More stories

  • in

    Rare and common vertebrates span a wide spectrum of population trends

    Workflow
    All data syntheses, visualisation and statistical analyses were conducted using R version 3.5.171. For conceptual diagrams of our workflow, see Supplementary Figs. 1 and 2. Effect sizes plotted on graphs were standardised by dividing the effect size by the standard deviation of the corresponding input data.
    Population data
    To quantify vertebrate population change (trends and fluctuations), we extracted the abundance data for 9286 population time series from 2084 species from the publicly available Living Planet Database72 (http://www.livingplanetindex.org/data_portal) that covered the period between 1970 and 2014 (Supplementary Table 1). These time series represent repeated monitoring surveys of the number of individuals in a given area, hereafter, called ‘populations’. Monitoring duration differed among populations, with a mean duration of 23.9 years and a mean sampling frequency of 23.3 time points (Supplementary Fig. 3, see Supplementary Figs. 6 and 7 for effects of monitoring duration on detected trends). In the Living Planet database, 17.9% of populations were sampled annually or in rare cases multiple times per year. The time series we analysed include vertebrate species that span a large variation in age, generation times and other demographic-rate processes. For example, from other work that we have conducted, we have found that when generation time data were available (~50.0% or 484 out of 968 bird species, and 15.6% or 48 out of 306 mammal species), the mean bird generation time is 5.0 years (min = 3.4 years, max = 14.3 years) and the mean mammal generation time is 8.3 years (min = 0.3 years, max = 25 years)45. Thus, we believe that most vertebrate time series within the LPD capture multiple generations.
    In our analysis, we omitted populations which had less than five time points of monitoring data, as previous studies of similar population time series to the ones we analysed have found that shorter time series might not capture directional trends in abundance63. Populations were monitored using different metrics of abundance (e.g., population indices vs number of individuals). Before analysis, we scaled the abundance of each population to a common magnitude between zero and one to analyse within-population relationships to prevent conflating within-population relationships and between-population relationships73. Scaling the abundance data allowed us to explore trends among populations relative to the variation experienced across each time series.
    Phylogenetic data
    We obtained phylogenies for amphibian species from https://vertlife.org4, for bird species from https://birdtree.org8, and for reptile species from https://vertlife.org6. For each of the three classes (Amphibia, Aves and Reptilia), we downloaded 100 trees and randomly chose 10 for analysis (30 trees in total). Species-level phylogenies for the classes Actinopterygii and Mammalia have not yet been resolved with high confidence74,75.
    Rarity metrics, IUCN Red List categories and threat types
    We defined rarity following a simplified version of the ‘seven forms of rarity’ model76, and thus consider rarity to be the state in which species exist when they have a small geographic range, low population size, or narrow habitat specificity. We combined publicly available data from three sources: (1) population records for vertebrate species from the Living Planet Database to calculate mean population size, (2) occurrence data from the Global Biodiversity Information Facility77 (https://www.gbif.org) and range data from BirdLife78 (http://datazone.birdlife.org) to estimate geographic range size and (3) habitat specificity and Red List Category data for each species from the International Union for Conservation79 (https://www.iucnredlist.org). The populations in the Living Planet Database72 do not include species that have gone extinct on a global scale. We extracted the number and types of threats that each species is exposed to globally from their respective species’ IUCN Red List profiles79.
    Quantifying population trends and fluctuations over time
    In the first stage of our analysis, we used state-space models that model abundance (scaled to a common magnitude between zero and one) over time to calculate the amount of overall abundance change experienced by each population (μ,40,80). State-space models account for process noise (σ2) and observation error (τ2) and thus deliver robust estimates of population change when working with large data sets where records were collected using different approaches, such as the Living Planet Database41,81,82. Previous studies have found that not accounting for process noise and measurement error could lead to over-estimation of population declines83, but in our analyses, we found that population trends derived from state-space models were similar to those derived from linear models. Positive μ values indicate population increase and negative μ values indicate population decline. State-space models partition the variance in abundance estimates into estimated process noise (σ2) and observation or measurement error (τ2) and population trends (μ):

    $$X_t = X_{t-1} + mu + varepsilon _t,$$
    (1)

    where Xt and Xt−1 are the scaled (observed) abundance estimates (between 0 and 1) in the present and past year, with process noise represented by εt~ gaussian(0, σ2). We included measurement error following:

    $$Y_t = X_t + F_t,$$
    (2)

    where Yt is the estimate of the true (unobserved) population abundance with measurement error:

    $$F_tsim gaussianleft( {0,,{it{T}}^2} right)$$
    (3)

    We substituted the estimate of population abundance (Yt) into Eq. 1:

    $$Y_{t} = {it{X}}_{{it{t}} – 1} + mu + varepsilon _{it{t}} + {it{F}}_{it{t}}.$$
    (4)

    Given

    $${it{X}}_{{it{t}} – 1} = {it{Y}}_{{it{t}} – 1} – {it{F}}_{{it{t}} – 1}$$
    (5)

    then:

    $${it{Y}}_{it{t}} = {it{Y}}_{t – 1} + mu + varepsilon _t + F_t – F_{t – 1}$$
    (6)

    For comparisons of different approaches to modelling population change, see ‘Comparison of modelling approaches section’.
    Quantifying rarity metrics
    We tested how population change varied across rarity metrics—geographic range, mean population size and habitat specificity – on two different but complementary scales. In the main text, we presented the results of our global-scale analyses, whereas in the SI, we included the results when using only populations from the UK—a country with high monitoring intensity, Thus, we quantified rarity metrics for species monitoring globally and in the UK. The three rarity metrics used in this study were weakly correlated at both UK and global scales (Supplementary Fig. 11).
    Geographic range
    To estimate geographic range for bird species monitored globally, we extracted the area of occurrence in km2 for all bird species in the Living Planet Database that had records in the BirdLife Data Zone78. For mammal species’ geographic range, we used the PanTHERIA database84 (http://esapubs.org/archive/ecol/E090/184/). To estimate geographic range for bony fish, birds, amphibians, mammals and reptiles monitored in the UK (see Supplementary Table 5 for species list), we calculated a km2 occurrence area based on species occurrence data from GBIF77. Extracting and filtering GBIF data and calculating range was computationally intensive and occurrence data availability was lower for certain species. Thus, we did not estimate geographic range from GBIF data for all species part of the Living Planet Database. Instead, we focused on analysing range effects for birds and mammals globally, as they are a very well-studied taxon and for species monitored in the UK, a country with intensive and detailed biodiversity monitoring of vertebrate species. We did not use IUCN range maps, as they were not available for all of our study species, and previous studies using GBIF occurrences to estimate range have found a positive correlation between GBIF-derived and IUCN-derived geographic ranges85.
    For the geographic ranges of species monitored in the UK, we calculated range extent using a minimal convex hull approach based on GBIF occurrence data77. We filtered the GBIF data to remove invalid records and outliers using the CoordinateCleaner package86. We excluded records with no decimal places in the decimal latitude or longitude values, with equal latitude or longitude, within a one-degree radius of the GBIF headquarters in Copenhagen, within 0.0001 degrees of various biodiversity institutions and within 0.1 degrees of capital cities. For each species, we excluded the lower 0.02 and upper 0.98 quantile intervals of the latitude and longitude records to account for outlier points that are records from zoos or other non-wild populations. We drew a convex hull to most parsimoniously encompass all remaining occurrence records using the chull function, and we calculated the area of the resulting polygon using areaPolygon from the geosphere package87.
    Mean size of monitored populations
    We calculated mean size of the monitored population, referred to as population size, across the monitoring duration using the raw abundance data, and we excluded populations, which were not monitored using population counts (i.e., we excluded indexes).
    Habitat specificity
    To create an index of habitat specificity, we extracted the number of distinct habitats a species occupies based on the IUCN habitat category for each species’ profile, accessed through the package rredlist88. We also quantified habitat specificity by surveying the number of breeding and non-breeding habitats for each species from its online IUCN species profile (the ‘habitat and ecology’ section). The two approaches yielded similar results (Supplementary Fig. 10, Supplementary Table 2, key for the profiling method is presented in Supplementary Table 6). We obtained global IUCN Red List Categories and threat types for all study species through their IUCN Red List profiles79.
    Testing the sources of variation in population trends and fluctuations
    In the second stage of our analyses, we modelled the trend and fluctuation estimates from the first stage analyses across latitude, realm, biome, taxa, rarity metrics, phylogenetic relatedness, species’ IUCN Red List Categories and threat type using a Bayesian modelling framework through the package MCMCglmm89. We included a species random intercept effect in the Bayesian models to account for the possible correlation between the trends of populations from the same species (see Supplementary Table 1 for sample sizes). The models ran for 120,000 iterations with a thinning factor of ten, a burn-in period of 20,000 iterations and the default one chain. We assessed model convergence by visually examining trace plots. We used weakly informative priors for all coefficients (an inverse Wishart prior for the variances and a normal prior for the fixed effects):

    $$Prleft( mu right) sim Nleft( {0,,10^8} right)$$
    (7)

    $$Pr(sigma ^2) sim Inverse,Wishart,left( {V = 0,,nu = 0} right)$$
    (8)

    Population trends and fluctuations across latitude, biomes, realms and taxa
    To investigate the geographic and taxonomic patterns of population trends and fluctuations, we modelled population trends (μ) and population fluctuations (σ2), derived from the first stage of our analyses (state-space models), as a function of (1) latitude, (2) realm (freshwater, marine, terrestrial), (3) biome (as defined by the ‘biome’ category in the Living Planet Database, e.g., ‘temperate broadleaf forest’90 and (4) taxa (Actinopterygii, bony fish; Elasmobranchii, sharks and rays; Amphibia, amphibians; Aves, birds; Mammalia, mammals; Reptilia, reptiles). We used separate models for each variable, resulting in four models testing the sources of variation in trends and four additional models focusing on fluctuations. Each categorical model from this second stage of our analyses was fitted with a zero intercept to allow us to determine whether net population trends differed from zero for each of the categories under investigation. The model structures for all models with a categorical fixed effect were identical with the exception of the identity of the fixed effect, and below we describe the taxa model:

    $$mu _{i,j,k} = beta _0 + beta _{0,j} + beta _1 ast taxa_{i,j,k},$$
    (9)

    $$y_{i,j,k}sim gaussianleft( {mu _{i,j,k},sigma ^2} right),$$
    (10)

    where taxai,j,k is the taxa of the ith time series from the jth species; β0 and β1 are the global intercept (in categorical models, β0 = 1) and the slope estimate for the categorical taxa effect (fixed effect), β0j is the species-level departure from β0 (species-level random effect); yi,j,k is the estimate for change in population abundance for the ith population time series from the jth species from the kth taxa.
    Population trends and fluctuations across amphibian, bird and reptile phylogenies
    To determine whether there is a phylogenetic signal in the patterning of population change within amphibian, bird and reptile taxa, we modelled population trends (μ) and fluctuations (σ2) across phylogenetic and species-level taxonomic relatedness. We conducted one model per taxa per population change variable—trends or fluctuations using Bayesian linear mixed effects models using the package MCMCglmm89. We included phylogeny and taxa as random effects. The models did not include fixed effects. We assessed the magnitude of the random effects (phylogeny and species) by inspecting their posterior distributions, with a distribution pushed up against zero indicating lack of effect, as these distributions are always bounded by zero and have only positive values. We used parameter-expanded priors, with a variance-covariance structure that allows the slopes of population trend (the μ values from the first stage analysis using state-space models) to covary for each random effect. The prior and model structure were as follows:

    $$Prleft( mu right) sim Nleft( {0,,10^8} right),$$
    (11)

    $$Prleft( {sigma ^2} right) sim Inverse,Wishart,left( {V = 1,,nu = 1} right),$$
    (12)

    $$mu _{i,k,m} = beta _0 + beta _{0,k} + beta _{0,m},$$
    (13)

    $$y_{i,k,m} sim gaussianleft( {mu _{i,k,m},,sigma ^2} right),$$
    (14)

    where β0 is the global intercept (β0 = 1), β0l is the phylogeny-level departure from β0 (phylogeny random effect); yi,k,m is the estimate for change in population abundance for the ith population time series for the kth species with the mth phylogenetic distance.
    To account for phylogenetic uncertainty for each class, we ran ten models with identical structures, but based on different randomly selected phylogenetic trees. We report the mean estimate and its range for each class.
    Population trends and fluctuations across rarity metrics
    To test the influence of rarity metrics (geographic range, mean population size and habitat specificity) on variation in population trends and fluctuations, we modelled population trends (μ) and fluctuations (σ2) across all rarity metrics. We conducted one Bayesian linear model per rarity metric per scale (for both global and UK analyses) per population change variable—trends or fluctuations. The response variable was population trend (μ values from state-space models) or population fluctuation (σ2 values from state-space models), and the fixed effects were geographic range (log transformed), mean population size (log transformed) and habitat specificity (number of distinct habitats occupied). The model structures were identical across the different rarity metrics and below we outline the equations for population trends and geographic range:

    $$mu _{i,k,n} = beta _0 + beta _{0,k} + beta _1 ast geographic,range_{i,k,n},$$
    (15)

    $$y_{i,k,n} sim gaussianleft( {mu _{i,k,n},,sigma ^2} right),$$
    (16)

    where geographic rangei,k,n is the logged geographic range of the kth species in the ith time series; β0 and β1 are the global intercept and slope estimate for the geographic range effect (fixed effect), β0j is the species-level departure from β0 (species-level random effect); yi,k,n is the estimate for change in population abundance for the ith population time series from the jth species with the nth geographic range.
    Population trends across species’ IUCN Red List Categories
    To investigate the relationship between-population change and species’ Red List Categories, we modelled population trends (μ) and fluctuations (σ2) as a function of IUCN Red List Categories (categorical variable). We conducted one Bayesian linear model per population change metric per scale (for both global and UK analyses). To test variation in population trends and fluctuations across the types and number of threats to which species are exposed, we conducted a post hoc analysis of trends and fluctuations across threat type (categorical effect) and number of threats that each species is exposed to across its range (in separate models). The model structures were identical to those presented above, except for the fixed effect which was a categorical IUCN Red List Category variable.
    The analytical workflow of our analyses is summarised in conceptual diagrams (Supplementary Figs. 1 and 2) and all code is available on GitHub (https://github.com/gndaskalova/PopChangeRarity, DOI 10.5281/zenodo.3817207).
    Data limitations: taxonomic and geographic gaps
    Our analysis is based on 9286 monitored populations from 2084 species from the largest currently available public database of population time series, the Living Planet Database72. Nevertheless, the data are characterised by both taxonomic and geographic gaps that can influence our findings. For example, there are very few population records from the Amazon and Siberia (Fig. 1b)—two regions currently undergoing rapid environmental changes owing to land-use change and climate change, respectively. In addition, birds represent 63% of all population time series in the Living Planet Database, whilst taxa such as amphibians and sharks where we find declines are included with fewer records (Fig. 2 and Supplementary Fig. 4). On a larger scale, the Living Planet Database under-represents populations outside of Europe and North America and over-represents common and well-studied species62. We found that for the populations and species represented by current monitoring, rarity does not explain variation in population trends, but we note that the relationship between population change and rarity metrics could differ for highly endemic specialist species or species different to the ones included in the Living Planet Database17. As ongoing and future monitoring begins to fill in the taxonomic and geographic gaps in existing datasets, we will be able to reassess and test the generality of the patterns of population change across biomes, taxa, phylogenies, species traits and threats.
    Data limitations: monitoring extent and survey techniques
    The Living Planet Database combines population time series where survey methods were consistent within time series but varied among time series. Thus, among populations, abundance was measured using different units and over varying spatial extents. There are no estimates of error around the raw population abundance values available and detection probability likely varies among species. Thus, it is challenging to make informed decisions about baseline uncertainty in abundance estimates without prior information. We used state-space models to estimate trends and fluctuations to account for these limitations as this modelling framework is particularly appropriate for analyses of data collected using disparate methods41,81,82. Another approach to partially account for observer error that has been applied to the analysis of population trends is the use of occupancy models36. Because the precise coordinates of the polygons where the individual populations were monitored are not available, we were not able to test for the potential confounding effect of monitoring extent, but our sensitivity analysis indicated that survey units do not explain variation in the detected trends (Supplementary Fig. 12).
    Data limitations: temporal gaps
    The population time series we studied cover the period between 1970 and 2014, with both duration of monitoring and the frequency of surveys varying across time series. We omitted populations that had less than five time points of monitoring data, as previous studies of similar population time series data have found that shorter time series are less likely to capture directional trends in abundance63. In a separate analysis, we found significant lags in population change following disturbances (forest loss) and that population monitoring often begins decades to centuries after peak forest loss has occurred at a given site45. The findings of this related study suggest that the temporal span of the population monitoring does not always capture the period of intense environmental change and lags suggest that there might be abundance changes that have not yet manifested themselves. Thus, the detected trends and the baseline across which trends are compared might be influenced by when monitoring takes place and at what temporal frequency. Challenges of analysing time series data are present across not just the Living Planet Database that we analysed, but more broadly across population data in general, including invertebrate datasets65. Nevertheless, the Living Planet Database represents the most comprehensive compilation of vertebrate temporal population records to date, allowing for analyses of the patterns of vertebrate trends and fluctuations around the world.
    Data limitations: time series with low variation
    Eighty populations ( More

