivars TIS, TAN, IBA and JEW were subjected to 3 different LS treatment times (20, 180 and 360 min). After the LS treatment the meristems were transferred to a MS plate containing 0.3 M sucrose for one day plate after which they were transferred to an MS plate. Thereafter, the survival and regeneration rates were compared.
    Effect of composition of the regeneration media
    Three different media were tested: MS (MS supplemented with 25 g/L sucrose and 2.8 g/L gelrite), Hirai* (MS supplemented with 30 g/L sucrose, 1 g/L casein hydrolysate, gibberellic acid 0.5 mg/L and 2 g/L gelrite; which is a slightly altered medium of Hirai and Sakai18, and 2.22 µM BA (MS supplemented with 25 g/L sucrose; 2.8 g/L gelrite and 2.22 µM BA). The pH of the media were set to 6.12 b.a. These media were already previously reported to have been used successfully for cryopreservation of sweet potato meristems. The survival and regeneration rate of these media after cryopreservation were compared for 939 apical and 939 axillary meristems from 4 cultivars (TIS, JEW, IBA and TAN). The cryopreservation parameters were: No preculture; LS 20 min; PVS2 15 min; RS 15 min.
    Effect of axillary versus apical meristem
    This was tested by comparing the post-thaw regeneration rate of 475 apical and 475 axillary meristems originating from 3 different cultivars (IBA, CIN, and CMR). These were cryopreserved using the following parameters: No preculture; LS 20 min; PVS2 30 min; RS 15 min and 2.22 µM BA regeneration medium.
    Post-cryopreservation regrowth
    Observations were executed one and two months after cryopreservation using a binocular microscope.
    To express the results of the regrowth(survival) and regeneration, 7 categories of post thaw reactions are distinguished. In case of doubt, the lower growth category is taken in order to avoid false positives. The categories are summarized below and a visual representation of a typical meristem in each of the 7 categories is shown in Fig. 5.
    Full regeneration (F) are those meristems that have grown multiple leaves, each containing a new meristem in the axil, and that are growing visible roots. These plantlets are able to regenerate into a new plant that can be subcultured and transferred to the soil. A Hyperhydricity (H) score is given to meristems which do form new leaves and meristems, but are growing abnormally. These plantlets have narrow leaves with a thick stem and roots that grow upwards. These are not categorized as regeneration as subculturing these plants will not lead to plantlets that can be transferred to the field. Shoot growth (S) is linked to meristems that produced a limited number of leaves, around 3, and then stop growing. They remain rootless. Tip growth (T) means that the meristem is visibly growing but shows no unfolded leafs. A callus (C) score is given when there is no visible growth other than callus. Black (B) or White (W) is given to meristems that have died either after or before/during cryopreservation. In many cases, callus growth is associated with one of the above categories.
    To calculate the post thaw regeneration rate of a plate, the Full regeneration (F) meristems were counted and divided by the total number of meristems on the plate. The survival rate was calculated by counting all meristems with living tissue (F, H, S, T and C).
    Statistical analysis
    The comparison of the number of nodes after 6 weeks on the 2 propagation media was executed using a one-sided tail, student t-test (homoscedastic) with a P-value  More

  • in

    Emergent dispersal networks in dynamic wetlandscapes

    1.
    Gibbs, J. P. Importance of small wetlands for the persistence of local populations of wetland-associated animals. Wetlands 13(1), 25–31 (1993).
    Google Scholar 
    2.
    Muneepeerakul, R. et al. Neutral metacommunity models predict fish diversity patterns in Mississippi–Missouri basin. Nature 453(7192), 220–222 (2008).
    ADS  CAS  PubMed  Google Scholar 

    3.
    Kinlan, B. P. & Gaines, S. D. Propagule dispersal in marine and terrestrial environments: A community perspective. Ecology 84(8), 2007–2020 (2003).
    Google Scholar 

    4.
    Niebuhr, B. B. et al. Survival in patchy landscapes: The interplay between dispersal, habitat loss and fragmentation. Sci. Rep. 5, 11898 (2015).
    ADS  PubMed  PubMed Central  Google Scholar 

    5.
    Deal, E., Braun, J. & Botter, G. Understanding the role of rainfall and hydrology in determining fluvial erosion efficiency. J. Geophys. Res. Earth Surf. 123(4), 744–778 (2018).
    ADS  Google Scholar 

    6.
    Kadoya, T. Assessing functional connectivity using empirical data. Popul. Ecol. 51(1), 5–15 (2009).
    Google Scholar 

    7.
    Hanski, I. & Gilpin, M. Metapopulation dynamics: Brief history and conceptual domain. Biol. J. Lin. Soc. 42(1–2), 3–16 (1991).
    Google Scholar 

    8.
    Cadotte, M. W. Dispersal and species diversity: A meta-analysis. Am. Nat. 167(6), 913–924 (2006).
    PubMed  Google Scholar 

