More stories

  • in

    Akkermansia muciniphila uses human milk oligosaccharides to thrive in the early life conditions in vitro

    1.
    Derrien, M. et al. Mucin-bacterial interactions in the human oral cavity and digestive tract. Gut Microbes 1, 254–268. https://doi.org/10.4161/gmic.1.4.12778 (2010).
    Article  PubMed  PubMed Central  Google Scholar 
    2.
    Derrien, M. Akkermansia muciniphila gen. nov., sp. Nov., a human intestinal mucin-degrading bacterium. Int. J. Syst. Evol. Microbiol. 54, 1469–1476. https://doi.org/10.1099/ijs.0.02873-0 (2004).
    CAS  Article  PubMed  Google Scholar 

    3.
    Dao, M. C. et al. Akkermansia muciniphila and improved metabolic health during a dietary intervention in obesity: Relationship with gut microbiome richness and ecology. Gut 65, 426–436. https://doi.org/10.1136/gutjnl-2014-308778 (2016).
    CAS  Article  PubMed  Google Scholar 

    4.
    Karlsson, C. L. J. et al. The microbiota of the gut in preschool children with normal and excessive body weight. Obesity 20, 2257–2261. https://doi.org/10.1038/oby.2012.110 (2012).
    Article  PubMed  Google Scholar 

    5.
    Zhang, X. et al. Human gut microbiota changes reveal the progression of glucose intolerance. PLoS ONE 8, e71108. https://doi.org/10.1371/journal.pone.0071108 (2013).
    ADS  CAS  Article  PubMed  PubMed Central  Google Scholar 

    6.
    Png, C. W. et al. Mucolytic bacteria with increased prevalence in IBD mucosa augment in vitro utilization of mucin by other bacteria. Am. J. Gastroenterol. 105, 2420–2428. https://doi.org/10.1038/ajg.2010.281 (2010).
    ADS  CAS  Article  PubMed  Google Scholar 

    7.
    Rajilić-Stojanović, M., Shanahan, F., Guarner, F. & De Vos, W. M. Phylogenetic analysis of dysbiosis in ulcerative colitis during remission. Inflamm. Bowel Dis. 19, 481–488. https://doi.org/10.1097/MIB.0b013e31827fec6d (2013).
    Article  PubMed  Google Scholar 

    8.
    Swidsinski, A. et al. Acute appendicitis is characterised by local invasion with Fusobacterium nucleatum/necrophorum. Gut 60, 34–40. https://doi.org/10.1136/gut.2009.191320 (2011).
    Article  PubMed  Google Scholar 

    9.
    Derrien, M., Collado, M. C., Ben-Amor, K., Salminen, S. & de Vos, W. M. The mucin degrader Akkermansia muciniphila is an abundant resident of the human intestinal tract. Appl. Environ. Microbiol. 74, 1646–1648. https://doi.org/10.1128/AEM.01226-07 (2008).
    CAS  Article  PubMed  Google Scholar 

    10.
    Collado, M. C., Derrien, M., Isolauri, E., de Vos, W. M. & Salminen, S. Intestinal integrity and Akkermansia muciniphila, a mucin-degrading member of the intestinal microbiota present in infants, adults, and the elderly. Appl. Environ. Microbiol. 73, 7767–7770. https://doi.org/10.1128/AEM.01477-07 (2007).
    CAS  Article  PubMed  PubMed Central  Google Scholar 

    11.
    Collado, M. C., Laitinen, K., Salminen, S. & Isolauri, E. Maternal weight and excessive weight gain during pregnancy modify the immunomodulatory potential of breast milk. Pediatr. Res. 72, 77–85. https://doi.org/10.1038/pr.2012.42 (2012).
    CAS  Article  PubMed  Google Scholar 

    12.
    Aakko, J. et al. Human milk oligosaccharide categories define the microbiota composition in human colostrum. Benef. Microbes 8, 563–567. https://doi.org/10.3920/BM2016.0185 (2017).
    CAS  Article  PubMed  Google Scholar 

    13.
    Urbaniak, C. et al. Microbiota of human breast tissue. Appl. Environ. Microbiol. 80, 3007–3014. https://doi.org/10.1128/AEM.00242-14 (2014).
    CAS  Article  PubMed  PubMed Central  Google Scholar 

    14.
    Azad, M. B. et al. Gut microbiota of healthy Canadian infants: Profiles by mode of delivery and infant diet at 4 months. Can. Med. Assoc. J. 185, 385–394. https://doi.org/10.1503/cmaj.121189 (2013).
    Article  Google Scholar 

    15.
    Bergström, A. et al. Establishment of intestinal microbiota during early life: A longitudinal. Explor. Study Large Cohort Danish Infants. https://doi.org/10.1128/AEM.00342-14 (2014).
    Article  Google Scholar 

    16.
    Bäckhed, F. et al. Dynamics and stabilization of the human gut microbiome during the first year of life. Cell Host Microbe 17, 690–703. https://doi.org/10.1016/j.chom.2015.04.004 (2015).
    CAS  Article  PubMed  Google Scholar 

    17.
    Neville, M. C. et al. Lactation and neonatal nutrition: Defining and refining the critical questions. J. Mammary Gland Biol. Neoplasia 17, 167–188. https://doi.org/10.1007/s10911-012-9261-5 (2012).
    Article  PubMed  PubMed Central  Google Scholar 

    18.
    Koropatkin, N. M., Cameron, E. A. & Martens, E. C. How glycan metabolism shapes the human gut microbiota. Nat. Rev. Microbiol. 10, 323–335. https://doi.org/10.1038/nrmicro2746 (2012).
    CAS  Article  PubMed  PubMed Central  Google Scholar 

    19.
    Ninonuevo, M. R. et al. A strategy for annotating the human milk glycome. J. Agric. Food Chem. 54, 7471–7480. https://doi.org/10.1021/jf0615810 (2006).
    CAS  Article  PubMed  Google Scholar 

    20.
    Ruiz-Palacios, G. M., Cervantes, L. E., Ramos, P., Chavez-Munguia, B. & Newburg, D. S. Campylobacter jejuni binds intestinal H(O) antigen (Fucα1, 2Galβ1, 4GlcNAc), and Fucosyloligosaccharides of human milk inhibit its binding and infection. J. Biol. Chem. 278, 14112–14120. https://doi.org/10.1074/jbc.M207744200 (2003).
    CAS  Article  PubMed  Google Scholar 

    21.
    Stahl, B. et al. Oligosaccharides from human milk as revealed by matrix-assisted laser desorption/ionization mass spectrometry. Anal. Biochem. 223, 218–226. https://doi.org/10.1006/abio.1994.1577 (1994).
    CAS  Article  PubMed  Google Scholar 

    22.
    Urashima, T., Hirabayashi, J., Sato, S. & Kobata, A. Human milk oligosaccharides as essential tools for basic and application studies on galectins. Trends Glycosci. Glycotechnol. 30, 51–65. https://doi.org/10.4052/tigg.1734.1SE (2018).
    Article  Google Scholar 

    23.
    Ayechu-Muruzabal, V. et al. Diversity of human milk oligosaccharides and effects on early life immune development. Front. Pediatr. 6, 239. https://doi.org/10.3389/fped.2018.00239 (2018).
    Article  PubMed  PubMed Central  Google Scholar 

    24.
    Zivkovic, A. M., German, J. B., Lebrilla, C. B. & Mills, D. A. Human milk glycobiome and its impact on the infant gastrointestinal microbiota. Proc. Natl. Acad. Sci. 108, 4653–4658. https://doi.org/10.1073/pnas.1000083107 (2011).
    ADS  Article  PubMed  Google Scholar 

    25.
    Wu, S., Tao, N., German, J. B., Grimm, R. & Lebrilla, C. B. Development of an annotated library of neutral human milk oligosaccharides. J. Proteome Res. 9, 4138–4151. https://doi.org/10.1021/pr100362f (2010).
    CAS  Article  PubMed  PubMed Central  Google Scholar 

    26.
    Weiss, G. A. & Hennet, T. The role of milk sialyllactose in intestinal bacterial colonization. Adv. Nutr. 3, 483S-488S. https://doi.org/10.3945/an.111.001651 (2012).
    CAS  Article  PubMed  PubMed Central  Google Scholar 

    27.
    Bode, L. Human milk oligosaccharides: Every baby needs a sugar mama. Glycobiology 22, 1147–1162. https://doi.org/10.1093/glycob/cws074 (2012).
    CAS  Article  PubMed  PubMed Central  Google Scholar 

    28.
    Vandenplas, Y. et al. Human milk oligosaccharides: 2′-fucosyllactose (2′-FL) and lacto-N-neotetraose (LNnT) in infant formula. Nutrients 10, 1161. https://doi.org/10.3390/nu10091161 (2018).
    CAS  Article  PubMed Central  Google Scholar 

    29.
    Garrido, D., Dallas, D. C. & Mills, D. A. Consumption of human milk glycoconjugates by infant-associated bifidobacteria: Mechanisms and implications. Microbiology (United Kingdom) 159, 649–664. https://doi.org/10.1099/mic.0.064113-0 (2013).
    CAS  Article  Google Scholar 

    30.
    Tailford, L. E., Crost, E. H., Kavanaugh, D. & Juge, N. Mucin glycan foraging in the human gut microbiome. Front. Genet. 6, 81. https://doi.org/10.3389/fgene.2015.00081 (2015).
    CAS  Article  PubMed  PubMed Central  Google Scholar 

    31.
    Bansil, R. & Turner, B. S. Mucin structure, aggregation, physiological functions and biomedical applications. Curr. Opin. Colloid Interface Sci. 11, 164–170. https://doi.org/10.1016/j.cocis.2005.11.001 (2006).
    CAS  Article  Google Scholar 

    32.
    Abodinar, A., Tømmeraas, K., Ronander, E., Smith, A. M. & Morris, G. A. The physicochemical characterisation of pepsin degraded pig gastric mucin. Int. J. Biol. Macromol. 87, 281–286. https://doi.org/10.1016/J.IJBIOMAC.2016.02.062 (2016).
    CAS  Article  PubMed  Google Scholar 

    33.
    Johansson, M. E. V. et al. The inner of the two Muc2 mucin-dependent mucus layers in colon is devoid of bacteria. Proc. Natl. Acad. Sci. 105, 15064–15069. https://doi.org/10.1073/pnas.0803124105 (2008).
    ADS  Article  PubMed  Google Scholar 

    34.
    Ottman, N. et al. Genome-scale model and omics analysis of metabolic capacities of Akkermansia muciniphila reveal a preferential mucin-degrading lifestyle. Appl. Environ. Microbiol. 83, e01014-e1017. https://doi.org/10.1128/AEM.01014-17 (2017).
    CAS  Article  PubMed  PubMed Central  Google Scholar 

    35.
    Ottman, N. et al. Characterization of outer membrane proteome of akkermansia muciniphila reveals sets of novel proteins exposed to the human intestine. Front. Microbiol. 7, 1157. https://doi.org/10.3389/fmicb.2016.01157 (2016).
    Article  PubMed  PubMed Central  Google Scholar 

    36.
    Moran, A. P., Gupta, A. & Joshi, L. Sweet-talk: Role of host glycosylation in bacterial pathogenesis of the gastrointestinal tract. Gut 60, 1412–1425. https://doi.org/10.1136/gut.2010.212704 (2011).
    CAS  Article  PubMed  Google Scholar 

    37.
    Kumazaki, T. & Yoshida, A. Biochemical evidence that secretor gene, Se, is a structural gene encoding a specific fucosyltransferase. Proc. Natl. Acad. Sci. 81, 4193–4197. https://doi.org/10.1073/pnas.81.13.4193 (1984).
    ADS  CAS  Article  PubMed  Google Scholar 

    38.
    Korpela, K. et al. Fucosylated oligosaccharides in mother’s milk alleviate the effects of caesarean birth on infant gut microbiota. Sci. Rep. 8, 13757. https://doi.org/10.1038/s41598-018-32037-6 (2018).
    ADS  CAS  Article  PubMed  PubMed Central  Google Scholar 

    39.
    Engels, C., Ruscheweyh, H.-J., Beerenwinkel, N., Lacroix, C. & Schwab, C. The common gut microbe Eubacterium hallii also contributes to intestinal propionate formation. Front. Microbiol. 7, 1–12. https://doi.org/10.3389/fmicb.2016.00713 (2016).
    Article  Google Scholar 

    40.
    Amin, H. M., Hashem, A. M., Ashour, M. S. & Hatti-Kaul, R. 1,2 Propanediol utilization by Lactobacillus reuteri DSM 20016, role in bioconversion of glycerol to 1,3 propanediol, 3-hydroxypropionaldehyde and 3-hydroxypropionic acid. J. Genet. Eng. Biotechnol. 11, 53–59. https://doi.org/10.1016/j.jgeb.2012.12.002 (2013).
    Article  Google Scholar 

    41.
    Staib, L. & Fuchs, T. M. Regulation of fucose and 1,2-propanediol utilization by Salmonella enterica serovar Typhimurium. Front. Microbiol. 6, 1–11. https://doi.org/10.3389/fmicb.2015.01116 (2015).
    Article  Google Scholar 

