Repellent, oviposition-deterrent, and insecticidal activity of the fungal pathogen Colletotrichum fioriniae on Drosophila suzukii (Diptera: Drosophilidae) in highbush blueberries
1.
Walsh, D. B. et al. Drosophila suzukii (Diptera: Drosophilidae): Invasive pest of ripening soft fruit expanding its geographic range and damage potential. J. Integr. Pest Manag 2, G1–G7 (2011).
Google Scholar
2.
Hauser, M. A historic account of the invasion of Drosophila suzukii (Matsumura) (Diptera: Drosophilidae) in the continental United States, with remarks on their identification. Pest Manag. Sci. 67, 1352–1357 (2011).
CAS PubMed Google Scholar
3.
Asplen, M. K. et al. Invasion biology of spotted wing drosophila (Drosophila suzukii): a global perspective and future priorities. J. Pest. Sci. 88, 469–494 (2015).
Google Scholar
4.
Arnó, J., Solà, M., Riudavets, J. & Gabarra, R. Population dynamics, non-crop hosts, and fruit susceptibility of Drosophila suzukii in Northeast Spain. J. Pest. Sci. 89, 713–723 (2016).
Google Scholar
5.
Keesey, I. W., Knaden, M. & Hansson, B. S. Olfactory specialization in Drosophila suzukii supports an ecological shift in host preference from rotten to fresh fruit. J. Chem. Ecol. 41, 121–128 (2015).
CAS PubMed PubMed Central Google Scholar
6.
Karageorgi, M. et al. Evolution of multiple sensory systems drives novel egg-laying behavior in the fruit pest Drosophila suzukii. Curr. Biol. 27, 847–853 (2017).
CAS PubMed PubMed Central Google Scholar
7.
Lee, J. C. et al. The susceptibility of small fruits and cherries to the spotted-wing drosophila Drosophila suzukii. Pest Manag. Sci. 67, 1358–1367 (2011).
CAS PubMed Google Scholar
8.
Raffa, K. F., Bonello, P. & Orrock, J. L. Why do entomologists and plant pathologists approach trophic relationships so differently? Identifying biological distinctions to foster synthesis. New Phytol. 225, 609–620 (2020).
PubMed Google Scholar
9.
Scheidler, N. H., Liu, C., Hamby, K. A., Zalom, F. G. & Syed, Z. Volatile codes: Correlation of olfactory signals and reception in Drosophila-yeast chemical communication. Sci. Rep. 5, 1–13 (2015).
Google Scholar
10.
Hamm, C. A. et al. Wolbachia do not live by reproductive manipulation alone: Infection polymorphism in Drosophila suzukii and D Subpulchrella. Mol. Ecol. 23, 4871–4885 (2014).
PubMed PubMed Central Google Scholar
11.
Cha, D. H. et al. Behavioral evidence for contextual olfactory-mediated avoidance of the ubiquitous phytopathogen Botrytis cinerea by Drosophila suzukii. Insect Sci. 27, 771–779 (2019).
PubMed Google Scholar
12.
Bellutti, N. et al. Dietary yeast affects preference and performance in Drosophila suzukii. J. Pest. Sci. 91, 651–660 (2018).
Google Scholar
13.
Hamby, K. A., Hernández, A., Boundy-Mills, K. & Zalom, F. G. Associations of yeasts with spotted-wing drosophila (Drosophila suzukii; Diptera: Drosophilidae) in cherries and raspberries. Appl. Environ. Microbiol. 78, 4869–4873 (2012).
CAS PubMed PubMed Central Google Scholar
14.
Mori, B. A. et al. Enhanced yeast feeding following mating facilitates control of the invasive fruit pest Drosophila suzukii. J. Appl. Ecol. 54, 170–177 (2017).
Google Scholar
15.
Goodhue, R. E., Bolda, M., Farnsworth, D., Williams, J. C. & Zalom, F. G. Spotted wing drosophila infestation of California strawberries and raspberries: Economic analysis of potential revenue losses and control costs. Pest Manag. Sci. 67, 1396–1402 (2011).
CAS PubMed Google Scholar
16.
Barata, A., Malfeito-Ferreira, M. & Loureiro, V. The microbial ecology of wine grape berries. Int. J. Food Microbiol. 153, 243–259 (2012).
CAS PubMed Google Scholar
17.
Cloonan, K. R., Abraham, J., Angeli, S., Syed, Z. & Rodriguez-Saona, C. Advances in the chemical ecology of the spotted wing drosophila (Drosophila suzukii) and its Applications. J. Chem. Ecol. 44, 922–939 (2018).