    9.
    Koelle, K. & Vandermeer, J. Dispersal-induced desynchronization: From metapopulations to metacommunities. Ecol. Lett. 8(2), 167–175 (2005).
    Google Scholar 

    10.
    Foltête, J. C., Clauzel, C., Vuidel, G. & Tournant, P. Integrating graph-based connectivity metrics into species distribution models. Landsc. Ecol. 27(4), 557–569 (2012).
    Google Scholar 

    11.
    Tournant, P., Afonso, E., Roué, S., Giraudoux, P. & Foltête, J. C. Evaluating the effect of habitat connectivity on the distribution of lesser horseshoe bat maternity roosts using landscape graphs. Biol. Cons. 164, 39–49 (2013).
    Google Scholar 

    12.
    Wellborn, G. A., Skelly, D. K. & Werner, E. E. Mechanisms creating community structure across a freshwater habitat gradient. Annu. Rev. Ecol. Syst. 27(1), 337–363 (1996).
    Google Scholar 

    13.
    Creed, I. F. et al. Enhancing protection for vulnerable waters. Nat. Geosci. 10(11), 809–815 (2017).
    ADS  CAS  PubMed  PubMed Central  Google Scholar 

    14.
    Rains, M. C. et al. Geographically isolated wetlands are part of the hydrological landscape. Hydrol. Process. 30(1), 153–160 (2016).
    ADS  Google Scholar 

    15.
    Levins, R. Some demographic and genetic consequences of environmental heterogeneity for biological control. Am. Entomol. 15(3), 237–240 (1969).
    Google Scholar 

    16.
    Gilpin, M. (ed.) Metapopulation Dynamics: Empirical and Theoretical Investigations (Academic Press, New York, 2012).
    Google Scholar 

    17.
    Gibbs, J. P. Wetland loss and biodiversity conservation. Conserv. Biol. 14(1), 314–317 (2000).
    Google Scholar 

    18.
    Boughton, E. H., Quintana-Ascencio, P. F., Bohlen, P. J., Jenkins, D. G. & Pickert, R. Land-use and isolation interact to affect wetland plant assemblages. Ecography 33(3), 461–470 (2010).
    Google Scholar 

    19.
    Smith, L. L. et al. Biological connectivity of seasonally ponded wetlands across spatial and temporal scales. JAWRA J. Am. Water Resour. Assoc. 55(2), 334–353 (2019).
    ADS  Google Scholar 

    20.
    Le, P. V. & Kumar, P. Power law scaling of topographic depressions and their hydrologic connectivity. Geophys. Res. Lett. 41(5), 1553–1559 (2014).
    ADS  Google Scholar 

    21.
    Bertassello, L. E. et al. Wetlandscape fractal topography. Geophys. Res. Lett. 45(14), 6983–6991 (2018).
    ADS  Google Scholar 

    22.
    Hurst, H. E. (1965). Long term storage. An experimental study.

    23.
    Mandelbrot, B. B. (1975). Les objets fractals: forme, hasard et dimension.

    24.
    Keitt, T. H. Spectral representation of neutral landscapes. Landsc. Ecol. 15(5), 479–494 (2000).
    Google Scholar 

    25.
    Park, J., Botter, G., Jawitz, J. W. & Rao, P. S. C. Stochastic modeling of hydrologic variability of geographically isolated wetlands: Effects of hydro-climatic forcing and wetland bathymetry. Adv. Water Resour. 69, 38–48 (2014).
    ADS  Google Scholar 

    26.
    Bertassello, L. E., Rao, P. S. C., Jawitz, J. W., Aubeneau, A. F. & Botter, G. Wetlandscape hydrologic dynamics driven by shallow groundwater and landscape topography. Hydrol. Process. 2, 2 (2019).
    Google Scholar 

    27.
    Wu, Q. et al. Efficient delineation of nested depression hierarchy in digital elevation models for hydrological analysis using level-set method. JAWRA J. Am. Water Resour. Assoc. 55(2), 354–368 (2019).
    ADS  Google Scholar 

    28.
    Saura, S. & Pascual-Hortal, L. A new habitat availability index to integrate connectivity in landscape conservation planning: comparison with existing indices and application to a case study. Landsc. Urban Plan. 83(2–3), 91–103 (2007).
    Google Scholar 

    29.
    Bunn, A. G., Urban, D. L. & Keitt, T. H. Landscape connectivity: A conservation application of graph theory. J. Environ. Manag. 59(4), 265–278 (2000).
    Google Scholar 

    30.
    Urban, D. & Keitt, T. Landscape connectivity: A graph-theoretic perspective. Ecology 82(5), 1205–1218 (2001).
    Google Scholar 