    42.
    Faber, F. et al. Respiration of microbiota-derived 1,2-propanediol drives salmonella expansion during colitis. PLOS Pathog. 13, e1006129. https://doi.org/10.1371/journal.ppat.1006129 (2017).
    CAS  Article  PubMed  PubMed Central  Google Scholar 

    43.
    Huang, K. et al. Biochemical characterisation of the neuraminidase pool of the human gut symbiont Akkermansia muciniphila. Carbohydr. Res. 415, 60–65. https://doi.org/10.1016/j.carres.2015.08.001 (2015).
    CAS  Article  PubMed  Google Scholar 

    44.
    Tailford, L. E. et al. Discovery of intramolecular trans-sialidases in human gut microbiota suggests novel mechanisms of mucosal adaptation. Nat. Commun. 6, 7624. https://doi.org/10.1038/ncomms8624 (2015).
    ADS  Article  PubMed  PubMed Central  Google Scholar 

    45.
    van Passel, M. W. J. et al. The genome of Akkermansia muciniphila, a dedicated intestinal mucin degrader, and its use in exploring intestinal metagenomes. PLoS ONE 6, e16876. https://doi.org/10.1371/journal.pone.0016876 (2011).
    ADS  CAS  Article  PubMed  PubMed Central  Google Scholar 

    46.
    Nishiyama, K. et al. Bifidobacterium bifidum extracellular sialidase enhances adhesion to the mucosal surface and supports carbohydrate assimilation. MBio https://doi.org/10.1128/mBio.00928-17 (2017).
    Article  PubMed  PubMed Central  Google Scholar 

    47.
    Nishiyama, K. et al. Two extracellular sialidases from Bifidobacterium bifidum promote the degradation of sialyl-oligosaccharides and support the growth of Bifidobacterium breve. Anaerobe 52, 22–28. https://doi.org/10.1016/j.anaerobe.2018.05.007 (2018).
    CAS  Article  PubMed  Google Scholar 

    48.
    Crost, E. H. et al. The mucin-degradation strategy of Ruminococcus gnavus: The importance of intramolecular trans-sialidases. Gut Microbes 7, 302–312. https://doi.org/10.1080/19490976.2016.1186334 (2016).
    CAS  Article  PubMed  PubMed Central  Google Scholar 

    49.
    Brigham, C. et al. Sialic acid (N-acetyl neuraminic acid) utilization by Bacteroides fragilis requires a novel N-acetyl mannosamine epimerase. J. Bacteriol. 191, 3629–3638. https://doi.org/10.1128/JB.00811-08 (2009).
    CAS  Article  PubMed  PubMed Central  Google Scholar 

    50.
    Chia, L. W. et al. Deciphering the trophic interaction between Akkermansia muciniphila and the butyrogenic gut commensal Anaerostipes caccae using a metatranscriptomic approach. Antonie Van Leeuwenhoek 111, 859–873. https://doi.org/10.1007/s10482-018-1040-x (2018).
    CAS  Article  PubMed  PubMed Central  Google Scholar 

    51.
    Kosciow, K. & Deppenmeier, U. Characterization of three novel β-galactosidases from Akkermansia muciniphila involved in mucin degradation. Int. J. Biol. Macromol. https://doi.org/10.1016/j.ijbiomac.2020.01.246 (2020).
    Article  PubMed  Google Scholar 

    52.
    Guo, B.-S. et al. Cloning, purification and biochemical characterisation of a GH35 beta-1,3/beta-1,6-galactosidase from the mucin-degrading gut bacterium Akkermansia muciniphila. Glycoconj. J. 35, 255–263. https://doi.org/10.1007/s10719-018-9824-9 (2018).
    CAS  Article  PubMed  Google Scholar 

    53.
    Kosciow, K. & Deppenmeier, U. Characterization of a phospholipid-regulated β-galactosidase from Akkermansia muciniphila involved in mucin degradation. Microbiologyopen https://doi.org/10.1002/mbo3.796 (2019).
    Article  PubMed  PubMed Central  Google Scholar 

    54.
    van der Ark, K. C. H. et al. Model-driven design of a minimal medium for Akkermansia muciniphila confirms mucus adaptation. Microb. Biotechnol. 11, 476–485. https://doi.org/10.1111/1751-7915.13033 (2018).
    CAS  Article  PubMed  PubMed Central  Google Scholar 

    55.
    Wang, M. et al. Cloning, purification and biochemical characterization of two β-N-acetylhexosaminidases from the mucin-degrading gut bacterium Akkermansia muciniphila. Carbohydr. Res. 457, 1–7. https://doi.org/10.1016/j.carres.2017.12.007 (2018).
    CAS  Article  PubMed  Google Scholar 

    56.
    Reichardt, N. et al. Phylogenetic distribution of three pathways for propionate production within the human gut microbiota. ISME J. 8, 1323–1335. https://doi.org/10.1038/ismej.2014.14 (2014).
    CAS  Article  PubMed  PubMed Central  Google Scholar 

    57.
    Belzer, C. et al. Microbial metabolic networks at the mucus layer lead to diet-independent butyrate and vitamin B 12 production by intestinal symbionts. MBio 8, 1–14. https://doi.org/10.1128/mBio.00770-17 (2017).
    Article  Google Scholar 

    58.
    Allen, L. H. B vitamins in breast milk: Relative importance of maternal status and intake, and effects on infant status and function. Adv. Nutr. 3, 362–369. https://doi.org/10.3945/an.111.001172 (2012).
    CAS  Article  PubMed  PubMed Central  Google Scholar 

    59.
    Ottman, N. et al. Pili-like proteins of Akkermansia muciniphila modulate host immune responses and gut barrier function. PLoS ONE 12, e0173004. https://doi.org/10.1371/journal.pone.0173004 (2017).
    CAS  Article  PubMed  PubMed Central  Google Scholar 

    60.
    Plovier, H. et al. A purified membrane protein from Akkermansia muciniphila or the pasteurized bacterium improves metabolism in obese and diabetic mice. Nat. Med. 23, 107–113. https://doi.org/10.1038/nm.4236 (2017).
    CAS  Article  PubMed  Google Scholar 

    61.
    McPhee, M. D., Atkinson, S. A. & Cole, D. E. C. Quantitation of free sulfate and total sulfoesters in human breast milk by ion chromatography. J. Chromatogr. B Biomed. Sci. Appl. 527, 41–50. https://doi.org/10.1016/S0378-4347(00)82081-2 (1990).
    CAS  Article  Google Scholar 

    62.
    Coppa, G. V. et al. Composition and structure elucidation of human milk glycosaminoglycans. Glycobiology 21, 295–303. https://doi.org/10.1093/glycob/cwq164 (2011).
    CAS  Article  PubMed  Google Scholar 

    63.
    Tseng, T.-T., Tyler, B. M. & Setubal, J. C. Protein secretion systems in bacterial-host associations, and their description in the gene ontology. BMC Microbiol. 9, S2. https://doi.org/10.1186/1471-2180-9-S1-S2 (2009).
    CAS  Article  PubMed  PubMed Central  Google Scholar 

    64.
    Galdiero, S. et al. Microbe–host interactions: Structure and role of gram-negative bacterial porins. Curr. Protein Pept. Sci. 13, 843–854. https://doi.org/10.2174/138920312804871120 (2012).
    CAS  Article  PubMed  PubMed Central  Google Scholar 

    65.
    Brugman, S., Perdijk, O., van Neerven, R. J. J. & Savelkoul, H. F. J. Mucosal immune development in early life: Setting the stage. Arch. Immunol. Ther. Exp. (Warsz) 63, 251–268. https://doi.org/10.1007/s00005-015-0329-y (2015).
    CAS  Article  Google Scholar 

    66.
    Duerr, C. U. & Hornef, M. W. The mammalian intestinal epithelium as integral player in the establishment and maintenance of host–microbial homeostasis. Semin. Immunol. 24, 25–35. https://doi.org/10.1016/j.smim.2011.11.002 (2012).
    CAS  Article  PubMed  Google Scholar 

    67.
    Hoskins, L. C. et al. Mucin degradation in human colon ecosystems isolation and properties of fecal strains that degrade ABH blood group antigens and oligosaccharides from mucin glycoproteins. J. Clin. Invest 75, 944–953 (1985).
    CAS  Article  Google Scholar 

    68.
    Stams, A. J., Van Dijk, J. B., Dijkema, C. & Plugge, C. M. Growth of syntrophic propionate-oxidizing bacteria with fumarate in the absence of methanogenic bacteria. Appl. Environ. Microbiol. 59, 1114–1119 (1993).
    CAS  Article  Google Scholar 

    69.
    Mank, M., Welsch, P., Heck, A. J. R. & Stahl, B. Label-free targeted LC-ESI-MS2 analysis of human milk oligosaccharides (HMOS) and related human milk groups with enhanced structural selectivity. Anal. Bioanal. Chem. 411, 231–250. https://doi.org/10.1007/s00216-018-1434-7 (2019).
    CAS  Article  PubMed  Google Scholar 

    70.
    Rupakula, A. et al. The restricted metabolism of the obligate organohalide respiring bacterium Dehalobacter restrictus: Lessons from tiered functional genomics. Philos. Trans. R. Soc. B Biol. Sci. 368, 20120325. https://doi.org/10.1098/rstb.2012.0325 (2013).
    CAS  Article  Google Scholar 

    71.
    Lu, J. et al. Filter-aided sample preparation with dimethyl labeling to identify and quantify milk fat globule membrane proteins. J. Proteomics 75, 34–43. https://doi.org/10.1016/j.jprot.2011.07.031 (2011).
    CAS  Article  PubMed  Google Scholar 

    72.
    Wendrich, J. R., Boeren, S., Möller, B. K., Weijers, D. & De Rybel, B. In vivo identification of plant protein complexes using IP-MS/MS. in Methods in Molecular Biology vol. 1497 147–158 (Humana Press, New York, NY, 2017). https://doi.org/10.1007/978-1-4939-6469-7_14.

    73.
    Hubner, N. C. et al. Quantitative proteomics combined with BAC TransgeneOmics reveals in vivo protein interactions. J. Cell Biol. 189, 739–754. https://doi.org/10.1083/jcb.200911091 (2010).
    CAS  Article  PubMed  PubMed Central  Google Scholar 

    74.
    Smaczniak, C. et al. Proteomics-based identification of low-abundance signaling and regulatory protein complexes in native plant tissues. Nat. Protocols https://doi.org/10.1038/nprot.2012.129 (2012).
    Article  PubMed  Google Scholar 

    75.
    Cox, J. et al. Accurate proteome-wide label-free quantification by delayed normalization and maximal peptide ratio extraction. Termed MaxLFQ. Mol. Cell. Proteomics 13, 2513–2526. https://doi.org/10.1074/mcp.M113.031591 (2014).
    CAS  Article  PubMed  Google Scholar 

    76.
    Tyanova, S. et al. The Perseus computational platform for comprehensive analysis of (prote)omics data. Nat. Methods 13, 731–740. https://doi.org/10.1038/nmeth.3901 (2016).
    CAS  Article  PubMed  Google Scholar 

    77.
    Bielow, C., Mastrobuoni, G. & Kempa, S. Proteomics quality control: Quality control software for MaxQuant results. J. Proteome Res. 15, 777–787. https://doi.org/10.1021/acs.jproteome.5b00780 (2016).
    CAS  Article  PubMed  Google Scholar 

    78.
    Vizcaíno, J. A. et al. 2016 update of the PRIDE database and its related tools. Nucleic Acids Res. 44, D447–D456. https://doi.org/10.1093/nar/gkv1145 (2016).
    CAS  Article  PubMed  Google Scholar 

    79.
    Morris, J. B. Enzymatic assay for subnanomole amounts of l-fucose. Anal. Biochem. 121, 129–134. https://doi.org/10.1016/0003-2697(82)90565-6 (1982).
    CAS  Article  PubMed  Google Scholar 

    80.
    Rosendale, D. I. et al. Characterizing kiwifruit carbohydrate utilization in vitro and its consequences for human faecal microbiota. J. Proteome Res. 11, 5863–5875. https://doi.org/10.1021/pr300646m (2012).
    CAS  Article  PubMed  Google Scholar 

    81.
    van Gelder, A. H., Aydin, R., Alves, M. M. & Stams, A. J. M. 1,3-Propanediol production from glycerol by a newly isolated Trichococcus strain. Microb. Biotechnol. 5, 573–578. https://doi.org/10.1111/j.1751-7915.2011.00318.x (2012).
    CAS  Article  PubMed  PubMed Central  Google Scholar  More

  • in

    Habitat preference and diverse migration in threespine sticklebacks, Gasterosteus aculeatus and G. nipponicus

    Effects of salinity on otolith Sr:Ca ratios
    The mean total lengths (TLs) in the four experimental salinities of 0, 10, 20 and 30 psu were 17.3 ± 0.5 (± SD) mm, 18.2 ± 1.3 mm, 18.6 ± 0.7 mm and 17.5 ± 0.8 mm, respectively. There were significant differences in TL among the four salinities (Kruskal–Wallis test, n = 40, H = 13.577, p  More

  • in

    New insights into the food web of an Australian tropical river to inform water resource management

