1.
Kettunen, M. et al. Technical support to EU strategy on invasive alien species (IAS)—Assesment of the impacts of IAS in Europe and EU. (Institute for European Environmental Policy (IEEP), 2009).
2.
Keller, R. P., Geist, J., Jeschke, J. M. & Kühn, I. Invasive species in Europe: ecology, status, and policy. Environ. Sci. Europe 23, 23. https://doi.org/10.1186/2190-4715-23-23 (2011).
Article Google Scholar
3.
European Commission. Regulation No 1143/2014 of the European Parliament and of the Council October 22 2014 on the prevention and management of the introduction and spread of invasive alien species. Off. J. Eur. Union. L174, 5–11; https://publications.europa.eu/en/publication-detail//publication/880597b7-63f6-11e4-9cbe-01aa75ed71a1/lan-guage-en (2014).
4.
Olden, J. D., Comte, L. & Giam, X. The Homogocene: a research prospectus for the study of biotic homogenisation. NeoBiota 37, 23. https://doi.org/10.3897/neobiota.37.22552 (2018).
Article Google Scholar
5.
Scalera, R. How much is Europe spending on invasive alien species?. Biol. Invas. 12, 173–177. https://doi.org/10.1007/s10530-009-9440-5 (2010).
Article Google Scholar
6.
European Commission. Proposal for a regulation of the European parliament and of the council on the prevention and management of the introduction and spread of invasive alien species. https://eur-lex.europa.eu/legal-content/EN/TXT/?uri=CELEX%3A52013PC0620 (2013).
7.
International Union for Conservation of Nature (IUCN). Compilation of costs of prevention and management of invasive alien species in the EU. Technical note prepared by IUCN for the European Commission. https://circabc.europa.eu/sd/a/7b04a898-12e3-48c3-a0e5-f21a165259b4/2018-Compilation%20of%20costs%20of%20prevention%20and%20management%20of%20IAS%20in%20the%20EU.pdf (2018).
8.
Zamora, D. L., Thill, D. C. & Eplee, R. E. An eradication plan for plant invasions. Weed. Technol. 3, 2–12. https://doi.org/10.1017/S0890037X00031225 (1989).
Article Google Scholar
9.
Caffrey, J. M. et al. Tackling invasive alien species in Europe: the top 20 issues. Manag. Biol. Invas. 5, 1–20. https://doi.org/10.3391/mbi.2014.5.1.01 (2014).
Article Google Scholar
10.
Csiszár, Á. & Korda, M. In Practical experiences in invasive alien plant control (ed Csiszár, Á. & Korda, M.) 203–235 (Duna-Ipoly Nemzeti Park Igazgatóság, 2015).
11.
Shannon, C., Quinn, C. H., Stebbing, P. D., Hassall, C. & Dunn, A. M. The practical application of hot water to reduce the introduction and spread of aquatic invasive alien species. Manag. Biol. Invas. 9, 417–423. https://doi.org/10.3391/mbi.2018.9.4.05 (2018).
Article Google Scholar
12.
Mauvisseau, Q. et al. detection of an emerging invasive species: eDNA monitoring of a parthenogenetic crayfish in freshwater systems. Manag. Biol. Invas. 10, 461–472. https://doi.org/10.3391/mbi.2019.10.3.04 (2019).
Article Google Scholar
13.
Sepulveda, A., Amberg, J. & Hanson, E. Using environmental DNA to extend the window of early detection for dreissenid mussels. Manag. Biol. Invas. 10, 342–358. https://doi.org/10.3391/mbi.2019.10.2.09 (2019).
Article Google Scholar
14.
Guo, S. L., Jiang, H. W., Fang, F. & Chen, G. Q. Influences of herbicides, uprooting and use as cut flowers on sexual reproduction of Solidago canadensis. Weed Res. 49, 291–299. https://doi.org/10.1111/j.1365-3180.2009.00693.x (2009).
CAS Article Google Scholar
15.
Rudenko, M. & Hulting, A. Integration of chemical control with restoration techniques for management of Fallopia japonica populations. Manag. Biol. Invas. 1, 37–49 (2010).
Article Google Scholar
16.
