Akkermansia muciniphila uses human milk oligosaccharides to thrive in the early life conditions in vitro
1.
Derrien, M. et al. Mucin-bacterial interactions in the human oral cavity and digestive tract. Gut Microbes 1, 254–268. https://doi.org/10.4161/gmic.1.4.12778 (2010).
Article PubMed PubMed Central Google Scholar
2.
Derrien, M. Akkermansia muciniphila gen. nov., sp. Nov., a human intestinal mucin-degrading bacterium. Int. J. Syst. Evol. Microbiol. 54, 1469–1476. https://doi.org/10.1099/ijs.0.02873-0 (2004).
CAS Article PubMed Google Scholar
3.
Dao, M. C. et al. Akkermansia muciniphila and improved metabolic health during a dietary intervention in obesity: Relationship with gut microbiome richness and ecology. Gut 65, 426–436. https://doi.org/10.1136/gutjnl-2014-308778 (2016).
CAS Article PubMed Google Scholar
4.
Karlsson, C. L. J. et al. The microbiota of the gut in preschool children with normal and excessive body weight. Obesity 20, 2257–2261. https://doi.org/10.1038/oby.2012.110 (2012).
Article PubMed Google Scholar
5.
Zhang, X. et al. Human gut microbiota changes reveal the progression of glucose intolerance. PLoS ONE 8, e71108. https://doi.org/10.1371/journal.pone.0071108 (2013).
ADS CAS Article PubMed PubMed Central Google Scholar
6.
Png, C. W. et al. Mucolytic bacteria with increased prevalence in IBD mucosa augment in vitro utilization of mucin by other bacteria. Am. J. Gastroenterol. 105, 2420–2428. https://doi.org/10.1038/ajg.2010.281 (2010).
ADS CAS Article PubMed Google Scholar
7.
Rajilić-Stojanović, M., Shanahan, F., Guarner, F. & De Vos, W. M. Phylogenetic analysis of dysbiosis in ulcerative colitis during remission. Inflamm. Bowel Dis. 19, 481–488. https://doi.org/10.1097/MIB.0b013e31827fec6d (2013).
Article PubMed Google Scholar
8.
Swidsinski, A. et al. Acute appendicitis is characterised by local invasion with Fusobacterium nucleatum/necrophorum. Gut 60, 34–40. https://doi.org/10.1136/gut.2009.191320 (2011).
Article PubMed Google Scholar
9.
Derrien, M., Collado, M. C., Ben-Amor, K., Salminen, S. & de Vos, W. M. The mucin degrader Akkermansia muciniphila is an abundant resident of the human intestinal tract. Appl. Environ. Microbiol. 74, 1646–1648. https://doi.org/10.1128/AEM.01226-07 (2008).
CAS Article PubMed Google Scholar
10.
Collado, M. C., Derrien, M., Isolauri, E., de Vos, W. M. & Salminen, S. Intestinal integrity and Akkermansia muciniphila, a mucin-degrading member of the intestinal microbiota present in infants, adults, and the elderly. Appl. Environ. Microbiol. 73, 7767–7770. https://doi.org/10.1128/AEM.01477-07 (2007).
CAS Article PubMed PubMed Central Google Scholar
11.
Collado, M. C., Laitinen, K., Salminen, S. & Isolauri, E. Maternal weight and excessive weight gain during pregnancy modify the immunomodulatory potential of breast milk. Pediatr. Res. 72, 77–85. https://doi.org/10.1038/pr.2012.42 (2012).
CAS Article PubMed Google Scholar
12.
Aakko, J. et al. Human milk oligosaccharide categories define the microbiota composition in human colostrum. Benef. Microbes 8, 563–567. https://doi.org/10.3920/BM2016.0185 (2017).
CAS Article PubMed Google Scholar
13.
Urbaniak, C. et al. Microbiota of human breast tissue. Appl. Environ. Microbiol. 80, 3007–3014. https://doi.org/10.1128/AEM.00242-14 (2014).
CAS Article PubMed PubMed Central Google Scholar
14.
Azad, M. B. et al. Gut microbiota of healthy Canadian infants: Profiles by mode of delivery and infant diet at 4 months. Can. Med. Assoc. J. 185, 385–394. https://doi.org/10.1503/cmaj.121189 (2013).