    1.
    Albert, J. S. et al. Scientists’ warning to humanity on the freshwater biodiversity crisis. Ambio https://doi.org/10.1007/s13280-020-01318-8 (2020).
    Article  PubMed  Google Scholar 
    2.
    Poff, N. L. et al. The natural flow regime. Bioscience 47, 769–784. https://doi.org/10.2307/1313099 (1997).
    Article  Google Scholar 

    3.
    Dudgeon, D. et al. Freshwater biodiversity: importance, threats, status and conservation challenges. Biol. Rev. 81, 163–182. https://doi.org/10.1017/S1464793105006950 (2006).
    Article  PubMed  Google Scholar 

    4.
    Sparks, R. E. Need for ecosystem management of large rivers and their floodplains. Bioscience 45, 168–182. https://doi.org/10.2307/1312556 (1995).
    Article  Google Scholar 

    5.
    Hancock, P. J. Human impacts on the stream-groundwater exchange zone. Environ. Manage. 29, 763–781. https://doi.org/10.1007/s00267-001-0064-5 (2002).
    Article  PubMed  Google Scholar 

    6.
    Pringle, C. What is hydrologic connectivity and why is it ecologically important?. Hydrol. Process. 17, 2685–2689. https://doi.org/10.1002/hyp.5145 (2003).
    ADS  Article  Google Scholar 

    7.
    Reid, M. A., Delong, M. D. & Thoms, M. C. The influence of hydrological connectivity on food web structure in floodplain lakes. River Res. Appl. 28, 827–844. https://doi.org/10.1002/rra.1491 (2012).
    Article  Google Scholar 

    8.
    Tickner, D. et al. Bending the curve of global freshwater biodiversity loss: an emergency recovery plan. Bioscience 70, 330–342. https://doi.org/10.1093/biosci/biaa002 (2020).
    Article  PubMed  PubMed Central  Google Scholar 

    9.
    Australian Government. Our North, Our Future: White Paper on Developing Northern Australia. https://industry.gov.au/ONA/WhitePaper/Documents/northern_australia_white_paper.pdf (2015).

    10.
    Petheram, C., Bruce, C., Chilcott, C. & Watson, I. Water resource assessment for the Fitzroy catchment. A report to the Australian Government from the CSIRO Northern Australia Water Resource Assessment, part of the National Water Infrastructure Development Fund: Water Resource Assessments (CSIRO, Australia, 2018).
    Google Scholar 

    11.
    Pusey, B. Aquatic Biodiversity in Northern Australia: Patterns Threats and Future (Charles Darwin University Press, Darwin, 2011).
    Google Scholar 

    12.
    Jackson, S., Finn, M. & Featherston, P. Aquatic resource use by Indigenous Australians in two tropical river catchments: the Fitzroy River and Daly River. Hum. Ecol. 40, 893–908. https://doi.org/10.1007/s10745-012-9518-z (2012).
    Article  Google Scholar 

    13.
    Douglas, M. M. et al. Conceptualizing hydro-socio-ecological relationships to enable more integrated and inclusive water allocation planning. One Earth 1, 361–373. https://doi.org/10.1016/j.oneear.2019.10.021 (2019).
    Article  Google Scholar 

    14.
    Lear, K. O. et al. Recruitment of a critically endangered sawfish into a riverine nursery depends on natural flow regimes. Sci. Rep. 9, 17071. https://doi.org/10.1038/s41598-019-53511-9 (2019).
    ADS  CAS  Article  PubMed  PubMed Central  Google Scholar 

    15.
    Fry, B. & Sherr, E. B. in Stable Isotopes in Ecological Research Vol. 68 (eds P.W. Rundel, J. R. Ehleringer, & K. A. Nagy) (Springer, New York, 1989).

    16.
    Jardine, T. D. et al. Consumer-resource coupling in wet-dry tropical rivers. J. Anim. Ecol. 81, 310–322. https://doi.org/10.1111/j.1365-2656.2011.01925.x (2012).
    Article  PubMed  Google Scholar 

    17.
    Fellman, J. B., Pettit, N. E., Kalic, J. & Grierson, P. F. Influence of stream–floodplain biogeochemical linkages on aquatic foodweb structure along a gradient of stream size in a tropical catchment. Freshw. Sci. 32, 217–229. https://doi.org/10.1899/11-117.1 (2013).
    Article  Google Scholar 

    18.
    Burford, M. A., Cook, A. J., Fellows, C. S., Balcombe, S. R. & Bunn, S. E. Sources of carbon fuelling production in an arid floodplain river. Mar. Freshw. Res. 59, 224–234 (2008).
    CAS  Article  Google Scholar 

    19.
    Hunt, R. J. et al. Temporal and spatial variation in ecosystem metabolism and food web carbon transfer in a wet-dry tropical river. Freshw. Biol. 57, 435–450. https://doi.org/10.1111/j.1365-2427.2011.02708.x (2012).
    CAS  Article  Google Scholar 

    20.
    Jardine, T. D. et al. Carbon from periphyton supports fish biomass in waterholes of a wet-dry tropcical river. River Res. Appl. 29, 560–573. https://doi.org/10.1002/rra.2554 (2013).
    Article  Google Scholar 

    21.
    Junk, W. J., Bayley, P. B. & Sparks, R. E. The Flood Pulse Concept In River-Floodplain Systems (Canadian Special Publication of Fisheries and Aquatic Sciences, Toronto, 1989).
    Google Scholar 

    22.
    Zeug, S. C. & Winemiller, K. O. Evidence supporting the importance of terrestrial carbon in a large-river food web. Ecology 89, 1733–1743. https://doi.org/10.1890/07-1064.1 (2008).
    Article  PubMed  Google Scholar 

    23.
    Karim, F. et al. Floodplain Inundation Mapping and Modelling for the Fitzroy, Darwin and Mitchell Catchments (CSIRO, Australia, 2018).
    Google Scholar 

    24.
    Burrows, R., Beesley, L., Douglas, M., Pusey, B. & Kennard, M. Water velocity and groundwater upwelling control benthic algae biomass in a sandy tropical river during base flow: implications for water resource development. Hydrobiologia 847, 1207–1219 (2020).
    Article  Google Scholar 

    25.
    Bunn, S. E. & Arthington, A. H. Basic principles and ecological consequences of altered flow regimes for aquatic biodiversity. Environ. Manage. 30, 492–507. https://doi.org/10.1007/s00267-002-2737-0 (2002).
    Article  PubMed  Google Scholar 

    26.
    Staunton-Smith, J., Robins, J. B., Mayer, D. G., Sellin, M. J. & Halliday, I. A. Does the quantity and timing of fresh water flowing into a dry tropical estuary affect year-class strength of barramundi (Lates calcarifer)?. Mar. Freshw. Res. 55, 787–797. https://doi.org/10.1071/MF03198 (2004).
    Article  Google Scholar 

    27.
    Morgan, D. L., Allen, M. G., Bedford, P. & Horstman, M. Fish fauna of the Fitzroy River in the Kimberley region of Western Australia: including the Bunuba, Gooniyandi, Ngarinyin, Nyikina and Walmajarri Aboriginal names. Rec. West. Austral. Museum 22, 147–161 (2004).
    Article  Google Scholar 

    28.
    Jardine, T. D. et al. Fish mediate high food web connectivity in the lower reaches of a tropical floodplain river. Oecologia 168, 829–838. https://doi.org/10.1007/s00442-011-2148-0 (2012).
    ADS  Article  PubMed  Google Scholar 

    29.
    Burnham, K. P. & Anderson, D. R. A practical information-theoretic approach. in Model Selection and Multimodel Inference 2nd edn (Springer, New York, 2002).
    Google Scholar 

    30.
    Stock, B. C. et al. Analyzing mixing systems using a new generation of Bayesian tracer mixing models. PeerJ 6, e5096. https://doi.org/10.7717/peerj.5096 (2018).
    Article  PubMed  PubMed Central  Google Scholar 

    31.
    MacAvoy, S. E., Macko, S. A. & Garman, G. C. Tracing marine biomass into tidal freshwater ecosystems using stable sulfur isotopes. Sci. Nat. 85, 544–546. https://doi.org/10.1007/s001140050546 (1998).
    CAS  Article  Google Scholar 

    32.
    Douglas, M. M., Bunn, S. E. & Davies, P. M. River and wetland food webs in Australias wet-dry tropics: general principles and implications for management. Mar. Freshw. Res. 56, 329–342. https://doi.org/10.1071/MF04084 (2005).
    Article  Google Scholar 

    33.
    Hill, W. R., Rinchard, J. & Czesny, S. Light, nutrients and the fatty acid composition of stream periphyton. Freshw. Biol. 56, 1825–1836. https://doi.org/10.1111/j.1365-2427.2011.02622.x (2011).
    CAS  Article  Google Scholar 

    34.
    Guo, F., Kainz, M. J., Sheldon, F. & Bunn, S. E. The importance of high-quality algal food sources in stream food webs: current status and future perspectives. Freshw. Biol. 61, 815–831. https://doi.org/10.1111/fwb.12755 (2016).
    CAS  Article  Google Scholar 

    35.
    Pettit, N. E. et al. Productivity and connectivity in tropical riverscapes of northern Australia: ecological insights for management. Ecosystems 20, 492–514. https://doi.org/10.1007/s10021-016-0037-4 (2017).
    Article  Google Scholar 

    36.
    Medeiros, E. S. F. & Arthington, A. H. The importance of zooplankton in the diets of three native fish species in floodplain waterholes of a dryland river, the Macintyre River, Australia. Hydrobiologia 614, 19–31. https://doi.org/10.1007/s10750-008-9533-7 (2008).
    Article  Google Scholar 

    37.
    Hladyz, S., Nielsen, D. L., Suter, P. J. & Krull, E. S. Temporal variations in organic carbon utilization by consumers in a lowland river. River Res. Appl. 28, 513–528. https://doi.org/10.1002/rra.1467 (2012).
    Article  Google Scholar 

    38.
    Thorburn, D. C., Gill, H. & Morgan, D. L. Predator and prey interactions of fishes of a tropical Western Australia river revealed by dietary and stable isotope analyses. J. R. Soc. West. Austral. 97, 363–387 (2014).
    Google Scholar 

    39.
    Davis, A. M. et al. Trophic ecology of northern Australia’s terapontids: ontogenetic dietary shifts and feeding classification. J. Fish Biol. 78, 265–286. https://doi.org/10.1111/j.1095-8649.2010.02862.x (2011).
    CAS  Article  PubMed  Google Scholar 

    40.
    Jardine, T. D. et al. Body size drives allochthony in food webs of tropical rivers. Oecologia 183, 505–517. https://doi.org/10.1007/s00442-016-3786-z (2017).
    ADS  Article  PubMed  Google Scholar 

    41.
    Peterson, B. J. & Fry, B. Stable isotopes in ecosystem studies. Annu. Rev. Ecol. Syst. 18, 293–320 (1987).
    Article  Google Scholar 

    42.
    Roberts, B. H. et al. Migration to freshwater increases growth rates in a facultatively catadromous tropical fish. Oecologia 191, 253–260 (2019).
    ADS  Article  Google Scholar 

    43.
    Crook, D. A. et al. Tracking the resource pulse: movement responses of fish to dynamic floodplain habitat in a tropical river. J. Anim. Ecol. 89, 795–807. https://doi.org/10.1111/1365-2656.13146 (2020).
    Article  PubMed  Google Scholar 

    44.
    Kwak, T. J. Lateral movement and use of floodplain habitat by fishes of the Kankakee River, Illinois. Am. Midl. Nat. 120, 241–249. https://doi.org/10.2307/2425995 (1988).
    Article  Google Scholar 

    45.
    Jackson, S., Finn, M., Woodward, E. & Featherston, P. Indigenous Socio-Economic Values and River Flows (CSIRO Ecosystem Sciences, Australia, 2011).
    Google Scholar 

    46.
    Townsend, S. A. & Padovan, A. V. The seasonal accrual and loss of benthic algae (Spirogyra) in the Daly River, an oligotrophic river in tropical Australia. Mar. Freshw. Res. 56, 317–327. https://doi.org/10.1071/MF04079 (2005).
    CAS  Article  Google Scholar 

    47.
    Fellman, J. B. et al. Dissolved organic carbon biolability decreases along with its modernization in fluvial networks in an ancient landscape. Ecology 95, 2622–2632. https://doi.org/10.1890/13-1360.1 (2014).
    Article  Google Scholar 

    48.
    Pace, M. L. et al. Whole-lake carbon-13 additions reveal terrestrial support of aquatic food webs. Nature 427, 240–243. https://doi.org/10.1038/nature02227 (2004).
    ADS  CAS  Article  PubMed  Google Scholar 

    49.
    Baldwin, D. S., Colloff, M. J., Mitrovic, S. M., Bond, N. R. & Wolfenden, B. Restoring dissolved organic carbon subsidies from floodplains to lowland river food webs: a role for environmental flows?. Mar. Freshw. Res. 67, 1387–1399. https://doi.org/10.1071/MF15382 (2016).
    CAS  Article  Google Scholar 

    50.
    Kennard, M. J. et al. Classification of natural flow regimes in Australia to support environmental flow management. Freshw. Biol. 55, 171–193. https://doi.org/10.1111/j.1365-2427.2009.02307.x (2010).
    Article  Google Scholar 

    51.
    Taylor, C. F. H. in Limnology of the Fitzroy River, Western Australia: a technical workshop. (eds A Storey & L Beesley).