  • in

    Larval pesticide exposure impacts monarch butterfly performance

    1.
    Potts, S. G. et al. Global pollinator declines: Trends, impacts and drivers. Trends Ecol. Evol. 25, 345–353 (2010).
    PubMed  Google Scholar 
    2.
    Goulson, D., Nicholls, E., Botías, C. & Rotheray, E. L. Bee declines driven by combined stress from parasites, pesticides, and lack of flowers. Science 347, 1255957 (2015).
    PubMed  Google Scholar 

    3.
    Ollerton, J. Pollinator diversity: Distribution, ecological function, and conservation. Ann. Rev. Ecol. Evol. Syst. 48, 353–376 (2017).
    Google Scholar 

    4.
    Botías, C. et al. Neonicotinoid residues in wildflowers, a potential route of chronic exposure for bees. Environ. Sci. Technol. 49, 12731–12740 (2015).
    ADS  PubMed  Google Scholar 

    5.
    Botías, C., David, A., Hill, E. M. & Goulson, D. Contamination of wild plants near neonicotinoid seed-treated crops, and implications for non-target insects. Sci. Tot. Environ. 566, 269–278 (2016).
    Google Scholar 

    6.
    Long, E. Y. & Krupke, C. H. Non-cultivated plants present a season-long route of pesticide exposure for honey bees. Nat. Commun. 7, 11629 (2016).
    ADS  CAS  PubMed  PubMed Central  Google Scholar 

    7.
    Mogren, C. L. & Lundgren, J. G. Neonicotinoid-contaminated pollinator strips adjacent to cropland reduce honey bee nutritional status. Sci. Rep. 6, 29608 (2016).
    ADS  CAS  PubMed  PubMed Central  Google Scholar 

    8.
    Tsvetkov, N. et al. Chronic exposure to neonicotinoids reduces honey-bee health near corn crops. Science 356, 1395–1397 (2017).
    ADS  CAS  PubMed  Google Scholar 

    9.
    Wood, T. J., Kaplan, I., Zhang, Y. & Szendrei, Z. Honeybee dietary neonicotinoid exposure is associated with pollen collection from agricultural weeds. Proc. R. Soc. B 286, 20190989 (2019).
    CAS  PubMed  Google Scholar 

    10.
    Douglas, M. R. & Tooker, J. F. Large-scale deployment of seed treatments has driven rapid increase in use of neonicotinoid insecticides and preemptive pest management in US field crops. Environ. Sci. Technol. 49, 5088–5097 (2015).
    ADS  CAS  PubMed  Google Scholar 

    11.
    DiBartolomeis, M., Kegley, S., Mineau, P., Radford, R. & Klein, K. An assessment of acute insecticide toxicity loading (AITL) of chemical pesticides used on agricultural land in the United States. PLoS One 14, e0220029 (2019).
    CAS  PubMed  PubMed Central  Google Scholar 

    12.
    Douglas, M. R., Sponsler, D. B., Lonsdorf, E. V. & Grozinger, C. M. County-level analysis reveals a rapidly shifting landscape of insecticide hazard to honey bees (Apis mellifera) on US farmland. Sci. Rep. 10, 797 (2020).
    ADS  CAS  PubMed  PubMed Central  Google Scholar 

    13.
    Gilburn, A. S. et al. Are neonicotinoid insecticides driving declines of widespread butterflies?. PeerJ 3, e1402 (2015).
    PubMed  PubMed Central  Google Scholar 

    14.
    Forister, M. L. et al. Increasing neonicotinoid use and the declining butterfly fauna of lowland California. Biol. Lett. 12, 20160475 (2016).
    PubMed  PubMed Central  Google Scholar 

    15.
    Wepprich, T., Adrion, J. R., Ries, L., Wiedmann, J. & Haddad, N. M. Butterfly abundance declines over 20 years of systematic monitoring in Ohio, USA. PLoS One 14, e0216270 (2019).
    CAS  PubMed  PubMed Central  Google Scholar 

    16.
    Braak, N., Neve, R., Jones, A. K., Gibbs, M. & Breuker, C. J. The effects of insecticides on butterflies: A review. Environ. Pollut. 242, 507–518 (2018).
    CAS  PubMed  Google Scholar 

    17.
    Mulé, R., Sabella, G., Robba, L. & Manachini, B. Systematic review of the effects of chemical insecticides on four common butterfly families. Front. Environ. Sci. 5, 32 (2017).
    Google Scholar 

    18.
    Russell, C. & Schultz, C. B. Effects of grass-specific herbicides on butterflies: An experimental investigation to advance conservation efforts. J. Insect Conserv. 14, 53–63 (2009).
    Google Scholar 

    19.
    Bohnenblust, E., Egan, J. F., Mortensen, D. & Tooker, J. Direct and indirect effects of the synthetic-auxin herbicide dicamba on two lepidopteran species. Environ. Entomol. 42, 586–594 (2013).
    CAS  PubMed  Google Scholar 

    20.
    Hahn, M., Geisthardt, M. & Bruhl, C. A. Effects of herbicide-treated host plants on the development of Mamestra brassicae L. caterpillars. Environ. Toxicol. Chem. 33, 2633–2638 (2014).
    CAS  PubMed  Google Scholar 

    21.
    Stark, J. D., Chen, X. D. & Johnson, C. Effects of herbicides on Behr’s Metalmark butterfly, a surrogate species for the endangered butterfly, Lange’s Metalmark. Environ. Pollut. 164, 24–27 (2012).
    CAS  PubMed  Google Scholar 

    22.
    Eliyahu, D., Applebaum, S. W. & Rafaeli, A. Moth sex-pheromone biosynthesis is inhibited by the herbicide diclofop. Pestic. Biochem. Physiol. 77, 75–81 (2003).
    CAS  Google Scholar 

    23.
    Srivastava, K., Sharma, S., Sharma, D. & Kumar, R. Effect of fungicides on growth and development of Spodoptera litura. Int. J. Life Sci. Sci. Res. 3, 905–908 (2017).
    Google Scholar 

    24.
    Nicodemo, D. et al. Pyraclostrobin impairs energetic mitochondrial metabolism and productive performance of silkworm (Lepidoptera: Bombycidae) caterpillars. J. Econ. Entomol. 111, 1369 (2018).
    PubMed  Google Scholar 

    25.
    Pilling, E. D. & Jepson, P. C. Synergism between EBI fungicides and a pyrethroid insecticide in the honeybee (Apis mellifera). Pestic. Sci. 39, 293–297 (1993).
    CAS  Google Scholar 

    26.
    Pilling, E. D., Bromley-Challenor, K. A. C., Walker, C. H. & Jepson, P. C. Mechanism of synergism between the pyrethroid insecticide λ-cyhalothrin and the imidazole fungicide prochloraz, in the honeybee (Apis mellifera L). Pestic. Biochem. Physiol. 51, 1–11 (1995).
    CAS  Google Scholar 

    27.
    Johnson, R. M., Ellis, M. D., Mullin, C. A. & Frazier, M. Pesticides and honey bee toxicity—USA. Apidologie 41, 312–331 (2010).
    CAS  Google Scholar 

    28.
    Wade, A., Lin, C. H., Kurkul, C., Regan, E. & Johnson, R. M. Combined toxicity of insecticides and fungicides applied to California almond orchards to honey bee larvae and adults. Insects 10, 20 (2019).
    PubMed Central  Google Scholar 

    29.
    Lichtenstein, E. P., Liang, T. T. & Anderegg, B. N. Synergism of insecticides by herbicides. Science 181, 847–849 (1973).
    ADS  CAS  PubMed  Google Scholar 

    30.
    James, D. G. A neonicotinoid insecticide at a rate found in nectar reduces longevity but not oogenesis in monarch butterflies, Danaus plexippus (L.). (Lepidoptera: Nymphalidae). Insects 10, 276 (2019).
    PubMed Central  Google Scholar 

    31.
    Sinha, S. N., Lakhani, K. H. & Davis, B. N. K. Studies on the toxicity of insecticidal drift to the first instar larvae of the large white butterfly Pieris brassicae (Lepidoptera: Pieridae). Ann. Appl. Biol. 116, 27–41 (1990).
    CAS  Google Scholar 

    32.
    Davis, B. N. K., Lakhani, K. H. & Yates, T. J. The hazards of insecticides to butterflies of field margins. Agric. Ecosyst. Environ. 36, 151–161 (1991).
    CAS  Google Scholar 

    33.
    Çilgi, T. & Jepson, P. C. The risks posed by deltamethrin drift to hedgerow butterflies. Environ. Pollut. 87, 1–9 (1995).
    PubMed  Google Scholar 

    34.
    Whitehorn, P. R., Norville, G., Gilburn, A. & Goulson, D. Larval exposure to the neonicotinoid imidacloprid impacts adult size in the farmland butterfly Pieris brassicae. PeerJ 6, e4772 (2018).
    PubMed  PubMed Central  Google Scholar 

    35.
    Agrawal, A. A. & Inamine, H. Mechanisms behind the monarch’s decline. Science 360, 1294–1296 (2018).
    ADS  CAS  PubMed  Google Scholar 

    36.
    Belsky, J. & Joshi, N. K. Assessing role of major drivers in recent decline of monarch butterfly population in North America. Front. Environ. Sci. 6, 86 (2018).
    Google Scholar 

    37.
    Malcolm, S. B. Anthropogenic impacts on mortality and population viability of the monarch butterfly. Ann. Rev. Entomol. 63, 277–302 (2018).
    CAS  Google Scholar 

    38.
    Hartzler, R. G. Reduction in common milkweed (Asclepias syriaca) occurrence in Iowa cropland from 1999 to 2009. Crop Prot. 29, 1542–1544 (2010).
    Google Scholar 

    39.
    Pleasants, J. M. & Oberhauser, K. S. Milkweed loss in agricultural fields because of herbicide use: Effect on the monarch butterfly population. Insect Conserv. Div. 6, 135–144 (2013).
    Google Scholar 

    40.
    Thogmartin, W. E. et al. Monarch butterfly population decline in North America: Identifying the threatening processes. R. Soc. Open. Sci. 4, 170760 (2017).
    ADS  PubMed  PubMed Central  Google Scholar 

    41.
    Thogmartin, W. E. et al. Restoring monarch butterfly habitat in the Midwestern US: ‘all hands on deck’. Environ. Res. Lett. 12, 074005 (2017).
    ADS  Google Scholar 

    42.
    Saunders, S. P., Ries, L., Oberhauser, K. S., Thogmartin, W. E. & Zipkin, E. F. Local and cross-seasonal associations of climate and land use with abundance of monarch butterflies Danaus plexippus. Ecography 41, 278–290 (2018).
    Google Scholar 

    43.
    Stenoien, C. et al. Monarchs in decline: A collateral landscape-level effect of modern agriculture. Insect Sci. 25, 528–541 (2018).
    PubMed  Google Scholar 

    44.
    Krischik, V., Rogers, M., Gupta, G. & Varshney, A. Soil-applied imidacloprid translocates to ornamental flowers and reduces survival of adult Coleomegilla maculata, Harmonia axyridis, and Hippodamia convergens lady beetles, and larval Danaus plexippus and Vanessa cardui butterflies. PLoS One 10, e0119133 (2015).
    PubMed  PubMed Central  Google Scholar 

    45.
    Krishnan, N. et al. Assessing field-scale risks of foliar insecticide applications to monarch butterfly (Danaus plexippus) larvae. Environ. Toxicol. Chem. 39, 923–941 (2020).
    CAS  PubMed  Google Scholar 

    46.
    Pecenka, J. R. & Lundgren, J. G. Non-target effects of clothianidin on monarch butterflies. Sci. Nat. 102, 19 (2015).
    Google Scholar 

    47.
    Bargar, T. A., Hladik, M. L. & Daniels, J. C. Uptake and toxicity of clothianidin to monarch butterflies from milkweed consumption. PeerJ 8, e8669 (2020).
    PubMed  PubMed Central  Google Scholar 

    48.
    Hartzler, R. G. & Buhler, D. D. Occurrence of common milkweed (Asclepias syriaca) in cropland and adjacent areas. Crop Prot. 19, 363–366 (2000).
    Google Scholar 

    49.
    Zaya, D. N., Pearse, I. S. & Spyreas, G. Long-term trends in midwestern milkweed abundances and their relevance to monarch butterfly declines. Bioscience 67, 343–356 (2017).
    Google Scholar 

    50.
    Agrawal, A. A. & Fishbein, M. Plant defense syndromes. Ecology 87, S132–S149 (2006).
    PubMed  Google Scholar 

    51.
    Lefevre, T., Oliver, L., Hunter, M. D. & de Roode, J. C. Evidence for trans-generational medication in nature. Ecol. Lett. 13, 1485–1493 (2010).
    PubMed  Google Scholar 

    52.
    Olaya-Arenas, P. & Kaplan, I. Quantifying pesticide exposure risk for monarch caterpillars on milkweeds bordering agricultural land. Front. Ecol. Evol. 7, 223 (2019).
    Google Scholar 

    53.
    Olaya-Arenas, P., Scharf, M. E. & Kaplan, I. Do pollinators prefer pesticide-free plants? An experimental test with monarchs and milkweeds. J. Appl. Ecol. 20, 20 (2020).
    Google Scholar 

    54.
    Bauerfeind, S. S., Fischer, K., Hartstein, S., Janowitz, S. & Martin-Creuzburg, D. Effects of adult nutrition on female reproduction in a fruit-feeding butterfly: The role of fruit decay and dietary lipids. J. Insect Physiol. 53, 964–973 (2017).
    Google Scholar 

    55.
    Geister, T. L., Lorenz, M. W., Hoffmann, K. H. & Fischer, K. Adult nutrition and butterfly fitness: Effects of diet quality on reproductive output, egg composition, and egg hatching success. Front. Zool. 5, 10 (2008).
    PubMed  PubMed Central  Google Scholar 

    56.
    Van Hook, T., Williams, E. H., Brower, L. P., Borkin, S. & Hein, J. A standardized protocol for ruler-based measurement of wing length in monarch butterflies, Danaus plexippus L. (Nymphalidae, Danainae). Trop. Lep. Res. 22, 42–52 (2012).
    Google Scholar 

    57.
    Davis, A. K. & Holden, M. T. Measuring intraspecific variation in flight-related morphology of monarch butterflies (Danaus plexippus): Which sex has the best flying gear?. J. Insects 20, 591705 (2015).
    Google Scholar 

    58.
    García-Barros, E. Multivariate indices as estimates of dry body weight for comparative study of body size in Lepidoptera. Nota Lepi. 38, 59–74 (2015).
    Google Scholar 

    59.
    Wiesweg, M. Survival Analysis: High-Level Interface for Survival Analysis and Associated Plots. R Package Version 0.1.1. (2019). https://CRAN.R-project.org/package=survivalAnalysis.