    31.
    Fortuna, M. A., Gómez-Rodríguez, C. & Bascompte, J. Spatial network structure and amphibian persistence in stochastic environments. Proc. R. Soc. B Biol. Sci. 273(1592), 1429–1434 (2006).
    Google Scholar 

    32.
    Hayashi, M. & Van der Kamp, G. Simple equations to represent the volume–area–depth relations of shallow wetlands in small topographic depressions. J. Hydrol. 237(1–2), 74–85 (2000).
    ADS  Google Scholar 

    33.
    Rittenhouse, T. A. & Semlitsch, R. D. Distribution of amphibians in terrestrial habitat surrounding wetlands. Wetlands 27(1), 153–161 (2007).
    Google Scholar 

    34.
    Osher, S. & Fedkiw, R. P. Level set methods: an overview and some recent results. J. Comput. Phys. 169(2), 463–502 (2001).
    ADS  MathSciNet  CAS  MATH  Google Scholar 

    35.
    National Map Viewer. Available online: https://viewer.nationalmap.gov (accessed on July 2018).

    36.
    Gallant, J. C., Moore, I. D., Hutchinson, M. F. & Gessler, P. Estimating fractal dimension of profiles: A comparison of methods. Math. Geol. 26(4), 455–481 (1994).
    Google Scholar 

    37.
    Voss, R. F. Fractals in nature: from characterization to simulation. In The Science of Fractal Images 21–70 (Springer, New York, 1988).
    Google Scholar 

    38.
    Russ, J. C. Fractal Surfaces (Plenum, New York, 1994).
    Google Scholar 

    39.
    Baguette, M., Blanchet, S., Legrand, D., Stevens, V. M. & Turlure, C. Individual dispersal, landscape connectivity and ecological networks. Biol. Rev. 88(2), 310–326 (2013).
    PubMed  Google Scholar 

    40.
    Zamberletti, P., Zaffaroni, M., Accatino, F., Creed, I. F. & De Michele, C. Connectivity among wetlands matters for vulnerable amphibian populations in wetlandscapes. Ecol. Model. 384, 119–127 (2018).
    Google Scholar 

    41.
    Barabási, A. L. & Albert, R. Emergence of scaling in random networks. Science 286(5439), 509–512 (1999).
    ADS  MathSciNet  PubMed  MATH  Google Scholar 

    42.
    Cox, D. & Lewis, P. The statistical analysis of series of events. Popul. Sci https://doi.org/10.1007/978-94-011-7801-3 (1966).
    Article  MATH  Google Scholar 

    43.
    Diggle, P. J. Statistical methods for spatial point patterns in ecology. Spat. Tempor. Anal. Ecol. 2, 99–150 (1979).
    Google Scholar 

    44.
    Diggle, P. J. Statistical analysis of spatial and spatio-temporal point patterns (CRC Press, Boca Raton, 2013).
    Google Scholar 

    45.
    Cohen, M. J. et al. Do geographically isolated wetlands influence landscape functions?. Proc. Natl. Acad. Sci. 113, 1978–1986. https://doi.org/10.1073/pnas.1512650113 (2016).
    ADS  CAS  Article  PubMed  Google Scholar 

    46.
    Galpern, P., Manseau, M. & Fall, A. Patch-based graphs of landscape connectivity: a guide to construction, analysis and application for conservation. Biol. Cons. 144(1), 44–55 (2011).
    Google Scholar 

    47.
    Gustafson, E. J. How has the state of art for quantification of landscape patterns advanced in the twenty first century?. Landscape Ecol. 34, 2065–2202 (2019).
    Google Scholar 

    48.
    Shreevastava, A., Bhalachandran, S., McGrath, G. S., Huber, M. & Rao, P. S. C. Paradoxical impact of sprawling intra-Urban Heat Islets: Reducing mean surface temperatures while enhancing local extremes. Sci. Rep. 9(1), 1–10 (2019).
    ADS  Google Scholar 

    49.
    Werner, E. E., Skelly, D. K., Relyea, R. A. & Yurewicz, K. L. Amphibian species richness across environmental gradients. Oikos 116, 1697–1712. https://doi.org/10.1111/j.0030-1299 (2007).
    Article  Google Scholar 

    50.
    Kantrud, H. A. & Stewart, R. E. Use of natural basin wetlands by breeding waterfowl in North Dakota. J. Wildlife Manag. 2, 243–253 (1977).
    Google Scholar 

    51.
    Euliss, N. H. et al. The wetland continuum: A conceptual framework for interpreting biological studies. Wetlands 24, 448–458. https://doi.org/10.1672/0277-5212(2004)024 (2004).
    Article  Google Scholar 

    52.
    Leibold, M. A. et al. The metacommunity concept: A framework for multi-scale community ecology. Ecol. Lett. 7(7), 601–613 (2004).
    Google Scholar 