    52.
    Hesslein, R. H., Capel, M. J., Fox, D. E. & Hallard, K. A. Stable isotopes of sulfur, carbon, and nitrogen as indicators of trophic level and fish migration in the lower Mackenzie River Basin, Canada. Can. J. Fish. Aquat. Sci. 48, 2258–2265. https://doi.org/10.1139/f91-265 (1991).
    Article  Google Scholar 

    53.
    Herzka, S. Z. Assessing connectivity of estuarine fishes based on stable isotope ratio analysis. Estuar. Coast. Shelf Sci. 64, 58–69. https://doi.org/10.1016/j.ecss.2005.02.006 (2005).
    ADS  Article  Google Scholar 

    54.
    Pusey, B. J. et al. Carbon sources supporting Australia’s most widely distributed freshwater fish, Nematalosa erebi (Günther) (Clupeidae: Dorosomatinae). Mar. Freshw. Res. https://doi.org/10.1071/MF20014 (2020).
    Article  Google Scholar 

    55.
    Hecky, R. & Hesslein, R. Contributions of benthic algae to lake food webs as revealed by stable isotope analysis. J. N. Am. Benthol. Soc. 14, 631–653 (1995).
    Article  Google Scholar 

    56.
    Yoshii, K. et al. Stable isotope analyses of the pelagic food web in Lake Baikal. Limnol. Oceanogr. 44, 502–511 (1999).
    ADS  Article  Google Scholar 

    57.
    Pinnegar, J. K. & Polunin, N. V. C. Differential fractionation of δ13C and δ15N among fish tissues: implications for the study of trophic interactions. Funct. Ecol. 13, 225–231. https://doi.org/10.1046/j.1365-2435.1999.00301.x (1999).
    Article  Google Scholar 

    58.
    Skrzypek, G. Normalization procedures and reference material selection in stable HCNOS isotope analyses: an overview. Anal. Bioanal. Chem. 405, 2815–2823. https://doi.org/10.1007/s00216-012-6517-2 (2013).
    CAS  Article  PubMed  Google Scholar 

    59.
    Logan, J. M. et al. Lipid corrections in carbon and nitrogen stable isotope analyses: comparison of chemical extraction and modelling methods. J. Anim. Ecol. 77, 838–846. https://doi.org/10.1111/j.1365-2656.2008.01394.x (2008).
    Article  PubMed  Google Scholar 

    60.
    Skinner, M. M., Martin, A. A. & Moore, B. C. Is lipid correction necessary in the stable isotope analysis of fish tissues?. Rapid Commun. Mass Spectrom. 30, 881–889. https://doi.org/10.1002/rcm.7480 (2016).
    CAS  Article  PubMed  Google Scholar 

    61.
    Parnell, A. C., Inger, R., Bearhop, S. & Jackson, A. L. Source partitioning using stable isotopes: coping with too much variation. PLoS ONE 5, e9672. https://doi.org/10.1371/journal.pone.0009672 (2010).
    ADS  CAS  Article  PubMed  PubMed Central  Google Scholar 

    62.
    Sauer, J. R. & Link, W. A. Hierarchical modeling of population stability and species group attributes from survey data. Ecology 83, 1743–1751. https://doi.org/10.1890/0012-9658(2002)083[1743:Hmopsa]2.0.Co;2 (2002).
    Article  Google Scholar 

    63.
    McCutchan, J. H. Jr., Lewis, W. M. Jr., Kendall, C. & McGrath, C. C. Variation in trophic shift for stable isotope ratios of carbon, nitrogen, and sulfur. Oikos 102, 378–390. https://doi.org/10.1034/j.1600-0706.2003.12098.x (2003).
    CAS  Article  Google Scholar 

    64.
    Parnell, A. C. et al. Bayesian stable isotope mixing models. Environmetrics 24, 387–399. https://doi.org/10.1002/env.2221 (2013).
    MathSciNet  Article  Google Scholar 

    65.
    Blanchette, M. L., Davis, A. M., Jardine, T. D. & Pearson, R. G. Omnivory and opportunism characterize food webs in a large dry-tropics river system. Freshw. Sci. 33, 142–158. https://doi.org/10.1086/674632 (2014).
    Article  Google Scholar 

    66.
    Bunn, S. E., Leigh, C. & Jardine, T. D. Diet-tissue fractionation of δ15N by consumers from streams and rivers. Limnol. Oceanogr. 58, 765–773. https://doi.org/10.4319/lo.2013.58.3.0765 (2013).
    ADS  CAS  Article  Google Scholar 

    67.
    Pusey, B., Kennard, M. & Arthington, A. Freshwater Fishes of North-Eastern Australia (CSIRO publishing, Clayton, 2004).
    Google Scholar 

    68.
    Post, D. M. Using stable isotopes to estimate trophic position: models, methods and assumptions. Ecology 83, 703–718. https://doi.org/10.1890/0012-9658(2002)083[0703:Usitet]2.0.Co;2 (2002).
    Article  Google Scholar  More

  • in

    Ecological pest control fortifies agricultural growth in Asia–Pacific economies

    1.
    Griggs, D. et al. Policy: sustainable development goals for people and planet. Nature 495, 305–307 (2013).
    CAS  Article  Google Scholar 
    2.
    Bernhardt, E. S., Rosi, E. J. & Gessner, M. O. Synthetic chemicals as agents of global change. Front. Ecol. Environ. 15, 84–90 (2017).
    Google Scholar 

    3.
    Springmann, M. et al. Options for keeping the food system within environmental limits. Nature 562, 519–525 (2018).
    CAS  PubMed  Google Scholar 

    4.
    Pretty, J. et al. Global assessment of agricultural system redesign for sustainable intensification. Nat. Sustain. 1, 441–446 (2018).
    Google Scholar 

    5.
    Rockström, J. et al. A safe operating space for humanity. Nature 461, 472–475 (2009).
    PubMed  Google Scholar 

    6.
    Alston, J. M. & Pardey, P. G. Agriculture in the global economy. J. Econ. Perspect. 28, 121–146 (2014).
    Google Scholar 

    7.
    Johnston, B. F. & Mellor, J. W. The role of agriculture in economic development. Am. Econ. Rev. 51, 566–593 (1961).
    Google Scholar 

    8.
    de Janvry, A. Agriculture for development: new paradigm and options for success. Agric. Econ. 41, 17–36 (2010).
    Google Scholar 

    9.
    Pingali, P. L. Green revolution: impacts, limits, and the path ahead. Proc. Natl. Acad. Sci. USA 109, 12302–12308 (2012).
    CAS  PubMed  Google Scholar 

    10.
    Sayer, J. & Cassman, K. G. Agricultural innovation to protect the environment. Proc. Natl Acad. Sci. USA 110, 8345–8348 (2013).
    CAS  PubMed  Google Scholar 

    11.
    Bale, J. S., Van Lenteren, J. C. & Bigler, F. Biological control and sustainable food production. Phil. Trans. R. Soc. B 363, 761–776 (2008).
    CAS  PubMed  Google Scholar 

    12.
    Naranjo, S. E., Ellsworth, P. C. & Frisvold, G. B. Economic value of biological control in integrated pest management of managed plant systems. Annu. Rev. Entomol. 60, 621–645 (2015).
    CAS  PubMed  Google Scholar 

    13.
    Heimpel, G. E. & Cock, M. J. W. Shifting paradigms in the history of classical biological control. BioControl 63, 27–37 (2018).
    Google Scholar 

    14.
    Simmonds, F. J., Franz, J. M., & Sailer, R. I. in Theory and Practice of Biological Control (eds Huffaker, C. B. & Messenger, P. S.) 17–39 (Academic Press, 1976).

    15.
    Maredia, M. K. & Raitzer, D. A. Estimating overall returns to international agricultural research in Africa through benefit–cost analysis: a “best‐evidence” approach. Agric. Econ. 41, 81–100 (2010).
    Google Scholar 

    16.
    Nghiem, L. T. et al. Economic and environmental impacts of harmful non-indigenous species in Southeast Asia. PLoS ONE 8, e71255 (2013).
    CAS  PubMed Central  Google Scholar 

    17.
    Bradshaw, C. J. et al. Massive yet grossly underestimated global costs of invasive insects. Nat. Commun. 7, 12986 (2016).
    CAS  PubMed  PubMed Central  Google Scholar 

    18.
    Huffaker, C. B. & Caltagirone, L. E. The impact of biological control on the development of the Pacific. Agric. Ecosyst. Environ. 15, 95–107 (1986).
    Google Scholar 

    19.
    Waterhouse, D. F., Dillon, B. & Vincent, D. P. Economic Benefits to Papua New Guinea and Australia from the Biological Control of Banana Skipper (Erionota thrax) No. 434-2016-33658 (ACIAR, 1998).

    20.
    DeBach, P. & Rosen, D. Biological Control by Natural Enemies (Cambridge Univ. Press, 1991).

    21.
    Heimpel, G. E. & Mills, N. J. Biological Control (Cambridge Univ. Press, 2017).

    22.
    Spennemann, D. H. Introduction of coccinellid beetles to control the coconut scale insect Aspidiotus destructor Signoret in Micronesia 1901–1914. Oriental Insects 54, 197–215 (2019).

    23.
    Zalucki, M. P. et al. Estimating the economic cost of one of the world’s major insect pests, Plutella xylostella (Lepidoptera: Plutellidae): just how long is a piece of string? J. Econ. Entomol. 105, 1115–1129 (2012).
    PubMed  Google Scholar 

    24.
    Hoddle, M. S. Restoring balance: using exotic species to control invasive exotic species. Conserv. Biol. 18, 38–49 (2004).
    Google Scholar 

    25.
    Van Driesche, R. G. et al. Classical biological control for the protection of natural ecosystems. Biol. Control 54, S2–S33 (2010).
    Google Scholar 

    26.
    Ricciardi, A., Palmer, M. E. & Yan, N. D. Should biological invasions be managed as natural disasters? BioScience 61, 312–317 (2011).
    Google Scholar 

    27.
    Bellard, C. et al. A global picture of biological invasion threat on islands. Nat. Ecol. Evol. 1, 1862–1869 (2017).
    PubMed  Google Scholar 

    28.
    Naranjo, S. E., Frisvold, G. B. & Ellsworth, P. C. in The Economics of Integrated Pest Management of Insects (eds Onstad, D. W. & Crain, P. R.) 49–85 (CAB International, 2019).

    29.
    Liu, J. et al. Systems integration for global sustainability. Science 347, 1258832 (2015).
    PubMed  Google Scholar 

    30.
    Gordon, L. J. et al. Rewiring food systems to enhance human health and biosphere stewardship. Environ. Res. Lett. 12, 100201 (2017).
    Google Scholar 

    31.
    Ruttan, V. W. Productivity growth in world agriculture: sources and constraints. J. Econ. Perspect. 16, 161–184 (2002).
    Google Scholar 

    32.
    Ruttan, V. W. & Hayami, Y. in International Agricultural Development (eds Eicher, C. K. & Staatz, J. M.) Ch. 10 (Johns Hopkins Univ. Press, 1998).

    33.
    Dainese, M. et al. A global synthesis reveals biodiversity-mediated benefits for crop production. Sci. Adv. 5, eaax012 (2019).
    Google Scholar 

    34.
    Keane, R. M. & Crawley, M. J. Exotic plant invasions and the enemy release hypothesis. Trends Ecol. Evol. 17, 164–170 (2002).
    Google Scholar 

    35.
    Thancharoen, A. et al. Effective biological control of an invasive mealybug pest enhances root yield in cassava. J. Pest Sci. 91, 1199–1211 (2018).
    Google Scholar 

    36.
    Raitzer, D. A. & Kelley, T. G. Benefit–cost meta-analysis of investment in the International Agricultural Research Centers of the CGIAR. Agric. Syst. 96, 108–123 (2008).
    Google Scholar 

    37.
    van der Ploeg, J. D. et al. The economic potential of agroecology: empirical evidence from Europe. J. Rural Stud. 71, 46–61 (2019).
    Google Scholar 

    38.
    Haggblade, S., Hazell, P. B. & Dorosh, P. A. in Transforming the Rural Nonfarm Economy: Opportunities and Threats in the Developing World (eds Haggblade, S. et al.) Ch. 7 (IFPRI, 2007).

    39.
    Wiggins, S., Kirsten, J. & Llambí, L. The future of small farms. World Dev. 38, 1341–1348 (2010).
    Google Scholar 

    40.
    Timmer, P. C. in International Agricultural Development (eds Eicher, C. K. & Staatz, J. M.) Ch. 32 (Johns Hopkins Univ. Press, 1998).