Badalamenti, E., Barone, E. & La Mantia, T. Seasonal effects on mortality rates and resprouting of stems treated with glyphosate in the invasive tree of heaven (Ailanthus altissima (Mill.) Swingle). Arboricult. J. 37, 180–195. https://doi.org/10.1080/03071375.2015.1112163 (2015).
Article Google Scholar
17.
Boyd, N. S., White, S. N. & Larsen, T. Sequential aminopyralid and imazapyr applications for Japanese knotweed (Fallopia japonica) management. Invasive. Plant. Sci. Manag. 10, 277–283. https://doi.org/10.1017/inp.2017.31 (2017).
Article Google Scholar
18.
Caudill, J. et al. Aquatic plant community restoration following the long-term management of invasive Egeria densa with fluridone treatments. Manag. Biol. Invas. 10, 473–485. https://doi.org/10.3391/mbi.2019.10.3.05 (2019).
Article Google Scholar
19.
Gibson, D. J., Shupert, L. A. & Liu, X. Do no harm: efficacy of a single herbicide application to control an invasive shrub while minimizing collateral damage to native species. Plants 8, 426. https://doi.org/10.3390/plants8100426 (2019).
CAS Article PubMed Central Google Scholar
20.
Szitár, K. & Török, K. Short-term effects of herbicide treatment on the vegetation of semiarid sandy oldfields invaded by Asclepias syriaca L. Extended abstract in the Proceedings of the 6th European Conference on Ecological Restoration, 9, 8–12 (2008).
21.
Stark, J. D., Chen, X. D. & Johnson, C. S. Effects of herbicides on Behr’s metalmark butterfly, a surrogate species for the endangered butterfly, Lange’s metalmark. Environ. Pollut. 164, 24–27. https://doi.org/10.1016/j.envpol.2012.01.011 (2012).
CAS Article PubMed Google Scholar
22.
Commission, E. Regulation No 1107/2009 of the European Parliament and of the Council of 21 October 2009 concerning the placing of plant protection products on the market and repealing Council Directives 79/117/EEC and 91/414/EEC. Off. J. Eur. Union. 50, 1–50 (2009).
Google Scholar
23.
Working Group on Invasive Alien Species. Management of Invasive Alien Species of Union Concern. https://circabc.europa.eu/faces/jsp/extension/wai/navigation/container.jsp (2017).
24.
Pyšek, P. In The Ecology and Evolution of Clonal Plants (ed de Kroon, H. & van Groenendael, J.) 405–427 (Backhuys Publishers, 1997).
25.
Pyšek, P. & Richardson, D. M. In Biological invasions (ed Nentwig, W.) 97–126 (Springer, Berlin 2007).
26.
Speek, T. A. et al. Factors relating to regional and local success of exotic plant species in their new range. Divers. Distrib. 17, 542–551. https://doi.org/10.1111/j.1472-4642.2011.00759.x (2011).
Article Google Scholar
27.
Douhovnikoff, V. & Hazelton, E. L. Clonal growth: invasion or stability? A comparative study of clonal architecture and diversity in native and introduced lineages of Phragmites australis (Poaceae). Am. J. Bot. 101, 1577–1584. https://doi.org/10.3732/ajb.1400177 (2014).
Article PubMed Google Scholar
28.
Wang, N. et al. Clonal integration affects growth, photosynthetic efficiency and biomass allocation, but not the competitive ability, of the alien invasive Alternanthera philoxeroides under severe stress. Ann. Bot. 101, 671–678. https://doi.org/10.1093/aob/mcn005 (2008).
Article PubMed PubMed Central Google Scholar
29.
Xu, L. & Zhou, Z. F. Effects of Cu pollution on the expansion of an amphibious clonal herb in aquatic-terrestrial ecotones. PLoS ONE 11, e0164361. https://doi.org/10.1371/journal.pone.0164361 (2016).
CAS Article PubMed PubMed Central Google Scholar
30.
You, W.-H. et al. Effects of clonal integration on the invasive clonal plant Alternanthera philoxeroides under heterogeneous and homogeneous water availability. Sci. Rep. 6, 29767. https://doi.org/10.1038/srep29767 (2016).
