American mastodon mitochondrial genomes suggest multiple dispersal events in response to Pleistocene climate oscillations
1.
Collins, M. et al. In Climate Change 2013—The Physical Science Basis (ed. Intergovernmental Panel on Climate Change) 1029–1136 (Cambridge University Press, Cambridge, 2013).
2.
Ackerly, D. D. et al. The geography of climate change: implications for conservation biogeography. Divers. Distrib. 16, 476–487 (2010).
Google Scholar
3.
Bradshaw, W. E. & Holzapfel, C. M. Evolutionary response to rapid climate change. Science 312, 1477–1478 (2006).
CAS PubMed Google Scholar
4.
Chu, C., Mandrak, N. E. & Minns, C. K. Potential impacts of climate change on the distributions of several common and rare freshwater fishes in Canada. Divers. Distrib. 11, 299–310 (2005).
Google Scholar
5.
Princé, K. & Zuckerberg, B. Climate change in our backyards: the reshuffling of North America’s winter bird communities. Glob. Change Biol. 21, 572–585 (2015).
ADS Google Scholar
6.
Scheffers, B. R. et al. The broad footprint of climate change from genes to biomes to people. Science 354, aaf7671 (2016).
PubMed Google Scholar
7.
Lisiecki, L. E. & Raymo, M. E. A Pliocene-Pleistocene stack of 57 globally distributed benthic δ 18 O records. Paleoceanography 20, PA1003 (2005).
ADS Google Scholar
8.
Dyke, A. S. An outline of the deglaciation of North America with emphasis on central and northern Canada. Quat. Glaciat. Chronol. Part II 2b, 373–424 (2004).
Google Scholar
9.
Thompson, L. G. et al. Late glacial stage and Holocene tropical ice core records from Huascaran, Peru. Science 269, 46–50 (1995).
ADS CAS Google Scholar
10.
Johnsen, S. J. et al. Oxygen isotope and palaeotemperature records from six Greenland ice-core stations: camp century, dye-3, GRIP, GISP2, Renland and NorthGRIP. J. Quat. Sci. 16, 299–307 (2001).
Google Scholar
11.
Kawamura, K. et al. Northern Hemisphere forcing of climatic cycles in Antarctica over the past 360,000 years. Nature 448, 912–916 (2007).
ADS CAS PubMed Google Scholar
12.
Dyke, A. S. Late quaternary vegetation history of Northern North America based on pollen, macrofossil, and faunal remains. Géogr. Phys. Quat. 59, 211–262 (2005).
Google Scholar
13.
Froese, D. et al. Fossil and genomic evidence constrains the timing of bison arrival in North America. Proc. Natl Acad. Sci. USA 114, 3457–3462 (2017).
ADS CAS PubMed Google Scholar
14.
Palkopoulou, E. et al. Holarctic genetic structure and range dynamics in the woolly mammoth. Proc. R. Soc. B Biol. Sci. 280, 20131910 (2013).
Google Scholar
15.
Debruyne, R. et al. Out of America: ancient DNA evidence for a new world origin of late quaternary woolly mammoths. Curr. Biol. 18, 1320–1326 (2008).
CAS PubMed Google Scholar
16.
Shapiro, B. et al. Rise and fall of the Beringian Steppe Bison. Science 306, 1561–1565 (2004).
ADS CAS PubMed Google Scholar
17.
Campos, P. F. et al. Ancient DNA analyses exclude humans as the driving force behind late Pleistocene musk ox (Ovibos moschatus) population dynamics. Proc. Natl Acad. Sci. USA 107, 5675–5680 (2010).
ADS CAS PubMed Google Scholar
18.
Chang, D. et al. The evolutionary and phylogeographic history of woolly mammoths: a comprehensive mitogenomic analysis. Sci. Rep. 7, 44585 (2017).
ADS CAS PubMed PubMed Central Google Scholar
19.
Heintzman, P. D. et al. Bison phylogeography constrains dispersal and viability of the ice free corridor in western Canada. Proc. Natl Acad. Sci. USA 113, 8057–8063 (2016).
CAS PubMed Google Scholar
20.
Zazula, G. D. et al. American mastodon extirpation in the Arctic and Subarctic predates human colonization and terminal Pleistocene climate change. Proc. Natl Acad. Sci. USA 2014, 6–11 (2014).
Google Scholar
21.
Zazula, G. D. et al. A case of early Wisconsinan “over-chill”: New radiocarbon evidence for early extirpation of western camel (Camelops hesternus) in eastern Beringia. Quat. Sci. Rev. 171, 48–57 (2017).
ADS Google Scholar
22.
Saunders, J. J. et al. Paradigms and proboscideans in the southern Great Lakes region, USA. Quat. Int. 217, 175–187 (2010).
Google Scholar
23.