    53.
    Kuefler, D., Hudgens, B., Haddad, N. M., Morris, W. F. & Thurgate, N. The conflicting role of matrix habitats as conduits and barriers for dispersal. Ecology 91(4), 944–950 (2010).
    PubMed  Google Scholar 

    54.
    Winter, T. C. Relation of streams, lakes, and wetlands to groundwater flow systems. Hydrogeol. J. 7(1), 28–45. https://doi.org/10.1007/s100400050178 (1999).
    ADS  Article  Google Scholar  More

  • in

    Combining genetic markers with stable isotopes in otoliths reveals complexity in the stock structure of Atlantic bluefin tuna (Thunnus thynnus)

    1.
    FAO. The State of World Fisheries and Aquaculture 2018-Meeting the sustainable development goals. Rome. Licence: CC BY-NC-SA 3.0 IGO. (2018). https://www.fao.org/documents/card/en/c/I9540EN/.
    2.
    Cheung, W. W. L. et al. Large-scale redistribution of maximum fisheries catch potential in the global ocean under climate change. Glob. Change Biol. 16, 24–35. https://doi.org/10.1111/j.1365-2486.2009.01995.x (2010).
    ADS  Article  Google Scholar 

    3.
    Myers, R. A. & Worm, B. Rapid worldwide depletion of predatory fish communities. Nature 423, 280–283. https://doi.org/10.1038/nature01610 (2003).
    ADS  Article  PubMed  CAS  Google Scholar 

    4.
    Worm, B. et al. Rebuilding global fisheries. Science 325, 578–585. https://doi.org/10.1126/science.1173146 (2009).
    ADS  Article  PubMed  CAS  Google Scholar 

    5.
    van Gemert, R. & Andersen, K. H. Challenges to fisheries advice and management due to stock recovery. ICES J. Mar. Sci. 75, 1864–1870. https://doi.org/10.1093/icesjms/fsy084 (2018).
    Article  Google Scholar 

    6.
    Cadrin, S. X., Kerr, L. A. & Mariani, S. Stock identification methods: an overview, in Stock Identification Methods: Applications in Fishery Science (eds S.X. Cadrin, L.A. Kerr, & S. Mariani) 535–552 (Academic Press, 2014).

    7.
    Kerr, L. A. et al. Lessons learned from practical approaches to reconcile mismatches between biological population structure and stock units of marine fish. ICES J. Mar. Sci. 74, 1708–1722. https://doi.org/10.1093/icesjms/fsw188 (2017).
    Article  Google Scholar 

    8.
    Ovenden, J. R., Berry, O., Welch, D. J., Buckworth, R. C. & Dichmont, C. M. Ocean’s eleven: A critical evaluation of the role of population, evolutionary and molecular genetics in the management of wild fisheries. Fish. Fish. 16, 125–159. https://doi.org/10.1111/faf.12052 (2015).
    Article  Google Scholar 

    9.
    Conover, D. O., Clarke, L. M., Munch, S. B. & Wagner, G. N. Spatial and temporal scales of adaptive divergence in marine fishes and the implications for conservation. J. Fish Biol. 69, 21–47. https://doi.org/10.1111/j.1095-8649.2006.01274.x (2006).
    Article  Google Scholar 

    10.
    Stockwell, C. A., Hendry, A. P. & Kinnison, M. T. Contemporary evolution meets conservation biology. Trends Ecol. Evol. 18, 94–101. https://doi.org/10.1016/s0169-5347(02)00044-7 (2003).
    Article  Google Scholar 

    11.
    Begg, G. A. & Waldman, J. R. An holistic approach to fish stock identification. Fish. Res. 43, 35–44. https://doi.org/10.1016/S0165-7836(99)00065-X (1999).
    Article  Google Scholar 

    12.
    Hastings, A. & Botsford, L. W. Persistence of spatial populations depends on returning home. Proc. Natl. Acad. Sci. USA 103, 6067–6072. https://doi.org/10.1073/pnas.0506651103 (2006).
    ADS  Article  PubMed  CAS  Google Scholar 

    13.
    Harma, C., Brophy, D., Minto, C. & Clarke, M. The rise and fall of autumn-spawning herring (Clupea harengus L.) in the Celtic Sea between 1959 and 2009: Temporal trends in spawning component diversity. Fish. Res. 121–122, 31–42. https://doi.org/10.1016/j.fishres.2012.01.005 (2012).
    Article  Google Scholar 

    14.
    Brophy, D. & King, P. A. Larval otolith growth histories show evidence of stock structure in north east Atlantic blue whiting (Micromesistius poutassou). ICES J. Mar. Sci. 64, 1136–1144. https://doi.org/10.1093/icesjms/fsm080 (2007).
    Article  Google Scholar 

    15.
    Secor, D. H. The unit stock concept: bounded fish and fisheries in Stock Identification Methods 2nd edn (eds CadrinLisa, S.X. & Mariani, A.K.) 7–28 (Academic Press, 2014).