ADS CAS Article PubMed PubMed Central Google Scholar
31.
Smith, J. M. D., Ward, J. P., Child, L. E. & Owen, M. R. A simulation model of rhizome networks for Fallopia japonica (Japanese knotweed) in the United Kingdom. Ecol. Model. 200, 421–432. https://doi.org/10.1016/j.ecolmodel.2006.08.004 (2007).
Article Google Scholar
32.
Balogh, L. In The most important invasive plants in Hungary. (ed Botta Dukát, Z., Balogh, L.) 13–33 (Institute of Ecology and Botany HAS, 2008).
33.
Padula, M. et al. Prime segnalazioni di Reynoutria× bohemica Chrtek and Chrtková (Polygonaceae) per l’Italia e analisi della distribuzione del genere Reynoutria Houtt. Atti. Soc. It. Sci. Nat. Museo Civ. Stor. Nat. Milano. 149, 77–108 (2008) (in Italian)
34.
Jones, D. et al. Optimising physiochemical control of invasive Japanese knotweed. Biol. Invasions. 20, 2091–2105. https://doi.org/10.1007/s10530-018-1684-5 (2018).
Article Google Scholar
35.
Martin, F. M., Dommanget, F., Lavallée, F. & Evette, A. Clonal growth strategies of Reynoutria japonica in response to light, shade, and mowing, and perspectives for management. NeoBiota 56, 89–110. https://doi.org/10.3897/neobiota.56.47511 (2020).
Article Google Scholar
36.
Szymura, M. & Szymura, T. H. Growth, phenology, and biomass allocation of alien Solidago species in central Europe. Plant. Spec. Biol. 30, 245–256. https://doi.org/10.1111/1442-1984.12059 (2015).
Article Google Scholar
37.
Tiley, G. E. D. Biological Flora of the British Isles: Cirsium arvense (L.) Scop. J. Ecol. 98, 938–983. https://doi.org/10.1111/j.1365-2745.2010.01678.x (2010).
Article Google Scholar
38.
Nentwig, W. & Müller, E. Plant pathogens as biocontrol agents of Cirsium arvense—an overestimated approach?. NeoBiota 11, 1–24. https://doi.org/10.3897/neobiota.11.1803 (2011).
Article Google Scholar
39.
Alpert, P. Nitrogen sharing among ramets increases clonal growth in Fragaria chiloensis. Ecology 72, 69–80. https://doi.org/10.2307/1938903 (1991).
Article Google Scholar
40.
Oborny, B. & Bartha, S. Clonality in plant communities—an overview. Abstr. Bot. 19, 115–127 (1995).
Google Scholar
41.
de Kroon, H., van der Zalm, E., van Rheenen, J. W., van Dijk, A. & Kreulen, R. The interaction between water and nitrogen translocation in a rhizomatous sedge (Carex flacca). Oecologia 116, 38–49. https://doi.org/10.1007/s004420050561 (1998).
ADS Article PubMed Google Scholar
42.
de Kroon, H. & van Groenendael, J. The ecology and evolution of clonal plants. (Backhuys Publishers, London 1997).
43.
Zhang, Y. C., Zhang, Q. Y., Yirdaw, E., Luo, P. & Wu, N. Clonal integration of Fragaria orientalis driven by contrasting water availability between adjacent patches. Bot. Stud. 49, 373–383 (2008).
Google Scholar
44.
Wang, Y. J. et al. Invasive alien plants benefit more from clonal integration in heterogeneous environments than natives. New Phytol. 216, 1072–1078. https://doi.org/10.1111/nph.14820 (2017).
Article PubMed Google Scholar
45.
Frantzen, J. The role of clonal growth in the pathosystem Cirsium arvense–Puccinia punctiformis. Can. J. Bot. 72, 832–836. https://doi.org/10.1139/b94-107 (1994).
Article Google Scholar
46.
D’hertefeldt, T. & van der Putten, W. Physiological integration of the clonal plant Carex arenaria and its response to soil-borne pathogens. Oikos 81, 229–237. https://doi.org/10.2307/3547044 (1998).
Article Google Scholar
47.