    60.
    Wickham, et al. Welcome to the tidyverse. J. Open Source Softw. 4, 1686 (2019).
    ADS  Google Scholar 

    61.
    Kassambara, A. ggpubr: ‘ggplot2’ Based Publication Ready Plots. R Package Version 0.2.5. (2020). https://CRAN.R-project.org/package=ggpubr.

    62.
    Kassambara, A. Rstatix: Pipe-Friendly Framework for Basic Statistical Tests. R package version 0.4.0. (2020). https://CRAN.R-project.org/package=rstatix.

    63.
    Fox, J. & Weisberg, S. An R Companion to Applied Regression 3rd edn. (Sage, Thousand Oaks, 2019).
    Google Scholar 

    64.
    Wickham, H. ggplot2: Elegant Graphics for Data Analysis (Springer-Verlag, New York, 2016).
    Google Scholar 

    65.
    Kassambara, A. ggcorrplot: Visualization of a Correlation Matrix Using ‘ggplot2’. R Package Version 0.1.3. (2019) https://CRAN.R-project.org/package=ggcorrplot.

    66.
    Hedges, L. V., Gurevitch, J. & Curtis, P. S. The meta-analysis of response ratios in experimental ecology. Ecology 80, 1150–1156 (1999).
    Google Scholar 

    67.
    Schaarschmidt, F. & Gerhard, D. pairwiseCI: Confidence Intervals for Two-Sample Comparisons. R Package Version 0.1-27. (2019) https://CRAN.R-project.org/package=pairwiseCI.

    68.
    Thompson, H. M., Fryday, S. L., Harkin, S. & Milner, S. Potential impacts of synergism in honeybees (Apis mellifera) of exposure to neonicotinoids and sprayed fungicides in crops. Apidologie 45, 545–553 (2014).
    CAS  Google Scholar 

    69.
    Tadei, R. et al. Late effect of larval co-exposure to the insecticide clothianidin and fungicide pyraclostrobin in Africanized Apis mellifera. Sci. Rep. 9, 3277 (2019).
    ADS  PubMed  PubMed Central  Google Scholar 

    70.
    Després, L., David, J. P. & Gallet, C. The evolutionary ecology of insect resistance to plant chemicals. Trends Ecol. Evol. 22, 298–307 (2007).
    PubMed  Google Scholar 

    71.
    Jones, P. L., Petschenka, G., Flacht, L. & Agrawal, A. A. Cardenolide intake, sequestration, and excretion by the monarch butterfly along gradients of plant toxicity and larval ontogeny. J. Chem. Ecol. 45, 264–277 (2019).
    CAS  PubMed  Google Scholar 

    72.
    Karageorgi, M. et al. Genome editing retraces the evolution of toxin resistance in the monarch butterfly. Nature 574, 409–412 (2019).
    CAS  PubMed  PubMed Central  Google Scholar 

    73.
    Hardy, N. B., Peterson, D. A., Ross, L. & Rosenheim, J. A. Does a plant-eating insect’s diet govern the evolution of insecticide resistance? Comparative tests of the pre-adaptation hypothesis. Evol. Appl. 11, 739–747 (2018).
    PubMed  Google Scholar 

    74.
    Basley, K. & Goulson, D. Effects of field-relevant concentrations of clothianidin on larval development of the butterfly Polyommatus icarus (Lepidoptera, Lycaenidae). Environ. Sci. Technol. 52, 3990–3996 (2018).
    ADS  CAS  PubMed  Google Scholar 

    75.
    Halsch, C. et al. Pesticide contamination of milkweeds across the agricultural, urban, and open spaces of low elevation Northern California. Front. Ecol. Evol. 8, 162 (2020).
    Google Scholar 

    76.
    Altizer, S. & Davis, A. K. Populations of monarch butterflies with different migratory behaviors show divergence in wing morphology. Evolution 64, 1018–1028 (2010).
    PubMed  Google Scholar 

    77.
    Dockx, C. Directional and stabilizing selection on wing size and shape in migrant and resident monarch butterflies, Danaus plexippus (L.). Cuba. Biol. J. Linn. Soc. 92, 605–616 (2007).
    Google Scholar 

    78.
    Satterfield, D. A. & Davis, A. K. Variation in wing characteristics of monarch butterflies during migration: Earlier migrants have redder and more elongated wings. Anim. Migr. 2, 1–7 (2014).
    Google Scholar 

    79.
    Freedman, M. G. & Dingle, H. Wing morphology in migratory North American monarchs: Characterizing sources of variation and understanding changes through time. Anim. Migr. 5, 61–73 (2018).
    Google Scholar 

    80.
    Inamine, H., Ellner, S. P., Springer, J. P. & Agrawal, A. A. Linking the continental migratory cycle of the monarch butterfly to understand its population decline. Oikos 125, 1081–1091 (2016).
    Google Scholar 

    81.
    Nylin, S. & Gotthard, K. Plasticity in life-history traits. Ann. Rev. Entomol. 43, 63–83 (1998).
    CAS  Google Scholar 

    82.
    Awmack, C. S. & Leather, S. R. Host plant quality and fecundity in herbivorous insects. Ann. Rev. Entomol. 47, 817–844 (2002).
    CAS  Google Scholar 

    83.
    Jervis, M. A., Boggs, C. L. & Ferns, P. N. Egg maturation strategy and its associated trade-offs: A synthesis focusing on Lepidoptera. Ecol. Entomol. 30, 359–375 (2005).
    Google Scholar 

    84.
    Oberhauser, K. S. Fecundity, lifespan and egg mass in butterflies: Effects of male-derived nutrients and female size. Funct. Ecol. 11, 166–175 (1997).
    Google Scholar 

    85.
    Main, A. R., Webb, E. B., Goyne, K. W. & Mengel, D. Neonicotinoid insecticides negatively affect performance measures of non-target terrestrial arthropods: A meta-analysis. Ecol. Appl. 28, 1232–1244 (2018).
    PubMed  Google Scholar  More

  • in

    Mass mortality in freshwater mussels (Actinonaias pectorosa) in the Clinch River, USA, linked to a novel densovirus

    1.
    Vaughn, C. C. Ecosystem services provided by freshwater mussels. Hydrobiologia 810, 15–27. https://doi.org/10.1007/s10750-017-3139-x (2018).
    Article  Google Scholar 
    2.
    Christian, A. D., Smith, B. N., Berg, D. J., Smoot, J. C. & Findlay, R. H. Trophic position and potential food sources of 2 species of unionid bivalves (Mollusca:Unionidae) in 2 small Ohio streams. Freshw. Sci. 23, 101–113 (2004).
    Google Scholar 

    3.
    Vaughn, C. C. Biodiversity losses and ecosystem function in freshwaters: emerging conclusions and research directions. Bioscience 60, 25–35. https://doi.org/10.1525/bio.2010.60.1.7 (2010).
    Article  Google Scholar 

    4.
    Howard, J. K. & Cuffey, K. M. The functional role of native freshwater mussels in the fluvial benthic environment. Freshw. Biol. 51, 460–474. https://doi.org/10.1111/j.1365-2427.2005.01507.x (2006).
    Article  Google Scholar 

    5.
    Izumi, T., Yagita, K., Izumiyama, S., Endo, T. & Itoh, Y. Depletion of Cryptosporidium parvum oocysts from contaminated sewage by using freshwater benthic pearl clams (Hyriopsis schlegeli). Appl. Environ. Microbiol. 78, 7420–7428. https://doi.org/10.1128/AEM.01502-12 (2012).
    CAS  Article  PubMed  PubMed Central  Google Scholar 

    6.
    Ismail, N. S., Müller, C. E., Morgan, R. R. & Luthy, R. G. Uptake of contaminants of emerging concern by the bivalves Anodonta californiensis and Corbicula fluminea. Environ. Sci. Technol. 48, 9211–9219. https://doi.org/10.1021/es5011576 (2014).
    ADS  CAS  Article  PubMed  Google Scholar 

    7.
    Ismail, N. S. et al. Improvement of urban lake water quality by removal of Escherichia coli through the action of the bivalve Anodonta californiensis. Environ. Sci. Technol. 49, 1664–1672. https://doi.org/10.1021/es5033212 (2015).
    ADS  CAS  Article  PubMed  Google Scholar 

    8.
    Williams, J. D. et al. A revised list of the freshwater mussels (Mollusca: Bivalvia: Unionida) of the United States and Canada. Freshw. Mollusk Biol. Conserv. 20, 33. https://doi.org/10.31931/fmbc.v20i2.2017.33-58 (2017).
    Article  Google Scholar 

    9.
    Lydeard, C. et al. The global decline of nonmarine mollusks. Bioscience 54, 321. https://doi.org/10.1641/0006-3568(2004)054[0321:TGDONM]2.0.CO;2 (2004).
    Article  Google Scholar 

    10.
    Haag, W. R. North American Freshwater Mussels: Natural History, Ecology, and Conservation (Cambridge University Press, Cambridge, 2012).
    Google Scholar 

    11.
    Strayer, D. L. Effects of alien species on freshwater mollusks in North America. J. N. Am. Benthol. Soc. 18, 74–98. https://doi.org/10.2307/1468010 (1999).
    Article  Google Scholar 

    12.
    Haag, W. R. Reassessing enigmatic mussel declines in the United States. Freshw. Mollusk Biol. Conserv. 22, 43–60 (2019).
    Article  Google Scholar 

    13.
    Goldberg, T. L., Dunn, C. D., Leis, E. & Waller, D. L. A novel picornalike virus in a Wabash Pigtoe (Fusconaia flava) from the Upper Mississippi River, USA. Freshw. Mollusk Biol. Conserv. 22, 81–84 (2019).
    Google Scholar 

    14.
    Downing, J. A., Van Meter, P. & Woolnough, D. A. Suspects and evidence: a review of the causes of extirpation and decline in freshwater mussels. Anim. Biodivers. Conserv. 33, 151–185 (2010).
    Google Scholar 

    15.
    Zipper, C. E. et al. Freshwater mussel population status and habitat quality in the Clinch Rver, Virginia and Tennessee, USA: a featured collection. J. Am. Water Resour. Assoc. 50, 807–819 (2014).
    ADS  Article  Google Scholar 

    16.
    Jones, J. et al. Clinch River freshwater mussels upstream of Norris Reservoir, Tennessee and Virginia: a quantitative assessment from 2004 to 2009. J. Am. Water Resour. Assoc. 50, 820–836. https://doi.org/10.1111/jawr.12222 (2014).
    ADS  Article  Google Scholar 

    17.
    Jones, J. W. et al. Collapse of the Pendleton Island mussel fauna in the Clinch River, Virginia: setting baseline conditions to guide recovery and restoration. Freshw. Mollusk Biol. Conserv. 21, 36–56 (2018).
    Google Scholar 

    18.
    Cope, W. G. & Jones, J. W. Recent precipitous declines of endangered freshwater mussels in the Clinch River: an in situ assessment of water quality stressors related to energy development and other land-use. 244 (U.S. Fish and Wildlife Service, Southwestern Virginia Field Office, 2016).

    19.
    Richard, J. C. Clinch River mussel die-off. Ellipsaria 20, 1–3 (2018).
    Google Scholar 

    20.
    Neves, R. J. Proceedings of the Workshop on Die-offs of Freshwater Mussels in the United States (U.S. Fish and Wildlife Service, Upper Mississippi River Conservation Committee, 1986).

    21.
    Starliper, C. E., Powell, J., Garner, J. T. & Schill, W. B. Predominant bacteria isolated from moribund Fusconaia ebena ebonyshells experiencing die-offs in Pickwick Reservoir, Tennessee River, Alabama. J. Shellfish Res. 30, 359–366. https://doi.org/10.2983/035.030.0223 (2011).
    Article  Google Scholar 

    22.
    Grizzle, J. M. & Brunner, C. J. Infectious diseases of freshwater mussels and other freshwater bivalve mollusks. Rev. Fish. Sci. 17, 425–467 (2009).
    Article  Google Scholar 

    23.
    Leis, E. et al. Building a response network to investigate potential pathogens associated with unionid mortality events. Ellipsaria 20, 44–45 (2018).
    Google Scholar 

    24.
    Henley, W. F., Beaty, B. B. & Jones, J. W. Evaluations of organ tissues from Actinonaias pectorosa collected during a mussel die-off in 2016 at Kyles Ford, Clinch River, Tennessee. J. Shellfish Res. 38, 681. https://doi.org/10.2983/035.038.0320 (2019).
    Article  Google Scholar 

    25.
    Leis, E., Erickson, S., Waller, D., Richard, J. & Goldberg, T. A comparison of bacteria cultured from unionid mussel hemolymph between stable populations in the Upper Mississippi River basin and populations affected by a mortality event in the Clinch River. Freshw. Mollusk Biol. Conserv. 22, 70–80 (2019).
    Google Scholar 

    26.
    Garcia, C. et al. Ostreid herpesvirus 1 detection and relationship with Crassostrea gigas spat mortality in France between 1998 and 2006. Vet. Res. 42, 73. https://doi.org/10.1186/1297-9716-42-73 (2011).
    ADS  Article  PubMed  PubMed Central  Google Scholar 

    27.
    Arzul, I., Corbeil, S., Morga, B. & Renault, T. Viruses infecting marine molluscs. J. Invertebr. Pathol. 147, 118–135. https://doi.org/10.1016/j.jip.2017.01.009 (2017).
    Article  PubMed  Google Scholar 

    28.
    Zhang, Z., Sufang, D., Yimin, X. & Jie, W. Studies on the mussel Hyriopsis cumingii plague. I. a new viral infectious disease. Acta Hydrobiol. Sin. 26, 308–312 (1986).
    Google Scholar 

    29.
    Zhong, L., Xiao, T.-Y., Huang, J., Dai, L.-Y. & Liu, X.-Y. Histopathological examination of bivalve mussel Hyriopsis cumingii lea artificially infected by virus. Acta Hydrobiol. Sin. 35, 666–671 (2011).
    Google Scholar 

    30.
    Shi, M. et al. Redefining the invertebrate RNA virosphere. Nature 540, 539–543. https://doi.org/10.1038/nature20167 (2016).
    ADS  CAS  Article  PubMed  Google Scholar 

    31.
    Zhang, Y. Z., Shi, M. & Holmes, E. C. Using metagenomics to characterize an expanding vrosphere. Cell 172, 1168–1172. https://doi.org/10.1016/j.cell.2018.02.043 (2018).
    CAS  Article  PubMed  Google Scholar 

    32.
    Bergoin, M. & Tijssen, P. Molecular biology of Densovirinae. Contrib. Microbiol. 4, 12–32. https://doi.org/10.1159/000060329 (2000).
    CAS  Article  PubMed  Google Scholar 

    33.
    Mietzsch, M., Penzes, J. J. & Agbandje-McKenna, M. Twenty-five years of structural parvovirology. Viruses https://doi.org/10.3390/v11040362 (2019).
    Article  PubMed  PubMed Central  Google Scholar 

    34.
    Cotmore, S. F. et al. ICTV virus taxonomy profile: Parvoviridae. J. Gen. Virol. 100, 367–368. https://doi.org/10.1099/jgv.0.001212 (2019).
    CAS  Article  PubMed  PubMed Central  Google Scholar 

    35.
    Ganesh, B., Masachessi, G. & Mladenova, Z. Animal picobirnavirus. Virus Dis. 25, 223–238. https://doi.org/10.1007/s13337-014-0207-y (2014).
    Article  Google Scholar 

    36.
    Gustafson, L. L. et al. Evaluation of a nonlethal technique for hemolymph collection in Elliptio complanata, a freshwater bivalve (Mollusca: Unionidae). Dis. Aquat. Organ. 65, 159–165. https://doi.org/10.3354/dao065159 (2005).
    Article  PubMed  Google Scholar 

    37.
    Lees, D. Viruses and bivalve shellfish. Int. J. Food Microbiol. 59, 81–116. https://doi.org/10.1016/S0168-1605(00)00248-8 (2000).
    CAS  Article  PubMed  Google Scholar 

    38.
    Faust, C., Stallknecht, D., Swayne, D. & Brown, J. Filter-feeding bivalves can remove avian influenza viruses from water and reduce infectivity. Proc. R. Soc. B 276, 3727–3735. https://doi.org/10.1098/rspb.2009.0572 (2009).
    Article  PubMed  Google Scholar 

    39.
    Fédière, G. in Parvoviruses. From Molecular Biology to Pathology and Therapeutic Uses. Contributions to Microbiology. Vol. 4 (eds S. Faisst & J. Rommelaere) 1–11 (Karger, 2000).