    16.
    Marengo, M. et al. Combining microsatellite, otolith shape and parasites community analyses as a holistic approach to assess population structure of Dentex dentex. J. Sea Res. 128, 1–14. https://doi.org/10.1016/j.seares.2017.07.003 (2017).
    ADS  Article  Google Scholar 

    17.
    Taillebois, L. et al. Strong population structure deduced from genetics, otolith chemistry and parasite abundances explains vulnerability to localized fishery collapse in a large Sciaenid fish, Protonibea diacanthus. Evol. Appl. 10, 978–993. https://doi.org/10.1111/eva.12499 (2017).
    Article  PubMed  PubMed Central  Google Scholar 

    18.
    Welch, D. J. et al. Integrating different approaches in the definition of biological stocks: A northern Australian multi-jurisdictional fisheries example using grey mackerel, Scomberomorus semifasciatus. Mar. Policy 55, 73–80. https://doi.org/10.1016/j.marpol.2015.01.010 (2015).
    Article  Google Scholar 

    19.
    Reis-Santos, P. et al. Reconciling differences in natural tags to infer demographic and genetic connectivity in marine fish populations. Sci. Rep. 8, 10343. https://doi.org/10.1038/s41598-018-28701-6 (2018).
    ADS  Article  PubMed  PubMed Central  CAS  Google Scholar 

    20.
    Kritzer, J. P. & Liu, O. R. Fishery management strategies for addressing complex spatial structure in marine fish stocks in Stock Identification Methods 2nd edn (eds Cadrin, S.X., Kerr, L.A., & Mariani, S.) 29–57 (Academic Press, 2014).

    21.
    Abaunza, P. et al. Stock identity of horse mackerel (Trachurus trachurus) in the Northeast Atlantic and Mediterranean Sea: Integrating the results from different stock identification approaches. Fish. Res. 89, 196–209. https://doi.org/10.1016/j.fishres.2007.09.022 (2008).
    Article  Google Scholar 

    22.
    Sala-Bozano, M., Ketmaier, V. & Mariani, S. Contrasting signals from multiple markers illuminate population connectivity in a marine fish. Mol. Ecol. 18, 4811–4826. https://doi.org/10.1111/j.1365-294X.2009.04404.x (2009).
    Article  PubMed  CAS  Google Scholar 

    23.
    Fromentin, J. M. & Powers, J. E. Atlantic bluefin tuna: Population dynamics, ecology, fisheries and management. Fish Fish. 6, 281–306. https://doi.org/10.1111/j.1467-2979.2005.00197.x (2005).
    Article  Google Scholar 

    24.
    Collette, B. B. et al. High value and long life-double jeopardy for tunas and billfishes. Science 333, 291–292. https://doi.org/10.1126/science.1208730 (2011).
    ADS  Article  PubMed  CAS  Google Scholar 

    25.
    Collette, B. et al. Thunnus thynnus. The IUCN Red List of Threatened Species 2011: e.T21860A9331546. https://doi.org/10.2305/IUCN.UK.2011-2.RLTS.T21860A9331546.en. (2011) (Downloaded on 25 June 2020).

    26.
    Fromentin, J.-M., Bonhommeau, S., Arrizabalaga, H. & Kell, L. T. The spectre of uncertainty in management of exploited fish stocks: The illustrative case of Atlantic bluefin tuna. Mar. Policy 47, 8–14. https://doi.org/10.1016/j.marpol.2014.01.018 (2014).
    Article  Google Scholar 

    27.
    ICCAT. Report of the standing committee on research and statistics (SCRS). Madrid, Spain, 30 September–4 October 2019. https://www.iccat.int/Documents/Meetings/Docs/2019/REPORTS/2019_SCRS_ENG.pdf (2019).

    28.
    ICCAT. Report of the 2017 ICCAT bluefin stock assessment meeting. Madrid, Spain 20–28 July, 2017. https://www.iccat.int/Documents/SCRS/DetRep/BFT_SA_ENG.pdf (2017).

    29.
    Rooker, J. R. et al. Crossing the line: Migratory and homing behaviors of Atlantic bluefin tuna. Mar. Ecol. Prog. Ser. 504, 265–276. https://doi.org/10.3354/meps10781 (2014).
    ADS  Article  CAS  Google Scholar 

    30.
    Arregui, I. et al. Movements and geographic distribution of juvenile bluefin tuna in the Northeast Atlantic, described through internal and satellite archival tags. ICES J. Mar. Sci. 75, 1560–1572. https://doi.org/10.1093/icesjms/fsy056 (2018).
    Article  Google Scholar 