Stuefer, J. F., Gómez, S. & van Mölken, T. Clonal integration beyond resource sharing: implications for defense signaling and disease transmission in clonal plant networks. Evol. Ecol. 18, 647–667. https://doi.org/10.1007/s10682-004-5148-2 (2004).
Article Google Scholar
48.
Bankó, L., Ördög, M. & Erdei, L. The role of rhizome system in the distribution of cadmium load among ramets of Phragmites australis. Acta. Biol. Szeged. 46, 81–82 (2002).
Google Scholar
49.
Xu, L., Wu, X. & Zhou, Z. F. Effects of physiological integration and fertilization on heavy metal remediation in soil by a clonal grass. Pol. J. Environ. Stud. 25, 1, https://doi.org/10.15244/pjoes/60374 (2016).
50.
Chang, F. Y. & Born, W. V. Translocation of dicamba in Canada thistle. Weed Sci. 16, 176–181. https://doi.org/10.1017/S0043174500046841 (1968).
CAS Article Google Scholar
51.
Wyrill, I. I. I. J. B. & Burnside, O. C. Absorption, translocation, and metabolism of 2,4 D and glyphosate in common milkweed and hemp dogbane. Weed Sci. 24, 557–566, https://doi.org/10.1017/S0043174500062949 (1976).
52.
Savini, G., Giorgi, V., Scarano, E. & Neri, D. Strawberry plant relationship through the stolon. Physiol. Plant. 134, 421–429. https://doi.org/10.1111/j.1399-3054.2008.01145.x (2008).
CAS Article PubMed Google Scholar
53.
Saunders, L. E. & Pezeshki, R. Morphological differences in response to physiological integration and spatial heterogeneity of root zone glyphosate exposure in connected ramets of Ludwigia peploides (Creeping water primrose). Water Air Soil Pollut. 226, 171. https://doi.org/10.1007/s11270-015-2435-1 (2015).
ADS CAS Article Google Scholar
54.
Klimešová, J. & Herben, T. Clonal and bud bank traits: patterns across temperate plant communities. J. Veg. Sci. 26, 243–253. https://doi.org/10.1111/jvs.12228 (2015).
Article Google Scholar
55.
Klimešová, J., Martínková, J. & Herben, T. Horizontal growth: an overlooked dimension in plant trait space. Perspect. Plant Ecol. 32, 18–21. https://doi.org/10.1016/j.ppees.2018.02.002 (2018).
Article Google Scholar
56.
Inghe, O. Genet and ramet survivorship under different mortality regimes—a cellular automata model. J. Theor. Biol. 138, 257–270. https://doi.org/10.1016/S0022-5193(89)80142-0 (1989).
MathSciNet Article Google Scholar
57.
Tuomi, J. & Vuorisalo, T. Hierarchical selection in modular organisms. Trends Ecol. Evol. 4, 209–213. https://doi.org/10.1016/0169-5347(89)90075-X (1989).
CAS Article PubMed Google Scholar
58.
Eriksson, O. & Jerling, L. In Clonal growth in plants: regulation and function (ed van Groenendael, J. & de Kroon, H.) 79–94 (SPB Academic Publishing, 1990).
59.
Watkinson, A. R. & Powell, J. C. Seedling recruitment and the maintenance of clonal diversity in plant populations–a computer simulation of Ranunculus repens. J. Ecol. 81, 707–717 (1993).
Article Google Scholar
60.
Newton, P. C. D. & Hay, M. J. M. Non-viability of axillary buds as a possible constraint on effective foraging of Trifolium repens L. Abstr. Bot. 19, 83–88 (1995).
Google Scholar
61.
Latzel, V., Mihulka, S. & Klimešová, J. Plant traits and regeneration of urban plant communities after disturbance: Does the bud bank play any role?. Appl. Veg. Sci. 11, 387–394. https://doi.org/10.3170/2008-7-18487 (2008).
Article Google Scholar
62.
Scherrer, D., Stoll, P. & Stöcklin, J. Colonization dynamics of a clonal pioneer plant on a glacier foreland inferred from spatially explicit and size-structured matrix models. Folia Geobot. 52, 1–14. https://doi.org/10.1007/s12224-017-9294-z (2017).