Oltz, D. F. & Kapp, R. O. Plant remains associated with Mastodon and Mammoth remains in central Michigan. Am. Midl. Nat. 70, 339–346 (1963).
Google Scholar
24.
Dreimanis, A. Extinction of Mastodons in Eastern North America: testing a new climatic-environmental hypothesis. Ohio J. Sci. 68, 257–272 (1968).
Google Scholar
25.
Shoshani, J. Understanding proboscidean evolution: a formidable task. Trends Ecol. Evol. 13, 480–487 (1998).
CAS PubMed Google Scholar
26.
Teale, C. L. & Miller, N. G. Mastodon herbivory in mid-latitude late-Pleistocene boreal forests of eastern North America. Quat. Res. 78, 72–81 (2012).
Google Scholar
27.
Green, J. L., DeSantis, L. R. G. & Smith, G. J. Regional variation in the browsing diet of Pleistocene Mammut americanum (Mammalia, Proboscidea) as recorded by dental microwear textures. Palaeogeogr. Palaeoclimatol. Palaeoecol. 487, 59–70 (2017).
Google Scholar
28.
Birks, H. H. et al. Evidence for the diet and habitat of two late Pleistocene mastodons from the Midwest, USA. Quat. Res. 91, 792–812 (2019).
CAS Google Scholar
29.
Owen-Smith, N. Pleistocene extinctions: the pivotal role of megaherbivores. Paleobiology 13, 351–362 (1987).
Google Scholar
30.
Barnosky, A. D. et al. Variable impact of late-quaternary megafaunal extinction in causing ecological state shifts in North and South America. Proc. Natl Acad. Sci. USA 113, 856–861 (2016).
ADS CAS PubMed Google Scholar
31.
Widga, C. et al. Late pleistocene proboscidean population dynamics in the North American midcontinent. Boreas 46, 772–782 (2017).
Google Scholar
32.
Godfrey-Smith, D., Grist, A. & Stea, R. Dosimetric and radiocarbon chronology of a pre-Wisconsinan mastodon fossil locality at East Milford, Nova Scotia, Canada. Quat. Sci. Rev. 22, 1353–1360 (2003).
ADS Google Scholar
33.
Enk, J. et al. Mammuthus population dynamics in late pleistocene North America: divergence, phylogeogrpaphy and introgression. Front. Ecol. Evol. 4, 1–13 (2016).
Google Scholar
34.
Ishida, Y., Georgiadis, N. J., Hondo, T. & Roca, A. L. Triangulating the provenance of African elephants using mitochondrial DNA. Evol. Appl. 6, 253–265 (2013).
CAS PubMed Google Scholar
35.
Fernando, P., Pfrender, M. E., Encalada, S. E. & Lande, R. Mitochondrial DNA variation, phylogeography and population structure of the Asian elephant. Heredity 84, 362–372 (2000).
CAS PubMed Google Scholar
36.
Fisher, D. In The Proboscidea: Evolution and Paleoecology of Elephants andtheir Relatives (eds. Shoshani, J. & Tassy, P.) 296–315 (Oxford University Press, Oxford, 1996).
37.
Fisher, D. C. Paleobiology of pleistocene proboscideans. Annu. Rev. Earth Planet. Sci. https://doi.org/10.1146/annurev-earth-060115-012437 (2018).
38.
Rohland, N. et al. Genomic DNA sequences from mastodon and woolly mammoth reveal deep speciation of forest and savanna elephants. PLoS Biol. 8, e1000564 (2010).
CAS PubMed PubMed Central Google Scholar
39.
Muhs, D. R., Ager, T. A. & Begét, J. E. Vegetation and paleoclimate of the last interglacial period, central Alaska. Quat. Sci. Rev. 20, 41–61 (2001).
ADS Google Scholar
40.
Jass, C. N. & Barrón-Ortiz, C. I. A review of quaternary proboscideans from Alberta, Canada. Quat. Int. 443, 88–104 (2017).
Google Scholar
41.
Shapiro, B. et al. A Bayesian phylogenetic method to estimate unknown sequence ages. Mol. Biol. Evol. 28, 879–887 (2011).
CAS PubMed Google Scholar
42.
Drummond, A. J. & Stadler, T. Bayesian phylogenetic estimation of fossil ages. Philos. Trans. R. Soc. B Biol. Sci. 371, 20150129 (2016).
Google Scholar
43.
Plint, T., Longstaffe, F. J. & Zazula, G. Giant beaver palaeoecology inferred from stable isotopes. Sci. Rep. 9, 7179 (2019).
ADS PubMed PubMed Central Google Scholar
44.
Yalden, D. W. The history of British mammals 12–27 (T & A D Poyser Ltd, Berkhamsted, 1999).
45.
Schreve, D. C. A new record of Pleistocene hippopotamus from River Severn terrace deposits, Gloucester, UK—palaeoenvironmental setting and stratigraphical significance. Proc. Geol. Assoc. 120, 58–64 (2009).
