A global biophysical typology of mangroves and its relevance for ecosystem structure and deforestation
1.
Barbier, E. B. et al. The value of estuarine and coastal ecosystem services. Ecol. Monogr. 81, 169–193 (2011).
Google Scholar
2.
Brander, L. M. et al. Ecosystem service values for mangroves in Southeast Asia: A meta-analysis and value transfer application. Ecosyst. Serv. 1, 62–69 (2012).
Google Scholar
3.
UNEP. The Importance of Mangroves to People: A Call to Action (United Nations Environment Programme World Conservation Monitoring Centre, Cambridge, 2014).
Google Scholar
4.
Spalding, M. & Parrett, C. L. Global patterns in mangrove recreation and tourism. Mar. Policy 110, 103540 (2019).
Google Scholar
5.
Valiela, I., Bowen, J. L. & York, J. K. Mangrove forests: One of the world’s threatened major tropical environments. Bioscience 51, 807–815 (2001).
Google Scholar
6.
Richards, D. R. & Friess, D. A. Rates and drivers of mangrove deforestation in Southeast Asia, 2000–2012. Proc. Natl. Acad. Sci. 113, 344–349 (2016).
ADS CAS PubMed Google Scholar
7.
Sloan, S. & Sayer, J. A. Forest Resources Assessment of 2015 shows positive global trends but forest loss and degradation persist in poor tropical countries. For. Ecol. Manag. 352, 134–145 (2015).
Google Scholar
8.
de Groot, R. et al. Global estimates of the value of ecosystems and their services in monetary units. Ecosyst. Serv. 1, 50–61 (2012).
Google Scholar
9.
Himes-Cornell, A., Pendleton, L. & Atiyah, P. Valuing ecosystem services from blue forests: A systematic review of the valuation of salt marshes, sea grass beds and mangrove forests. Ecosyst. Serv. 30, 36–48 (2018).
Google Scholar
10.
Simard, M. et al. Mangrove canopy height globally related to precipitation, temperature and cyclone frequency. Nat. Geosci. 12, 40–45 (2019).
ADS CAS Google Scholar
11.
Spalding, M. D., Kainumu, M. & Collins, L. World Atlas of Mangroves (Earthscan, London, 2010).
Google Scholar
12.
Ewel, K. C., Twilley, R. R. & Ong, J. Different kinds of mangrove forests provide different goods and services. Glob. Ecol. Biogeogr. Lett. 7, 83–94 (1998).
Google Scholar
13.
Twilley, R. R., Rovai, A. S. & Riul, P. Coastal morphology explains global blue carbon distributions. Front. Ecol. Environ. 16, 503–508 (2018).
Google Scholar
14.
Sanderman, J. et al. A global map of mangrove forest soil carbon at 30 m spatial resolution. Environ. Res. Lett. 13, 055002 (2018).
ADS Google Scholar
15.
Rovai, A. S. et al. Global controls on carbon storage in mangrove soils. Nat. Clim. Chang. 8, 534–538 (2018).
ADS CAS Google Scholar
16.
Donato, D. C. et al. Mangroves among the most carbon-rich forests in the tropics. Nat. Geosci. 4, 293–297 (2011).
ADS CAS Google Scholar
17.
Koch, E. W. et al. Non-linearity in ecosystem services: Temporal and spatial variability in coastal protection. Front. Ecol. Environ. 7, 29–37 (2009).
Google Scholar
18.
Baker, R., Sheaves, M. & Johnston, R. Geographic variation in mangrove flooding and accessibility for fishes and nektonic crustaceans. Hydrobiologia 762, 1–14 (2015).
CAS Google Scholar
19.
Ward, R. D., Friess, D. A., Day, R. H. & Mackenzie, R. A. Impacts of climate change on mangrove ecosystems: A region by region overview. Ecosyst. Heal. Sustain. 2, e01211 (2016).
Google Scholar
20.
Balke, T. & Friess, D. A. Geomorphic knowledge for mangrove restoration: A pan-tropical categorization. Earth Surf. Process. Landforms 41, 231–239 (2016).
ADS Google Scholar
21.
Spalding, M. D., Brumbaugh, R. D. & Landis, E. Atlas of Ocean Wealth (The Nature Conservancy, Arlington, 2016).
Google Scholar
22.
Spalding, M., Blasco, F. & Field, C. World Mangrove Atlas (The International Society for Mangrove Ecosystems, Okinawa, 1997).
Google Scholar
23.
Giri, C. et al. Status and distribution of mangrove forests of the world using earth observation satellite data. Glob. Ecol. Biogeogr. 20, 154–159 (2011).
Google Scholar
24.
Mahoney, P. C. & Bishop, M. J. Are geomorphological typologies for estuaries also useful for classifying their ecosystems?. Aquat. Conserv. Mar. Freshw. Ecosyst. 28, 1200–1208 (2018).
Google Scholar
25.
Bunting, P. et al. The Global Mangrove Watch—A new 2010 global baseline of mangrove extent. Remote Sens. 10, 1669 (2018).
ADS Google Scholar
26.