Article Google Scholar
63.
Schiffleithner, V. & Essl, F. It is worth the effort? Spread and management success of invasive alien plant species in a Central European National Park. NeoBiota 31, 43–61. https://doi.org/10.3897/neobiota.31.8071 (2016).
Article Google Scholar
64.
Blossey, B. Before, during and after: the need for long-term monitoring in invasive plant species management. Biol. Invas. 1, 301–311. https://doi.org/10.1023/A:1010084724526 (1999).
Article Google Scholar
65.
Kettenring, K. M. & Adams, C. R. Lessons learned from invasive plant control experiments: a systematic review and meta-analysis. J. Appl. Ecol. 48, 970–979. https://doi.org/10.1111/j.1365-2664.2011.01979.x (2011).
Article Google Scholar
66.
Delbart, E. et al. Can land managers control Japanese knotweed? Lessons from control tests in Belgium. Environ. Manag. 50, 1089–1097. https://doi.org/10.1007/s00267-012-9945-z (2012).
ADS Article Google Scholar
67.
Clements, D., Dugdale, T. M., Butler, K. L. & Hunt, T. D. Management of aquatic alligator weed (Alternanthera philoxeroides) in an early stage of invasion. Manage. Biol. Invas. 5, 327–339. https://doi.org/10.3391/mbi.2014.5.4.03 (2014).
Article Google Scholar
68.
Tokarska-Guzik, B. & Pisarczyk, E. Risk Assessment of Asclepias syriaca. https://www.codeplantesenvahissantes.fr/fileadmin/PEE_Ressources/TELECHARGEMENT/Asclepias_syriaca_RA.pdf (2015).
69.
Bagi, I. In The most important invasive plants in Hungary. (ed Botta-Dukát, Z., Balogh, L.) 151–159 (Institute of Ecology and Botany HAS, 2008).
70.
Commonwealth Agricultural Bureau International (CABI). Asclepias syriaca (common milkweed). https://www.cabi.org/isc/datasheet/7249 (2011).
71.
European Invasive Alien Species Gateway (DAISIE). https://www.europe-aliens.org/speciesFactsheet.do?speciesId=17716# (2015).
72.
Szilassi, P. et al. Understanding the environmental background of an invasive plant species (Asclepias syriaca) for the future: an application of LUCAS field photographs and machine learning algorithm methods. Plants 8, 593. https://doi.org/10.3390/plants8120593 (2019).
Article PubMed Central Google Scholar
73.
Kelemen, A. et al. The invasion of common milkweed (Asclepias syriaca) in sandy old-fields–is it a threat to the native flora?. Appl. Veg. Sci. 19, 218–224. https://doi.org/10.1111/avsc.12225 (2016).
Article Google Scholar
74.
Bakacsy, L. Invasion impact is conditioned by initial vegetation states. Commun. Ecol. 20, 11–19. https://doi.org/10.1556/168.2019.20.1.2 (2019).
Article Google Scholar
75.
European Commissions. List of Invasive Alien Species of Union concern. https://ec.europa.eu/environment/nature/invasivealien/list/index_en.htm (2017).
76.
Wilbur, H. M. Life history evolution in seven milkweeds of the genus Asclepias. J. Ecol. 64, 223–240 (1976).
Article Google Scholar
77.
Pellissier, L. et al. Different rates of defense evolution and niche preferences in clonal and nonclonal milkweeds (Asclepias spp.). New Phytol. 209, 1230–1239, https://doi.org/10.1111/nph.13649 (2016).
78.
Balogh, Á., Penksza, K. & Benécsné, B. G. Kísérletek a selyemkóróval fertőzött természetközeli gyepek mentesítésére I. (Experiments for immunization of Asclepias syriaca infected turfs) Tájökológiai lapok 4, 385–394 (2006).
79.
Papka, O. S. Agro-ecological effectivness of soil technologies as controling tool for common wilkweed (Asclepias syriaca L.). Acta Biolol. Sibirica 1, 244–257 (2015).
80.
Zalai, M. et al. Developing control strategies against common milkweed (Asclepias syriaca L.) on ruderal habitats. Herbologia 16, 69–84, https://doi.org/10.5644/Herb.16.2.07 (2017).