Article Google Scholar
15.
Bergström, A. et al. Establishment of intestinal microbiota during early life: A longitudinal. Explor. Study Large Cohort Danish Infants. https://doi.org/10.1128/AEM.00342-14 (2014).
Article Google Scholar
16.
Bäckhed, F. et al. Dynamics and stabilization of the human gut microbiome during the first year of life. Cell Host Microbe 17, 690–703. https://doi.org/10.1016/j.chom.2015.04.004 (2015).
CAS Article PubMed Google Scholar
17.
Neville, M. C. et al. Lactation and neonatal nutrition: Defining and refining the critical questions. J. Mammary Gland Biol. Neoplasia 17, 167–188. https://doi.org/10.1007/s10911-012-9261-5 (2012).
Article PubMed PubMed Central Google Scholar
18.
Koropatkin, N. M., Cameron, E. A. & Martens, E. C. How glycan metabolism shapes the human gut microbiota. Nat. Rev. Microbiol. 10, 323–335. https://doi.org/10.1038/nrmicro2746 (2012).
CAS Article PubMed PubMed Central Google Scholar
19.
Ninonuevo, M. R. et al. A strategy for annotating the human milk glycome. J. Agric. Food Chem. 54, 7471–7480. https://doi.org/10.1021/jf0615810 (2006).
CAS Article PubMed Google Scholar
20.
Ruiz-Palacios, G. M., Cervantes, L. E., Ramos, P., Chavez-Munguia, B. & Newburg, D. S. Campylobacter jejuni binds intestinal H(O) antigen (Fucα1, 2Galβ1, 4GlcNAc), and Fucosyloligosaccharides of human milk inhibit its binding and infection. J. Biol. Chem. 278, 14112–14120. https://doi.org/10.1074/jbc.M207744200 (2003).
CAS Article PubMed Google Scholar
21.
Stahl, B. et al. Oligosaccharides from human milk as revealed by matrix-assisted laser desorption/ionization mass spectrometry. Anal. Biochem. 223, 218–226. https://doi.org/10.1006/abio.1994.1577 (1994).
CAS Article PubMed Google Scholar
22.
Urashima, T., Hirabayashi, J., Sato, S. & Kobata, A. Human milk oligosaccharides as essential tools for basic and application studies on galectins. Trends Glycosci. Glycotechnol. 30, 51–65. https://doi.org/10.4052/tigg.1734.1SE (2018).
Article Google Scholar
23.
Ayechu-Muruzabal, V. et al. Diversity of human milk oligosaccharides and effects on early life immune development. Front. Pediatr. 6, 239. https://doi.org/10.3389/fped.2018.00239 (2018).
Article PubMed PubMed Central Google Scholar
24.
Zivkovic, A. M., German, J. B., Lebrilla, C. B. & Mills, D. A. Human milk glycobiome and its impact on the infant gastrointestinal microbiota. Proc. Natl. Acad. Sci. 108, 4653–4658. https://doi.org/10.1073/pnas.1000083107 (2011).
ADS Article PubMed Google Scholar
25.
Wu, S., Tao, N., German, J. B., Grimm, R. & Lebrilla, C. B. Development of an annotated library of neutral human milk oligosaccharides. J. Proteome Res. 9, 4138–4151. https://doi.org/10.1021/pr100362f (2010).
CAS Article PubMed PubMed Central Google Scholar
26.
Weiss, G. A. & Hennet, T. The role of milk sialyllactose in intestinal bacterial colonization. Adv. Nutr. 3, 483S-488S. https://doi.org/10.3945/an.111.001651 (2012).
CAS Article PubMed PubMed Central Google Scholar
27.
Bode, L. Human milk oligosaccharides: Every baby needs a sugar mama. Glycobiology 22, 1147–1162. https://doi.org/10.1093/glycob/cws074 (2012).
CAS Article PubMed PubMed Central Google Scholar
28.
Vandenplas, Y. et al. Human milk oligosaccharides: 2′-fucosyllactose (2′-FL) and lacto-N-neotetraose (LNnT) in infant formula. Nutrients 10, 1161. https://doi.org/10.3390/nu10091161 (2018).