    40.
    Kalagayan, H. et al. IHHN virus as an etiological factor in runt-deformity syndrome (RDS) of juvenile Penaeus vannamei cultured in Hawaii. J. World Aquacult. Soc. 22, 235–243. https://doi.org/10.1111/j.1749-7345.1991.tb00740.x (1991).
    Article  Google Scholar 

    41.
    Ito, K., Kidokoro, K., Shimura, S., Katsuma, S. & Kadono-Okuda, K. Detailed investigation of the sequential pathological changes in silkworm larvae infected with Bombyx densovirus type 1. J. Invertebr. Pathol. 112, 213–218. https://doi.org/10.1016/j.jip.2012.12.005 (2013).
    Article  PubMed  Google Scholar 

    42.
    Jiang, H. et al. Genetic engineering of Periplaneta fuliginosa densovirus as an improved biopesticide. Arch. Virol. 152, 383–394. https://doi.org/10.1007/s00705-006-0844-6 (2007).
    CAS  Article  PubMed  Google Scholar 

    43.
    Ledermann, J. P., Suchman, E. L., Black, W. C. & Carlson, J. O. Infection and pathogenicity of the mosquito densoviruses AeDNV, HeDNV, and APeDNV in Aedes aegypti mosquitoes (Diptera: Culicidae). J. Econ. Entomol. 97, 1828–1835. https://doi.org/10.1093/jee/97.6.1828 (2004).
    Article  PubMed  Google Scholar 

    44.
    Szelei, J. et al. Susceptibility of North-American and European crickets to Acheta domesticus densovirus (AdDNV) and associated epizootics. J. Invertebr. Pathol. 106, 394–399. https://doi.org/10.1016/j.jip.2010.12.009 (2011).
    CAS  Article  PubMed  Google Scholar 

    45.
    Kouassi, N. et al. Pathogenicity of diatraea saccharalis densovirus to host insets and characterization of its viral genome. Virol. Sin. 22, 53–60. https://doi.org/10.1007/s12250-007-0062-8 (2007).
    CAS  Article  Google Scholar 

    46.
    Bowater, R. et al. A parvo-like virus in cultured redclaw crayfish Cherax quadricarinatus from Queensland, Australia. Dis. Aquat. Organ. 50, 79–86. https://doi.org/10.3354/dao050079 (2002).
    Article  PubMed  Google Scholar 

    47.
    Johnson, R. M. & Rasgon, J. L. Densonucleosis viruses (‘densoviruses’) for mosquito and pathogen control. Curr. Opin. Insect. Sci. 28, 90–97. https://doi.org/10.1016/j.cois.2018.05.009 (2018).
    Article  PubMed  Google Scholar 

    48.
    Hewson, I. et al. Densovirus associated with sea-star wasting disease and mass mortality. Proc. Natl. Acad. Sci. USA 111, 17278–17283. https://doi.org/10.1073/pnas.1416625111 (2014).
    ADS  CAS  Article  PubMed  Google Scholar 

    49.
    Fritts, A. K., Peterson, J. T., Hazelton, P. D. & Bringolf, R. B. Evaluation of methods for assessing physiological biomarkers of stress in freshwater mussels. Can. J. Fish. Aquat. Sci. 72, 1450–1459. https://doi.org/10.1139/cjfas-2014-0564 (2015).
    CAS  Article  Google Scholar 

    50.
    Cunningham, A. A., Daszak, P. & Wood, J. L. N. One health, emerging infectious diseases and wildlife: two decades of progress?. Philos. Trans. R. Soc. Lond. B https://doi.org/10.1098/rstb.2016.0167 (2017).
    Article  Google Scholar 

    51.
    Patterson, M. A. et al. Freshwater Mussel Propagation for Restoration (Cambridge University Press, Cambridge, 2018).
    Google Scholar 

    52.
    Toohey-Kurth, K., Sibley, S. D. & Goldberg, T. L. Metagenomic assessment of adventitious viruses in commercial bovine sera. Biologicals 47, 64–68. https://doi.org/10.1016/j.biologicals.2016.10.009 (2017).
    CAS  Article  PubMed  Google Scholar 

    53.
    Löytynoja, A. Phylogeny-aware alignment with PRANK. Methods Mol. Biol. 1079, 155–170. https://doi.org/10.1007/978-1-62703-646-7_10 (2014).
    Article  PubMed  Google Scholar 

    54.
    Talavera, G. & Castresana, J. Improvement of phylogenies after removing divergent and ambiguously aligned blocks from protein sequence alignments. Syst. Biol. 56, 564–577. https://doi.org/10.1080/10635150701472164 (2007).
    CAS  Article  PubMed  Google Scholar 

    55.
    Abascal, F., Zardoya, R. & Telford, M. TranslatorX: multiple alignment of nucleotide sequences guided by amino acid translations. Nucleic Acids Res. 38, W7-13. https://doi.org/10.1093/nar/gkq291 (2010).
    CAS  Article  PubMed  PubMed Central  Google Scholar 

    56.
    Guindon, S. et al. New algorithms and methods to estimate maximum-likelihood phylogenies: assessing the performance of PhyML 3.0. Syst. Biol. 59, 307–321. https://doi.org/10.1093/sysbio/syq010 (2010).
    CAS  Article  Google Scholar 

    57.
    R Core Team. R: A language and environment for statistical computing, version 3.6.3. https://www.R-project.org (R Foundation for Statistical Computing, Vienna, 2019). More

  • in

    Repellent, oviposition-deterrent, and insecticidal activity of the fungal pathogen Colletotrichum fioriniae on Drosophila suzukii (Diptera: Drosophilidae) in highbush blueberries

    1.
    Walsh, D. B. et al. Drosophila suzukii (Diptera: Drosophilidae): Invasive pest of ripening soft fruit expanding its geographic range and damage potential. J. Integr. Pest Manag 2, G1–G7 (2011).
    Google Scholar 
    2.
    Hauser, M. A historic account of the invasion of Drosophila suzukii (Matsumura) (Diptera: Drosophilidae) in the continental United States, with remarks on their identification. Pest Manag. Sci. 67, 1352–1357 (2011).
    CAS  PubMed  Google Scholar 

    3.
    Asplen, M. K. et al. Invasion biology of spotted wing drosophila (Drosophila suzukii): a global perspective and future priorities. J. Pest. Sci. 88, 469–494 (2015).
    Google Scholar 

    4.
    Arnó, J., Solà, M., Riudavets, J. & Gabarra, R. Population dynamics, non-crop hosts, and fruit susceptibility of Drosophila suzukii in Northeast Spain. J. Pest. Sci. 89, 713–723 (2016).
    Google Scholar 

    5.
    Keesey, I. W., Knaden, M. & Hansson, B. S. Olfactory specialization in Drosophila suzukii supports an ecological shift in host preference from rotten to fresh fruit. J. Chem. Ecol. 41, 121–128 (2015).
    CAS  PubMed  PubMed Central  Google Scholar 

    6.
    Karageorgi, M. et al. Evolution of multiple sensory systems drives novel egg-laying behavior in the fruit pest Drosophila suzukii. Curr. Biol. 27, 847–853 (2017).
    CAS  PubMed  PubMed Central  Google Scholar 

    7.
    Lee, J. C. et al. The susceptibility of small fruits and cherries to the spotted-wing drosophila Drosophila suzukii. Pest Manag. Sci. 67, 1358–1367 (2011).
    CAS  PubMed  Google Scholar 

    8.
    Raffa, K. F., Bonello, P. & Orrock, J. L. Why do entomologists and plant pathologists approach trophic relationships so differently? Identifying biological distinctions to foster synthesis. New Phytol. 225, 609–620 (2020).
    PubMed  Google Scholar 

    9.
    Scheidler, N. H., Liu, C., Hamby, K. A., Zalom, F. G. & Syed, Z. Volatile codes: Correlation of olfactory signals and reception in Drosophila-yeast chemical communication. Sci. Rep. 5, 1–13 (2015).
    Google Scholar 

    10.
    Hamm, C. A. et al. Wolbachia do not live by reproductive manipulation alone: Infection polymorphism in Drosophila suzukii and D Subpulchrella. Mol. Ecol. 23, 4871–4885 (2014).
    PubMed  PubMed Central  Google Scholar 

    11.
    Cha, D. H. et al. Behavioral evidence for contextual olfactory-mediated avoidance of the ubiquitous phytopathogen Botrytis cinerea by Drosophila suzukii. Insect Sci. 27, 771–779 (2019).
    PubMed  Google Scholar 

    12.
    Bellutti, N. et al. Dietary yeast affects preference and performance in Drosophila suzukii. J. Pest. Sci. 91, 651–660 (2018).
    Google Scholar 

    13.
    Hamby, K. A., Hernández, A., Boundy-Mills, K. & Zalom, F. G. Associations of yeasts with spotted-wing drosophila (Drosophila suzukii; Diptera: Drosophilidae) in cherries and raspberries. Appl. Environ. Microbiol. 78, 4869–4873 (2012).
    CAS  PubMed  PubMed Central  Google Scholar 

    14.
    Mori, B. A. et al. Enhanced yeast feeding following mating facilitates control of the invasive fruit pest Drosophila suzukii. J. Appl. Ecol. 54, 170–177 (2017).
    Google Scholar 

    15.
    Goodhue, R. E., Bolda, M., Farnsworth, D., Williams, J. C. & Zalom, F. G. Spotted wing drosophila infestation of California strawberries and raspberries: Economic analysis of potential revenue losses and control costs. Pest Manag. Sci. 67, 1396–1402 (2011).
    CAS  PubMed  Google Scholar 

    16.
    Barata, A., Malfeito-Ferreira, M. & Loureiro, V. The microbial ecology of wine grape berries. Int. J. Food Microbiol. 153, 243–259 (2012).
    CAS  PubMed  Google Scholar 

    17.
    Cloonan, K. R., Abraham, J., Angeli, S., Syed, Z. & Rodriguez-Saona, C. Advances in the chemical ecology of the spotted wing drosophila (Drosophila suzukii) and its Applications. J. Chem. Ecol. 44, 922–939 (2018).
    CAS  PubMed  Google Scholar 

    18.
    Cloonan, K. R. et al. Laboratory and field evaluation of host-related foraging odor-cue combinations to attract Drosophila suzukii (Diptera: Drosophilidae). J. Econ. Entomol. 112, 2850–2860 (2019).
    PubMed  Google Scholar 

    19.
    Waller, T. J., Vaiciunas, J., Constantelos, C. & Oudemans, P. V. Evidence that blueberry floral extracts influence secondary conidiation and appressorial formation of Colletotrichum fioriniae. Phytopathology 108, 561–567 (2018).
    PubMed  Google Scholar 

    20.
    Pszczółkowska, A. & Okorski, A. First report of anthracnose disease caused by Colletotrichum fioriniae on blueberry in western Poland. Plant. Dis. 100, 21–67 (2016).
    Google Scholar 

    21.
    Wharton, P. & Diéguez-Uribeondo, J. The biology of Colletotrichum acutatum. An del Jardín Botánico Madrid 61, 3–22 (2004).
    Google Scholar 

    22.
    Peres, N. A., Timmer, L. W., Adaskaveg, J. E. & Correll, J. C. Lifestyles of Colletotrichum acutatum. Plant Dis. 89, 784–796 (2005).
    CAS  PubMed  Google Scholar 

    23.
    Polashock, J. J., Caruso, F. L., Averill, A. L. & Schilder, A. C. Compendium of Bluberry, Cranberry, and Lingonberry Diseases and Pests (APS Publications, St. Paul, MN, 2017).
    Google Scholar 

    24.
    Wharton, P. S. & Schilder, A. C. Novel infection strategies of Colletotrichum acutatum on ripe blueberry fruit. Plant Pathol. 57, 122–134 (2008).
    Google Scholar 

    25.
    Verma, N., MacDonald, L. & Punja, Z. K. Inoculum prevalence, host infection and biological control of Colletotrichum acutatum: causal agent of blueberry anthracnose in British Columbia. Plant Pathol. 55, 442–450 (2006).
    Google Scholar 

    26.
    Verma, N., MacDonald, L. & Punja, Z. K. Environmental and host requirements for field infection of blueberry fruits by Colletotrichum acutatum in British Columbia. Plant Pathol. 56, 107–113 (2007).
    Google Scholar 

    27.
    Miles, T. D. & Schilder, A. C. Host defenses associated with fruit infection by Colletotrichum species with an emphasis on anthracnose of blueberries. Plant Health Prog. 14, 30 (2013).
    Google Scholar 

    28.
    Miles, T. D., Hancock, J. F., Callow, P. & Schilder, A. M. C. Evaluation of screening methods and fruit composition in relation to anthracnose fruit rot resistance in blueberries. Plant Pathol. 61, 555–566 (2012).
    Google Scholar 

    29.
    Janzen, D. H. Why fruits rot, seeds mold, and meat spoils. Am. Nat. 111, 691–713 (1977).
    CAS  Google Scholar 

    30.
    Cipollini, M. L. & Stiles, E. W. Fruit rot, antifungal defense, and palatability of fleshy fruits for frugivorous birds. Ecology 74, 751–762 (1993).
    Google Scholar 