81.
Bolla, B. Invasive control at Csengődi Plain. Természetvédelmi Közlemények 18, 77–81 (2012).
Google Scholar
82.
Molnár, Z. & Kun, A. Magyarország élőhelyei: vegetációtipusok leirása és határozója: ÁNÉR 2011. (MTA Ökológiai és Botanikai Kutatóintézete, 2011).
83.
Zsákovics, G., Kovács, F., Kiss, A. & Pócsik, E. Risk analysis of the aridification-endangered sand-ridge area in the Danube-Tisza Interfluve. Acta Climatol. Chorol. Univ. Szeged 40, 169–178 (2007).
Google Scholar
84.
Zsákovics, G., Kovács, F. & Kiss, A. Complex analysis of an aridification-endangered area: case study from the Danube-Tisza Interfluve. Tájökológiai Lapok 7, 117–126 (2009).
Google Scholar
85.
Kovács-Láng, E. et al. Changes in the composition of sand grasslands along a climatic gradient in Hungary and implications for climate change. Phytocoenologia 30, 385–407. https://doi.org/10.1127/phyto/30/2000/385 (2000).
Article Google Scholar
86.
Kun, A. Analysis of precipitation year and their regional frequency distributions in the Danube-Tisza mid-region, Hungary . Acta. Bot. Hung. 43, 175–187. https://doi.org/10.1556/ABot.43.2001.1-2.10 (2001).
Article Google Scholar
87.
Bartha, S. et al. Beta diversity and community differentiation in dry perennial sand grassland. Ann. Bot. 9–18, 2011. https://doi.org/10.4462/annbotrm-9118 (2011).
Article Google Scholar
88.
Mihály, B. & Botta-Dukát, Z. Biológiai inváziók Magyarországon: Özönnövények. (Biological invasions in Hungary: Invasive plants). (TermészetBÚVÁR Alapítvány Kiadó, 2004).
89.
Hurlbert, S. H. Pseudoreplication and the design of ecological field experiments. Ecol. Monogr. 54, 187–211. https://doi.org/10.2307/1942661 (1984).
Article Google Scholar
90.
Oksanen, L. Logic of experiments in ecology: is pseudoreplication a pseudoissue?. Oikos 94, 27–38. https://doi.org/10.1034/j.1600-0706.2001.11311.x (2001).
Article Google Scholar
91.
Davies, G. M. & Gray, A. Don’t let spurious accusations of pseudoreplication limit our ability to learn from natural experiments (and other messy kinds of ecological monitoring). Ecol. Evol. 5, 5295–5304. https://doi.org/10.1002/ece3.1782 (2015).
Article PubMed PubMed Central Google Scholar
92.
Colegrave, N. & Ruxton, G. D. Using biological insight and pragmatism when thinking about pseudoreplication. Trends. Ecol. Evol. 33, 28–35. https://doi.org/10.1016/j.tree.2017.10.007 (2018).
Article PubMed Google Scholar
93.
Jordan, C. Y. Population sampling affects pseudoreplication. PLoS Biol. 16, e2007054. https://doi.org/10.1371/journal.pbio.2007054 (2018).
CAS Article PubMed PubMed Central Google Scholar
94.
Gratton, P. & Mundry, R. Accounting for pseudoreplication is not possible when the source of nonindependence is unknown. Anim. Behav. 154, e1–e5. https://doi.org/10.1016/j.anbehav.2019.05.014 (2019).
Article Google Scholar
95.
QGIS Development Team. QGIS Geographic Information System. Open Source Geospatial Foundation Project. https://qgis.osgeo.org (2019).
96.
Doğramacı, M., Anderson, J. V., Chao, W. S. & Foley, M. E. Foliar application of glyphosate affects molecular mechanisms in underground adventitious buds of leafy spurge (Euphorbia esula) and alters their vegetative growth patterns. Weed Sci. 62, 217–229. https://doi.org/10.1614/WS-D-13-00156.1 (2014).
CAS Article Google Scholar
97.
