Incorporating hydrology into climate suitability models changes projections of malaria transmission in Africa
1.
World Health Organisation. World Malaria Report 2018 (World Health Organization, Geneva, 2018).
2.
Caminade, C. et al. Impact of climate change on global malaria distribution. Proc. Natl Acad. Sci. 111, 3286–3291 (2014).
ADS CAS PubMed Google Scholar
3.
Shapiro, L. L., Whitehead, S. A. & Thomas, M. B. Quantifying the effects of temperature on mosquito and parasite traits that determine the transmission potential of human malaria. PLoS Biol. 15, 2003489 (2017).
Google Scholar
4.
Jepson, W. F., Moutia, A. & Courtois, C. The malaria problem in Mauritius: the binomics of Mauritian anophelines. Bull. Entomol. Res. 38, 177–208 (1947).
CAS PubMed Google Scholar
5.
Waite, J. L., Suh, E., Lynch, P. A. & Thomas, M. B. Exploring the lower thermal limits for development of the human malaria parasite, Plasmodium falciparum. Biol. Lett. 15, 20190275 (2019).
PubMed PubMed Central Google Scholar
6.
Bayoh, M. N. & Lindsay, S. W. Effect of temperature on the development of the aquatic stages of Anopheles gambiae sensu stricto (Diptera: Culicidae). Bull. Entomol. Res. 93, 375–381 (2003).
CAS PubMed Google Scholar
7.
Depinay, J. M. et al. A simulation model of African Anopheles ecology and population dynamics for the analysis of malaria transmission. Malar. J. 3, 29 (2004).
PubMed PubMed Central Google Scholar
8.
Mordecai, E. A. et al. Optimal temperature for malaria transmission is dramatically lower than previously predicted. Ecol. Lett. 16, 22–30 (2012).
PubMed Google Scholar
9.
Craig, M. H., Snow, R. W. & Le Sueur, D. Climate-based distribution model of malaria transmission in sub-Saharan Africa. Parasitol. Today 15, 105–111 (1999).
CAS PubMed Google Scholar
10.
Parham, P. E. & Michael, E. Modeling the effects of weather and climate change on malaria transmission. Environ. Health Perspect. 118, 620–626 (2010).
PubMed Google Scholar
11.
Ryan, S. J. et al. Mapping physiological suitability limits for malaria in Africa under climate change. Vector-Borne Zoonotic Dis. 15, 718–725 (2015).
PubMed PubMed Central Google Scholar
12.
Smith, M. W., Macklin, M. G. & Thomas, C. J. Hydrological and geomorphological controls of malaria transmission. Earth Sci. Rev. 116, 109–127 (2013).
ADS Google Scholar
13.
Bomblies, A., Duchemin, J. B. & Eltahir, E. A. Hydrology of malaria: model development and application to a Sahelian village. Water Resour. Res. 44, W12445 (2008).
ADS Google Scholar
14.
Yamana, T. K., Bomblies, A. & Eltahir, E. A. Climate change unlikely to increase malaria burden in West Africa. Nat. Clim. Change 6, 1009–1013 (2016).
ADS Google Scholar
15.
Small, J., Goetz, S. J. & Hay, S. I. Climatic suitability for malaria transmission in Africa, 1911–1995. Proc. Natl Acad. Sci. USA 100, 15341–15345 (2003).
ADS CAS PubMed Google Scholar
16.
Thomas, C. J., Davies, G. & Dunn, C. E. Mixed picture for changes in stable malaria distribution with future climate in Africa. Trends Parasitol. 20, 216–220 (2004).
PubMed Google Scholar
17.
Ebi, K. L. et al. Climate suitability for stable malaria transmission in Zimbabwe under different climate change scenarios. Clim. Change 73, 375–393 (2005).
ADS Google Scholar
18.
Van Lieshout, M., Kovats, R. S., Livermore, M. T. J. & Martens, P. Climate change and malaria: analysis of the SRES climate and socio-economic scenarios. Glob. Environ. Change 14, 87–99 (2004).
Google Scholar
19.
Kiszewski, A. et al. A global index representing the stability of malaria transmission. Am. J. Trop. Med. Hyg. 70, 486–498 (2004).
PubMed Google Scholar
20.
Ermert, V., Fink, A. H., Jones, A. E. & Morse, A. P. Development of a new version of the Liverpool Malaria Model. II. Calibration and validation for West Africa. Malar. J. 10, 62 (2011).
PubMed PubMed Central Google Scholar
21.
Martens, W. J. M., Niessen, L. W., Rotmans, J. & McMichael, A. J. Potential impacts of global climate change on malaria risk. Environ. Health Perspect. 103, 458–464 (1995).
CAS PubMed PubMed Central Google Scholar
22.
Tanser, F., Sharp, B. L. & Le Sueur, D. Potential effect of climate change on malaria transmission in Africa. Lancet 362, 1792–9178 (2003).
PubMed Google Scholar
23.
Garnham, P. C. C. The incidence of malaria at high altitudes. J. Malar. Soc. 7, 275–284 (1948).
CAS Google Scholar
24.
Lindsay, S. W., Parson, L. & Thomas, C. J. Mapping the ranges and relative abundance of the two principal African malaria vectors, Anopheles gambiae sensu stricto and An. arabiensis, using climate data. Proc. R. Soc. B Biol. Sci. 265, 847–854 (1998).
CAS Google Scholar
25.
Mabaso, M. L., Craig, M., Ross, A. & Smith, T. Environmental predictors of the seasonality of malaria transmission in Africa: the challenge. Am. J. Trop. Med. Hyg. 76, 33–38 (2007).
PubMed Google Scholar
26.