    31.
    Lutcavage, M. E., Brill, R. W., Skomal, G. B., Chase, B. C. & Howey, P. W. Results of pop-up satellite tagging of spawning size class fish in the Gulf of Maine: Do North Atlantic bluefin tuna spawn in the mid-Atlantic?. Can. J. Fish. Aquat. Sci. 56, 173–177. https://doi.org/10.1139/cjfas-56-2-173 (1999).
    Article  Google Scholar 

    32.
    Block, B. A. et al. Electronic tagging and population structure of Atlantic bluefin tuna. Nature 434, 1121–1127. https://doi.org/10.1038/nature03463 (2005).
    ADS  Article  PubMed  CAS  Google Scholar 

    33.
    Boustany, A. M., Reeb, C. A. & Block, B. A. Mitochondrial DNA and electronic tracking reveal population structure of Atlantic bluefin tuna (Thunnus thynnus). Mar. Biol. 156, 13–24. https://doi.org/10.1007/s00227-008-1058-0 (2008).
    Article  CAS  Google Scholar 

    34.
    Rodríguez-Ezpeleta, N. et al. Determining natal origin for improved management of Atlantic bluefin tuna. Front. Ecol. Environ. 17, 439–444. https://doi.org/10.1002/fee.2090 (2019).
    Article  Google Scholar 

    35.
    Rooker, J. R. et al. Natal homing and connectivity in Atlantic bluefin tuna populations. Science 322, 742–744. https://doi.org/10.1126/science.1161473 (2008).
    ADS  Article  PubMed  CAS  Google Scholar 

    36.
    Block, B. A. et al. Migratory movements, depth preferences, and thermal biology of Atlantic bluefin tuna. Science 293, 1310–1314. https://doi.org/10.1126/science.1061197 (2001).
    ADS  Article  PubMed  CAS  Google Scholar 

    37.
    Galuardi, B. et al. Complex migration routes of Atlantic bluefin tuna (Thunnus thynnus) question current population structure paradigm. Can. J. Fish. Aquat. Sci. 67, 966–976. https://doi.org/10.1139/f10-033 (2010).
    Article  Google Scholar 

    38.
    McGowan, M. F. & Richards, W. J. Bluefin tuna, Thunnus thynnus, larvae in the Gulf Stream off the southeastern United States—satellite and shipboard observations of their environment. Fish. Bull. 87, 615–631. https://spo.nmfs.noaa.gov/sites/default/files/pdf-content/1989/873/mcgowan.pdf (1989).

    39.
    Richardson, D. E. et al. Discovery of a spawning ground reveals diverse migration strategies in Atlantic bluefin tuna (Thunnus thynnus). Proc. Natl. Acad. Sci. USA 113, 3299–3304. https://doi.org/10.1073/pnas.1525636113 (2016).
    ADS  Article  PubMed  CAS  Google Scholar 

    40.
    Muhling, B. A. et al. Collection of larval bluefin tuna (Thunnus thynnus) outside documented western Atlantic spawning grounds. Bull. Mar. Sci. 87, 687–694. https://doi.org/10.5343/bms.2010.1101 (2011).
    Article  Google Scholar 

    41.
    Leach, A. W., Levontin, P., Holt, J., Kell, L. T. & Mumford, J. D. Identification and prioritization of uncertainties for management of Eastern Atlantic bluefin tuna (Thunnus thynnus). Mar. Policy 48, 84–92. https://doi.org/10.1016/j.marpol.2014.03.010 (2014).
    Article  Google Scholar 

    42.
    Carruthers, T. Evaluating management strategies for Atlantic bluefin tuna, Report 5: Completion and release of the first comprehensive ABFT MSE package for use by stakeholders in MP testing. Short-term contract for modelling approaches: support to BFT assessment (GBYP 06/2017) of the Atlantic-wide research programme on bluefin tuna (ICCAT-GBYP-Phase 7). https://www.iccat.int/GBYP/Docs/Modelling_Phase_7_MSE_Framework.pdf (2018).

    43.
    Albaina, A. et al. Single nucleotide polymorphism discovery in albacore and Atlantic bluefin tuna provides insights into worldwide population structure. Anim. Genet. 44, 678–692. https://doi.org/10.1111/age.12051 (2013).
    Article  PubMed  CAS  Google Scholar 

    44.
    Carlsson, J., McDowell, J. R., Carlsson, J. E. L. & Graves, J. E. Genetic identity of YOY bluefin tuna from the eastern and western Atlantic spawning areas. J. Hered. 98, 23–28. https://doi.org/10.1093/jhered/esl046 (2007).
    Article  PubMed  CAS  Google Scholar 

    45.
    Puncher, G. N. et al. Spatial dynamics and mixing of bluefin tuna in the Atlantic Ocean and Mediterranean Sea revealed using next-generation sequencing. Mol. Ecol. Resour. 18, 620–638. https://doi.org/10.1111/1755-0998.12764 (2018).
    Article  PubMed  CAS  Google Scholar 