CAS PubMed Google Scholar
18.
Cloonan, K. R. et al. Laboratory and field evaluation of host-related foraging odor-cue combinations to attract Drosophila suzukii (Diptera: Drosophilidae). J. Econ. Entomol. 112, 2850–2860 (2019).
PubMed Google Scholar
19.
Waller, T. J., Vaiciunas, J., Constantelos, C. & Oudemans, P. V. Evidence that blueberry floral extracts influence secondary conidiation and appressorial formation of Colletotrichum fioriniae. Phytopathology 108, 561–567 (2018).
PubMed Google Scholar
20.
Pszczółkowska, A. & Okorski, A. First report of anthracnose disease caused by Colletotrichum fioriniae on blueberry in western Poland. Plant. Dis. 100, 21–67 (2016).
Google Scholar
21.
Wharton, P. & Diéguez-Uribeondo, J. The biology of Colletotrichum acutatum. An del Jardín Botánico Madrid 61, 3–22 (2004).
Google Scholar
22.
Peres, N. A., Timmer, L. W., Adaskaveg, J. E. & Correll, J. C. Lifestyles of Colletotrichum acutatum. Plant Dis. 89, 784–796 (2005).
CAS PubMed Google Scholar
23.
Polashock, J. J., Caruso, F. L., Averill, A. L. & Schilder, A. C. Compendium of Bluberry, Cranberry, and Lingonberry Diseases and Pests (APS Publications, St. Paul, MN, 2017).
Google Scholar
24.
Wharton, P. S. & Schilder, A. C. Novel infection strategies of Colletotrichum acutatum on ripe blueberry fruit. Plant Pathol. 57, 122–134 (2008).
Google Scholar
25.
Verma, N., MacDonald, L. & Punja, Z. K. Inoculum prevalence, host infection and biological control of Colletotrichum acutatum: causal agent of blueberry anthracnose in British Columbia. Plant Pathol. 55, 442–450 (2006).
Google Scholar
26.
Verma, N., MacDonald, L. & Punja, Z. K. Environmental and host requirements for field infection of blueberry fruits by Colletotrichum acutatum in British Columbia. Plant Pathol. 56, 107–113 (2007).
Google Scholar
27.
Miles, T. D. & Schilder, A. C. Host defenses associated with fruit infection by Colletotrichum species with an emphasis on anthracnose of blueberries. Plant Health Prog. 14, 30 (2013).
Google Scholar
28.
Miles, T. D., Hancock, J. F., Callow, P. & Schilder, A. M. C. Evaluation of screening methods and fruit composition in relation to anthracnose fruit rot resistance in blueberries. Plant Pathol. 61, 555–566 (2012).
Google Scholar
29.
Janzen, D. H. Why fruits rot, seeds mold, and meat spoils. Am. Nat. 111, 691–713 (1977).
CAS Google Scholar
30.
Cipollini, M. L. & Stiles, E. W. Fruit rot, antifungal defense, and palatability of fleshy fruits for frugivorous birds. Ecology 74, 751–762 (1993).
Google Scholar
31.
Peris, J. E., Rodríguez, A., Penã, L. & Fedriani, J. M. Fungal infestation boosts fruit aroma and fruit removal by mammals and birds. Sci. Rep. 7, 1–9 (2017).
CAS Google Scholar
32.
Lee, J. C. et al. Characterization and manipulation of fruit susceptibility to Drosophila suzukii. J. Pest. Sci. 89, 771–780 (2016).
Google Scholar
33.
Choi, M. Y. et al. Effect of non-nutritive sugars to decrease the survivorship of spotted wing drosophila Drosophila suzukii. J Insect Physiol 99, 86–94 (2017).
CAS PubMed Google Scholar
34.
Tochen, S., Walton, V. M. & Lee, J. C. Impact of floral feeding on adult Drosophila suzukii survival and nutrient status. J. Pest Sci. 89, 793–802 (2016).
Google Scholar
35.
Young, Y., Buckiewicz, N. & Long, T. A. F. Nutritional geometry and fitness consequences in Drosophila suzukii, the spotted-wing drosophila. Ecol. Evol. 8, 2842–2851 (2018).
PubMed PubMed Central Google Scholar
36.
Graziosi, I. & Rieske, L. K. A plant pathogen causes extensive mortality in an invasive insect herbivore. Agric. For. Entomol. 17, 366–374 (2015).
Google Scholar
37.