    31.
    Peris, J. E., Rodríguez, A., Penã, L. & Fedriani, J. M. Fungal infestation boosts fruit aroma and fruit removal by mammals and birds. Sci. Rep. 7, 1–9 (2017).
    CAS  Google Scholar 

    32.
    Lee, J. C. et al. Characterization and manipulation of fruit susceptibility to Drosophila suzukii. J. Pest. Sci. 89, 771–780 (2016).
    Google Scholar 

    33.
    Choi, M. Y. et al. Effect of non-nutritive sugars to decrease the survivorship of spotted wing drosophila Drosophila suzukii. J Insect Physiol 99, 86–94 (2017).
    CAS  PubMed  Google Scholar 

    34.
    Tochen, S., Walton, V. M. & Lee, J. C. Impact of floral feeding on adult Drosophila suzukii survival and nutrient status. J. Pest Sci. 89, 793–802 (2016).
    Google Scholar 

    35.
    Young, Y., Buckiewicz, N. & Long, T. A. F. Nutritional geometry and fitness consequences in Drosophila suzukii, the spotted-wing drosophila. Ecol. Evol. 8, 2842–2851 (2018).
    PubMed  PubMed Central  Google Scholar 

    36.
    Graziosi, I. & Rieske, L. K. A plant pathogen causes extensive mortality in an invasive insect herbivore. Agric. For. Entomol. 17, 366–374 (2015).
    Google Scholar 

    37.
    Wallingford, A. K., Hesler, S. P., Cha, D. H. & Loeb, G. M. Behavioral response of spotted-wing drosophila, Drosophila suzukii Matsumura, to aversive odors and a potential oviposition deterrent in the field. Pest Manag. Sci. 72, 701–706 (2016).
    CAS  PubMed  Google Scholar 

    38.
    Wallingford, A. K., Cha, D. H., Linn, C. E., Wolfin, M. S. & Loeb, G. M. Robust manipulations of pest insect behavior using repellents and practical application for integrated pest management. Environ. Entomol. 46, 1041–1050 (2017).
    CAS  PubMed  Google Scholar 

    39.
    Göhre, V. & Robatzek, S. Breaking the barriers: microbial effector molecules subvert plant immunity. Annu. Rev. Phytopathol. 46, 189–215 (2008).
    PubMed  Google Scholar 

    40.
    Csorba, T., Kontra, L. & Burgyán, J. Viral silencing suppressors: tools forged to fine-tune host-pathogen coexistence. Virology 479–480, 85–103 (2015).
    PubMed  Google Scholar 

    41.
    Stringlis, I. A., Zhang, H., Pieterse, C. M. J., Bolton, M. D. & De Jonge, R. Microbial small molecules-weapons of plant subversion. Nat. Prod. Rep. 35, 410–433 (2018).
    CAS  PubMed  Google Scholar 

    42.
    McLeod, G. et al. The pathogen causing Dutch elm disease makes host trees attract insect vectors. Proc. Biol. Sci. 272, 2499–2503 (2005).
    PubMed  PubMed Central  Google Scholar 

    43.
    Raguso, R. A. & Roy, B. A. ‘Floral’ scent production by Puccinia rust fungi that mimic flowers. Mol. Ecol. 7, 1127–1136 (1998).
    CAS  PubMed  Google Scholar 

    44.
    Bruce, T. J. A. & Pickett, J. A. Perception of plant volatile blends by herbivorous insects—finding the right mix. Phytochemistry 72, 1605–1611 (2011).
    CAS  PubMed  Google Scholar 

    45.
    Revadi, S. et al. Sexual behavior of Drosophila suzukii. Insects 6, 183–196 (2015).
    PubMed  PubMed Central  Google Scholar 

    46.
    Polashock, J. J., Ehlenfeldt, M. K., Stretch, A. W. & Kramer, M. Anthracnose fruit rot resistance in blueberry cultivars. Plant Dis. 89, 33–38 (2005).
    PubMed  Google Scholar 

    47.
    Hartung, J. S., Burton, C. & Ramsdell, D. C. Epidemiological studies of blueberry anthracnose disease caused by Colletotrichum gloeosporioides. Phytopathology 71, 449 (1981).
    Google Scholar 

    48.
    Cai, P. et al. Potential host fruits for Drosophila suzukii: olfactory and oviposition preferences and suitability for development. Entomol. Exp. Appl. 167, 880–890 (2019).
    Google Scholar 

    49.
    Rodriguez-Saona, C. et al. Differential susceptibility of wild and cultivated blueberries to an invasive frugivorous pest. J. Chem. Ecol. 45, 286–297 (2018).
    PubMed  Google Scholar 

    50.
    Hodge, S. The effect of pH and water content of natural resources on the development of Drosophila melanogaster larvae. Dros. Inf. Serv. 84, 38–43 (2001).
    Google Scholar 

    51.
    Schilder, A. M. C., Gillett, J. M. & Woodworth, J. A. The kaleidoscopic nature of blueberry fruit roots. Acta Hortic. 574, 81–83 (2002).
    Google Scholar 

    52.
    Jaramillo, S. L., Mehlferber, E. & Moore, P. J. Life-history trade-offs under different larval diets in Drosophila suzukii (Diptera: Drosophilidae). Physiol. Entomol. 40, 2–9 (2015).
    Google Scholar 

    53.
    Dalton, D. T. et al. Laboratory survival of Drosophila suzukii under simulated winter conditions of the Pacific Northwest and seasonal field trapping in five primary regions of small and stone fruit production in the United States. Pest Manag. Sci. 67, 1368–1374 (2011).
    CAS  PubMed  Google Scholar 

    54.
    Miller, P. M. V-8 juice agar as a general purpose medium for fungi and bacteria. Phytopathology 45, 461–462 (1955).
    Google Scholar 

    55.
    Feng, Y., Bruton, R., Park, A. & Zhang, A. Identification of attractive blend for spotted wing drosophila, Drosophila suzukii, from apple juice. J. Pest Sci. 91, 1251–1267 (2018).
    Google Scholar 

    56.
    Tochen, S. et al. Temperature-related development and population parameters for Drosophila suzukii (Diptera: Drosophilidae) on cherry and blueberry. Environ. Entomol. 43, 501–510 (2014).
    PubMed  Google Scholar  More

  • in

    Microbial carrying capacity and carbon biomass of plastic marine debris

    1.
    Van Sebille E, Wilcox C, Lebreton L, Maximenko N, Hardesty BD, Van Franeker JA, et al. A global inventory of small floating plastic debris. Environ Res Lett. 2015;10:124006.
    Google Scholar 
    2.
    Reisser J, Shaw J, Hallegraeff G, Proietti M, Barnes DK, Thums M, et al. Millimeter-sized marine plastics: a new pelagic habitat for microorganisms and invertebrates. PLoS ONE. 2014;9:e100289.
    PubMed  PubMed Central  Google Scholar 

    3.
    Mincer TJ, Zettler ER, Amaral-Zettler LA. Biofilms on plastic debris and their influence on marine nutrient cycling, productivity, and hazardous chemical mobility. In: Rei Yamashita KT, Bee Geok Yeo, Hideshige Takada, Jan A. van Franeker, Megan Dalton, Eric Dale, editors. Hazardous chemicals associated with plastics in the marine environment. Springer: Cham; 2016. pp. 221–33.

    4.
    Morét-Ferguson S, Law KL, Proskurowski G, Murphy EK, Peacock EE, Reddy CM. The size, mass, and composition of plastic debris in the western North Atlantic Ocean. Mar Pollut Bull. 2010;60:1873–8.
    PubMed  Google Scholar 

    5.
    Eriksen M, Lebreton LC, Carson HS, Thiel M, Moore CJ, Borerro JC, et al. Plastic pollution in the world’s oceans: more than 5 trillion plastic pieces weighing over 250,000 tons afloat at sea. PLoS ONE. 2014;9:e111913.
    PubMed  PubMed Central  Google Scholar 

    6.
    Zettler ER, Mincer TJ, Amaral-Zettler LA. Life in the “plastisphere”: microbial communities on plastic marine debris. Environ Sci Technol. 2013;47:7137–46.
    CAS  PubMed  Google Scholar 

    7.
    Amaral-Zettler LA, Zettler ER, Slikas B, Boyd GD, Melvin DW, Morrall CE, et al. The biogeography of the plastisphere: implications for policy. Front Ecol Environ. 2015;13:541–6.
    Google Scholar 

    8.
    De Tender CA, Devriese LI, Haegeman A, Maes S, Ruttink T, Dawyndt P. Bacterial community profiling of plastic litter in the Belgian part of the North Sea. Environ Sci Technol. 2015;49:9629–38.
    PubMed  Google Scholar 

    9.
    De Tender CA, Schlundt C, Devriese LI, Mincer TJ, Zettler ER, Amaral-Zettler LA. A review of microscopy and comparative molecular-based methods to characterize “plastisphere” communities. Anal Methods. 2017;9:2132–43.
    Google Scholar 

    10.
    Gong W, Marchetti A. Estimation of 18S gene copy number in marine eukaryotic plankton using a next-generation sequencing approach. Front Mar Sci. 2019;6:219.
    Google Scholar 

    11.
    Bonk F, Popp D, Harms H, Centler F. PCR-based quantification of taxa-specific abundances in microbial communities: quantifying and avoiding common pitfalls. J Microbiol Methods. 2018;153:139–47.
    CAS  PubMed  Google Scholar 

    12.
    Neu TR, Lawrence JR. Innovative techniques, sensors, and approaches for imaging biofilms at different scales. Trends Microbiol. 2015;23:233–42.
    CAS  PubMed  Google Scholar 

    13.
    Bochdansky AB, Clouse MA, Herndl GJ. Eukaryotic microbes, principally fungi and labyrinthulomycetes, dominate biomass on bathypelagic marine snow. ISME J. 2017;11:362–73.
    PubMed  Google Scholar 

    14.
    Schlundt C, Welch JLM, Knochel AM, Zettler ER, Amaral‐Zettler LA. Spatial structure in the “plastisphere”: molecular resources for imaging microscopic communities on plastic marine debris. Mol Ecol Resour. 2020;20:620–634.
    CAS  PubMed  Google Scholar 

    15.
    Bruinsma G, Van der Mei H, Busscher H. Bacterial adhesion to surface hydrophilic and hydrophobic contact lenses. Biomaterials. 2001;22:3217–24.
    CAS  PubMed  Google Scholar 

    16.
    Ogonowski M, Motiei A, Ininbergs K, Hell E, Gerdes Z, Udekwu KI, et al. Evidence for selective bacterial community structuring on microplastics. Environ Microbiol. 2018;20:2796–808.
    CAS  PubMed  Google Scholar 

    17.
    Khachikyan A, Milucka J, Littmann S, Ahmerkamp S, Meador T, Könneke M, et al. Direct cell mass measurements expand the role of small microorganisms in nature. Appl Environ Microbiol. 2019;85:e00493–19.
    CAS  PubMed  PubMed Central  Google Scholar 

    18.
    Romanova N, Sazhin A. Relationships between the cell volume and the carbon content of bacteria. Oceanology. 2010;50:522–30.
    Google Scholar 

    19.
    Menden-Deuer S, Lessard EJ. Carbon to volume relationships for dinoflagellates, diatoms, and other protist plankton. Limnol Oceanogr. 2000;45:569–79.
    CAS  Google Scholar 

    20.
    Massana R, Logares R. Eukaryotic versus prokaryotic marine picoplankton ecology. Environ Microbiol. 2013;15:1254–61.
    PubMed  Google Scholar 

    21.
    Loferer-Krößbacher M, Klima J, Psenner R. Determination of bacterial cell dry mass by transmission electron microscopy and densitometric image analysis. Appl Environ Microbiol. 1998;64:688–94.
    PubMed  PubMed Central  Google Scholar 

    22.
    Lee S, Fuhrman JA. Relationships between biovolume and biomass of naturally derived marine bacterioplankton. Appl Environ Microbiol. 1987;53:1298–303.
    CAS  PubMed  PubMed Central  Google Scholar 

    23.
    Erni-Cassola G, Zadjelovic V, Gibson MI, Christie-Oleza JA. Distribution of plastic polymer types in the marine environment; a meta-analysis. J Hazard Mater. 2019;369:691–8.
    CAS  PubMed  Google Scholar 

    24.
    Dudek KL, Cruz BN, Polidoro B, Neuer S. Microbial colonization of microplastics in the Caribbean Sea. Limnol Oceanogr Lett. 2020;5:5–17.
    Google Scholar 

    25.
    Carpenter EJ, Smith K. Plastics on the Sargasso Sea surface. Science. 1972;175:1240–1.
    CAS  PubMed  Google Scholar 

    26.
    Amaral-Zettler LA, Zettler ER, Mincer TJ. Ecology of the plastisphere. Nat Rev Microbiol. 2020;18:139–51.
    CAS  PubMed  Google Scholar 

    27.
    Patil JS, Anil AC. Biofilm diatom community structure: influence of temporal and substratum variability. Biofouling. 2005;21:189–206.
    CAS  PubMed  Google Scholar 

    28.
    Rummel CD, Jahnke A, Gorokhova E, Kühnel D, Schmitt-Jansen M. Impacts of biofilm formation on the fate and potential effects of microplastic in the aquatic environment. Environ Sci Technol Lett. 2017;4:258–67.
    CAS  Google Scholar 

    29.
    Michels J, Stippkugel A, Lenz M, Wirtz K, Engel A. Rapid aggregation of biofilm-covered microplastics with marine biogenic particles. Proc R Soc B. 2018;285:20181203.
    PubMed  Google Scholar 

    30.
    Lobelle D, Cunliffe M. Early microbial biofilm formation on marine plastic debris. Mar Pollut Bull. 2011;62:197–200.
    CAS  PubMed  Google Scholar 

    31.
    Mueller LN, de Brouwer JF, Almeida JS, Stal LJ, Xavier JB. Analysis of a marine phototrophic biofilm by confocal laser scanning microscopy using the new image quantification software PHLIP. BMC Ecol. 2006;6:1.
    PubMed  PubMed Central  Google Scholar 

    32.
    De Tender CA, Devriese LI, Haegeman A, Maes S, Vangeyte JR, Cattrijsse A, et al. Temporal dynamics of bacterial and fungal colonization on plastic debris in the North Sea. Environ Sci Technol. 2017;51:7350–60.
    PubMed  Google Scholar 

    33.
    Tetu SG, Sarker I, Schrameyer V, Pickford R, Elbourne LD, Moore LR, et al. Plastic leachates impair growth and oxygen production in Prochlorococcus, the ocean’s most abundant photosynthetic bacteria. Commun Biol. 2019;2:1–9.
    Google Scholar 

    34.
    Capolupo M, Sørensen L, Jayasena KDR, Booth AM, Fabbri E. Chemical composition and ecotoxicity of plastic and car tire rubber leachates to aquatic organisms. Water Res. 2020;169:115270.
    CAS  PubMed  Google Scholar 

    35.
    Vosshage AT, Neu TR, Gabel F. Plastic alters biofilm quality as food resource of the freshwater Gastropod Radix balthica. Environ Sci Technol. 2018;52:11387–93.
    CAS  PubMed  Google Scholar 

    36.
    Dussud C, Meistertzheim A, Conan P, Pujo-Pay M, George M, Fabre P, et al. Evidence of niche partitioning among bacteria living on plastics, organic particles and surrounding seawaters. Environ Pollut. 2018;236:807–16.
    CAS  PubMed  Google Scholar 

