Photosynthetic base of reduced grain yield by shading stress during the early reproductive stage of two wheat cultivars
Wheat cultivars and growing conditions
In this study, pot and field experiments with the shade-tolerant cultivar Henong825 and the shade-sensitive cultivar Kenong9204 were performed. These two winter wheat cultivars were identified with different degrees of shade tolerance by our previous study17. Both cultivars are released by Hebei Province, China, which are the most widely planted wheat cultivars in North China Plain. The parental combination of Henong825 and Kenong9204 is Linyuan95-3091/Shi4185, SA502/6021, respectively. Henong825 is characterized by strong lodging resistance. Kenong9204 is characterized by suitable for moderate water and fertilizer. Two field experiments were conducted during the 2016–2017 and 2017–2018 wheat-growing seasons in the Luancheng agro-ecosystem experimental station of the Chinese Academy of Sciences, Hebei Province (37° 53′ N and 114° 41′ E; elevation at 50 m). The climate characterizing of the study region is summer monsoon. The mean temperature, total precipitation, and solar radiation in both the winter wheat-growing seasons are shown in Table 5. The soil used in the experiments was loam containing 21.41 g kg−1 organic matter, 109.55 mg kg−1 alkaline nitrogen (N), 1.44 g kg−1 total N, 15.58 mg kg−1 available phosphorus (P), and 220 mg kg−1 rapidly available potassium (K). In both seasons, soils were fertilized with urea (N, 46%) and complete fertilizer (N–P, 21–54%) at 300 kg ha−1 and 375 kg ha−1. Seeds were sown by hand on October 6, 2016 and October 17, 2017, then the seedlings emerged 1 week later. In 2017 growing season, the YM stage was on April 15, and anthesis stage was on May 1 in both cultivars. In 2018 growing season, the YM stage was on April 16, and anthesis stage was on May 2 in both cultivars. The seedling density was 166 m−2, which is the norm in this region.
Table 5 The monthly mean temperature (°C), total precipitation (mm), and solar radiation (MJ m−2 day−1) during the two growing seasons of winter wheat in 2016–2017 and 2017–2018.
Full size table
Experimental design
This study was a combination of field experiment and pot experiment to investigate the effect of different shading intensity and duration during YM stage on grain components and photosynthetic characteristics. Pot experiment was supplement to field experiment.
Field experiments
The experiments were arranged in a randomized split-split plot design with three replicates. The main plots were split into three subplots subjected to one of three shading intensities: 100% (CK, control), 40% (S1), and 10% (S2) of natural light. Each subplot was split into four sub-subplots, which were randomly allocated to one of four durations: 1 day (D1), 3 days (D3), 5 days (D5), and 7 days (D7) during the YM stage. The shading treatments were conducted in these periods and replicated three times. Each plot size was 6 m long and 2 m wide, with 40 rows. There were 72 plots. Different degrees of artificial shade were provided by using black polyethylene screens horizontally installed at a height of 2 m above the ground.
Determination of YM stage
The YM stage roughly corresponds to Zadok’s scale from Z37 (main stem with flag leaf is visible) to Z39 (flag leaf ligule is noticeable). According to previous researches of YM stage, the estimated measurement of the YM stage was based on the auricle distance (AD, the distance between the auricle of the flag leaf and the auricle of the penultimate leaf) of main stem43,44. In order to keep the relationship between the occurrence of YM and AD unchanged, the field management practices, adequate irrigation was the same in two growing-seasons. Moreover, for each experiment, at the onset of appearance of the flag leaf of the main stem, 30 anthers of ten main stem spike of wheat were randomly sampled to establish the timing of YM stage initiation1. The correlation of the AD with the development of the YM stage in the florets of the two cultivars was measured and observed using microscope (Fig. 9). The cultivar Henong825 reached the YM stage at 1–2 cm, whereas Kenong9204 reached the YM stage at − 1 to 0 cm. To capture the YM stage in the shading condition, the plants were subjected to shading stress ahead of the YM stage occurrence. When more than 50% of the plants in each plot reached − 2 cm in Henong825 and − 4 cm in Kenong9204, the main stem of the plants was tagged, and shading stress was applied in each plot. Each experimental plot for Henong825 and Kenong9204 was independently subjected to shading stress on April 15, 2017 and April 16, 2018. When the shading stress treatments ended, the shade screens were removed and were exposed to natural light until they matured. Air temperature, light intensity, and relative humidity above the canopy were recorded using a portable weather station (ECA-YW0501; Beijing, China) during the shading period. Light spectral was measured using a portable geographic spectrometer (PSR + 3500, USA). The irradiance of spectral wavelength ranging from 350 to 2,500 nm was measured. The proportions of blue light (B/T), green light (G/T), red light (R/T), far-red light (FR/T), and red/far red (R/FR) were calculated according to their irradiance at 400–500 nm, 500–600 nm, 600–700 nm, and 700–800 nm, respectively. Following the local field management practices, adequate irrigation was conducted three times during the overwinter, jointing, and anthesis stages of the wheat-growing season. Weeds, fungal diseases, and insect pests were controlled through spraying of conventional herbicides, fungicides, and insecticides, correspondingly.
Figure 9
The relationship between anther development and shading period in two wheat cultivars.