    41.
    Folke, C. et al. Transnational corporations and the challenge of biosphere stewardship. Nat. Ecol. Evol. 3, 1396–1403 (2019).
    PubMed  Google Scholar 

    42.
    Yletyinen, J. et al. Understanding and managing social-ecological tipping points in primary industries. BioScience 69, 335–347 (2019).
    Google Scholar 

    43.
    Bottrell, D. G. & Schoenly, K. G. Resurrecting the ghost of green revolutions past: the brown planthopper as a recurring threat to high-yielding rice production in tropical Asia. J. Asia-Pacific Entomol. 15, 122–140 (2012).
    Google Scholar 

    44.
    Cock, M. J. W. et al. Trends in the classical biological control of insect pests by insects: an update of the BIOCAT database. Biocontrol 61, 349–363 (2016).
    CAS  Google Scholar 

    45.
    Reardon, T. The hidden middle: the quiet revolution in the midstream of agrifood value chains in developing countries. Oxford Rev. Econ. Policy 31, 45–63 (2015).
    Google Scholar 

    46.
    Wyckhuys, K. A. G. Biological control of an invasive pest eases pressures on global commodity markets. Environ. Res. Lett. 13, 094005 (2018).
    Google Scholar 

    47.
    Martin, E. A. et al. Assessing the resilience of 2 biodiversity-driven functions in agroecosystems under environmental change. Adv. Ecol. Res. 60, 59–123 (2019).
    Google Scholar 

    48.
    Warner, K. D. et al. The decline of public interest agricultural science and the dubious future of crop biological control in California. Agric. Human Values 28, 483–496 (2011).
    Google Scholar 

    49.
    Benelli, G., Jeffries, C. L. & Walker, T. Biological control of mosquito vectors: past, present, and future. Insects 7, 52 (2016).
    PubMed Central  Google Scholar 

    50.
    Dangour, A. D., Mace, G. & Shankar, B. Food systems, nutrition, health and the environment. Lancet Planet. Health 1, e8–e9 (2017).
    PubMed  Google Scholar 

    51.
    Rasmussen, L. V. et al. Social-ecological outcomes of agricultural intensification. Nat. Sustain. 1, 275–282 (2018).
    Google Scholar 

    52.
    Henneman, M. L. & Memmott, J. Infiltration of a Hawaiian community by introduced biological control agents. Science 293, 1314–1316 (2001).
    CAS  PubMed  Google Scholar 

    53.
    Stiling, P. & Cornelissen, T. What makes a successful biocontrol agent? A meta-analysis of biological control agent performance. Biol. Control 34, 236–246 (2005).
    Google Scholar 

    54.
    Sparger, J. A. et al. Is the share of agricultural maintenance research rising in the United States? Food Policy 38, 126–135 (2013).
    Google Scholar 

    55.
    Trewavas, A. Malthus foiled again and again. Nature 418, 668–670 (2002).
    CAS  PubMed  Google Scholar 

    56.
    Greathead, D. J. & Greathead, A. H. Biological control of insect pests by insect parasitoids and predators: the BIOCAT database. Biocontrol News Inf. 13, 61N–68N (1992).
    Google Scholar 

    57.
    Wyckhuys, K. A. G. et al. Data from: Ecological pest control fortifies agricultural growth in Asia-Pacific economies (Dryad Digital Repository, 2020); https://doi.org/10.5061/dryad.547d7wm45

    58.
    Zeddies, J., Schaab, R. P., Neuenschwander, P. & Herren, H. R. Economics of biological control of cassava mealybug in Africa. Agric. Econ. 24, 209–219 (2001).
    Google Scholar 

    59.
    Hayami, Y. & Ruttan, V. W. Agricultural Development: An International Perspective (Johns Hopkins Univ. Press, 1971). More

  • in

    Novel bacterial clade reveals origin of form I Rubisco

    1.
    Nisbet, E. G. et al. The age of Rubisco: the evolution of oxygenic photosynthesis. Geobiology 5, 311–335 (2007).
    CAS  Google Scholar 
    2.
    Tabita, F. R. et al. Function, structure, and evolution of the RubisCO-like proteins and their RubisCO homologs. Microbiol. Mol. Biol. Rev. 71, 576–599 (2007).
    CAS  PubMed  PubMed Central  Google Scholar 

    3.
    Tabita, F. R., Satagopan, S., Hanson, T. E., Kreel, N. E. & Scott, S. S. Distinct form I, II, III, and IV Rubisco proteins from the three kingdoms of life provide clues about Rubisco evolution and structure/function relationships. J. Exp. Bot. 59, 1515–1524 (2007).
    Google Scholar 

    4.
    Andrews, T. J. Catalysis by cyanobacterial ribulose-bisphosphate carboxylase large subunits in the complete absence of small subunits. J. Biol. Chem. 263, 12213–12219 (1988).
    CAS  PubMed  Google Scholar 

    5.
    Morell, M. K., Wilkin, J. M., Kane, H. J. & Andrews, T. J. Side reactions catalyzed by ribulose-bisphosphate carboxylase in the presence and absence of small subunits. J. Biol. Chem. 272, 5445–5451 (1997).
    CAS  PubMed  Google Scholar 

    6.
    Spreitzer, R. J. Role of the small subunit in ribulose-1,5-bisphosphate carboxylase/oxygenase. Arch. Biochem. Biophys. 414, 141–149 (2003).
    CAS  PubMed  Google Scholar 

    7.
    Joshi, J., Mueller-Cajar, O., Tsai, Y.-C. C., Hartl, F. U. & Hayer-Hartl, M. Role of small subunit in mediating assembly of red-type form I rubisco. J. Biol. Chem. 290, 1066–1074 (2015).
    CAS  PubMed  Google Scholar 

    8.
    Liu, C. et al. Coupled chaperone action in folding and assembly of hexadecameric Rubisco. Nature 463, 197–202 (2010).
    CAS  PubMed  Google Scholar 

    9.
    Grabsztunowicz, M., Górski, Z., Luciński, R. & Jackowski, G. A reversible decrease in ribulose 1,5-bisphosphate carboxylase/oxygenase carboxylation activity caused by the aggregation of the enzyme’s large subunit is triggered in response to the exposure of moderate irradiance-grown plants to low irradiance. Physiol. Plant. 154, 591–608 (2015).
    CAS  PubMed  Google Scholar 

    10.
    Kusian, B. & Bowien, B. Organization and regulation of cbb CO2 assimilation genes in autotrophic bacteria. FEMS Microbiol. Rev. 21, 135–155 (1997).
    CAS  PubMed  Google Scholar 

    11.
    Tabita, F. R. Microbial ribulose 1,5-bisphosphate carboxylase/oxygenase: a different perspective. Photosynth. Res. 60, 1–28 (1999).
    CAS  Google Scholar 

    12.
    Whitney, S. M. & Andrews, T. J. The gene for the ribulose-1,5-bisphosphate carboxylase/oxygenase (Rubisco) small subunit relocated to the plastid genome of tobacco directs the synthesis of small subunits that assemble into Rubisco. Plant Cell 13, 193–205 (2001).
    CAS  PubMed  PubMed Central  Google Scholar 

    13.
    Bryant, D. A. & Liu, Z. in Advances in Botanical Research (ed. Beatty, J. T.) 99–150 (Academic Press, 2013).

    14.
    Shih, P. M., Ward, L. M. & Fischer, W. W. Evolution of the 3-hydroxypropionate bicycle and recent transfer of anoxygenic photosynthesis into the Chloroflexi. Proc. Natl Acad. Sci. USA 114, 10749–10754 (2017).
    CAS  PubMed  Google Scholar 

    15.
    Ward, L. M., Hemp, J., Shih, P. M., McGlynn, S. E. & Fischer, W. W. Evolution of phototrophy in the Chloroflexi phylum driven by horizontal gene transfer. Front. Microbiol. 9, 260 (2018).
    PubMed  PubMed Central  Google Scholar 

    16.
    Fischer, W. W., Hemp, J. & Johnson, J. E. Evolution of oxygenic photosynthesis. Annu. Rev. Earth Planet. Sci. 44, 647–683 (2016).
    CAS  Google Scholar 

    17.
    Roy, H. Rubisco assembly: a model system for studying the mechanism of chaperonin action. Plant Cell 1, 1035–1042 (1989).
    CAS  PubMed  PubMed Central  Google Scholar 

    18.
    Hayer-Hartl, M. From chaperonins to Rubisco assembly and metabolic repair. Protein Sci. 26, 2324–2333 (2017).
    CAS  PubMed  PubMed Central  Google Scholar 

    19.
    Aigner, H. et al. Plant RuBisCo assembly in E. coli with five chloroplast chaperones including BSD2. Science 358, 1272–1278 (2017).
    CAS  PubMed  Google Scholar 

    20.
    Wilson, R. H. & Hayer-Hartl, M. Complex chaperone dependence of Rubisco biogenesis. Biochemistry 57, 3210–3216 (2018).
    CAS  PubMed  Google Scholar 

    21.
    Saschenbrecker, S. et al. Structure and function of RbcX, an assembly chaperone for hexadecameric Rubisco. Cell 129, 1189–1200 (2007).
    CAS  PubMed  Google Scholar 

    22.
    Gunn, L. H., Valegård, K. & Andersson, I. A unique structural domain in Methanococcoides burtonii ribulose-1,5-bisphosphate carboxylase/oxygenase (Rubisco) acts as a small subunit mimic. J. Biol. Chem. 292, 6838–6850 (2017).
    CAS  PubMed  PubMed Central  Google Scholar 

    23.
    Goloubinoff, P., Christeller, J. T., Gatenby, A. A. & Lorimer, G. H. Reconstitution of active dimeric ribulose bisphosphate carboxylase from an unfolded state depends on two chaperonin proteins and Mg-ATP. Nature 342, 884–889 (1989).
    CAS  PubMed  Google Scholar 

    24.
    Parry, M. A. J., Keys, A. J. & Gutteridge, S. Variation in the specificity factor of C3 higher plant Rubiscos determined by the total consumption of ribulose-P2. J. Exp. Bot. 40, 317–320 (1989).
    CAS  Google Scholar 

    25.
    Tcherkez, G. G. B., Farquhar, G. D. & Andrews, T. J. Despite slow catalysis and confused substrate specificity, all ribulose bisphosphate carboxylases may be nearly perfectly optimized. Proc. Natl Acad. Sci. USA 103, 7246–7251 (2006).
    CAS  PubMed  Google Scholar 

    26.
    Flamholz, A. I. et al. Revisiting trade-offs between Rubisco kinetic parameters. Biochemistry 58, 3365–3376 (2019).
    CAS  PubMed  PubMed Central  Google Scholar 

    27.
    Yamada, T. & Sekiguchi, Y. Cultivation of uncultured Chloroflexi subphyla: significance and ecophysiology of formerly uncultured Chloroflexi ‘subphylum i’ with natural and biotechnological relevance. Microbes Environ. 24, 205–216 (2009).
    PubMed  Google Scholar 

    28.
    Hemp, J., Ward, L. M., Pace, L. A. & Fischer, W. W. Draft genome sequence of Ornatilinea apprima P3M-1, an anaerobic member of the Chloroflexi class Anaerolineae. Genome Announc. 3, e01353-15 (2015).

    29.
    Ward, L. M., Hemp, J., Pace, L. A. & Fischer, W. W. Draft genome sequence of Leptolinea tardivitalis YMTK-2, a mesophilic anaerobe from the Chloroflexi class Anaerolineae. Genome Announc. 3, e01356-15 (2015).