    37.
    Armitage AR, Gonzalez VL, Fong P. Decoupling of nutrient and grazer impacts on a benthic estuarine diatom assemblage. Estuar Coast Shelf Sci. 2009;84:375–82.
    CAS  PubMed  PubMed Central  Google Scholar 

    38.
    Yokota K, Waterfield H, Hastings C, Davidson E, Kwietniewski E, Wells B. Finding the missing piece of the aquatic plastic pollution puzzle: interaction between primary producers and microplastics. Limnol Oceanogr Lett. 2017;2:91–104.
    Google Scholar 

    39.
    Oberbeckmann S, Kreikemeyer B, Labrenz M. Environmental factors support the formation of specific bacterial assemblages on microplastics. Front Microbiol. 2018;8:2709.
    PubMed  PubMed Central  Google Scholar 

    40.
    Kirstein IV, Wichels A, Krohne G, Gerdts G. Mature biofilm communities on synthetic polymers in seawater-specific or general? Mar Environ Res. 2018;142:147–54.
    CAS  PubMed  Google Scholar 

    41.
    Kettner MT, Rojas‐Jimenez K, Oberbeckmann S, Labrenz M, Grossart HP. Microplastics alter composition of fungal communities in aquatic ecosystems. Environ Microbiol. 2017;19:4447–59.
    CAS  PubMed  Google Scholar 

    42.
    Kettner MT, Oberbeckmann S, Labrenz M, Grossart HP. The eukaryotic life on microplastics in brackish ecosystems. Front Microbiol. 2019;10:538.
    PubMed  PubMed Central  Google Scholar 

    43.
    Bayoudh S, Othmane A, Bettaieb F, Bakhrouf A, Ouada HB, Ponsonnet L. Quantification of the adhesion free energy between bacteria and hydrophobic and hydrophilic substrata. Mater Sci Eng C. 2006;26:300–5.
    CAS  Google Scholar 

    44.
    Bendinger B, Rijnaarts HH, Altendorf K, Zehnder AJ. Physicochemical cell surface and adhesive properties of coryneform bacteria related to the presence and chain length of mycolic acids. Appl Environ Microbiol. 1993;59:3973–7.
    CAS  PubMed  PubMed Central  Google Scholar 

    45.
    Thompson SE, Coates JC. Surface sensing and stress-signalling in Ulva and fouling diatoms–potential targets for antifouling: a review. Biofouling. 2017;33:410–32.
    PubMed  Google Scholar 

    46.
    Araya P, Chamy R, Mota M, Alves M. Biodegradability and toxicity of styrene in the anaerobic digestion process. Biotechnol Lett. 2000;22:1477–81.
    CAS  Google Scholar 

    47.
    Pinto M, Langer TM, Hüffer T, Hofmann T, Herndl GJ. The composition of bacterial communities associated with plastic biofilms differs between different polymers and stages of biofilm succession. PLoS ONE. 2019;14:e0217165.
    CAS  PubMed  PubMed Central  Google Scholar 

    48.
    Datta MS, Sliwerska E, Gore J, Polz MF, Cordero OX. Microbial interactions lead to rapid micro-scale successions on model marine particles. Nat Commun. 2016;7:11965.
    CAS  PubMed  PubMed Central  Google Scholar 

    49.
    Zobell CE. The effect of solid surfaces upon bacterial activity. J Bacteriol. 1943;46:39–56.
    CAS  PubMed  PubMed Central  Google Scholar 

    50.
    Karl DM, Björkman KM, Dore JE, Fujieki L, Hebel DV, Houlihan T, et al. Ecological nitrogen-to-phosphorus stoichiometry at station ALOHA. Deep Sea Res Part II: Topical Stud Oceanogr. 2001;48:1529–66.
    CAS  Google Scholar 

    51.
    Steinberg DK, Carlson CA, Bates NR, Johnson RJ, Michaels AF, Knap AH. Overview of the US JGOFS Bermuda Atlantic Time-series Study (BATS): a decade-scale look at ocean biology and biogeochemistry. Deep Sea Res II. 2001;48:1405–47.
    CAS  Google Scholar 

    52.
    Flemming H-C, Wuertz S. Bacteria and Archaea on Earth and their abundance in biofilms. Nat Rev Microbiol. 2019;17:247.
    CAS  PubMed  Google Scholar 

    53.
    Whitman WB, Coleman DC, Wiebe WJ. Prokaryotes: the unseen majority. Proc Natl Acad Sci. 1998;95:6578–83.
    CAS  PubMed  Google Scholar 

    54.
    Bjørnsen PK. Automatic determination of bacterioplankton biomass by image analysis. Appl Environ Microbiol. 1986;51:1199–204.
    PubMed  PubMed Central  Google Scholar 

    55.
    Bloem J, Veninga M, Shepherd J. Fully automatic determination of soil bacterium numbers, cell volumes, and frequencies of dividing cells by confocal laser scanning microscopy and image analysis. Appl Environ Microbiol. 1995;61:926–36.
    CAS  PubMed  PubMed Central  Google Scholar 

    56.
    Kallmeyer J, Pockalny R, Adhikari RR, Smith DC, D’Hondt S. Global distribution of microbial abundance and biomass in subseafloor sediment. Proc Natl Acad Sci. 2012;109:16213–6.
    CAS  PubMed  Google Scholar 

    57.
    Pernice MC, Forn I, Gomes A, Lara E, Alonso-Sáez L, Arrieta JM, et al. Global abundance of planktonic heterotrophic protists in the deep ocean. ISME J. 2015;9:782–92.
    CAS  PubMed  Google Scholar 

    58.
    Bölter M, Bloem J, Meiners K, Möller R. Enumeration and biovolume determination of microbial cells–a methodological review and recommendations for applications in ecological research. Biol Fertil Soils. 2002;36:249–59.
    Google Scholar  More

  • in

    Host age is not a consistent predictor of microbial diversity in the coral Porites lutea

    1.
    Pootakham, W. et al. Dynamics of coral-associated microbiomes during a thermal bleaching event. Microbiologyopen 7, e00604 (2018).
    PubMed  PubMed Central  Google Scholar 
    2.
    Krediet, C. J., Ritchie, K. B., Paul Valerie, J. & Max, T. Coral-associated micro-organisms and their roles in promoting coral health and thwarting diseases. Proc. R. Soc. B Biol. Sci. 280, 20122328 (2013).
    Google Scholar 

    3.
    Ziegler, M., Seneca, F. O., Yum, L. K., Palumbi, S. R. & Voolstra, C. R. Bacterial community dynamics are linked to patterns of coral heat tolerance. Nat. Commun. 8, 14213 (2017).
    ADS  CAS  PubMed  PubMed Central  Google Scholar 

    4.
    Rädecker, N., Pogoreutz, C., Voolstra, C. R., Wiedenmann, J. & Wild, C. Nitrogen cycling in corals: The key to understanding holobiont functioning?. Trends Microbiol. 23, 490–497 (2015).
    PubMed  Google Scholar 

    5.
    Ritchie, K. B. & Smith, G. W. Microbial communities of coral surface mucopolysaccharide layers. In Coral Health and Disease (eds Rosenberg, E. & Loya, Y.) 259–264 (Springer, Berlin Heidelberg, 2004).
    Google Scholar 

    6.
    Holm, J. B. & Heidelberg, K. B. Microbiomes of Muricea californica and M. fruticosa: Comparative analyses of two co-occurring eastern pacific octocorals. Front. Microbiol. 7, 917 (2016).
    PubMed  PubMed Central  Google Scholar 

    7.
    Sweet, M. J., Brown, B. E., Dunne, R. P., Singleton, I. & Bulling, M. Evidence for rapid, tide-related shifts in the microbiome of the coral Coelastrea aspera. Coral Reefs 36, 815–828 (2017).
    ADS  Google Scholar 

    8.
    Ziegler, M. et al. Coral microbial community dynamics in response to anthropogenic impacts near a major city in the central Red Sea. Mar. Pollut. Bull. 105, 629–640 (2016).
    CAS  PubMed  Google Scholar 

    9.
    Archer, S. D. J. et al. Air mass source determines airborne microbial diversity at the ocean–atmosphere interface of the Great Barrier Reef marine ecosystem. ISME J. https://doi.org/10.1038/s41396-019-0555-0 (2019).
    Article  PubMed  PubMed Central  Google Scholar 

    10.
    Wainwright, B. J., Afiq-Rosli, L., Zahn, G. L. & Huang, D. Characterisation of coral-associated bacterial communities in an urbanised marine environment shows strong divergence over small geographic scales. Coral Reefs https://doi.org/10.1007/s00338-019-01837-1 (2019).
    Article  Google Scholar 

    11.
    Chu, N. D. & Vollmer, S. V. Caribbean corals house shared and host-specific microbial symbionts over time and space. Environ. Microbiol. Rep. 8, 493–500 (2016).
    CAS  PubMed  Google Scholar 

    12.
    Wainwright, B. J., Bauman, A. G., Zahn, G. L., Todd, P. A. & Huang, D. Characterization of fungal biodiversity and communities associated with the reef macroalga Sargassum ilicifolium reveals fungal community differentiation according to geographic locality and algal structure. Mar. Biodivers. https://doi.org/10.1007/s12526-019-00992-6 (2019).
    Article  Google Scholar 

    13.
    Wainwright, B. J., Zahn, G. L., Arlyza, I. S. & Amend, A. S. Seagrass-associated fungal communities follow Wallace’s line, but host genotype does not structure fungal community. J. Biogeogr. 45, 762–770 (2018).
    Google Scholar 

    14.
    Hernandez-Agreda, A., Leggat, W., Bongaerts, P., Herrera, C. & Ainsworth, T. D. Rethinking the coral microbiome: Simplicity exists within a diverse microbial biosphere. mBio 9, e00812 (2018).
    PubMed  PubMed Central  Google Scholar 

    15.
    Williams, A. D., Brown, B. E., Putchim, L. & Sweet, M. J. Age-related shifts in bacterial diversity in a reef coral. PLoS ONE 10, e0144902 (2015).
    PubMed  PubMed Central  Google Scholar 

    16.
    Pollock, F. J. et al. Coral-associated bacteria demonstrate phylosymbiosis and cophylogeny. Nat. Commun. 9, 4921 (2018).
    ADS  PubMed  PubMed Central  Google Scholar 

    17.
    Epstein, H. E., Torda, G., Munday, P. L. & van Oppen, M. J. H. Parental and early life stage environments drive establishment of bacterial and dinoflagellate communities in a common coral. ISME J. 13, 1635–1638 (2019).
    CAS  PubMed  PubMed Central  Google Scholar 

    18.
    Yatsunenko, T. et al. Human gut microbiome viewed across age and geography. Nature 486, 222–227 (2012).
    ADS  CAS  PubMed  PubMed Central  Google Scholar 

    19.
    van Dongen, W. F. et al. Age-related differences in the cloacal microbiota of a wild bird species. BMC Ecol. 13, 11 (2013).
    PubMed  PubMed Central  Google Scholar 

    20.
    Huang, D. et al. Extraordinary diversity of reef corals in the South China Sea. Mar. Biodivers. 45, 157–168 (2015).
    Google Scholar 

    21.
    Toda, T. et al. Community structures of coral reefs around Peninsular Malaysia. J. Oceanogr. 63, 113–123 (2007).
    Google Scholar 

    22.
    Tanzil, J. T. I. et al. Regional decline in growth rates of massive Porites corals in Southeast Asia. Glob. Change Biol. 19, 3011–3023 (2013).
    ADS  Google Scholar 

    23.
    Tanzil, J. T. I. et al. Luminescence and density banding patterns in massive Porites corals around the Thai-Malay Peninsula, Southeast Asia. Limnol. Oceanogr. 61, 2003–2026 (2016).
    ADS  Google Scholar 

    24.
    Pootakham, W. et al. High resolution profiling of coral-associated bacterial communities using full-length 16S rRNA sequence data from PacBio SMRT sequencing system. Sci. Rep. 7, 2774 (2017).
    ADS  PubMed  PubMed Central  Google Scholar 

    25.
    Øvreås, L., Daae, F. L., Torsvik, V. & Rodríguez-Valera, F. Characterization of microbial diversity in hypersaline environments by melting profiles and reassociation kinetics in combination with terminal restriction fragment length polymorphism (T-RFLP). Microb. Ecol. 46, 291–301 (2003).
    PubMed  Google Scholar 

    26.
    Baker, B. J. & Banfield, J. F. Microbial communities in acid mine drainage. FEMS Microbiol. Ecol. 44, 139–152 (2003).
    CAS  PubMed  Google Scholar 

    27.
    Li, S.-J. et al. Microbial communities evolve faster in extreme environments. Sci. Rep. 4, 6205 (2014).
    CAS  PubMed  PubMed Central  Google Scholar 

    28.
    Peter, J. et al. A microbial signature of psychological distress in irritable bowel syndrome. Psychosom. Med. 80, 698–709 (2018).
    PubMed  PubMed Central  Google Scholar 

    29.
    Karl, J. P. et al. Effects of psychological, environmental and physical stressors on the gut microbiota. Front. Microbiol. https://doi.org/10.3389/fmicb.2018.02013 (2018).
    Article  PubMed  PubMed Central  Google Scholar 

    30.
    Guest, J. R. et al. 27 years of benthic and coral community dynamics on turbid, highly urbanised reefs off Singapore. Sci. Rep. 6, 36260 (2016).
    ADS  CAS  PubMed  PubMed Central  Google Scholar 

    31.
    Wong, J. S. Y. et al. Comparing patterns of taxonomic, functional and phylogenetic diversity in reef coral communities. Coral Reefs 37, 737–750 (2018).
    ADS  MathSciNet  Google Scholar 

    32.
    Chow, G. S. E., Chan, Y. K. S., Jain, S. S. & Huang, D. Light limitation selects for depth generalists in urbanised reef coral communities. Mar. Environ. Res. 147, 101–112 (2019).
    CAS  PubMed  Google Scholar 

    33.
    Calvani, R. et al. Of microbes and minds: A narrative review on the second brain aging. Front. Med. (Lausanne) https://doi.org/10.3389/fmed.2018.00053 (2018).
    Article  Google Scholar 

    34.
    Nagpal, R. et al. Gut microbiome and aging: Physiological and mechanistic insights. Nutr Healthy Aging 4, 267–285 (2018).
    PubMed  PubMed Central  Google Scholar 

    35.
    Choi, J., Hur, T.-Y. & Hong, Y. Influence of altered gut microbiota composition on aging and aging-related diseases. J. Lifestyle Med. 8, 1–7 (2018).
    PubMed  PubMed Central  Google Scholar 

    36.
    Soong, K., Chen, C. A. & Chang, J.-C. A very large poritid colony at Green Island, Taiwan. Coral Reefs 18, 42–42 (1999).
    Google Scholar 

    37.
    Goodkin, N. et al. Coral communities of Hong Kong: Long-lived corals in a marginal reef environment. Mar. Ecol. Prog. Ser. 426, 185–196 (2011).
    ADS  Google Scholar 

    38.
    Bythell, J. C., Brown, B. E. & Kirkwood, T. B. L. Do reef corals age?. Biol. Rev. 93, 1192–1202 (2018).
    PubMed  Google Scholar 

    39.
    Lee, N. L. Y., Huang, D., Quek, Z. B. R., Lee, J. N. & Wainwright, B. J. Mangrove-associated fungal communities are differentiated by geographic location and host structure. Front. Microbiol. https://doi.org/10.3389/fmicb.2019.02456 (2019).
    Article  PubMed  PubMed Central  Google Scholar 