CAS Article PubMed Central Google Scholar
29.
Garrido, D., Dallas, D. C. & Mills, D. A. Consumption of human milk glycoconjugates by infant-associated bifidobacteria: Mechanisms and implications. Microbiology (United Kingdom) 159, 649–664. https://doi.org/10.1099/mic.0.064113-0 (2013).
CAS Article Google Scholar
30.
Tailford, L. E., Crost, E. H., Kavanaugh, D. & Juge, N. Mucin glycan foraging in the human gut microbiome. Front. Genet. 6, 81. https://doi.org/10.3389/fgene.2015.00081 (2015).
CAS Article PubMed PubMed Central Google Scholar
31.
Bansil, R. & Turner, B. S. Mucin structure, aggregation, physiological functions and biomedical applications. Curr. Opin. Colloid Interface Sci. 11, 164–170. https://doi.org/10.1016/j.cocis.2005.11.001 (2006).
CAS Article Google Scholar
32.
Abodinar, A., Tømmeraas, K., Ronander, E., Smith, A. M. & Morris, G. A. The physicochemical characterisation of pepsin degraded pig gastric mucin. Int. J. Biol. Macromol. 87, 281–286. https://doi.org/10.1016/J.IJBIOMAC.2016.02.062 (2016).
CAS Article PubMed Google Scholar
33.
Johansson, M. E. V. et al. The inner of the two Muc2 mucin-dependent mucus layers in colon is devoid of bacteria. Proc. Natl. Acad. Sci. 105, 15064–15069. https://doi.org/10.1073/pnas.0803124105 (2008).
ADS Article PubMed Google Scholar
34.
Ottman, N. et al. Genome-scale model and omics analysis of metabolic capacities of Akkermansia muciniphila reveal a preferential mucin-degrading lifestyle. Appl. Environ. Microbiol. 83, e01014-e1017. https://doi.org/10.1128/AEM.01014-17 (2017).
CAS Article PubMed PubMed Central Google Scholar
35.
Ottman, N. et al. Characterization of outer membrane proteome of akkermansia muciniphila reveals sets of novel proteins exposed to the human intestine. Front. Microbiol. 7, 1157. https://doi.org/10.3389/fmicb.2016.01157 (2016).
Article PubMed PubMed Central Google Scholar
36.
Moran, A. P., Gupta, A. & Joshi, L. Sweet-talk: Role of host glycosylation in bacterial pathogenesis of the gastrointestinal tract. Gut 60, 1412–1425. https://doi.org/10.1136/gut.2010.212704 (2011).
CAS Article PubMed Google Scholar
37.
Kumazaki, T. & Yoshida, A. Biochemical evidence that secretor gene, Se, is a structural gene encoding a specific fucosyltransferase. Proc. Natl. Acad. Sci. 81, 4193–4197. https://doi.org/10.1073/pnas.81.13.4193 (1984).
ADS CAS Article PubMed Google Scholar
38.
Korpela, K. et al. Fucosylated oligosaccharides in mother’s milk alleviate the effects of caesarean birth on infant gut microbiota. Sci. Rep. 8, 13757. https://doi.org/10.1038/s41598-018-32037-6 (2018).
ADS CAS Article PubMed PubMed Central Google Scholar
39.
Engels, C., Ruscheweyh, H.-J., Beerenwinkel, N., Lacroix, C. & Schwab, C. The common gut microbe Eubacterium hallii also contributes to intestinal propionate formation. Front. Microbiol. 7, 1–12. https://doi.org/10.3389/fmicb.2016.00713 (2016).
Article Google Scholar
40.
Amin, H. M., Hashem, A. M., Ashour, M. S. & Hatti-Kaul, R. 1,2 Propanediol utilization by Lactobacillus reuteri DSM 20016, role in bioconversion of glycerol to 1,3 propanediol, 3-hydroxypropionaldehyde and 3-hydroxypropionic acid. J. Genet. Eng. Biotechnol. 11, 53–59. https://doi.org/10.1016/j.jgeb.2012.12.002 (2013).