    46.
    Brophy, D. et al. Otolith shape variation in bluefin tuna (Thunnus thynnus) from different regions of the North Atlantic: A potential marker of stock origin. Mar. Freshw. Res. 67, 1023–1036. https://doi.org/10.1071/MF15086 (2016).
    Article  Google Scholar 

    47.
    Dickhut, R. M. et al. Atlantic bluefin tuna (Thunnus thynnus) population dynamics delineated by organochlorine tracers. Environ. Sci. Technol. 43, 8522–8527. https://doi.org/10.1021/es901810e (2009).
    ADS  Article  PubMed  CAS  Google Scholar 

    48.
    Fraile, I., Arrizabalaga, H. & Rooker, J. R. Origin of Atlantic bluefin tuna (Thunnus thynnus) in the Bay of Biscay. ICES J. Mar. Sci. https://doi.org/10.1093/icesjms/fsu156 (2014).
    Article  Google Scholar 

    49.
    Rooker, J. R. et al. Wide-ranging temporal variation in transoceanic movement and population mixing of bluefin tuna in the North Atlantic Ocean. Front. Mar. Sci. 6, 398. https://doi.org/10.3389/fmars.2019.00398 (2019).
    Article  Google Scholar 

    50.
    Corriero, A. et al. Size and age at sexual maturity of female bluefin tuna (Thunnus thynnus L. 1758) from the Mediterranean Sea. J. Appl. Ichthyol. 21, 483–486. https://doi.org/10.1111/j.1439-0426.2005.00700.x (2005).
    Article  Google Scholar 

    51.
    Heinisch, G., Rosenfeld, H., Knapp, J. M., Gordin, H. & Lutcavage, M. E. Sexual maturity in western Atlantic bluefin tuna. Sci. Rep. 4, 7205–7205. https://doi.org/10.1038/srep07205 (2014).
    ADS  Article  PubMed  PubMed Central  CAS  Google Scholar 

    52.
    Muhling, B. et al. Reproduction and larval biology in tunas, and the importance of restricted area spawning grounds. Rev. Fish Biol. Fish. https://doi.org/10.1007/s11160-017-9471-4 (2017).
    Article  Google Scholar 

    53.
    Aranda, G., Abascal, F. J., Varela, J. L. & Medina, A. Spawning behaviour and post-spawning migration patterns of atlantic bluefin tuna (Thunnus thynnus) ascertained from satellite archival tags. PLoS ONE 8, e76445. https://doi.org/10.1371/journal.pone.0076445 (2013).
    ADS  Article  PubMed  PubMed Central  CAS  Google Scholar 

    54.
    Rooker, J. R. et al. Evidence of trans-Atlantic movement and natal homing of bluefin tuna from stable isotopes in otoliths. Mar. Ecol. Prog. Ser. 368, 231–239. https://doi.org/10.3354/meps07602 (2008).
    ADS  Article  Google Scholar 

    55.
    Liaw, A. & Wiener, M. Classification and Regression by randomForest. R News 2, 18–22. https://cogns.northwestern.edu/cbmg/LiawAndWiener2002.pdf (2002).

    56.
    R Core Team R: A language and environment for statistical computing. R Foundation for Statistical Computing, Vienna, Austria. https://www.R-project.org/ (2018).

    57.
    Mercier, L. et al. Selecting statistical models and variable combinations for optimal classification using otolith microchemistry. Ecol. Appl. 21, 1352–1364. https://doi.org/10.1890/09-1887.1 (2011).
    Article  PubMed  Google Scholar 

    58.
    Breiman, L. Random forests. Mach. Learn. 45, 5–32. https://doi.org/10.1023/A:1010933404324 (2001).
    Article  MATH  Google Scholar 

    59.
    Strobl, C., Malley, J. & Tutz, G. An introduction to recursive partitioning: Rationale, application, and characteristics of classification and regression trees, bagging, and random forests. Psychol. Methods 14, 323–348. https://doi.org/10.1037/a0016973 (2009).
    Article  PubMed  PubMed Central  Google Scholar 

    60.
    Genuer, R., Poggi, J.-M. & Tuleau-Malot, C. VSURF: An R package for variable selection using random forests. R J. https://doi.org/10.32614/RJ-2015-018 (2015).
    Article  Google Scholar 

    61.
    Molnar, C., Bischl, B. & Casalicchio, G. iml: An R package for interpretable machine learning. J. Open Source Softw. 3(26), 786. https://doi.org/10.21105/joss.00786 (2018).
    ADS  Article  Google Scholar 

    62.
    Ruckdeschel, R., Kohl, K., Stabla, T. & Camphausen, F. S4 Classes for Distributions. R News 6 (2), 2–6. https://CRAN.R-project.org/doc/Rnews/ (2006).