    40.
    Wainwright, B. J. et al. Seagrass-associated fungal communities show distance decay of similarity that has implications for seagrass management and restoration. Ecol. Evol. 9, 11288–11297 (2019).
    PubMed  PubMed Central  Google Scholar 

    41.
    Röthig, T., Ochsenkühn, M. A., Roik, A., van der Merwe, R. & Voolstra, C. R. Long-term salinity tolerance is accompanied by major restructuring of the coral bacterial microbiome. Mol. Ecol. 25, 1308–1323 (2016).
    PubMed  PubMed Central  Google Scholar 

    42.
    Sin, T. M. et al. The urban marine environment of Singapore. Region. Stud. Mar. Sci. 8, 331–339 (2016).
    Google Scholar 

    43.
    Chénard, C. et al. Temporal and spatial dynamics of bacteria, Archaea and protists in equatorial coastal waters. Sci. Rep. 9, 1–13 (2019).
    Google Scholar 

    44.
    Ford, A. K. et al. Reefs under Siege—The rise, putative drivers, and consequences of benthic cyanobacterial mats. Front. Mar. Sci. https://doi.org/10.3389/fmars.2018.00018 (2018).
    Article  Google Scholar 

    45.
    Charpy, L., Casareto, B. E., Langlade, M. J. & Suzuki, Y. Cyanobacteria in coral reef ecosystems: A review. J. Mar. Biol. 2012, 1–9 (2012).
    Google Scholar 

    46.
    Huang, D., Tun, K., Chou, L. M. & Todd, P. A. An inventory of zooxanthellate scleractinian corals in Singapore, including 33 new records. Raffles Bull. Zool. Suppl. 22, 69 (2009).
    CAS  Google Scholar 

    47.
    Todd, P. A. et al. Towards an urban marine ecology: Characterizing the drivers, patterns and processes of marine ecosystems in coastal cities. Oikos https://doi.org/10.1111/oik.05946 (2019).
    Article  Google Scholar 

    48.
    Rubin, B. E. R. et al. Investigating the impact of storage conditions on microbial community composition in soil samples. PLoS ONE 8, e70460 (2013).
    ADS  CAS  PubMed  PubMed Central  Google Scholar 

    49.
    Lauber, C. L., Zhou, N., Gordon, J. I., Knight, R. & Fierer, N. Effect of storage conditions on the assessment of bacterial community structure in soil and human-associated samples: Influence of short-term storage conditions on microbiota. FEMS Microbiol. Lett. 307, 80–86 (2010).
    CAS  PubMed  PubMed Central  Google Scholar 

    50.
    Carruthers, L. V. et al. The impact of storage conditions on human stool 16S rRNA microbiome composition and diversity. PeerJ 7, e8133 (2019).
    PubMed  PubMed Central  Google Scholar 

    51.
    Veron, J. Corals of the World (Australian Institute of Marine Science, Townsville, 2000).
    Google Scholar 

    52.
    Forsman, Z., Wellington, G. M., Fox, G. E. & Toonen, R. J. Clues to unraveling the coral species problem: Distinguishing species from geographic variation in Porites across the Pacific with molecular markers and microskeletal traits. PeerJ 3, e751 (2015).
    PubMed  PubMed Central  Google Scholar 

    53.
    Forsman, Z. H., Barshis, D. J., Hunter, C. L. & Toonen, R. J. Shape-shifting corals: Molecular markers show morphology is evolutionarily plastic in Porites. BMC Evol. Biol. 9, 45 (2009).
    PubMed  PubMed Central  Google Scholar 

    54.
    Terraneo, T. I. et al. Environmental latitudinal gradients and host-specificity shape Symbiodiniaceae distribution in Red Sea Porites corals. J. Biogeogr. https://doi.org/10.1111/jbi.13672 (2019).
    Article  Google Scholar 

    55.
    Caporaso, J. G. et al. Global patterns of 16S rRNA diversity at a depth of millions of sequences per sample. PNAS 108, 4516–4522 (2011).
    ADS  CAS  PubMed  Google Scholar 

    56.
    Lundberg, D. S., Yourstone, S., Mieczkowski, P., Jones, C. D. & Dangl, J. L. Practical innovations for high-throughput amplicon sequencing. Nat. Methods 10, 999–1002 (2013).
    CAS  PubMed  Google Scholar 

    57.
    Martin, M. Cutadapt removes adapter sequences from high-throughput sequencing reads. EMBnet.journal 17, 10–12 (2011).
    Google Scholar 

    58.
    Callahan, B. J. et al. DADA2: High-resolution sample inference from Illumina amplicon data. Nat. Methods 13, 581–583 (2016).
    CAS  PubMed  PubMed Central  Google Scholar 

    59.
    Davis, N. M., Proctor, D. M., Holmes, S. P., Relman, D. A. & Callahan, B. J. Simple statistical identification and removal of contaminant sequences in marker-gene and metagenomics data. Microbiome 6, 226 (2018).
    PubMed  PubMed Central  Google Scholar 

    60.
    Cole, J. R. et al. The ribosomal database project (RDP-II): Introducing myRDP space and quality controlled public data. Nucleic Acids Res. 35, D169–D172 (2007).
    CAS  PubMed  Google Scholar 

    61.
    Quast, C. et al. The SILVA ribosomal RNA gene database project: Improved data processing and web-based tools. Nucleic Acids Res. 41, D590–D596 (2013).
    CAS  PubMed  PubMed Central  Google Scholar 

    62.
    Oksanen, J. et al. vegan: Community Ecology Package (2019).

    63.
    McMurdie, P. J. & Holmes, S. phyloseq: An R package for reproducible interactive analysis and graphics of microbiome census data. PLoS ONE 8, e61217 (2013).
    ADS  CAS  PubMed  PubMed Central  Google Scholar 

    64.
    Martin, B. D., Witten, D. & Willis, A. D. Modeling microbial abundances and dysbiosis with beta-binomial regression. Ann. Appl. Stat. 14, 94–115 (2020).
    MathSciNet  MATH  Google Scholar  More

  • in

    Robotic environmental DNA bio-surveillance of freshwater health

    ESP sample processing
    The ESP operated autonomously, needing only power, communications and fluid connections through its waterproof pressure housing (Fig. 1). Prior to sample initiation, the ESP was purged completely with nitrogen to reduce oxidative reactions (i.e., DNA degradation) from occurring. At the initiation of sampling, a puck (Fig. 1A cutout) loaded with filter material was placed within a clamp. Valves open to the outside allowed a syringe to sequentially pull water through the puck. Once the target volume was filtered, or the filter was loaded with biomass (i.e., ‘clogged’), filtering stopped and excess water was cleared. Five mL’s of RNAlater preservative was then added to the puck, soaking the filter for 10 min before the excess was evacuated and the puck was returned to storage. Preserved pucks were stored at the ESP temperature, which were similar to ambient air temperatures. The upper limit on the amount of time that an ESP device can operate in the field before DNA quality on a puck is comprised is not known but is at least 21 days10. A constant humidity kept the pucks moist, allowing for easy filter removal once the instrument was recovered.
    Figure 1

    The ESP is an electro-mechanical robot that can autonomously filter and preserve samples. (A) About the size of a 50-gal barrel, the ESP carries 132 ‘pucks’ (inset), each designed to hold 25 mm filters. (B) The ESP installed in a USGS streamgage station. (C) Streamgage station showing tubing run (white pipe) that contained pump and tubing to deliver stream water to the ESP. The ESP communicated via cell phone, and was powered during the deployment via either line power or portable solar arrays. Photo credits: U.S. Geological Survey.

    Full size image

    To get water to the ESP, we designed an external sampling module from which the ESP drew water11. The sampling module was self-draining, and fed by a submersible pump (WSP-12 V-2 M, Waterra USA Inc., Bellingham, W, USA) installed approximately 0.5 to 2 m below the river water line at each deployment site. To reduce possible carry-over contamination, the sampling pumps, tubing and external sampling modules were flushed with river water for 10 min prior to every sample collection. The sampling port of the ESP itself was cleaned with 10% bleach and a 10% tween-20 solution between samples. At the end of each ESP deployment, pucks were manually removed and filters were aseptically recovered into 2.0 mL screw cap centrifuge tubes and stored at − 80 ºC until molecular analyses were performed.
    Field deployments
    We performed initial ESP feasibility studies in Yellowstone National Park (USA; Fig. 2) in September 2017. Here, our goal was to determine if the ESP could be used to sample DNA of the waterborne protozoa, Naegleria spp., from a freshwater river where these organisms had previously been detected using standard techniques12. We filled 60-L sterilized carboys with water from the confluence of the Boiling and Gardner rivers. Carboys were transported to a lab at Montana State University (Bozeman, Montana) and connected to ESP samplers via tubing and syringe pumps. Water was passed through each filter (5-µm Diapore filters) until the filter became clogged; six samples were filtered.
    Figure 2

    Map of ESP water sampling locations. The inset map shows the location of the Upper Yellowstone River and Upper Snake River in the United States. The larger map shows the sample site locations (filled red circles) on each river relative to Yellowstone National Park and Grand Teton National Park (outlined in green).

    Full size image

    We then integrated the ESPs into two USGS streamgages on the Yellowstone River in 2018 and one USGS streamgage on the Snake River in 2019, (Fig. 1B,C) where we tested for DNA of the fish pathogen, Tetracapsuloides bryosalmonae, the causative agent of salmonid fish Proliferative Kidney Disease (PKD). On the Yellowstone River, we installed ESPs at the streamgage near the upstream and downstream extents of a recent PKD outbreak13, USGS 06191500 Yellowstone River at Corwin Springs MT and USGS 06192500 Yellowstone River near Livingston MT, described below as Corwin Springs and Carters Bridge, respectively (Fig. 2). On the Snake River, we installed one ESP at the streamgage 1.5 km downstream of Palisades Reservoir near the upstream extent of a recent PKD outbreak, USGS 13032500 Snake River near Irwin ID. The ESP pucks were loaded with 1.2-µm cellulose nitrate filters. We ran two negative controls (1 L of molecular grade water) through the ESP prior to and at the conclusion of deployment to assess for contamination.
    Yellowstone River
    The ESPs were programmed to collect 1-L samples every 12 h, from Jul 24 to Aug 26 2018, and every 3 h from Aug 27 to Sep 7 2018. The average (± 1 SE) volume filtered per sample was 639 (± 11) mL, indicating that most filters clogged prior to reaching the 1-L target volume. Filter samples were collected at ambient air temperatures ranging from 9.6 to 35.8 °C ((overline{x})  = 18.9) at Carter’s Bridge and 8.3–29.0 °C ((overline{x})  = 17.1) at Corwin Springs. We compared T. bryosalmonae ESP detections to those from manually collected grab samples from shore (6, 250-mL samples per site filtered through 1.2-µm cellulose nitrate filters) collected at weekly frequencies for the entire length of the ESP deployments and at daily frequencies between Aug 27 and Aug 30. Thus, ESP and manual eDNA samples collected at different temporal intervals (3 h, 12 h or weekly) allowed us to evaluate the added value of higher frequency sampling.
    We also evaluated the utility of automated high frequency sampling to detect a new invasion by introducing novel DNA of Scomber japonicas (mackerel fish) 100 m upstream of each Yellowstone River streamgage. On Aug 27, we introduced 3 kg of canned S. japonicas 100 m upstream of the water sampling inlet for each ESP. S. japonicas was blended with water, frozen and then placed within metal-wire minnow traps and anchored to the river’s bottom with cement pavers. The ESPs were programmed to sample every 3 h from Aug 27 to Sep 7. Manual grab samples (600 mL) were collected 10 m (n = 3), 100 m (n = 6), and 400 m (n = 3) downstream of the S. japonicas in order to test that S. japonicas DNA was transported downstream past the water sampling inlet of each ESP. Manual grab samples were collected immediately prior to S. japonicas introductions, 3 h post-introduction and then every 24 h for 3 days.
    Snake River
    The ESPs were programmed to collect 2-L samples every 12 h from Jul 17 to Sep 09 and then every 4 h from Sep 10 to Oct 1, 2019. Manually collected grab samples (three, 2-L samples filtered through 1.5-µm glass fiber filters) and negative field controls (1, 2-L sample of deionized water filtered through 1.5-µm glass fiber filters) were collected every 2 weeks following methods in Sepulveda et al.7. Filter samples were collected at ambient air temperatures ranging from 3.9 to 30.2 °C ((overline{x})  = 20.6). To broaden our taxonomic assessment, we tested these samples for T. bryosalmonae DNA, and also for kokanee salmon (Oncorhynchus nerka) and dreissenid mussel (Dreissena spp.) DNA. O. nerka only occur upstream in Palisades Reservoir and at such low abundances that they are not captured by resource managers in annual population surveys7. Dreissenid mussels have not yet been observed, but are the principal focus of aquatic invasive species monitoring programs in this region7.
    Molecular analyses
    Filters were removed from the pucks and then shipped frozen to the USGS Upper Midwest Environmental Science Center (LaCrosse, Wisconsin) for DNA extraction and quantitative PCR analyses. Filters were handled and stored in a dedicated room that is physically separated from rooms where high-quantity DNA extraction and PCR product or high-quality DNA is handled. We used the FastDNA SPIN kit for soil to extract DNA on samples from the Boiling River-Gardiner River confluence, following modifications described in Barnhart et al.14. To extract DNA from Yellowstone River and Snake River samples, we used the Investigator Lyse & Spin Basket Kit (Qiagen, Hilden, Germany) in concert with the gMax Mini genomic DNA kit (IBI Scientific), following manufacturer’s instructions, and eluted in 200 µL of buffer. Samples were extracted as site specific batches and one extraction control was collected per batch. We used previously published assays, limits of detection and methods therein for analyses of Naegleria spp.12, T. bryosalmonae13, S. japonicas15, O. nerka7, and Dreissena spp.16 (Table 1).
    Table 1 Primers and probes used in this study.
    Full size table

    We analyzed all samples in four replicate 25 µL reactions containing 2 µL of template DNA, 1 × Perfecta Toughmix (Quantabio), 400 nM forward and reverse primers, and 100 nM probe. Each plate contained 10 no-template PCR controls (one for each sample) using 2 µL of molecular grade water as the template as well as a standard curve with two replicates of 20,000 and 2,000 copy standards and four replicates of 200 and 20 copy standards. The standards were prepared with synthetic gBlocks (Integrated DNA Technologies) containing the amplicon sequences for each assay. Each sample was also analyzed in three replicates with 200 copies of synthetic gBlock spiked in to check for PCR inhibition. Any sample that indicated less than an average of 60 to 70 copies of targeted DNA in these triplicate samples was considered inhibited. Field and extraction negative controls were analyzed as regular samples. No negative controls amplified.
    Analyses
    Samples were scored as positive when one or more PCR replicates amplified for the target DNA. We used McNemar’s Exact Test to compare binary qPCR data (detection/non-detection) of T. bryosalmonae and O. nerka DNA between ESP and manually collected samples in the Yellowstone and Snake rivers. More

  • in

    Hunting strategies to increase detection of chronic wasting disease in cervids

    1.
    Wasserberg, G., Osnas, E. E., Rolley, R. E. & Samuel, M. D. Host culling as an adaptive management tool for chronic wasting disease in white-tailed deer: a modelling study. J. Appl. Ecol. 46, 457–466 (2009).
    PubMed  Google Scholar 
    2.
    Heberlein, T. A. “Fire in the Sistine Chapel”: How Wisconsin responded to chronic wasting disease. Hum. Dimens Wildl. 9, 165–179 (2004).
    Google Scholar 

    3.
    Donnelly, C. A. & Woodroffe, R. Badger-cull targets unlikely to reduce TB. Nature 526, 640 (2015).
    ADS  CAS  PubMed  Google Scholar 

    4.
    Turner, W. C. et al. Fatal attraction: vegetation responses to nutrient inputs attract herbivores to infectious anthrax carcass sites. Proc. R. Soc. Lond. Ser. B 281, https://doi.org/10.1098/rspb.2014.1785 (2014).