Article Google Scholar
41.
Staib, L. & Fuchs, T. M. Regulation of fucose and 1,2-propanediol utilization by Salmonella enterica serovar Typhimurium. Front. Microbiol. 6, 1–11. https://doi.org/10.3389/fmicb.2015.01116 (2015).
Article Google Scholar
42.
Faber, F. et al. Respiration of microbiota-derived 1,2-propanediol drives salmonella expansion during colitis. PLOS Pathog. 13, e1006129. https://doi.org/10.1371/journal.ppat.1006129 (2017).
CAS Article PubMed PubMed Central Google Scholar
43.
Huang, K. et al. Biochemical characterisation of the neuraminidase pool of the human gut symbiont Akkermansia muciniphila. Carbohydr. Res. 415, 60–65. https://doi.org/10.1016/j.carres.2015.08.001 (2015).
CAS Article PubMed Google Scholar
44.
Tailford, L. E. et al. Discovery of intramolecular trans-sialidases in human gut microbiota suggests novel mechanisms of mucosal adaptation. Nat. Commun. 6, 7624. https://doi.org/10.1038/ncomms8624 (2015).
ADS Article PubMed PubMed Central Google Scholar
45.
van Passel, M. W. J. et al. The genome of Akkermansia muciniphila, a dedicated intestinal mucin degrader, and its use in exploring intestinal metagenomes. PLoS ONE 6, e16876. https://doi.org/10.1371/journal.pone.0016876 (2011).
ADS CAS Article PubMed PubMed Central Google Scholar
46.
Nishiyama, K. et al. Bifidobacterium bifidum extracellular sialidase enhances adhesion to the mucosal surface and supports carbohydrate assimilation. MBio https://doi.org/10.1128/mBio.00928-17 (2017).
Article PubMed PubMed Central Google Scholar
47.
Nishiyama, K. et al. Two extracellular sialidases from Bifidobacterium bifidum promote the degradation of sialyl-oligosaccharides and support the growth of Bifidobacterium breve. Anaerobe 52, 22–28. https://doi.org/10.1016/j.anaerobe.2018.05.007 (2018).
CAS Article PubMed Google Scholar
48.
Crost, E. H. et al. The mucin-degradation strategy of Ruminococcus gnavus: The importance of intramolecular trans-sialidases. Gut Microbes 7, 302–312. https://doi.org/10.1080/19490976.2016.1186334 (2016).
CAS Article PubMed PubMed Central Google Scholar
49.
Brigham, C. et al. Sialic acid (N-acetyl neuraminic acid) utilization by Bacteroides fragilis requires a novel N-acetyl mannosamine epimerase. J. Bacteriol. 191, 3629–3638. https://doi.org/10.1128/JB.00811-08 (2009).
CAS Article PubMed PubMed Central Google Scholar
50.
Chia, L. W. et al. Deciphering the trophic interaction between Akkermansia muciniphila and the butyrogenic gut commensal Anaerostipes caccae using a metatranscriptomic approach. Antonie Van Leeuwenhoek 111, 859–873. https://doi.org/10.1007/s10482-018-1040-x (2018).
CAS Article PubMed PubMed Central Google Scholar
51.
Kosciow, K. & Deppenmeier, U. Characterization of three novel β-galactosidases from Akkermansia muciniphila involved in mucin degradation. Int. J. Biol. Macromol. https://doi.org/10.1016/j.ijbiomac.2020.01.246 (2020).
Article PubMed Google Scholar
52.
Guo, B.-S. et al. Cloning, purification and biochemical characterisation of a GH35 beta-1,3/beta-1,6-galactosidase from the mucin-degrading gut bacterium Akkermansia muciniphila. Glycoconj. J. 35, 255–263. https://doi.org/10.1007/s10719-018-9824-9 (2018).
CAS Article PubMed Google Scholar
53.
Kosciow, K. & Deppenmeier, U. Characterization of a phospholipid-regulated β-galactosidase from Akkermansia muciniphila involved in mucin degradation. Microbiologyopen https://doi.org/10.1002/mbo3.796 (2019).