    30.
    Alonso, H., Blayney, M. J., Beck, J. L. & Whitney, S. M. Substrate-induced assembly of Methanococcoides burtonii d-ribulose-1,5-bisphosphate carboxylase/oxygenase dimers into decamers. J. Biol. Chem. 284, 33876–33882 (2009).
    CAS  PubMed  PubMed Central  Google Scholar 

    31.
    Knott, G. J. et al. Structural basis for AcrVA4 inhibition of specific CRISPR-Cas12a. eLife 8, e49110 (2019).

    32.
    Duff, A. P., Andrews, T. J. & Curmi, P. M. The transition between the open and closed states of Rubisco is triggered by the inter-phosphate distance of the bound bisphosphate. J. Mol. Biol. 298, 903–916 (2000).
    CAS  PubMed  Google Scholar 

    33.
    Newman, J., Branden, C. I. & Jones, T. A. Structure determination and refinement of ribulose 1,5-bisphosphate carboxylase/oxygenase from Synechococcus PCC6301. Acta Crystallogr. D. Biol. Crystallogr. 49, 548–560 (1993).
    CAS  PubMed  Google Scholar 

    34.
    Lu, Z., Zhao, Z. & Fu, B. Efficient protein alignment algorithm for protein search. BMC Bioinf. 11, S34 (2010).
    Google Scholar 

    35.
    Cleland, W. W., Andrews, T. J., Gutteridge, S., Hartman, F. C. & Lorimer, G. H. Mechanism of Rubisco: the carbamate as general base. Chem. Rev. 98, 549–562 (1998).
    CAS  PubMed  Google Scholar 

    36.
    Andersson, I. & Backlund, A. Structure and function of Rubisco. Plant Physiol. Biochem. 46, 275–291 (2008).
    CAS  PubMed  Google Scholar 

    37.
    van Lun, M., van der Spoel, D. & Andersson, I. Subunit interface dynamics in hexadecameric Rubisco. J. Mol. Biol. 411, 1083–1098 (2011).
    PubMed  Google Scholar 

    38.
    Schneider, G. et al. Comparison of the crystal structures of L2 and L8S8 Rubisco suggests a functional role for the small subunit. EMBO J. 9, 2045–2050 (1990).
    CAS  PubMed  PubMed Central  Google Scholar 

    39.
    Huynh, K. & Partch, C. L. Analysis of protein stability and ligand interactions by thermal shift assay. Curr. Protoc. Protein Sci. 79, 28.9.1–28.9.14 (2015).
    Google Scholar 

    40.
    Greene, D. N., Whitney, S. M. & Matsumura, I. Artificially evolved Synechococcus PCC6301 Rubisco variants exhibit improvements in folding and catalytic efficiency. Biochem. J. 404, 517–524 (2007).
    CAS  PubMed  PubMed Central  Google Scholar 

    41.
    DePristo, M. A., Weinreich, D. M. & Hartl, D. L. Missense meanderings in sequence space: a biophysical view of protein evolution. Nat. Rev. Genet. 6, 678–687 (2005).
    CAS  PubMed  Google Scholar 

    42.
    Tokuriki, N., Stricher, F., Serrano, L. & Tawfik, D. S. How protein stability and new functions trade off. PLoS Comput. Biol. 4, e1000002 (2008).
    PubMed  PubMed Central  Google Scholar 

    43.
    Tokuriki, N. & Tawfik, D. S. Protein dynamism and evolvability. Science 324, 203–207 (2009).
    CAS  PubMed  Google Scholar 

    44.
    Erb, T. J. & Zarzycki, J. A short history of RubisCO: the rise and fall (?) of Nature’s predominant CO2 fixing enzyme. Curr. Opin. Biotechnol. 49, 100–107 (2018).
    CAS  PubMed  Google Scholar 

    45.
    Badger, M. R., Hanson, D. & Dean Price, G. Evolution and diversity of CO2 concentrating mechanisms in cyanobacteria. Funct. Plant Biol. 29, 161–173 (2002).
    CAS  PubMed  Google Scholar 

    46.
    Studer, R. A., Christin, P.-A., Williams, M. A. & Orengo, C. A. Stability–activity tradeoffs constrain the adaptive evolution of RubisCO. Proc. Natl Acad. Sci. USA 111, 2223–2228 (2014).
    CAS  PubMed  Google Scholar 

    47.
    Zhou, Y. & Whitney, S. Directed evolution of an improved Rubisco; in vitro analyses to decipher fact from fiction. Int. J. Mol. Sci. 20, 5019 (2019).

    48.
    Wilson, R. H., Alonso, H. & Whitney, S. M. Evolving Methanococcoides burtonii archaeal Rubisco for improved photosynthesis and plant growth. Sci. Rep. 6, 22284 (2016).
    CAS  PubMed  PubMed Central  Google Scholar 

    49.
    Frey, S. & Görlich, D. A new set of highly efficient, tag-cleaving proteases for purifying recombinant proteins. J. Chromatogr. A 1337, 95–105 (2014).
    CAS  PubMed  Google Scholar 

    50.
    Kane, H. J., Wilkin, J. M., Portis, A. R. & John Andrews, T. Potent inhibition of ribulose-bisphosphate carboxylase by an oxidized impurity in ribulose-1,5-bisphosphate. Plant Physiol. 117, 1059–1069 (1998).
    CAS  PubMed  PubMed Central  Google Scholar 

    51.
    Pierce, J., Tolbert, N. E. & Barker, R. Interaction of ribulosebisphosphate carboxylase/oxygenase with transition-state analogues. Biochemistry 19, 934–942 (1980).
    CAS  PubMed  Google Scholar 

    52.
    Pereira, J. H., McAndrew, R. P., Tomaleri, G. P. & Adams, P. D. Berkeley Screen: a set of 96 solutions for general macromolecular crystallization. J. Appl. Crystallogr. 50, 1352–1358 (2017).
    CAS  PubMed  PubMed Central  Google Scholar 

    53.
    Winter, G., Lobley, C. M. C. & Prince, S. M. Decision making in xia2. Acta Crystallogr. D. Biol. Crystallogr. 69, 1260–1273 (2013).
    CAS  PubMed  PubMed Central  Google Scholar 

    54.
    McCoy, A. J. et al. Phaser crystallographic software. J. Appl. Crystallogr. 40, 658–674 (2007).
    CAS  PubMed  PubMed Central  Google Scholar 

    55.
    Adams, P. D. et al. PHENIX: a comprehensive Python-based system for macromolecular structure solution. Acta Crystallogr. D 66, 213–221 (2010).
    CAS  PubMed  Google Scholar 

    56.
    Afonine, P. V. et al. Towards automated crystallographic structure refinement with phenix.refine. Acta Crystallogr. D 68, 352–367 (2012).
    CAS  PubMed  Google Scholar 

    57.
    Emsley, P. & Cowtan, K. Coot: model-building tools for molecular graphics. Acta Crystallogr. D 60, 2126–2132 (2004).
    PubMed  Google Scholar 

    58.
    Davis, I. W. et al. MolProbity: all-atom contacts and structure validation for proteins and nucleic acids. Nucleic Acids Res. 35, W375–W383 (2007).
    PubMed  PubMed Central  Google Scholar 

    59.
    Dyer, K. N. et al. High-throughput SAXS for the characterization of biomolecules in solution: a practical approach. Methods Mol. Biol. 1091, 245–258 (2014).
    CAS  PubMed  PubMed Central  Google Scholar 

    60.
    Hura, G. L. et al. Robust, high-throughput solution structural analyses by small angle X-ray scattering (SAXS). Nat. Methods 6, 606–612 (2009).
    CAS  PubMed  PubMed Central  Google Scholar 

    61.
    Rambo, R. P. & Tainer, J. A. Accurate assessment of mass, models and resolution by small-angle scattering. Nature 496, 477–481 (2013).
    CAS  PubMed  PubMed Central  Google Scholar 

    62.
    Sali, A. & Blundell, T. L. Comparative protein modelling by satisfaction of spatial restraints. J. Mol. Biol. 234, 779–815 (1993).
    CAS  PubMed  Google Scholar 

    63.
    Schneidman-Duhovny, D., Hammel, M. & Sali, A. FoXS: a web server for rapid computation and fitting of SAXS profiles. Nucleic Acids Res. 38, W540–W544 (2010).
    CAS  PubMed  PubMed Central  Google Scholar 

    64.
    Schneidman-Duhovny, D., Hammel, M., Tainer, J. A. & Sali, A. Accurate SAXS profile computation and its assessment by contrast variation experiments. Biophys. J. 105, 962–974 (2013).
    CAS  PubMed  PubMed Central  Google Scholar 

    65.
    Prins, A. et al. Rubisco catalytic properties of wild and domesticated relatives provide scope for improving wheat photosynthesis. J. Exp. Bot. 67, 1827–1838 (2016).
    CAS  PubMed  PubMed Central  Google Scholar 

    66.
    Sharwood, R. E., Ghannoum, O. & Whitney, S. M. Prospects for improving CO2 fixation in C3-crops through understanding C4-Rubisco biogenesis and catalytic diversity. Curr. Opin. Plant Biol. 31, 135–142 (2016).
    CAS  PubMed  Google Scholar 

    67.
    Pei, J., Kim, B.-H. & Grishin, N. V. PROMALS3D: a tool for multiple protein sequence and structure alignments. Nucleic Acids Res. 36, 2295–2300 (2008).
    CAS  PubMed  PubMed Central  Google Scholar 

    68.
    Katoh, K., Rozewicki, J. & Yamada, K. D. MAFFT online service: multiple sequence alignment, interactive sequence choice and visualization. Brief. Bioinform. 20, 1160–1166 (2017).
    PubMed Central  Google Scholar 

    69.
    Potterton, E., Briggs, P., Turkenburg, M. & Dodson, E. A graphical user interface to the CCP4 program suite. Acta Crystallogr. D 59, 1131–1137 (2003).
    PubMed  Google Scholar 

    70.
    Krissinel, E. & Henrick, K. Inference of macromolecular assemblies from crystalline state. J. Mol. Biol. 372, 774–797 (2007).
    CAS  PubMed  PubMed Central  Google Scholar 

    71.
    Krissinel, E. Crystal contacts as nature’s docking solutions. J. Comput. Chem. 31, 133–143 (2010).
    CAS  PubMed  Google Scholar 

    72.
    Pettersen, E. F. et al. UCSF Chimera-a visualization system for exploratory research and analysis. J. Comput. Chem. 25, 1605–1612 (2004).
    CAS  Google Scholar 

    73.
    Diamond, S. et al. Mediterranean grassland soil C-N compound turnover is dependent on rainfall and depth, and is mediated by genomically divergent microorganisms. Nat. Microbiol. 4, 1356–1367 (2019).
    CAS  PubMed  PubMed Central  Google Scholar 

    74.
    Lavy, A. et al. Microbial communities across a hillslope–riparian transect shaped by proximity to the stream, groundwater table, and weathered bedrock. Ecol. Evol. 9, 6869–6900 (2019).
    PubMed  PubMed Central  Google Scholar 

    75.
    Knight, S., Andersson, I. & Brändén, C. I. Crystallographic analysis of ribulose 1,5-bisphosphate carboxylase from spinach at 2.4 A resolution. Subunit interactions and active site. J. Mol. Biol. 215, 113–160 (1990).
    CAS  PubMed  Google Scholar  More

  • in

    Incorporating hydrology into climate suitability models changes projections of malaria transmission in Africa

    1.
    World Health Organisation. World Malaria Report 2018 (World Health Organization, Geneva, 2018).
    2.
    Caminade, C. et al. Impact of climate change on global malaria distribution. Proc. Natl Acad. Sci. 111, 3286–3291 (2014).
    ADS  CAS  PubMed  Google Scholar 

    3.
    Shapiro, L. L., Whitehead, S. A. & Thomas, M. B. Quantifying the effects of temperature on mosquito and parasite traits that determine the transmission potential of human malaria. PLoS Biol. 15, 2003489 (2017).
    Google Scholar 

    4.
    Jepson, W. F., Moutia, A. & Courtois, C. The malaria problem in Mauritius: the binomics of Mauritian anophelines. Bull. Entomol. Res. 38, 177–208 (1947).
    CAS  PubMed  Google Scholar 

    5.
    Waite, J. L., Suh, E., Lynch, P. A. & Thomas, M. B. Exploring the lower thermal limits for development of the human malaria parasite, Plasmodium falciparum. Biol. Lett. 15, 20190275 (2019).
    PubMed  PubMed Central  Google Scholar 

    6.
    Bayoh, M. N. & Lindsay, S. W. Effect of temperature on the development of the aquatic stages of Anopheles gambiae sensu stricto (Diptera: Culicidae). Bull. Entomol. Res. 93, 375–381 (2003).
    CAS  PubMed  Google Scholar 

    7.
    Depinay, J. M. et al. A simulation model of African Anopheles ecology and population dynamics for the analysis of malaria transmission. Malar. J. 3, 29 (2004).
    PubMed  PubMed Central  Google Scholar 

    8.
    Mordecai, E. A. et al. Optimal temperature for malaria transmission is dramatically lower than previously predicted. Ecol. Lett. 16, 22–30 (2012).
    PubMed  Google Scholar 

    9.
    Craig, M. H., Snow, R. W. & Le Sueur, D. Climate-based distribution model of malaria transmission in sub-Saharan Africa. Parasitol. Today 15, 105–111 (1999).
    CAS  PubMed  Google Scholar 

    10.
    Parham, P. E. & Michael, E. Modeling the effects of weather and climate change on malaria transmission. Environ. Health Perspect. 118, 620–626 (2010).
    PubMed  Google Scholar 

    11.
    Ryan, S. J. et al. Mapping physiological suitability limits for malaria in Africa under climate change. Vector-Borne Zoonotic Dis. 15, 718–725 (2015).
    PubMed  PubMed Central  Google Scholar 

    12.
    Smith, M. W., Macklin, M. G. & Thomas, C. J. Hydrological and geomorphological controls of malaria transmission. Earth Sci. Rev. 116, 109–127 (2013).
    ADS  Google Scholar 

    13.
    Bomblies, A., Duchemin, J. B. & Eltahir, E. A. Hydrology of malaria: model development and application to a Sahelian village. Water Resour. Res. 44, W12445 (2008).
    ADS  Google Scholar 

    14.
    Yamana, T. K., Bomblies, A. & Eltahir, E. A. Climate change unlikely to increase malaria burden in West Africa. Nat. Clim. Change 6, 1009–1013 (2016).
    ADS  Google Scholar 

    15.
    Small, J., Goetz, S. J. & Hay, S. I. Climatic suitability for malaria transmission in Africa, 1911–1995. Proc. Natl Acad. Sci. USA 100, 15341–15345 (2003).
    ADS  CAS  PubMed  Google Scholar 

    16.
    Thomas, C. J., Davies, G. & Dunn, C. E. Mixed picture for changes in stable malaria distribution with future climate in Africa. Trends Parasitol. 20, 216–220 (2004).
    PubMed  Google Scholar 