    5.
    Uehlinger, F. D., Johnston, A. C., Bollinger, T. K. & Waldner, C. L. Systematic review of management strategies to control chronic wasting disease in wild deer populations in North America. BMC Vet. Res. 12, 1–16 (2016).
    Google Scholar 

    6.
    Tildesley, M. J., Bessell, P. R., Keeling, M. J. & Woolhouse, M. E. J. The role of pre-emptive culling in the control of foot-and-mouth disease. Proc. R. Soc. Lond. Ser. B 276, 3239 (2009).
    Google Scholar 

    7.
    te Beest, D. E., Hagenaars, T. J., Stegeman, J. A., Koopmans, M. P. & van Boven, M. Risk based culling for highly infectious diseases of livestock. Vet. Res. 42, 81 (2011).
    Google Scholar 

    8.
    Benestad, S. L., Mitchell, G., Simmons, M., Ytrehus, B. & Vikøren, T. First case of chronic wasting disease in Europe in a Norwegian free-ranging reindeer. Vet. Res. 47, 88 (2016).
    PubMed  PubMed Central  Google Scholar 

    9.
    Haley, N. J. & Hoover, E. A. Chronic wasting disease of cervids: current knowledge and future perspectives. Annu. Rev. Anim. Biosci. 3, 305–325 (2015).
    CAS  PubMed  Google Scholar 

    10.
    USGS. Expanding Distribution of Chronic Wasting Disease https://www.usgs.gov/centers/nwhc/science/expanding-distribution-chronic-wasting-disease?qt-science_center_objects=0#qt-science_center_objects (USGS, 2019).

    11.
    Edmunds, D. R. et al. Chronic wasting disease drives population decline of white-tailed deer. PLoS ONE 11, e0161127 (2016).
    PubMed  PubMed Central  Google Scholar 

    12.
    DeVivo, M. T. et al. Endemic chronic wasting disease causes mule deer population decline in Wyoming. PLoS ONE 12, e0186512 (2017).
    PubMed  PubMed Central  Google Scholar 

    13.
    Mysterud, A. & Rolandsen, C. M. A reindeer cull to prevent chronic wasting disease in Europe. Nat. Ecol. Evol. 2, 1343–1345 (2018).
    PubMed  Google Scholar 

    14.
    V. K. M. Ytrehus, et al. Factors that can Contribute to Spread of CWD—An Update on the Situation in Nordfjella, Norway (Opinion of the Panel on biological hazards. Norwegian Scientific Committee for Food and Environment (VKM), Oslo, Norway, 2018).

    15.
    Vors, L. S. & Boyce, M. S. Global declines of caribou and reindeer. Glob. Change Biol. 15, 2626–2633 (2009).
    ADS  Google Scholar 

    16.
    Diefenbach, D. R., Rosenberry, C. S. & Boyd, R. C. From the field: efficacy of detecting chronic wasting disease via sampling hunter-killed white-tailed deer. Wildl. Soc. Bull. 32, 267–272 (2004).
    Google Scholar 

    17.
    Rees, E. E. et al. Targeting the detection of chronic wasting disease using the hunter harvest during early phases of an outbreak in Saskatchewan, Canada. Prev. Vet. Med. 104, 149–159 (2012).
    PubMed  Google Scholar 

    18.
    Belsare, A. V. et al. An agent-based framework for improving wildlife disease surveillance: a case study of chronic wasting disease in Missouri white-tailed deer. Ecol. Model. 417, 108919 (2020).
    Google Scholar 

    19.
    Walsh, D. P. & Miller, M. W. A weighted surveillance approach for detecting chronic wasting disease foci. J. Wildl. Dis. 46, 118–135 (2010).
    PubMed  Google Scholar 

    20.
    Heisey, D. M. et al. Linking process to pattern: estimating spatiotemporal dynamics of a wildlife epidemic from cross-sectional data. Ecol. Monogr. 80, 221–240 (2010).
    Google Scholar 

    21.
    Miller, M. W. & Conner, M. M. Epidemiology of chronic wasting disease in free-ranging mule deer: Spatial, temporal, and demographic influences on observed prevalence patterns. J. Wildl. Dis. 41, 275–290 (2005).
    PubMed  Google Scholar 

    22.
    Samuel, M. D. & Storm, D. J. Chronic wasting disease in white-tailed deer: infection, mortality, and implications for heterogeneous transmission. Ecol. 97, 3195–3205 (2016).
    Google Scholar 

    23.
    Mysterud, A., Coulson, T. & Stenseth, N. C. The role of males in the population dynamics of ungulates. J. Anim. Ecol. 71, 907–915 (2002).
    Google Scholar 

    24.
    Ginsberg, J. R. & Milner-Gulland, E. J. Sex biased harvesting and population dynamics in ungulates: implications for conservation and sustainable use. Cons. Biol. 8, 157–166 (1994).
    Google Scholar 

    25.
    Milner-Gulland, E. J., Coulson, T. N. & Clutton-Brock, T. H. On harvesting a structured ungulate population. Oikos 88, 592–602 (2000).
    Google Scholar 

    26.
    Stärk, K. D. C. et al. Concepts for risk-based surveillance in the field of veterinary medicine and veterinary public health: review of current approaches. BMC Health Serv. Res. 6, 20 (2006).
    PubMed  PubMed Central  Google Scholar 

    27.
    Martin, P. A., Cameron, A. R. & Greiner, M. Demonstrating freedom from disease using multiple complex data sources. Prev. Vet. Med. 79, 71–97 (2007).
    CAS  PubMed  Google Scholar 

    28.
    Cannon, R. M. Demonstrating disease freedom-combining confidence levels. Prev. Vet. Med. 52, 227–249 (2002).
    CAS  PubMed  Google Scholar 

    29.
    Sutherland, W. J. et al. A 2018 horizon scan of emerging Issues for global conservation and biological diversity. Trends Ecol. Evol. 33, 47–58 (2018).
    PubMed  Google Scholar 

    30.
    EFSA Panel on Biological Hazards (BIOHAZ), Ricci, A. et al. Chronic wasting disease (CWD) in cervids. EFSA J. 15, 4667 (2016).
    Google Scholar 

    31.
    Vicente, J. et al. Science-based wildlife disease response. Science 364, 943 (2019).
    ADS  PubMed  Google Scholar 

    32.
    Schalk, G. & Forbes, M. R. Male biases in parasitism of mammals: effects of study type, host age, and parasite taxon. Oikos 78, 67–74 (1997).
    Google Scholar 

    33.
    Córdoba-Aguilar, A. & Munguía-Steyer, R. The sicker sex: understanding male biases in parasitic infection, resource allocation and fitness. Plos One 8, e76246 (2013).
    ADS  PubMed  PubMed Central  Google Scholar 

    34.
    Milner-Gulland, E. J. et al. Reproductive collapse in saiga antelope harems. Nature 422, 135 (2003).
    ADS  CAS  PubMed  Google Scholar 

    35.
    Sargeant, G. A., Weber, D. C. & Roddy, D. E. Implications of chronic wasting disease, cougar predation, and reduced recruitment for elk management. J. Wildl. Manag. 75, 171–177 (2011).
    Google Scholar 

    36.
    Monello, R. J. et al. Survival and population growth of a free-ranging elk population with a long history of exposure to Chronic wasting disease. J. Wildl. Manag. 78, 214–223 (2014).
    Google Scholar 

    37.
    Argue, C. K., Ribble, C., Lees, V. W., McLane, J. & Balachandran, A. Epidemiology of an outbreak of chronic wasting disease on elk farms in Saskatchewan. Can. Vet. J. 48, 1241–1248 (2007).
    PubMed  PubMed Central  Google Scholar 

    38.
    Delahay, R. J. Smith, G. C. & Hutchings, M. R. Management of Disease in Wild Mammals (Springer, Tokyo, Japan, 2009).

    39.
    Almberg, E. S., Cross, P. C., Johnson, C. J., Heisey, D. M. & Richards, B. J. Modeling routes of chronic wasting disease transmission: environmental prion persistence promotes deer population decline and extinction. PLoS ONE 6, e19896 (2011).
    ADS  CAS  PubMed  PubMed Central  Google Scholar 

    40.
    Keeling, M. J. The effects of local spatial structure on epidemiological invasions. Proc. R. Soc. Lond. Ser. B 266, 859–867 (1999).
    CAS  Google Scholar 

    41.
    Joly, D. O., Samuel, M. D., Langenberg, J. A., Rolley, R. E. & Keane, D. P. Surveillance to detect chronic wasting disease in white-tailed deer in Wisconsin. J. Wildl. Dis. 45, 989–997 (2009).
    PubMed  Google Scholar 

    42.
    Nusser, S. M., Clark, W. R., Otis, D. L. & Huang, L. Sampling considerations for disease surveillance in wildlife populations. J. Wildl. Manag. 72, 52–60 (2008).
    Google Scholar 

    43.
    Osnas, E. E., Heisey, D. M., Rolley, R. E. & Samuel, M. D. Spatial and temporal patterns of chronic wasting disease: fine-scale mapping of a wildlife epidemic in Wisconsin. Ecol. Appl. 19, 1311–1322 (2009).
    PubMed  Google Scholar 

    44.
    Samuel, M. D. et al. Surveillance strategies for detecting chronic wasting disease in free-ranging deer and elk – results of a CWD surveillance workshop. https://pubs.er.usgs.gov/publication/70006758 (U.S. Geological Survey Conference publication, Madison, WI, 2003).

    45.
    Spraker, T. R. et al. Spongiform encephalopathy in free-ranging mule deer (Odocoileus hemionus), white-tailed deer (Odocoileus virginianus) and Rocky Mountain elk (Cervus elaphus nelsoni) in northcentral Colorado. J. Wildl. Dis. 33, 1–6 (1997).
    CAS  PubMed  Google Scholar 

    46.
    Panzacchi, M. et al. Predicting the continuum between corridors and barriers to animal movements using Step Selection Functions and Randomized Shortest Paths. J. Anim. Ecol. 85, 32–42 (2015).
    PubMed  Google Scholar 

    47.
    Ziller, M., Selhorst, T., Teuffert, J., Kramer, M. & Schlüter, H. Analysis of sampling strategies to substantiate freedom from disease in large areas. Prev. Vet. Med. 52, 333–343 (2002).
    CAS  PubMed  Google Scholar 

    48.
    Jongman, R. H. G. Homogenisation and fragmentation of the European landscape: ecological consequences and solutions. Landsc. Urban Plan. 58, 211–221 (2002).
    Google Scholar 

    49.
    Holand, Ø. et al. The effect of sex ratio and male age structure on reindeer calving. J. Wildl. Manag. 67, 25–33 (2003).
    Google Scholar 

    50.
    Sæther, B.-E., Solberg, E. J. & Heim, M. Effects of altering sex ratio structure on the demography of an isolated moose population. J. Wildl. Manag. 67, 455–466 (2003).
    Google Scholar 

    51.
    Morina, D. L., Demarais, S., Strickland, B. K. & Larson, J. E. While males fight, females choose: male phenotypic quality informs female mate choice in mammals. Anim. Behav. 138, 69–74 (2018).
    Google Scholar 

    52.
    Bro-Jørgensen, J. Overt female competition and preference for central males in a lekking antelope. Proc. Natl Acad. Sci. USA 99, 9290–9293 (2002).
    ADS  PubMed  Google Scholar 

    53.
    Andres, D. et al. Sex differences in the consequences of maternal loss in a long-lived mammal, the red deer (Cervus elaphus). Behav. Ecol. Sociobiol. 67, 1249–1258 (2013).
    Google Scholar 

    54.
    Ericsson, G. Reduced cost of reproduction in moose Alces alces through human harvest. Alces 37, 61–69 (2001).
    Google Scholar 

    55.
    Apollonio, M. Andersen, R. & Putman, R. European Ungulates and their Management in the 21st Century (Cambridge University Press, Cambridge, 2010).

    56.
    Mawson, P. R., Hampton, J. O. & Dooley, B. Subsidized commercial harvesting for cost-effective wildlife management in urban areas: a case study with kangaroo sharpshooting. Wildl. Soc. Bull. 40, 251–260 (2016).
    Google Scholar 

    57.
    Manjerovic, M. B., Green, M. L., Mateus-Pinilla, N. & Novakofski, J. The importance of localized culling in stabilizing chronic wasting disease prevalence in white-tailed deer populations. Prev. Vet. Med. 113, 139–145 (2014).
    PubMed  Google Scholar 

    58.
    Mateus-Pinilla, N., Weng, H. Y., Ruiz, M. O., Shelton, P. & Novakofski, J. Evaluation of a wild white-tailed deer population management program for controlling chronic wasting disease in Illinois, 2003-2008. Prev. Vet. Med. 110, 541–548 (2013).
    PubMed  Google Scholar 

    59.
    Vaske, J. J. Lessons learned from human dimensions of chronic wasting disease research. Hum. Dimens Wildl. 15, 165–179 (2010).
    Google Scholar 

    60.
    Mysterud, A., Strand, O. & Rolandsen, C. M. Efficacy of recreational hunters and marksmen for host culling to combat chronic wasting disease in reindeer. Wildl. Soc. Bull. 43, 683–692 (2019).
    Google Scholar 

    61.
    Gaydos, D. A., Petrasova, A., Cobb, R. C. & Meentemeyer, R. K. Forecasting and control of emerging infectious forest disease through participatory modelling. Philos. Trans. R. Soc. Lond. B Biol. Sci. 374, 20180283 (2019).
    PubMed  PubMed Central  Google Scholar 

    62.
    Strand, O., Nilsen, E. B., Solberg, E. J. & Linnell, J. D. C. Can management regulate the population size of wild reindeer (Rangifer tarandus) through harvest? Can. J. Zool. 90, 163–171 (2012).
    Google Scholar 

    63.
    Nilsen, E. B. & Strand, O. Integrating data from several sources for increased insight into demographic processes: Simulation studies and proof of concept for hierarchical change in ratio models. PLoS ONE 13, e0194566 (2018).
    PubMed  PubMed Central  Google Scholar 

    64.
    Viljugrein, H. et al. A method that accounts for differential detectability in mixed samples of long-term infections with applications to the case of chronic wasting disease in cervids. Methods Ecol. Evol. 10, 134–145 (2019).
    Google Scholar 

    65.
    Mysterud, A. et al. The demographic pattern of infection with chronic wasting disease in reindeer at an early epidemic stage. Ecosphere 10, e02931 (2019).
    Google Scholar 

    66.
    MacDiarmid, S. C. A theoretical basis for the use of a skin test for brucellosis surveillance in extensively-managed cattle herds. Rev. Sci. Tech. Int Epiz 6, 1029–1035 (1987).
    CAS  Google Scholar 

    67.
    Viljugrein, H. Accompanying Code for the Paper “Hunting Wildlife to Increase Disease Detection” Version v1.0.0, August 4-2020) https://doi.org/10.5281/zenodo.3972037 (Zenodo, 2020). More