Full size image
Pot experiments
The pot experiments were conducted in a temperature-controlled glasshouse. Vernalized seedlings of the two wheat cultivars were transplanted to pots (45 cm in length, 28.5 cm in width and 20 cm in height; 18 plants in each pot; three pots for each treatment group) containing a mixture of vermiculite and nutritional soil (1:1). All wheat seedlings were grown at a day temperature of 25 °C, night temperature of 15 °C, and light intensity of 800 μmol m−2 s−1. When the AD of the main stems of Henong825 and Kenong9204 cultivars were approximately − 2 cm and − 4 cm, respectively, the main stem of the plants was tagged, and shading stress was applied in each treatment. Shading treatments groups were the different shading intensities and shading durations previously mentioned. The shading condition in glasshouse was simulated with black polyethylene screen to keep up with the experimental methods in the field. After shading stress, the shading nets were removed, until the crops matured.
Sampling and measurements
Photosynthetic rate, stomatal conductance, intercellular carbon dioxide, and chlorophyll fluorescence parameters
In field experiments, three randomly selected flag leaves on the tagged main stems of plants in each plot were analyzed to determine Pn, Gs, Ci, and chlorophyll fluorescence. For each shading treatment group, Pn, Gs, and Ci were measured using an LI-6400XT portable system (LI-COR Biosciences, Nebraska, USA), and the chamber of which was equipped with a red/blue LED light source (LI6400-02B) before the shading stress was removed. Before measurement, the machine was preheated for 30 min, and checked, adjusted to zero, calibrated according to the instructions. Moreover, the light intensity in measured chamber was equivalent of shading treatment conditions. The flow rates was set at 500 μmol s−1, The temperature in chamber was set 25 °C. The CO2 concentration was set to 400 μmol mol−1, which was provided by carbon dioxide cylinders to maintain a stable CO2 environment. The chlorophyll fluorescence of flag leaves on the tagged main stems of plants were measured using a modulate chlorophyll fluorescence imaging system (Imaging-PAM; Hansatech, UK) in each plot. The primary light energy conversion efficiency of PSII (Fv/Fm) and actual photochemical quantum efficiency (YII) were measured after 30 min of dark adaptation. The saturation irradiance (PARsat) and maximum electron transport (Jmax) of flag leaves in each treatment were calculated using a modified rectangular hyperbola. On the day next to shading removal, the Pn of three flag leaves from each replicate plot were measured.
Chlorophyll content
For glasshouse pot experiments, nine flag leaves (three leaves were randomly selected per pot from three pots in each treatment group) tagged main stems of plant were selected prior to the removal of shading. The flag leaves were then sliced following the removal of the main vein. After the sliced fresh leaves were weighed to 0.1 g, the chlorophyll content of leaves was extracted with 80% acetone for 48 h and analyzed through micro-determination (Thermo Varioskan Flash, USA). The absorbance of chlorophyll a (chl a) and chlorophyll b (chl b) was read at 663 and 646 nm, respectively (Thermo Varioskan Flash, USA), and the chlorophyll contents were calculated according to following equations: chl a (mg/g) = (12.7 × A663 nm–2.69 × A646 nm)/(100 × M); and chl b (mg/g) = (22.9 × A646 nm–4.68 × A663 nm)/(100 × M) where A663 and A646 are absorption levels at 663 and 646 nm, respectively; M is leaf fresh weight. The total chlorophyll (chl a + chl b) values were calculated by chl a and chl b values.
Leaf anatomy and surface characteristics
The approximately 2-mm2 leaf sections in D7 treatments and one day after recovery were harvested from the center of three flag leaves on the tagged main stems of plants using a scalpel and were rapidly fixed in electron microscope fixation fluid at 4 °C overnight. Stomatal apertures and chloroplast ultrastructure were observed by Servicebio (Wuhan) using a scanning electron microscope (SU8100; Hitachi) and a transmission electron microscope (HT7700; Hitachi). Simultaneously, the fully expanded flag leaves collected from plants in each treatment were fixed with FAA solution and embedded in paraffin to measure the leaf anatomical structure. The embedded wax block were sectioned to a thickness of 8 μm, then following dewaxing in environmental transparent solution and rehydration in a series of graded alcohol solutions. Finally, the tissue samples were stained with safranin and fast green, observed under a Leica DM6 microscope (Leica, Germany), and the respective images were obtained.
Grain yield, yield components, and aboveground biomass
At harvest in the field experiments during both growing seasons, 60 tagged plants per replicate were randomly sampled to determine grain yield components. The harvested plants were naturally dried to a grain water content of approximately 11%. Each tagged plant was then threshed using a single plant threshing machine to determine the grain number and grain yield needed for the estimation of the average grain weight. In addition, 30 tagged winter wheat plants were uprooted randomly and gradually by hand from each plot. Each plant was cut from the root and was dried at 80 °C. Aboveground biomass was measured using a precision digital balance (model BSA3202S; Sartorius, Germany) with a precision of 0.01 g.
Statistical analysis
The experimental data for grain yield, yield components, biomass and chlorophyll fluorescence parameters were analyzed using a general linear model procedure (GLM) in SPSS 22.0 for a split-split plot design. The significant differences among treatment mean values were determined by the least significance difference analysis (LSD, P More