Optimization of subsampling, decontamination, and DNA extraction of difficult peat and silt permafrost samples
1.
Willerslev, E. et al. Diverse plant and animal genetic records from Holocene and Pleistocene sediments. Science 300, 791–795 (2003).
ADS CAS PubMed Google Scholar
2.
Birks, H. J. B. & Birks, H. H. How have studies of ancient DNA from sediments contributed to the reconstruction of Quaternary floras?. New Phytol. 209, 499–506 (2016).
CAS PubMed Google Scholar
3.
Froese, D., Westgate, J., Preece, S. & Storer, J. Age and significance of the late Pleistocene Dawson tephra in eastern Beringia. Quatern. Sci. Rev. 21, 2137–2142 (2002).
ADS Google Scholar
4.
Orlando, L. et al. Recalibrating Equus evolution using the genome sequence of an early Middle Pleistocene horse. Nature 499, 74 (2013).
ADS CAS PubMed Google Scholar
5.
Poinar, H. N. et al. Metagenomics to paleogenomics: large-scale sequencing of mammoth DNA. Science 311, 392–394 (2006).
ADS CAS PubMed Google Scholar
6.
Waters, M. R. & Stafford, T. W. Redefining the age of Clovis: implications for the peopling of the Americas. Science 315, 1122–1126 (2007).
ADS CAS PubMed Google Scholar
7.
Davidson, E. A. & Janssens, I. A. Temperature sensitivity of soil carbon decomposition and feedbacks to climate change. Nature 440, 165 (2006).
ADS CAS PubMed Google Scholar
8.
Mackelprang, R. et al. Metagenomic analysis of a permafrost microbial community reveals a rapid response to thaw. Nature 480, 368 (2011).
ADS CAS PubMed PubMed Central Google Scholar
9.
Nikrad, M. P., Kerkhof, L. J. & Häggblom, M. M. The subzero microbiome: microbial activity in frozen and thawing soils. FEMS Microbiol. Ecol. 92, fiw81 (2016).
Google Scholar
10.
Schuur, E. A. et al. Vulnerability of permafrost carbon to climate change: implications for the global carbon cycle. Bioscience 58, 701–714 (2008).
Google Scholar
11.
Shendure, J. et al. DNA sequencing at 40: past, present and future. Nature 550, 345 (2017).
ADS CAS PubMed Google Scholar
12.
Weyrich, L. S. et al. Laboratory contamination over time during low-biomass sample analysis. Mol. Ecol. Resour. 19, 982–996 (2019).
CAS PubMed PubMed Central Google Scholar
13.
Skoglund, P. et al. Separating endogenous ancient DNA from modern day contamination in a Siberian Neandertal. Proc. Natl. Acad. Sci. 111, 2229–2234 (2014).
ADS CAS PubMed Google Scholar
14.
Bang-Andreasen, T., Schostag, M., Priemé, A., Elberling, B. & Jacobsen, C. S. Potential microbial contamination during sampling of permafrost soil assessed by tracers. Sci. Rep. 7, 43338 (2017).
ADS CAS PubMed PubMed Central Google Scholar
15.
Salter, S. J. et al. Reagent and laboratory contamination can critically impact sequence-based microbiome analyses. BMC Biol. 12, 87 (2014).
PubMed PubMed Central Google Scholar
16.
Willerslev, E., Hansen, A. J. & Poinar, H. N. Isolation of nucleic acids and cultures from fossil ice and permafrost. Trends Ecol. Evol. 19, 141–147 (2004).
PubMed Google Scholar
17.
Barbato, R. A. et al. Removal of exogenous materials from the outer portion of frozen cores to investigate the ancient biological communities harbored inside. JoVE 3, e54091 (2016).
Google Scholar
18.
D’Costa, V. M. et al. Antibiotic resistance is ancient. Nature 477, 457 (2011).
ADS PubMed Google Scholar
19.
Rivkina, E., Petrovskaya, L., Vishnivetskaya, T., Krivushin, K., Shmakova, L., Tutukina, M., Meyers, A., & Kondrashov, F. Metagenomic analyses of the late Pleistocene permafrost—Additional tools for reconstruction of environmental conditions. Biogeosciences 13 (2016).
20.
Kallmeyer, J. Contamination Control for Scientific Drilling Operations Vol. 98, 61–91 (Academic Press, London, 2017).
Google Scholar
21.
Kallmeyer, J., Mangelsdorf, K., Cragg, B. & Horsfield, B. Techniques for contamination assessment during drilling for terrestrial subsurface sediments. Geomicrobiol. J. 23, 227–239 (2006).