Article PubMed PubMed Central Google Scholar
54.
van der Ark, K. C. H. et al. Model-driven design of a minimal medium for Akkermansia muciniphila confirms mucus adaptation. Microb. Biotechnol. 11, 476–485. https://doi.org/10.1111/1751-7915.13033 (2018).
CAS Article PubMed PubMed Central Google Scholar
55.
Wang, M. et al. Cloning, purification and biochemical characterization of two β-N-acetylhexosaminidases from the mucin-degrading gut bacterium Akkermansia muciniphila. Carbohydr. Res. 457, 1–7. https://doi.org/10.1016/j.carres.2017.12.007 (2018).
CAS Article PubMed Google Scholar
56.
Reichardt, N. et al. Phylogenetic distribution of three pathways for propionate production within the human gut microbiota. ISME J. 8, 1323–1335. https://doi.org/10.1038/ismej.2014.14 (2014).
CAS Article PubMed PubMed Central Google Scholar
57.
Belzer, C. et al. Microbial metabolic networks at the mucus layer lead to diet-independent butyrate and vitamin B 12 production by intestinal symbionts. MBio 8, 1–14. https://doi.org/10.1128/mBio.00770-17 (2017).
Article Google Scholar
58.
Allen, L. H. B vitamins in breast milk: Relative importance of maternal status and intake, and effects on infant status and function. Adv. Nutr. 3, 362–369. https://doi.org/10.3945/an.111.001172 (2012).
CAS Article PubMed PubMed Central Google Scholar
59.
Ottman, N. et al. Pili-like proteins of Akkermansia muciniphila modulate host immune responses and gut barrier function. PLoS ONE 12, e0173004. https://doi.org/10.1371/journal.pone.0173004 (2017).
CAS Article PubMed PubMed Central Google Scholar
60.
Plovier, H. et al. A purified membrane protein from Akkermansia muciniphila or the pasteurized bacterium improves metabolism in obese and diabetic mice. Nat. Med. 23, 107–113. https://doi.org/10.1038/nm.4236 (2017).
CAS Article PubMed Google Scholar
61.
McPhee, M. D., Atkinson, S. A. & Cole, D. E. C. Quantitation of free sulfate and total sulfoesters in human breast milk by ion chromatography. J. Chromatogr. B Biomed. Sci. Appl. 527, 41–50. https://doi.org/10.1016/S0378-4347(00)82081-2 (1990).
CAS Article Google Scholar
62.
Coppa, G. V. et al. Composition and structure elucidation of human milk glycosaminoglycans. Glycobiology 21, 295–303. https://doi.org/10.1093/glycob/cwq164 (2011).
CAS Article PubMed Google Scholar
63.
Tseng, T.-T., Tyler, B. M. & Setubal, J. C. Protein secretion systems in bacterial-host associations, and their description in the gene ontology. BMC Microbiol. 9, S2. https://doi.org/10.1186/1471-2180-9-S1-S2 (2009).
CAS Article PubMed PubMed Central Google Scholar
64.
Galdiero, S. et al. Microbe–host interactions: Structure and role of gram-negative bacterial porins. Curr. Protein Pept. Sci. 13, 843–854. https://doi.org/10.2174/138920312804871120 (2012).
CAS Article PubMed PubMed Central Google Scholar
65.
Brugman, S., Perdijk, O., van Neerven, R. J. J. & Savelkoul, H. F. J. Mucosal immune development in early life: Setting the stage. Arch. Immunol. Ther. Exp. (Warsz) 63, 251–268. https://doi.org/10.1007/s00005-015-0329-y (2015).
CAS Article Google Scholar
66.
Duerr, C. U. & Hornef, M. W. The mammalian intestinal epithelium as integral player in the establishment and maintenance of host–microbial homeostasis. Semin. Immunol. 24, 25–35. https://doi.org/10.1016/j.smim.2011.11.002 (2012).
CAS Article PubMed Google Scholar
67.
Hoskins, L. C. et al. Mucin degradation in human colon ecosystems isolation and properties of fecal strains that degrade ABH blood group antigens and oligosaccharides from mucin glycoproteins. J. Clin. Invest 75, 944–953 (1985).
CAS Article Google Scholar
68.