Google Scholar
46.
Stoffel, C. et al. Genetic consequences of population expansions and contractions in the common hippopotamus (Hippopotamus amphibius) since the late Pleistocene. Mol. Ecol. 24, 2507–2520 (2015).
PubMed Google Scholar
47.
Tape, K. D., Gustine, D. D., Ruess, R. W., Adams, L. G. & Clark, J. A. Range expansion of moose in Arctic Alaska linked to warming and increased shrub habitat. PLoS ONE 11, e0152636 (2016).
PubMed PubMed Central Google Scholar
48.
Tape, K. D., Jones, B. M., Arp, C. D., Nitze, I. & Grosse, G. Tundra be dammed: beaver colonization of the Arctic. Glob. Change Biol. 24, 4478–4488 (2018).
ADS Google Scholar
49.
Dabney, J. et al. Complete mitochondrial genome sequence of a Middle Pleistocene cave bear reconstructed from ultrashort DNA fragments. Proc. Natl Acad. Sci. USA 110, 15758–15763 (2013).
ADS CAS PubMed Google Scholar
50.
Glocke, I. & Meyer, M. Extending the spectrum of DNA sequences retrieved from ancient bones and teeth. Genome Res. 27, 1–8 (2017).
Google Scholar
51.
Kircher, M., Sawyer, S. & Meyer, M. Double indexing overcomes inaccuracies in multiplex sequencing on the Illumina platform. Nucleic Acids Res. 40, 1–8 (2012).
Google Scholar
52.
Meyer, M. & Kircher, M. Illumina sequencing library preparation for highly multiplexed target capture and sequencing. Cold Spring Harb. Protoc. 2010, 1–10 (2010).
Google Scholar
53.
Gansauge, M.-T. & Meyer, M. Single-stranded DNA library preparation for the sequencing of ancient or damaged DNA. Nat. Protoc. 8, 737–748 (2013).
PubMed Google Scholar
54.
Gansauge, M.-T. et al. Single-stranded DNA library preparation from highly degraded DNA using T4 DNA ligase. Nucleic Acids Res. 45, 1–10 (2017).
Google Scholar
55.
Renaud, G., Stenzel, U. & Kelso, J. leeHom: adaptor trimming and merging for Illumina sequencing reads. Nucleic Acids Res. https://doi.org/10.1093/nar/gku699 (2014).
56.
Li, H. & Durbin, R. Fast and accurate short read alignment with Burrows-Wheeler transform. Bioinformatics 25, 1754–1760 (2009).
CAS PubMed PubMed Central Google Scholar
57.
Edgar, R. C. MUSCLE: multiple sequence alignment with high accuracy and high throughput. Nucleic Acids Res. 32, 1792–1797 (2004).
CAS PubMed PubMed Central Google Scholar
58.
Darriba, D., Taboada, G. L., Doallo, R. & Posada, D. jModelTest 2: more models, new heuristics and parallel computing. Nat. Methods 9, 772–772 (2012).
CAS PubMed PubMed Central Google Scholar
59.
Nguyen, L. T., Schmidt, H. A., Von Haeseler, A. & Minh, B. Q. IQ-TREE: a fast and effective stochastic algorithm for estimating maximum-likelihood phylogenies. Mol. Biol. Evol. 32, 268–274 (2015).
CAS PubMed PubMed Central Google Scholar
60.
Drummond, A. J., Suchard, M. A., Xie, D. & Rambaut, A. Bayesian phylogenetics with BEAUti and the BEAST 1.7. Mol. Biol. Evol. 29, 1969–1973 (2012).
CAS PubMed PubMed Central Google Scholar
61.
Baele, G., Lemey, P. & Suchard, M. A. Genealogical working distributions for Bayesian model testing with phylogenetic uncertainty. Syst. Biol. 65, 250–264 (2016).
PubMed Google Scholar
62.
Suchard, M. A. et al. Bayesian phylogenetic and phylodynamic data integration using BEAST 1.10. Virus Evol. 4, vey016 (2018).
PubMed PubMed Central Google Scholar
63.
Stuiver, M. & Reimer, P. J. Extended 14C database and revised CALIB radiocarbon calibration program. Radiocarbon 35, 215–230 (1993).
Google Scholar
64.
Paradis, E., Claude, J. & Strimmer, K. APE: analyses of phylogenetics and evolution in R language. Bioinformatics 20, 289–290 (2004).
CAS Google Scholar
65.
Colleoni, F., Wekerle, C., Näslund, J.-O., Brandefelt, J. & Masina, S. Constraint on the penultimate glacial maximum Northern Hemisphere ice topography (≈140 kyrs BP). Quat. Sci. Rev. 137, 97–112 (2016).
ADS Google Scholar More