CAS Google Scholar
22.
Korlević, P. et al. Reducing microbial and human contamination in DNA extractions from ancient bones and teeth. Biotechniques 59, 87–93 (2015).
PubMed Google Scholar
23.
Llamas, B. et al. From the field to the laboratory: controlling DNA contamination in human ancient DNA research in the high-throughput sequencing era. STAR: Sci. Technol. Archaeol. Res. 3, 1–14 (2017).
Google Scholar
24.
Yanagawa, K., Nunoura, T., McAllister, S., Hirai, M., Breuker, A., Brandt, L., House, C., Moyer, C., Birrien, J.-L., Aoike, K., Sunamura, M., Urabe, T., Mottl, M., & Takai, K. The first microbiological contamination assessment by deep-sea drilling and coring by the D/V Chikyu at the Iheya North hydrothermal field in the Mid-Okinawa Trough (IODP Expedition 331). Front. Microbiol. 4 (2013).
25.
Yang, D. Y. & Watt, K. Contamination controls when preparing archaeological remains for ancient DNA analysis. J. Archaeol. Sci. 32, 331–336 (2005).
Google Scholar
26.
Bollongino, R., Tresset, A. & Vigne, J.-D. Environment and excavation: pre-lab impacts on ancient DNA analyses. C. R. Palevol 7, 91–98 (2008).
Google Scholar
27.
Smith, D. C. Ajsmrfsahhs. Tracer-based estimates of drilling-induced microbial contamination of Deep Sea Crust. Geomicrobiol. J. 17, 207–219 (2000).
CAS Google Scholar
28.
Krivushin, K. et al. Two metagenomes from late pleistocene Northeast Siberian Permafrost. Genome Announc. 3, e01380-e1414 (2015).
PubMed PubMed Central Google Scholar
29.
Vishnivetskaya, T. A. et al. Bacterial community in ancient Siberian permafrost as characterized by culture and culture-independent methods. Astrobiology 6, 400–414 (2006).
ADS CAS PubMed Google Scholar
30.
Wright, G. D. & Poinar, H. Antibiotic resistance is ancient: implications for drug discovery. Trends Microbiol. 20, 157–159 (2012).
CAS PubMed Google Scholar
31.
Kalmár, T., Bachrati, C. Z., Marcsik, A. & Raskó, I. A simple and efficient method for PCR amplifiable DNA extraction from ancient bones. Nucl. Acids Res. 28, e67–e67 (2000).
PubMed Google Scholar
32.
Palmirotta, R. et al. Use of a multiplex polymerase chain reaction assay in the sex typing of DNA extracted from archaeological bone. Int. J. Osteoarchaeol. 7, 605–609 (1997).
Google Scholar
33.
González-Oliver, A., Márquez-Morfín, L., Jiménez, J. C. & Torre-Blanco, A. Founding Amerindian mitochondrial DNA lineages in ancient Maya from Xcaret, Quintana Roo. Am. J. Phys. Anthropol. 116, 230–235 (2001).
PubMed Google Scholar
34.
Kemp, B. M. & Smith, D. G. Use of bleach to eliminate contaminating DNA from the surface of bones and teeth. Forens. Sci. Int. 154, 53–61 (2005).
CAS Google Scholar
35.
Rogers, S. O. et al. Comparisons of protocols for decontamination of environmental ice samples for biological and molecular examinations. Appl. Environ. Microbiol. 70, 2540–2544 (2004).
CAS PubMed PubMed Central Google Scholar
36.
Salamon, M., Tuross, N., Arensburg, B. & Weiner, S. Relatively well preserved DNA is present in the crystal aggregates of fossil bones. Proc. Natl. Acad. Sci. USA 102, 13783–13788 (2005).
ADS CAS PubMed Google Scholar
37.
Mackelprang, R. et al. Microbial survival strategies in ancient permafrost: insights from metagenomics. ISME 11, 2305 (2017).
CAS Google Scholar
38.
Vishnivetskaya, T., Kathariou, S., McGrath, J., Gilichinsky, D. & Tiedje, J. M. Low-temperature recovery strategies for the isolation of bacteria from ancient permafrost sediments. Extremophiles 4, 165–173 (2000).
CAS PubMed Google Scholar
39.
Yergeau, E., Hogues, H., Whyte, L. G. & Greer, C. W. The functional potential of high Arctic permafrost revealed by metagenomic sequencing, qPCR and microarray analyses. ISME 4, 1206 (2010).
CAS Google Scholar
40.