Stams, A. J., Van Dijk, J. B., Dijkema, C. & Plugge, C. M. Growth of syntrophic propionate-oxidizing bacteria with fumarate in the absence of methanogenic bacteria. Appl. Environ. Microbiol. 59, 1114–1119 (1993).
CAS Article Google Scholar
69.
Mank, M., Welsch, P., Heck, A. J. R. & Stahl, B. Label-free targeted LC-ESI-MS2 analysis of human milk oligosaccharides (HMOS) and related human milk groups with enhanced structural selectivity. Anal. Bioanal. Chem. 411, 231–250. https://doi.org/10.1007/s00216-018-1434-7 (2019).
CAS Article PubMed Google Scholar
70.
Rupakula, A. et al. The restricted metabolism of the obligate organohalide respiring bacterium Dehalobacter restrictus: Lessons from tiered functional genomics. Philos. Trans. R. Soc. B Biol. Sci. 368, 20120325. https://doi.org/10.1098/rstb.2012.0325 (2013).
CAS Article Google Scholar
71.
Lu, J. et al. Filter-aided sample preparation with dimethyl labeling to identify and quantify milk fat globule membrane proteins. J. Proteomics 75, 34–43. https://doi.org/10.1016/j.jprot.2011.07.031 (2011).
CAS Article PubMed Google Scholar
72.
Wendrich, J. R., Boeren, S., Möller, B. K., Weijers, D. & De Rybel, B. In vivo identification of plant protein complexes using IP-MS/MS. in Methods in Molecular Biology vol. 1497 147–158 (Humana Press, New York, NY, 2017). https://doi.org/10.1007/978-1-4939-6469-7_14.
73.
Hubner, N. C. et al. Quantitative proteomics combined with BAC TransgeneOmics reveals in vivo protein interactions. J. Cell Biol. 189, 739–754. https://doi.org/10.1083/jcb.200911091 (2010).
CAS Article PubMed PubMed Central Google Scholar
74.
Smaczniak, C. et al. Proteomics-based identification of low-abundance signaling and regulatory protein complexes in native plant tissues. Nat. Protocols https://doi.org/10.1038/nprot.2012.129 (2012).
Article PubMed Google Scholar
75.
Cox, J. et al. Accurate proteome-wide label-free quantification by delayed normalization and maximal peptide ratio extraction. Termed MaxLFQ. Mol. Cell. Proteomics 13, 2513–2526. https://doi.org/10.1074/mcp.M113.031591 (2014).
CAS Article PubMed Google Scholar
76.
Tyanova, S. et al. The Perseus computational platform for comprehensive analysis of (prote)omics data. Nat. Methods 13, 731–740. https://doi.org/10.1038/nmeth.3901 (2016).
CAS Article PubMed Google Scholar
77.
Bielow, C., Mastrobuoni, G. & Kempa, S. Proteomics quality control: Quality control software for MaxQuant results. J. Proteome Res. 15, 777–787. https://doi.org/10.1021/acs.jproteome.5b00780 (2016).
CAS Article PubMed Google Scholar
78.
Vizcaíno, J. A. et al. 2016 update of the PRIDE database and its related tools. Nucleic Acids Res. 44, D447–D456. https://doi.org/10.1093/nar/gkv1145 (2016).
CAS Article PubMed Google Scholar
79.
Morris, J. B. Enzymatic assay for subnanomole amounts of l-fucose. Anal. Biochem. 121, 129–134. https://doi.org/10.1016/0003-2697(82)90565-6 (1982).
CAS Article PubMed Google Scholar
80.
Rosendale, D. I. et al. Characterizing kiwifruit carbohydrate utilization in vitro and its consequences for human faecal microbiota. J. Proteome Res. 11, 5863–5875. https://doi.org/10.1021/pr300646m (2012).
CAS Article PubMed Google Scholar
81.
van Gelder, A. H., Aydin, R., Alves, M. M. & Stams, A. J. M. 1,3-Propanediol production from glycerol by a newly isolated Trichococcus strain. Microb. Biotechnol. 5, 573–578. https://doi.org/10.1111/j.1751-7915.2011.00318.x (2012).
CAS Article PubMed PubMed Central Google Scholar More