    17.
    Ebi, K. L. et al. Climate suitability for stable malaria transmission in Zimbabwe under different climate change scenarios. Clim. Change 73, 375–393 (2005).
    ADS  Google Scholar 

    18.
    Van Lieshout, M., Kovats, R. S., Livermore, M. T. J. & Martens, P. Climate change and malaria: analysis of the SRES climate and socio-economic scenarios. Glob. Environ. Change 14, 87–99 (2004).
    Google Scholar 

    19.
    Kiszewski, A. et al. A global index representing the stability of malaria transmission. Am. J. Trop. Med. Hyg. 70, 486–498 (2004).
    PubMed  Google Scholar 

    20.
    Ermert, V., Fink, A. H., Jones, A. E. & Morse, A. P. Development of a new version of the Liverpool Malaria Model. II. Calibration and validation for West Africa. Malar. J. 10, 62 (2011).
    PubMed  PubMed Central  Google Scholar 

    21.
    Martens, W. J. M., Niessen, L. W., Rotmans, J. & McMichael, A. J. Potential impacts of global climate change on malaria risk. Environ. Health Perspect. 103, 458–464 (1995).
    CAS  PubMed  PubMed Central  Google Scholar 

    22.
    Tanser, F., Sharp, B. L. & Le Sueur, D. Potential effect of climate change on malaria transmission in Africa. Lancet 362, 1792–9178 (2003).
    PubMed  Google Scholar 

    23.
    Garnham, P. C. C. The incidence of malaria at high altitudes. J. Malar. Soc. 7, 275–284 (1948).
    CAS  Google Scholar 

    24.
    Lindsay, S. W., Parson, L. & Thomas, C. J. Mapping the ranges and relative abundance of the two principal African malaria vectors, Anopheles gambiae sensu stricto and An. arabiensis, using climate data. Proc. R. Soc. B Biol. Sci. 265, 847–854 (1998).
    CAS  Google Scholar 

    25.
    Mabaso, M. L., Craig, M., Ross, A. & Smith, T. Environmental predictors of the seasonality of malaria transmission in Africa: the challenge. Am. J. Trop. Med. Hyg. 76, 33–38 (2007).
    PubMed  Google Scholar 

    26.
    Kibret, S. et al. Malaria impact of large dams in sub-Saharan Africa: maps, estimates and predictions. Malar. J. 14, 339 (2015).
    PubMed  PubMed Central  Google Scholar 

    27.
    Lysenko, A. J. & Semashko, I. N. in Itogi Nauki: Medicinskaja Geografija (ed. Lebedew, A. W.) 25–146 (Academy of Sciences, Moscow, 1968) (in Russian).

    28.
    Ageep, T. B. et al. Spatial and temporal distribution of the malaria mosquito Anopheles arabiensis in northern Sudan: influence of environmental factors and implications for vector control. Malar. J. 8, 123 (2009).
    PubMed  PubMed Central  Google Scholar 

    29.
    Fuller, D. O., Parenti, M. S., Hassan, A. N. & Beier, J. C. Linking land cover and species distribution models to project potential ranges of malaria vectors: an example using Anopheles arabiensis in Sudan and Upper Egypt. Malar. J. 11, 264 (2012).
    PubMed  PubMed Central  Google Scholar 

    30.
    Gemperli, A., Vounatsou, P., Sogoba, N. & Smith, T. Malaria mapping using transmission models: application to survey data from Mali. Am. J. Epidemiol. 163, 289–297 (2005).
    PubMed  Google Scholar 

    31.
    Snow, R. W., Noor, A. M. & Hay, S. I. Malaria in Somalia: Assembling the Evidence and Modeling Risks (University of Oxford, UK, 2006).

    32.
    Hulme, M., Doherty, R., Ngara, T., New, M. & Lister, D. African climate change: 1900–2100. Clim. Res. 17, 145–168 (2001).
    Google Scholar 

    33.
    Tierney, J. E., Ummenhofer, C. C. & de Menocal, P. B. Past and future rainfall in the Horn of Africa. Sci. Adv. 1, e1500682 (2015).
    ADS  PubMed  PubMed Central  Google Scholar 

    34.
    Reiter, P. Global warming and malaria: knowing the horse before hitching the cart. Malar. J. 7, S3 (2008).
    PubMed  PubMed Central  Google Scholar 

    35.
    Gething, P. et al. Climate change and the global malaria recession. Nature 465, 342–345 (2010).
    ADS  CAS  PubMed  PubMed Central  Google Scholar 

    36.
    Yamazaki, D., Kanae, S., Kim, H. & Oki, T. A physically based description of floodplain inundation dynamics in a global river routing model. Water Resour. Res. 47, W04501 (2011).
    ADS  Google Scholar 

    37.
    Hazeleger, W. et al. EC-Earth V2.2: description and validation of a new seamless earth system prediction model. Clim. Dyn. 39, 2611–2629 (2012).
    Google Scholar 

    38.
    Alfieri, L. et al. Global projections of river flood risk in a warmer world. Earth’s Future 5, 171–182 (2017).
    ADS  Google Scholar 

    39.
    Muerth, M. J. et al. On the need for bias correction in regional climate scenarios to assess climate change impacts on river runoff. Hydrol. Earth Syst. Sci. 17, 1189–1204 (2013).
    ADS  Google Scholar 

    40.
    Hirpa, F. A. et al. Streamflow response to climate change in the Greater Horn of Africa. Clim. Change 156, 341–363 (2019).
    ADS  Google Scholar 

    41.
    van der Knijff, J. M., Younis, J. & de Roo, A. P. J. LISFLOOD: a GIS-based distributed model for river basin scale water balance and flood simulation. Int. J. Geograph. Inf. Sci. 24, 189–212 (2010).
    Google Scholar 

    42.
    Burek, P., van der Knijff, J. & de Roo, A. P. J. LISFLOOD, Distributed Water Balance and Flood Simulation Model Revised User Manual (Publ. Off., Luxembourg, 2013).

    43.
    Lehner, B., Verdin, K. & Jarvis, A. New global hydrography derived from spaceborne elevation data. Eos, Trans. Am. Geophys. Union 89, 93–94 (2008).
    ADS  Google Scholar 

    44.
    Wu, H. et al. A new global river network database for macroscale hydrologic modeling. Water Resour. Res. 48, W09701 (2012).
    ADS  Google Scholar 

    45.
    Hengl, T. et al. SoilGrids1km—global soil information based on automated mapping. PLoS ONE 9, e105992 (2014).
    ADS  PubMed  PubMed Central  Google Scholar 

    46.
    Paaijmans, K. P., Takken, W., Githeko, A. K. & Jacobs, A. F. G. The effect of water turbidity on the near-surface water temperature of larval habitats of the malaria mosquito Anopheles gambiae. Int. J. Biometeorol. 52, 747–753 (2008).
    ADS  CAS  PubMed  Google Scholar 

    47.
    Thomas, C. J., Cross, D. E. & Bøgh, C. Landscape movements of Anopheles gambiae malaria vector mosquitoes in rural Gambia. PLoS ONE 8, e68679 (2013).
    ADS  CAS  PubMed  PubMed Central  Google Scholar 

    48.
    Worldpop. Africa Continental Population Datasets (2000–2020) v2.0. https://doi.org/10.5258/SOTON/WP00004 (2016).

    49.
    Worldpop. Africa Continental age/sex structure Population Datasets 2000/05/10/15/20 V5.0. https://www.worldpop.org/geodata/summary?id=1276 (2016).

    50.
    James, W. H. et al. Gridded birth and pregnancy datasets for Africa, Latin America and the Caribbean. Sci. Data 5, 180090 (2018).
    CAS  PubMed  PubMed Central  Google Scholar 

    51.
    United Nations, Department of Economic and Social Affairs, Population Division. World Population Prospects 2019 Online ed (United Nations, 2019).

    52.
    Smith, M. W. et al. LIS-MAL Estimates of Hydro-Climatic Suitability for Malaria Transmission in Africa (1971–2100). [Dataset]. https://doi.org/10.5518/786 (University of Leeds, 2020). More

  • in

    The archives are half-empty: an assessment of the availability of microbial community sequencing data

    According to an initial keyword search, we selected the 17 most popular microbial ecology-related journals, as these were more likely to have sequence-specific data deposition instructions or requirements. We surveyed all the articles published in these journals between January 2015 and March 2019 (n = 26,927 articles, Supplementary Table S1), as concerns over data deposition practices began to grow in 201514 and were soon followed by stricter standards for data availability12. A custom-built pattern-based text extraction algorithm followed by manual curation, we selected those studies which performed 16S rRNA gene amplicon sequencing and listed INSDC-compliant accession numbers (n = 2015, Supplementary Table S1; 145,203 samples).
    To confirm that our parsing algorithm did not miss accession numbers in articles containing 16S rRNA gene amplicon sequencing, we randomly selected 150 articles which mentioned 16S rRNA, but for which no accession numbers were detected, for manual inspection. Of these, one contained a misspelled accession number, two had archived their sequences in unconventional repositories (Google Drive and GEO, a gene expression database, Supplementary Data 2), and 19 were identified as having performed 16S rRNA gene amplicon sequencing, but had not included any reference to the data. We found no cases in which accession numbers or sequence data were stored in supplementary materials. From this group, we estimate that 18% of the studies in our database (n = 469) performed 16S rRNA gene amplicon sequencing but did not provide access to the data (Fig. 1a). Four studies mentioned deposition data in dbGaP18, and we could verify the existence of three of these studies. We found that an additional 6.5% of the studies had deposited their data in the Qiita19, MG-RAST20, and figshare databases (n = 14, n = 134, and n = 24 studies, respectively). Of the estimated 2,656 studies employing 16S rRNA gene amplicon sequencing, 75.9% deposited their data to an INSDC database in the period studied (Fig. 1a).
    Fig. 1: Popular locations for data storage.

    Data for all studies which contained 16S rRNA amplicon sequencing (a), and the V3–V4 subset (b); n = 2656 and n = 635 studies, respectively. For the entirety of the study, studies which contained amplicon sequences but did not deposit them were inferred by manually checking 150 randomly-selected articles which did not contain INSDC accession numbers or refer to alternative databases, indicated in lighter yellow. For the V3–V4 subset, studies which contained the keywords “16S rRNA”, “515”, and “806” were selected. Studies for which INSDC-compliant accession numbers were reported but which did not exist on any INSDC database are shown in lighter blue.

    Full size image

    To obtain more precise estimates of the percentage of articles which deposited their data in each database, we focused on the subset of 635 studies which sequenced the V3–V4 region of the 16S rRNA gene between base pairs 515 and 806 (heretofore V3–V4 subset), a target region which has gained popularity since its development and use by the Earth Microbiome Project21,22. Of these, 74.5% (n = 474) studies listed INSDC-compliant accession numbers within the article, but of these, accession numbers from 5% of the studies (n = 33) were not findable on any INSDC database. Additionally, 19% (n = 121) did not provide an identifiable link to the data, and 6.8% of the studies deposited their data in the Qiita, MG-RAST, and figshare databases (n = 9, n = 24, n = 7, respectively, Fig. 1b). Two studies provided SRA submission IDs rather than accession numbers, and were also inaccessible.
    The increasing popularity of microbial community sequencing was evident in our data. Over the period studied, the number of studies in the V3–V4 subset rose from 56 in 2015 to 214 in 2018 (Supplementary Fig. 1a). The proportion of publications which claimed to deposit data to INSDC databases increased slightly over time, from 33/56 in 2015 to 172/214 in 2018 (χ2 = 6.6, p = 0.01, Supplementary Fig. 1b), suggesting an increasing tendency towards deposition in INSDC databases. Deposition to alternative databases decreased (χ2 = 14.04, p  More

  • in

    Species distribution models advance our knowledge of the Neanderthals’ paleoecology on the Iranian Plateau

    1.
    Gómez-Robles, A. Dental evolutionary rates and its implications for the Neanderthal–modern human divergence. Sci. Adv. 5, eaaw1268 (2019).
    ADS  PubMed  PubMed Central  Google Scholar 
    2.
    Higham, T. et al. The timing and spatiotemporal patterning of Neanderthal disappearance. Nature 512, 306–309 (2014).
    ADS  CAS  PubMed  Google Scholar 

    3.
    Wenzel, S. Neanderthal presence and behaviour in central and Northwestern Europe during MIS. In Developments in Quaternary Sciences Vol. 7 (eds Sirocko, F. et al.) 173–193 (Elsevier, Amsterdam, 2007).
    Google Scholar 

    4.
    Sørensen, B. Demography and the extinction of European Neanderthals. J. Anthropol. Archaeol. 30, 17–29 (2011).
    Google Scholar 

    5.
    Salazar-García, D. C. et al. Neanderthal diets in central and southeastern Mediterranean Iberia. Quat. Int. 318, 3–18 (2013).
    Google Scholar 

    6.
    Wißing, C. et al. Isotopic evidence for dietary ecology of late Neandertals in North-Western Europe. Quat. Int. 411, 327–345 (2016).
    Google Scholar 

    7.
    Nielsen, T. K. et al. Investigating Neanderthal dispersal above 55°N in Europe during the Last Interglacial Complex. Quat. Int. 431, 88–103 (2017).
    Google Scholar 

    8.
    Nicholson, C. M. Eemian paleoclimate zones and Neanderthal landscape-use: a GIS model of settlement patterning during the last interglacial. Quat. Int. 438, 144–157 (2017).
    Google Scholar 

    9.
    Rhodes, S. E., Starkovich, B. M. & Conard, N. J. Did climate determine Late Pleistocene settlement dynamics in the Ach Valley, SW Germany?. PLoS ONE 14, e0215172 (2019).
    PubMed  PubMed Central  Google Scholar 

    10.
    Defleur, A. R. & Desclaux, E. Impact of the last interglacial climate change on ecosystems and Neanderthals behavior at Baume Moula-Guercy, Ardèche, France. J. Archaeol. Sci. 104, 114–124 (2019).
    Google Scholar 

    11.
    Hovers, E. Territorial Behavior in the Middle Paleolithic of the Southern Levant. In: Settlement dynamics of the Middle Paleolithic and Middle Stone Age, Conard, N. J., editor. Kerns Verlag T¨ubingen; 123–152 (2001).