Thom, B. G. Coastal landforms and geomorphic processes. In The Mangrove Ecosystem: Research Methods (eds Snedaker, S. C. & Snedaker, J. G.) 18–35 (UNESCO, Paris, 1984).
Google Scholar
27.
Woodroffe, C. Mangrove sediments and geomorphology. In Tropical Mangrove Ecosystems (eds Robertson, A. I. & Alongi, D. M.) 7–41 (American Geophysical Union, Washington, 1992).
Google Scholar
28.
Twilley, R. R. & Rivera-Monroy, V. H. Ecogeomorphic models of nutrient biogeochemistry for mangrove wetlands. In Coastal Wetlands: An Integrated Ecosystem Approach (eds Perillo, G. M. E. et al.) 641–684 (Elsevier, New York, 2009).
Google Scholar
29.
Woodroffe, C. D. et al. Mangrove sedimentation and response to relative sea-level rise. Ann. Rev. Mar. Sci. 8, 243–266 (2016).
CAS PubMed Google Scholar
30.
Reed, D. J., Davidson-Arnott, R. & Perillo, G. M. Estuaries, coastal marshes, tidal flats and coastal dunes. In Geomorphology and Global Environmental Change (eds Slaymaker, O. et al.) 130–157 (Cambridge University Press, Cambridge, 2009).
Google Scholar
31.
Walsh, J. P. & Nittrouer, C. A. Mangrove-bank sedimentation in a mesotidal environment with large sediment supply, Gulf of Papua. Mar. Geol. 208, 225–248 (2004).
ADS CAS Google Scholar
32.
Swales, A., Bentley, S. J. & Lovelock, C. E. Mangrove-forest evolution in a sediment-rich estuarine system: Opportunists or agents of geomorphic change?. Earth Surf. Process. Landforms 40, 1672–1687 (2015).
ADS Google Scholar
33.
Proisy, C. et al. Mud bank colonization by opportunistic mangroves: A case study from French Guiana using lidar data. Cont. Shelf Res. 29, 632–641 (2009).
ADS Google Scholar
34.
Nascimento, W. R., Souza-Filho, P. W. M., Proisy, C., Lucas, R. M. & Rosenqvist, A. Mapping changes in the largest continuous Amazonian mangrove belt using object-based classification of multisensor satellite imagery. Estuar. Coast. Shelf Sci. 117, 83–93 (2013).
ADS Google Scholar
35.
Murray, N. J. et al. The global distribution and trajectory of tidal flats. Nature 565, 222–225 (2019).
ADS CAS PubMed Google Scholar
36.
McKee, K. L. Biophysical controls on accretion and elevation change in Caribbean mangrove ecosystems. Estuar. Coast. Shelf Sci. 91, 475–483 (2011).
ADS Google Scholar
37.
McKee, K. L. & Vervaeke, W. C. W. C. Impacts of human disturbance on soil erosion potential and habitat stability of mangrove-dominated islands in the Pelican Cays and Twin Cays ranges, Belize. Smithson. Contrib. Mar. Sci. 38, 415–427 (2011).
Google Scholar
38.
Worthington, T. & Spalding, M. Mangrove Restoration Potential: A Global Map Highlighting a Critical Opportunity. https://doi.org/10.17863/CAM.39153 (2018).
Article Google Scholar
39.
Kjerfve, B. et al. Morphodynamics of muddy environments along the Atlantic coasts of North and South America. In Muddy Coasts of the World: Processes, Deposits and Function (eds Healy, T. et al.) 479–532 (Elsevier, New York, 2002).
Google Scholar
40.
Adame, M. F. et al. Mangroves in arid regions: Ecology, threats, and opportunities. Estuarine Coast. Shelf Sci. https://doi.org/10.1016/j.ecss.2020.106796 (2020).
Article Google Scholar
41.
Mahapatro, D., Panigrahy, R. C. & Panda, S. Coastal lagoon: Present status and future challenges. Int. J. Mar. Sci. 3, 178–186 (2013).
Google Scholar
42.
Gönenç, I. E. & Wolflin, J. P. Introduction. In Coastal Lagoons: Ecosystem Processes and Modeling for Sustainable Use and Development (eds. Wolflin, J. P. & Gönenç, I. E.) 1–6 (CRC Press, London, 2005).
Google Scholar
43.
Ericson, J. P., Vörösmarty, C. J., Dingman, S. L., Ward, L. G. & Meybeck, M. Effective sea-level rise and deltas: Causes of change and human dimension implications. Glob. Planet. Change 50, 63–82 (2006).
ADS Google Scholar
44.
Syvitski, J. P. M. & Saito, Y. Morphodynamics of deltas under the influence of humans. Glob. Planet. Change 57, 261–282 (2007).
ADS Google Scholar
45.
Tessler, Z. D. et al. Profiling risk and sustainability in coastal deltas of the world. Science 349, 638–643 (2015).
ADS CAS PubMed Google Scholar
46.
Syvitski, J. P. M. et al. Sinking deltas due to human activities. Nat. Geosci. 2, 681–686 (2009).
ADS CAS Google Scholar
47.