McAllister, R. S. & Haderlie, L. C. Translocation of 14C-glyphosate and 14CO 2-labeled photoassimilates in Canada thistle (Cirsium arvense). Weed Sci. 33, 153–159. https://doi.org/10.1017/S0043174500082011 (1985).
CAS Article Google Scholar
98.
Carlson, S. J. & Donald, W. W. Glyphosate effects on Canada thistle (Cirsium arvense) roots, root buds, and shoots. Weed Res. 28, 37–45. https://doi.org/10.1111/j.1365-3180.1988.tb00783.x (1988).
CAS Article Google Scholar
99.
Hunter, J. H. Effect of bud vs rosette growth stage on translocation of 14C-glyphosate in Canada thistle (Cirsium arvense). Weed Sci. 43, 347–351. https://doi.org/10.1017/S0043174500081303 (1995).
CAS Article Google Scholar
100.
Polowick, P. L. & Raju, M. V. S. The origin and development of root buds in Asclepias syriaca. Can. J. Bot. 60, 2119–2125. https://doi.org/10.1139/b82-260 (1982).
Article Google Scholar
101.
Stamm-Katovich, E. J., Wyse, D. L. & Biesboer, D. D. Development of common milkweed (Asclepias syriaca) root buds following emergence from lateral roots. Weed Sci. 36, 758–763. https://doi.org/10.1017/S0043174500075780 (1988).
Article Google Scholar
102.
Eckert, C.G. In Ecology and evolutionary biology of clonal plants (ed Stuefer J.F., Erschbamer B., Huber H., Suzuki J.-I.) 279–298. (Springer, Dordrecht, 2002).
103.
Barrett, S. C. Influences of clonality on plant sexual reproduction. Proc. Natl. Acad. Sci. USA 112, 8859–8866. https://doi.org/10.1073/pnas.1501712112 (2015).
ADS CAS Article PubMed Google Scholar
104.
Herben, T., Šerá, B. & Klimešová, J. Clonal growth and sexual reproduction: tradeoffs and environmental constraints. Oikos 124, 469–476. https://doi.org/10.1111/oik.01692 (2015).
Article Google Scholar
105.
Doust, L. L. Population dynamics and local specialization in a clonal perennial (Ranunculus repens): I. The dynamics of ramets in contrasting habitats. J. Ecol. 69, 743–755. https://doi.org/10.2307/2259633 (1981).
106.
Chen, X. S., Xie, Y. H., Deng, Z. M., Li, F. & Hou, Z. Y. A change from phalanx to guerrilla growth form is an effective strategy to acclimate to sedimentation in a wetland sedge species Carex brevicuspis (Cyperaceae). Flora 206, 347–350. https://doi.org/10.1016/j.flora.2010.07.006 (2011).
Article Google Scholar
107.
Ye, X. et al. Multiple adaptations to light and nutrient heterogeneity in the clonal plant Leymus secalinus with a combined growth form. Flora 213, 49–56. https://doi.org/10.1016/j.flora.2015.04.006 (2015).
Article Google Scholar
108.
Schmid, B. Some ecological and evolutionary consequences of modular organization and clonal growth in plants. Evol. Trend. Plant. 4, 25–34 (1990).
Google Scholar
109.
Hsiao, A. I. & McIntyre, G. I. Evidence of competition for water as a factor in the mechanism of root-bud inhibition in milkweed (Asclepias syriaca). Can. J. Bot. 62, 379–384. https://doi.org/10.1139/b84-057 (1984).
Article Google Scholar
110.
Watson, M. A. In Clonal growth in plants: regulation and function (ed van Groenendael, J. & de Kroon, H.) 43–56 (SPB Academic Publishing, London 1990).
111.
Willson, M. F. & Price, P. W. Resource limitation of fruit and seed production in some Asclepias species. Can. J. Bot. 58, 2229–2233. https://doi.org/10.1139/b80-257 (1980).
Article Google Scholar
112.
Waldecker, M. A. & Wyse, D. L. Soil moisture effects on glyphosate absorption and translocation in common milkweed (Asclepias syriaca). Weed Sci. 33, 299–305. https://doi.org/10.1017/S0043174500082321 (1985).
CAS Article Google Scholar More