    63.
    Trueman, C. N., MacKenzie, K. M. & Palmer, M. R. Identifying migrations in marine fishes through stable-isotope analysis. J. Fish. Biol. 81, 826–847. https://doi.org/10.1111/j.1095-8649.2012.03361.x (2012).
    Article  PubMed  CAS  Google Scholar 

    64.
    Labelle, M., Hoch, T., Liorzou, B. & Bigot, J.-L. Indices of bluefin tuna (Thunnus thynnus thynnus) abundance derived from sale records of French purse seine catches in the Mediterranean Sea. Aquat. Living Resour. 10, 329–342. https://doi.org/10.1051/alr:1997036 (1997).
    Article  Google Scholar 

    65.
    LeGrande, A. N. & Schmidt, G. A. Global gridded data set of the oxygen isotopic composition in seawater. Geophys. Res. Lett. https://doi.org/10.1029/2006GL026011 (2006).
    Article  Google Scholar 

    66.
    Ishii, M., Shouji, A., Sugimoto, S. & Matsumoto, T. Objective analyses of sea-surface temperature and marine meteorological variables for the 20th century using ICOADS and the Kobe Collection. Int. J. Climatol. 25, 865–879. https://doi.org/10.1002/joc.1169 (2005).
    Article  Google Scholar 

    67.
    Kitagawa, T. et al. Otolith δ18O of Pacific bluefin tuna Thunnus orientalis as an indicator of ambient water temperature. Mar. Ecol. Prog. Ser. 481, 199–209. https://doi.org/10.3354/meps10202 (2013).
    ADS  Article  CAS  Google Scholar 

    68.
    Rooker, J. R. et al. Life history and stock structure of Atlantic bluefin tuna (Thunnus thynnus). Rev. Fish. Sci. 15, 265–310. https://doi.org/10.1080/10641260701484135 (2007).
    Article  Google Scholar 

    69.
    Friedman, J. H. & Popescu, B. E. Predictive learning via rule ensembles. Ann. Appl. Stat. 2, 916–954. https://doi.org/10.1214/07-AOAS148 (2008).
    MathSciNet  Article  MATH  Google Scholar 

    70.
    Gruber, N. et al. Spatiotemporal patterns of carbon-13 in the global surface oceans and the oceanic suess effect. Global Biogeochem. Cycles 13, 307–335. https://doi.org/10.1029/1999GB900019 (1999).
    ADS  Article  CAS  Google Scholar 

    71.
    Martino, J. C., Doubleday, Z. A. & Gillanders, B. M. Metabolic effects on carbon isotope biomarkers in fish. Ecol. Indic. 97, 10–16. https://doi.org/10.1016/j.ecolind.2018.10.010 (2019).
    Article  CAS  Google Scholar 

    72.
    Cort, J. L., Arregui, I., Estruch, V. D. & Deguara, S. Validation of the growth equation applicable to the eastern Atlantic bluefin tuna, Thunnus thynnus (L.), using Lmax, tag-recapture, and first dorsal spine analysis. Rev. Fish. Sci. Aquac. 22, 239–255. https://doi.org/10.1080/23308249.2014.931173 (2014).
    Article  Google Scholar 

    73.
    Fromentin, J.-M. Descriptive analysis of the ICCAT bluefin tuna tagging database. Collect. Vol. Sci. Pap. ICCAT 54, 353–362 (2002).
    Google Scholar 

    74.
    Arrizabalaga, H. et al. Life history and migrations of Mediterranean bluefin tuna in The Future of Bluefin Tunas (ed B.A. Block) (John Hopkins University Press, 2019).

    75.
    Quílez-Badia, G. et al. The WWF/GBYP multi-annual bluefin tuna electronic tagging program (2008–2013): Repercussions for management. Collect. Vol. Sci. Pap. ICCAT 71(4), 1789–1802 (2015).
    Google Scholar 

    76.
    Di Natale, A., Tensek, S. & García, A. P. Preliminary information about the ICCAT GBYP tagging activities in Phase 5. Collect. Vol. Sci. Pap. ICCAT 72(6), 1589–1613 (2016).
    Google Scholar 

    77.
    Kerr, L. A., Cadrin, S. X., Secor, D. H. & Taylor, N. G. Modeling the implications of stock mixing and life history uncertainty of Atlantic bluefin tuna. Can. J. Fish. Aquat. Sci. 74, 1990–2004. https://doi.org/10.1139/cjfas-2016-0067 (2016).
    Article  Google Scholar 

    78.
    Kerr, L. A. et al. Mixed stock origin of Atlantic bluefin tuna in the US rod and reel fishery (Gulf of Maine) and implications for fisheries management. Fish. Res. 224, 105461. https://doi.org/10.1016/j.fishres.2019.105461 (2020).
    Article  Google Scholar 

    79.
    H. Wickham. ggplot2: Elegant Graphics for Data Analysis. (Springer-Verlag New York, 2016). More