Kibret, S. et al. Malaria impact of large dams in sub-Saharan Africa: maps, estimates and predictions. Malar. J. 14, 339 (2015).
PubMed PubMed Central Google Scholar
27.
Lysenko, A. J. & Semashko, I. N. in Itogi Nauki: Medicinskaja Geografija (ed. Lebedew, A. W.) 25–146 (Academy of Sciences, Moscow, 1968) (in Russian).
28.
Ageep, T. B. et al. Spatial and temporal distribution of the malaria mosquito Anopheles arabiensis in northern Sudan: influence of environmental factors and implications for vector control. Malar. J. 8, 123 (2009).
PubMed PubMed Central Google Scholar
29.
Fuller, D. O., Parenti, M. S., Hassan, A. N. & Beier, J. C. Linking land cover and species distribution models to project potential ranges of malaria vectors: an example using Anopheles arabiensis in Sudan and Upper Egypt. Malar. J. 11, 264 (2012).
PubMed PubMed Central Google Scholar
30.
Gemperli, A., Vounatsou, P., Sogoba, N. & Smith, T. Malaria mapping using transmission models: application to survey data from Mali. Am. J. Epidemiol. 163, 289–297 (2005).
PubMed Google Scholar
31.
Snow, R. W., Noor, A. M. & Hay, S. I. Malaria in Somalia: Assembling the Evidence and Modeling Risks (University of Oxford, UK, 2006).
32.
Hulme, M., Doherty, R., Ngara, T., New, M. & Lister, D. African climate change: 1900–2100. Clim. Res. 17, 145–168 (2001).
Google Scholar
33.
Tierney, J. E., Ummenhofer, C. C. & de Menocal, P. B. Past and future rainfall in the Horn of Africa. Sci. Adv. 1, e1500682 (2015).
ADS PubMed PubMed Central Google Scholar
34.
Reiter, P. Global warming and malaria: knowing the horse before hitching the cart. Malar. J. 7, S3 (2008).
PubMed PubMed Central Google Scholar
35.
Gething, P. et al. Climate change and the global malaria recession. Nature 465, 342–345 (2010).
ADS CAS PubMed PubMed Central Google Scholar
36.
Yamazaki, D., Kanae, S., Kim, H. & Oki, T. A physically based description of floodplain inundation dynamics in a global river routing model. Water Resour. Res. 47, W04501 (2011).
ADS Google Scholar
37.
Hazeleger, W. et al. EC-Earth V2.2: description and validation of a new seamless earth system prediction model. Clim. Dyn. 39, 2611–2629 (2012).
Google Scholar
38.
Alfieri, L. et al. Global projections of river flood risk in a warmer world. Earth’s Future 5, 171–182 (2017).
ADS Google Scholar
39.
Muerth, M. J. et al. On the need for bias correction in regional climate scenarios to assess climate change impacts on river runoff. Hydrol. Earth Syst. Sci. 17, 1189–1204 (2013).
ADS Google Scholar
40.
Hirpa, F. A. et al. Streamflow response to climate change in the Greater Horn of Africa. Clim. Change 156, 341–363 (2019).
ADS Google Scholar
41.
van der Knijff, J. M., Younis, J. & de Roo, A. P. J. LISFLOOD: a GIS-based distributed model for river basin scale water balance and flood simulation. Int. J. Geograph. Inf. Sci. 24, 189–212 (2010).
Google Scholar
42.
Burek, P., van der Knijff, J. & de Roo, A. P. J. LISFLOOD, Distributed Water Balance and Flood Simulation Model Revised User Manual (Publ. Off., Luxembourg, 2013).
43.
Lehner, B., Verdin, K. & Jarvis, A. New global hydrography derived from spaceborne elevation data. Eos, Trans. Am. Geophys. Union 89, 93–94 (2008).
ADS Google Scholar
44.
Wu, H. et al. A new global river network database for macroscale hydrologic modeling. Water Resour. Res. 48, W09701 (2012).
ADS Google Scholar
45.
Hengl, T. et al. SoilGrids1km—global soil information based on automated mapping. PLoS ONE 9, e105992 (2014).
ADS PubMed PubMed Central Google Scholar
46.
Paaijmans, K. P., Takken, W., Githeko, A. K. & Jacobs, A. F. G. The effect of water turbidity on the near-surface water temperature of larval habitats of the malaria mosquito Anopheles gambiae. Int. J. Biometeorol. 52, 747–753 (2008).
ADS CAS PubMed Google Scholar
47.
Thomas, C. J., Cross, D. E. & Bøgh, C. Landscape movements of Anopheles gambiae malaria vector mosquitoes in rural Gambia. PLoS ONE 8, e68679 (2013).
ADS CAS PubMed PubMed Central Google Scholar
48.
Worldpop. Africa Continental Population Datasets (2000–2020) v2.0. https://doi.org/10.5258/SOTON/WP00004 (2016).
49.
Worldpop. Africa Continental age/sex structure Population Datasets 2000/05/10/15/20 V5.0. https://www.worldpop.org/geodata/summary?id=1276 (2016).
50.
James, W. H. et al. Gridded birth and pregnancy datasets for Africa, Latin America and the Caribbean. Sci. Data 5, 180090 (2018).
CAS PubMed PubMed Central Google Scholar
51.
United Nations, Department of Economic and Social Affairs, Population Division. World Population Prospects 2019 Online ed (United Nations, 2019).
52.
Smith, M. W. et al. LIS-MAL Estimates of Hydro-Climatic Suitability for Malaria Transmission in Africa (1971–2100). [Dataset]. https://doi.org/10.5518/786 (University of Leeds, 2020). More