Kovacs, J. M., Wang, J. & Blanco-Correa, M. Mapping disturbances in a mangrove forest using multi-date landsat TM imagery. Environ. Manage. 27, 763–776 (2001).
CAS PubMed Google Scholar
48.
Cahoon, D. R. et al. Mass tree mortality leads to mangrove peat collapse at Bay Islands, Honduras after Hurricane Mitch. J. Ecol. 91, 1093–1105 (2003).
Google Scholar
49.
Lovelock, C. E. et al. The vulnerability of Indo-Pacific mangrove forests to sea-level rise. Nature 526, 559–563 (2015).
ADS CAS PubMed Google Scholar
50.
Wigand, C. et al. Varying inundation regimes differentially affect natural and sand-amended marsh sediments. PLoS ONE 11, e0164956 (2016).
CAS PubMed PubMed Central Google Scholar
51.
Lewis, R. R. et al. Stress in mangrove forests: Early detection and preemptive rehabilitation are essential for future successful worldwide mangrove forest management. Mar. Pollut. Bull. 109, 764–771 (2016).
CAS PubMed Google Scholar
52.
Lagomasino, D. et al. Measuring mangrove carbon loss and gain in deltas. Environ. Res. Lett. 14, 025002 (2018).
ADS Google Scholar
53.
Goldberg, L., Lagomasino, D., Thomas, N. & Fatoyinbo, T. Global declines in human-driven mangrove loss. Glob. Chang. Biol. https://doi.org/10.1111/gcb.15275 (2020).
Article PubMed Google Scholar
54.
Lacerda, L. D., Borges, R. & Ferreira, A. C. Neotropical mangroves: Conservation and sustainable use in a scenario of global climate change. Aquat. Conserv. Mar. Freshw. Ecosyst. 29, 1347–1364 (2019).
Google Scholar
55.
Bhargava, R., Sarkar, D. & Friess, D. A. A cloud computing-based approach to mapping mangrove erosion and progradation: Case studies from the Sundarbans and French Guiana. Estuar. Coast. Shelf Sci. 12, 106798. https://doi.org/10.1016/j.ecss.2020.106798 (2020).
Article Google Scholar
56.
Hutchison, J., Manica, A., Swetnam, R., Balmford, A. & Spalding, M. Predicting global patterns in mangrove forest biomass. Conserv. Lett. 7, 233–240 (2014).
Google Scholar
57.
Castañeda-Moya, E. et al. Patterns of root dynamics in mangrove forests along environmental gradients in the Florida Coastal Everglades, USA. Ecosystems 14, 1178–1195 (2011).
Google Scholar
58.
Twilley, R. R., Rivera-Monroy, V. H., Chen, R. & Botero, L. Adapting an ecological mangrove model to simulate trajectories in restoration ecology. Mar. Pollut. Bull. 37, 404–419 (1998).
CAS Google Scholar
59.
Huh, O. K., Coleman, J. M., Braud, D. & Kiage, L. World Deltas Database. Appendix A. The Major River Deltas Of The World. Report. (2004).
60.
Coleman, J. M. & Huh, O. K. Major World Deltas: A Perspective From Space (2003).
61.
Domisch, S., Amatulli, G. & Jetz, W. Near-global freshwater-specific environmental variables for biodiversity analyses in 1 km resolution. Sci. Data 2, 150073 (2015).
CAS PubMed PubMed Central Google Scholar
62.
Liaw, A. & Wiener, M. Classification and regression by randomForest. R News 2, 18–22 (2002).
Google Scholar
63.
R Core Team. R: A Language and Environment for Statistical Computing (2019).
64.
Dürr, H. H. et al. Worldwide typology of nearshore coastal systems: Defining the estuarine filter of river inputs to the oceans. Estuaries Coasts 34, 441–458 (2011).
Google Scholar
65.
Simard, M. et al. Global mangrove aboveground biomass, maximum and basal area weighted canopy heights. https://doi.org/10.3334/ORNLDAAC/1665. (2019).
66.
Pinheiro, J., Bates, D., DebRoy, S., Sarkar, S. & Team, R. C. nlme: Linear and Nonlinear Mixed Effects Models (2019). https://cran.r-project.org/package=nlme.
67.
Zuur, A. F., Ieno, E. N. & Elphick, C. S. A protocol for data exploration to avoid common statistical problems. Methods Ecol. Evol. 1, 3–14 (2010).
Google Scholar
68.
Zuur, A. F., Saveliev, A. A. & Ieno, E. N. A Beginner’s Guide to Generalised Additive Mixed Models with R (Highland Statistics Ltd., Newburgh, 2014).
Google Scholar
69.
Zuur, A. F., Ieno, E. N., Walker, N., Saveliev, A. A. & Smith, G. M. Mixed Effects Models and Extensions in Ecology with R (Springer, New York, 2009).
Google Scholar
70.
Lenth, R. emmeans: Estimated Marginal Means, aka Least-Squares Means (2019).
71.
Mangiafico, S. rcompanion: Functions to Support Extension Education Program Evaluation. R package version 2.3.25 (2020). More