Vishnivetskaya, T. A. et al. Commercial DNA extraction kits impact observed microbial community composition in permafrost samples. FEMS Microbiol. Ecol. 87, 217–230 (2014).
CAS PubMed Google Scholar
41.
Braid, M. D., Daniels, L. M. & Kitts, C. L. Removal of PCR inhibitors from soil DNA by chemical flocculation. J. Microbiol. Methods 52, 389–393 (2003).
CAS PubMed Google Scholar
42.
Griffiths, R. I., Whiteley, A. S., O’Donnell, A. G. & Bailey, M. J. Rapid method for coextraction of DNA and RNA from natural environments for analysis of ribosomal DNA- and rRNA-based microbial community composition. Appl. Environ. Microbiol. 66, 5488–5491 (2000).
CAS PubMed PubMed Central Google Scholar
43.
Porter, T. M. et al. Amplicon pyrosequencing late Pleistocene permafrost: the removal of putative contaminant sequences and small-scale reproducibility. Mol. Ecol. Resour. 13, 798–810 (2013).
CAS PubMed Google Scholar
44.
Porter, T. J. et al. Recent summer warming in northwestern Canada exceeds the Holocene thermal maximum. Nat. Commun. 10, 1631 (2019).
ADS PubMed PubMed Central Google Scholar
45.
Durfee, T. et al. The complete genome sequence of Escherichia coli DH10B: insights into the biology of a laboratory workhorse. J. Bacteriol. 190, 2597–2606 (2008).
CAS PubMed PubMed Central Google Scholar
46.
Guzman, L. M., Belin, D., Carson, M. J. & Beckwith, J. Tight regulation, modulation, and high-level expression by vectors containing the arabinose PBAD promoter. J. Bacteriol. 177, 4121–4130 (1995).
CAS PubMed PubMed Central Google Scholar
47.
Shaner, N. C. et al. A bright monomeric green fluorescent protein derived from Branchiostoma lanceolatum. Nat. Methods 10, 407 (2013).
CAS PubMed PubMed Central Google Scholar
48.
Cooper, A. & Poinar, H. N. Ancient DNA: do it right or not at all. Science 289, 1139–1139 (2000).
CAS PubMed Google Scholar
49.
Bottos, E. M., Kennedy, D. W., Romero, E. B., Fansler, S. J., Brown, J. M., Bramer, L. M., Chu, R. K., Tfaily, M. M., Jansson, J. K. & Stegen, J. C. Dispersal limitation and thermodynamic constraints govern spatial structure of permafrost microbial communities. FEMS Microbiol. Ecol. 94 (2018).
50.
Hultman, J. et al. Multi-omics of permafrost, active layer and thermokarst bog soil microbiomes. Nature 521, 208 (2015).
ADS CAS PubMed Google Scholar
51.
Smith, D. C., Spivack, A. J., Fisk, M. R., Haveman, S. A. & Staudigel, H. Tracer-based estimates of drilling-induced microbial contamination of deep sea crust. Geomicrobiol J. 17, 207–219 (2000).
CAS Google Scholar
52.
Kallmeyer, J., Pockalny, R., Adhikari, R. R., Smith, D. C. & D’Hondt, S. Global distribution of microbial abundance and biomass in subseafloor sediment. Proc. Natl. Acad. Sci. 109, 16213–16216 (2012).
ADS CAS PubMed Google Scholar
53.
Juck, D. F. et al. Utilization of fluorescent microspheres and a green fluorescent protein-marked strain for assessment of microbiological contamination of permafrost and ground ice core samples from the Canadian High Arctic. Appl. Environ. Microbiol. 71, 1035–1041 (2005).
CAS PubMed PubMed Central Google Scholar
54.
Colwell, F. S., Pryfogle, P. A., Lee, B. D. & Bishop, C. L. Use of a cyanobacterium as a particulate tracer for terrestrial subsurface applications. J. Microbiol. Methods 20, 93–101 (1994).
Google Scholar
55.
Friese, A. et al. (2017) A simple and inexpensive technique for assessing contamination during drilling operations. Limnol. Oceanogr. Methods 15, 200–211 (2017).
CAS Google Scholar
56.
Knapp, M., Clarke, A. C., Horsburgh, K. A. & Matisoo-Smith, E. A. Setting the stage—Building and working in an ancient DNA laboratory. Ann. Anat. Anatomischer Anzeiger 194, 3–6 (2012).
CAS PubMed Google Scholar
57.
Eisenhofer, R. et al. Contamination in low microbial biomass microbiome studies: issues and recommendations. Trends Microbiol. 27, 105–117 (2019).
CAS PubMed Google Scholar More