    12.
    Shea, J. J. Neandertals, competition, and the origin of modern human behavior in the Levant. Evol. Anthropol. 12, 173–187 (2003).
    Google Scholar 

    13.
    Been, E. et al. The first Neanderthal remains from an open-air Middle Palaeolithic site in the Levant. Sci. Rep. 7, 2958 (2017).
    ADS  PubMed  PubMed Central  Google Scholar 

    14.
    Vahdati Nasab, H., Clark, G. A. & Torkamandi, S. Late Pleistocene dispersal corridors across the Iranian Plateau: a case study from Mirak, a Middle Paleolithic site on the Northern Edge of the Iranian Central Desert (Dasht-e Kavir). Quat. Int. 300, 267–281 (2013).
    Google Scholar 

    15.
    Heydari-Guran, S. Palaeolithic Landscapes of Iran. BAR International Series, 2568 (2014).

    16.
    Bazgir, B. et al. Understanding the emergence of modern humans and the disappearance of Neanderthals: Insights from Kaldar Cave (Khorramabad Valley, Western Iran). Sci. Rep. 7, 43460 (2017).
    ADS  PubMed  PubMed Central  Google Scholar 

    17.
    Smith, P. E. L. Paleolithic Archaeology in Iran (University of Pennsylvania Press, Philadelphia, 1986).
    Google Scholar 

    18.
    Heydari-Guran, S. & Ghasidian, E. The MUP Zagros Project: tracking the Middle-Upper Palaeolithic transition in the Kermanshah region, West-Central Zagros, Iran. Antiquity 91, 1–7 (2017).
    Google Scholar 

    19.
    Heydari-Guran, S. & Ghasidian, E. Late Pleistocene hominin settlement patterns and population dynamics in the Zagros Mountains: Kermanshah region. Archaeol. Res. Asia 21, 100161 (2020).
    Google Scholar 

    20.
    Varela, S., Lobo, J. M. & Hortal, J. Using species distribution models in paleobiogeography: a matter of data, predictors and concepts. Palaeogeogr. Palaeoclimatol. Palaeoecol. 310, 451–463 (2011).
    Google Scholar 

    21.
    Svenning, J. C., Fløjgaard, C., Marske, K. A., Nógues-Bravo, D. & Normand, S. Applications of species distribution modeling to paleobiology. Quat. Sci. Rev. 30, 2930–2947 (2011).
    ADS  Google Scholar 

    22.
    Guisan, A., Thuiller, W. & Zimmermann, N. E. Habitat Suitability and Distribution Models: With Applications in R (Cambridge University Press, Cambridge, 2017).
    Google Scholar 

    23.
    Araújo, M. B. et al. Standards for distribution models in biodiversity assessments. Sci. Adv. 5, eaat858 (2019).
    Google Scholar 

    24.
    Hijmans, R. J., Cameron, S. E., Parra, J. L., Jones, P. G. & Jarvis, A. Very high resolution interpolated climate surfaces for global land areas. Int. J. Climatol. 25, 1965–1978 (2005).
    Google Scholar 

    25.
    Warren, D. L., Glor, R. E. & Turelli, M. ENMTools: a toolbox for comparative studies of environmental niche models. Ecography 33, 607–611 (2010).
    Google Scholar 

    26.
    Banks, W. E. et al. Neanderthal extinction by competitive exclusion. PLoS ONE 3, e3972 (2008).
    ADS  PubMed  PubMed Central  Google Scholar 

    27.
    Franklin, J., Potts, A. J., Fisher, E. C., Cowling, R. M. & Marean, C. M. Paleodistribution modeling in archaeology and paleoanthropology. Quat. Sci. Rev. 110, 1–14 (2015).
    Google Scholar 

    28.
    Benito, B. M. et al. The ecological niche and distribution of Neanderthals during the Last Interglacial. J. Biogeogr. 44, 51–61 (2017).
    Google Scholar 

    29.
    Giampoudakis, K. et al. Niche dynamics of Palaeolithic modern humans during the settlement of the Palaearctic. Glob. Ecol. Biogeogr. 26, 359–370 (2017).
    Google Scholar 

    30.
    Marean, C. W. A critique of the evidence for scavenging by Neandertals and early modern humans: new data from Kobeh Cave (Zagros Mountains, Iran) and Die Kelders Cave 1 layer 10 (South Africa). J. Hum. Evol. 35, 111–136 (1998).
    CAS  PubMed  Google Scholar 

    31.
    Marean, C. W. & Kim, S. Y. Mousterian large-mammal remains from Kobeh Cave: behavioural implications for Neanderthals and early modern humans. Curr. Anthropol. 39, S79–S114 (1998).
    Google Scholar 

    32.
    Mashkour, M. et al. Carnivores and their prey in the Wezmeh Cave (Kermanshah, Iran): a Late Pleistocene refuge in the Zagros. Int. J. Osteoarchaeol. 19, 678–694 (2009).
    Google Scholar 

    33.
    Biglari, F. et al. Qaleh Bozi, new evidence of late middle paleolithic occupation in the Zayandeh-Rud Basin, Esfahan Province. Archaeol. Res. Iran 7, 7–26 (2015).
    Google Scholar 

    34.
    Pearson, R. G. & Dawson, T. P. Predicting the impacts of climate change on the distribution of species: are bioclimate envelope models useful?. Glob. Ecol. Biogeogr. 12, 361–371 (2003).
    Google Scholar 

    35.
    Melchionna, M. et al. Fragmentation of Neanderthals’ pre-extinction distribution by climate change. Palaeogeogr. Palaeoclimatol. Palaeoecol. 496, 146–154 (2018).
    Google Scholar 

    36.
    Hole, F. & Flannery, K. V. The prehistory of Southwestern Iran: a preliminary report. Proc. Prehist. Soc. 22, 147–206 (1967).
    Google Scholar 

    37.
    Roustaei, K. et al. Recent paleolithic surveys in Lurestan. Curr. Anthropol. 45, 692–707 (2004).
    Google Scholar 

    38.
    Diedrich, C. Ice age spotted hyenas as Neanderthal exhumers and scavengers in Europe. Chronicles Sci. 1, 1–34 (2014).
    Google Scholar 

    39.
    Banks, W. E. The application of ecological niche modeling methods to archaeological data in order to examine culture-environment relationships and cultural trajectories. Quaternaire 28, 271–276 (2017).
    Google Scholar 

    40.
    Banks, W. E. et al. Eco-cultural niches of the Badegoulian: unraveling links between cultural adaptation and ecology during the Last Glacial Maximum in France. J. Anthropol. Archaeol. 30, 359–374 (2011).
    Google Scholar 

    41.
    King, T. et al. Azokh cave hominin remains. In Azokh cave and the transcaucasian corridor, vertebrate paleobiology and paleoanthropology (eds Fernndez-Jalvo, Y. et al.) 103–106 (Springer, Dordrecht, 2016).
    Google Scholar 

    42.
    Solecki, R. S. Prehistory in Shanidar valley, Northern Iraq. Science 139, 179–193 (1963).
    ADS  CAS  PubMed  Google Scholar 

    43.
    Pomeroy, E. et al. Newly-discovered Neanderthal remains from Shanidar Cave, Iraqi Kurdistan, and their attribution to Shanidar 5. J. Hum. Evol. 111, 102–118 (2017).
    PubMed  Google Scholar 

    44.
    Zanolli, C. et al. A Neanderthal from the Central Western Zagros, Iran. Structural reassessment of the Wezmeh 1 maxillary premolar. J. Hum. Evol. 135, 102643 (2019).
    PubMed  Google Scholar 

    45.
    Coon, C. S. The seven caves. In: Archaeological Exploration in the Middle East. (Alfred Knopf, 1975).

    46.
    Biglari, F. & Heydari, S. Do-Ashkaft: a recent discovery Mousterian cave site in Kermanshah Plain, Iran. Antiquity 75, 487–488 (2001).
    Google Scholar 

    47.
    Conard, N. J., Ghasidian, E. & Heydari, S. The paleolithic of Iran. In Ancient Iran (ed. Potts, D. T.) 29–48 (Oxford Press, Oxford, 2013).
    Google Scholar 

    48.
    Power, R. C. Neanderthals and their diet. In eLS (Wiley, 2019).

    49.
    Perkins, D. Prehistoric fauna from Shanidar, Iraq. Science 144, 1565–1566 (1964).
    ADS  PubMed  Google Scholar 

    50.
    Turnbull, P. F. The mammalian fauna of Warwasi rock shelter, west-central Iran. Fieldiana Geol. 33, 141–155 (1975).
    Google Scholar 

    51.
    Hesse, B. Paleolithic Faunal Remains from Ghar-I-Khar, Western Iran (University of Alabama Press, Alabama, 1989).
    Google Scholar 

    52.
    Karami, M., Ghadirian, T. & Faizolahi, K. The Atlas of the Mammals of Iran (Jahad Daneshgahi Press, Tehran, 2016).
    Google Scholar 

    53.
    Naderi, S. Evolutionary history of wild goat (Capra aegagrus) and the goat (C. hircus) based on the analysis of mitochondrial and nuclear DNA polymorphism: Implications for conservation and for the origin of the domestication. Ecology, Environment. Grenoble: Université Joseph-Fourier – Grenoble I (2007).

    54.
    Yusefi, G. H., Faizolahi, K., Darvish, J., Safi, K. & Brito, J. C. The species diversity, distribution, and conservation status of the terrestrial mammals of Iran. J. Mammal. 100, 55–71 (2019).
    Google Scholar 

    55.
    Hijmans, R. J. Raster: Geographic Data Analysis and Modeling. R package, (2015).

    56.
    R Core Team. R: A Language and Environment for Statistical Computing (R Core Team, Vienna, Austria, 2017).

    57.
    Jarvis, A., Reuter, H. I., Nelson, A. & Guevara, E. Hole-filled SRTM for the globe Version 4. Available from the CGIAR-CSI SRTM 90m Database https://srtm.csi.cgiar.org on 15 April 2015 (2008).

    58.
    Quinn, G. P. & Keough, M. J. Experimental Designs and Data Analysis for Biologists (Cambridge University Press, Cambridge, 2002).
    Google Scholar 

    59.
    Naimi, B. Uncertainty Analysis for Species Distribution Models. R package version 1.1–15 (2015).

    60.
    Araújo, M. B. & New, M. Ensemble forecasting of species distributions. Trends Ecol. Evol. 22, 42–47 (2007).
    PubMed  Google Scholar 

    61.
    McCullagh, P. & Nelder, J. A. Generalized Linear Models (Chapman and Hall, London, 1989).
    Google Scholar 

    62.
    Hastie, T. J. & Tibshirani, R. Generalized Additive Models (Chapman and Hall, London, 1990).
    Google Scholar 

    63.
    Ridgeway, G. The state of boosting. J. Comput. Sci. 31, 172–181 (1999).
    Google Scholar 

    64.
    Phillips, S. J., Anderson, R. P. & Schapire, R. E. Maximum entropy modeling of species geographic distributions. Ecol. Model. 190, 231–259 (2006).
    Google Scholar 

    65.
    Breiman, L. Random forests. Mach. Learn. 45, 5–32 (2001).
    MATH  Google Scholar 

    66.
    Fielding, A. H. & Bell, J. F. A review of methods for the assessment of prediction errors in conservation presence/absence models. Environ. Conserv. 24, 38–49 (1997).
    Google Scholar 

    67.
    Boyce, M. S., Vernier, P. R., Nielsen, S. E. & Schmiegelow, F. K. A. Evaluating resource selection functions. Ecol. Model. 157, 281–300 (2002).
    Google Scholar 

    68.
    Le Hirzel, A. H., Lay, G., Helfer, V., Randin, C. & Guisan, A. Evaluating the ability of habitat suitability models to predict species presences. Ecol. Model. 199, 142–152 (2006).
    Google Scholar 

    69.
    Swets, J. A. Measuring the accuracy of diagnostic systems. Science 240, 1285–1293 (1988).
    ADS  MathSciNet  CAS  MATH  Google Scholar 

    70.
    Schoener, T. W. Anolis lizards of Bimini: resource partitioning in a complex fauna. Ecology 49, 704–726 (1968).
    Google Scholar  More