Wallingford, A. K., Hesler, S. P., Cha, D. H. & Loeb, G. M. Behavioral response of spotted-wing drosophila, Drosophila suzukii Matsumura, to aversive odors and a potential oviposition deterrent in the field. Pest Manag. Sci. 72, 701–706 (2016).
CAS PubMed Google Scholar
38.
Wallingford, A. K., Cha, D. H., Linn, C. E., Wolfin, M. S. & Loeb, G. M. Robust manipulations of pest insect behavior using repellents and practical application for integrated pest management. Environ. Entomol. 46, 1041–1050 (2017).
CAS PubMed Google Scholar
39.
Göhre, V. & Robatzek, S. Breaking the barriers: microbial effector molecules subvert plant immunity. Annu. Rev. Phytopathol. 46, 189–215 (2008).
PubMed Google Scholar
40.
Csorba, T., Kontra, L. & Burgyán, J. Viral silencing suppressors: tools forged to fine-tune host-pathogen coexistence. Virology 479–480, 85–103 (2015).
PubMed Google Scholar
41.
Stringlis, I. A., Zhang, H., Pieterse, C. M. J., Bolton, M. D. & De Jonge, R. Microbial small molecules-weapons of plant subversion. Nat. Prod. Rep. 35, 410–433 (2018).
CAS PubMed Google Scholar
42.
McLeod, G. et al. The pathogen causing Dutch elm disease makes host trees attract insect vectors. Proc. Biol. Sci. 272, 2499–2503 (2005).
PubMed PubMed Central Google Scholar
43.
Raguso, R. A. & Roy, B. A. ‘Floral’ scent production by Puccinia rust fungi that mimic flowers. Mol. Ecol. 7, 1127–1136 (1998).
CAS PubMed Google Scholar
44.
Bruce, T. J. A. & Pickett, J. A. Perception of plant volatile blends by herbivorous insects—finding the right mix. Phytochemistry 72, 1605–1611 (2011).
CAS PubMed Google Scholar
45.
Revadi, S. et al. Sexual behavior of Drosophila suzukii. Insects 6, 183–196 (2015).
PubMed PubMed Central Google Scholar
46.
Polashock, J. J., Ehlenfeldt, M. K., Stretch, A. W. & Kramer, M. Anthracnose fruit rot resistance in blueberry cultivars. Plant Dis. 89, 33–38 (2005).
PubMed Google Scholar
47.
Hartung, J. S., Burton, C. & Ramsdell, D. C. Epidemiological studies of blueberry anthracnose disease caused by Colletotrichum gloeosporioides. Phytopathology 71, 449 (1981).
Google Scholar
48.
Cai, P. et al. Potential host fruits for Drosophila suzukii: olfactory and oviposition preferences and suitability for development. Entomol. Exp. Appl. 167, 880–890 (2019).
Google Scholar
49.
Rodriguez-Saona, C. et al. Differential susceptibility of wild and cultivated blueberries to an invasive frugivorous pest. J. Chem. Ecol. 45, 286–297 (2018).
PubMed Google Scholar
50.
Hodge, S. The effect of pH and water content of natural resources on the development of Drosophila melanogaster larvae. Dros. Inf. Serv. 84, 38–43 (2001).
Google Scholar
51.
Schilder, A. M. C., Gillett, J. M. & Woodworth, J. A. The kaleidoscopic nature of blueberry fruit roots. Acta Hortic. 574, 81–83 (2002).
Google Scholar
52.
Jaramillo, S. L., Mehlferber, E. & Moore, P. J. Life-history trade-offs under different larval diets in Drosophila suzukii (Diptera: Drosophilidae). Physiol. Entomol. 40, 2–9 (2015).
Google Scholar
53.
Dalton, D. T. et al. Laboratory survival of Drosophila suzukii under simulated winter conditions of the Pacific Northwest and seasonal field trapping in five primary regions of small and stone fruit production in the United States. Pest Manag. Sci. 67, 1368–1374 (2011).
CAS PubMed Google Scholar
54.
Miller, P. M. V-8 juice agar as a general purpose medium for fungi and bacteria. Phytopathology 45, 461–462 (1955).
Google Scholar
55.
Feng, Y., Bruton, R., Park, A. & Zhang, A. Identification of attractive blend for spotted wing drosophila, Drosophila suzukii, from apple juice. J. Pest Sci. 91, 1251–1267 (2018).
Google Scholar
56.
Tochen, S. et al. Temperature-related development and population parameters for Drosophila suzukii (Diptera: Drosophilidae) on cherry and blueberry. Environ. Entomol. 43, 501–510 (2014).
PubMed Google Scholar More