1.
Dobson, A., Lafferty, K. D., Kuris, A. M., Hechinger, R. F. & Jetz, W. Homage to Linnaeus: how many parasites? How many hosts? Proc. Natl Acad. Sci. USA 105, 11482–11489 (2008).
CAS PubMed Google Scholar
2.
Mideo, N. Parasite adaptations to within-host competition. Trends Parasitol. 25, 261–268 (2009).
PubMed Google Scholar
3.
Greischar, M. A. et al. Evolutionary consequences of feedbacks between within-host competition and disease control. Evol. Med. Public Health 2020, 30–34 (2020).
PubMed PubMed Central Google Scholar
4.
Wale, N. et al. Resource limitation prevents the emergence of drug resistance by intensifying within-host competition. Proc. Natl Acad. Sci. USA 114, 13774–13779 (2017).
CAS PubMed Google Scholar
5.
Bhattacharya, A., Toro Díaz, V. C., Morran, L. T. & Bashey, F. Evolution of increased virulence is associated with decreased spite in the insect-pathogenic bacterium Xenorhabdus nematophila. Biol. Lett. 15, 20190432 (2019).
PubMed PubMed Central Google Scholar
6.
Susi, H., Barrès, B., Vale, P. F. & Laine, A.-L. Co-infection alters population dynamics of infectious disease. Nat. Commun. 6, 5975 (2015).
CAS PubMed PubMed Central Google Scholar
7.
Read, A. F. & Taylor, L. H. The ecology of genetically diverse infections. Science 292, 1099–1102 (2001).
CAS PubMed Google Scholar
8.
Hawley, D. M. & Altizer, S. M. Disease ecology meets ecological immunology: understanding the links between organismal immunity and infection dynamics in natural populations. Funct. Ecol. 25, 48–60 (2011).
Google Scholar
9.
Hoverman, J. T., Hoye, B. J. & Johnson, P. T. J. Does timing matter? How priority effects influence the outcome of parasite interactions within hosts. Oecologia 173, 1471–1480 (2013).
PubMed Google Scholar
10.
Zhan, J. & McDonald, B. A. Experimental measures of pathogen competition and relative fitness. Annu. Rev. Phytopathol. 51, 131–153 (2013).
CAS PubMed Google Scholar
11.
Hellard, E., Fouchet, D., Vavre, F. & Pontier, D. Parasite–parasite interactions in the wild: how to detect them? Trends Parasitol. 31, 640–652 (2015).
PubMed Google Scholar
12.
Tollenaere, C., Susi, H. & Laine, A. L. Evolutionary and epidemiological implications of multiple infection in plants. Trends Plant Sci. 21, 80–90 (2015).
PubMed Google Scholar
13.
Budischak, S. A. et al. Competing for blood: the ecology of parasite resource competition in human malaria–helminth co-infections. Ecol. Lett. 21, 536–545 (2018).
PubMed Google Scholar
14.
Griffiths, E. C., Pedersen, A. B., Fenton, A. & Petchey, O. L. Analysis of a summary network of co-infection in humans reveals that parasites interact most via shared resources. Proc. R. Soc. B 281, 20132286 (2014).
PubMed Google Scholar
15.
Ezenwa, V. O. Helminth–microparasite co-infection in wildlife: lessons from ruminants, rodents and rabbits. Parasite Immunol. 38, 527–534 (2016).
CAS PubMed Google Scholar
16.
Lello, J., Boag, B., Fenton, A., Stevenson, I. R. & Hudson, P. J. Competition and mutualism among the gut helminths of a mammalian host. Nature 428, 840–844 (2004).
CAS PubMed Google Scholar
17.
Chung, E., Petit, E., Antonovics, J., Pedersen, A. B. & Hood, M. E. Variation in resistance to multiple pathogen species: anther smuts of Silene uniflora. Ecol. Evol. 2, 2304–2314 (2012).
PubMed PubMed Central Google Scholar
18.
Halliday, F. W., Umbanhowar, J. & Mitchell, C. E. A host immune hormone modifies parasite species interactions and epidemics: insights from a field manipulation. Proc. R. Soc. B 285, 20182075 (2018).
PubMed Google Scholar
19.
Eswarappa, S. M., Estrela, S. & Brown, S. P. Within-host dynamics of multi-species infections: facilitation, competition and virulence. PLoS ONE 7, e38730 (2012).
CAS PubMed PubMed Central Google Scholar
20.
Zélé, F., Magalhães, S., Kéfi, S. & Duncan, A. B. Ecology and evolution of facilitation among symbionts. Nat. Commun. 9, 4869 (2018).
PubMed PubMed Central Google Scholar
21.
Jenner, E. An Inquiry into the Causes and Effects of the Variolae Vaccinae, a Disease Discovered in Some of the Western Countries of England, Particularly Gloucestershire, and Known by the Name of “The Cow Pox” (1798) Vol. 84 (R. Lier, 1923).
22.
Fulton, R. W. Practices and precautions in the use of cross protection for plant virus disease control. Annu. Rev. Phytopathol. 24, 67–81 (1986).
Google Scholar
23.
Van Loon, L. C. Induced resistance in plants and the role of pathogenesis-related proteins. Eur. J. Plant Pathol. 103, 753–765 (1997).
Google Scholar
24.
Conrath, U. et al. Priming: getting ready for battle. Mol. Plant Microbe Interact. 19, 1062–1071 (2006).
CAS PubMed Google Scholar
25.
Pieterse, C. M. J. et al. Induced systemic resistance by beneficial microbes. Annu. Rev. Phytopathol. 52, 347–375 (2014).
CAS PubMed Google Scholar
26.
Spoel, S. H., Johnson, J. S. & Dong, X. Regulation of tradeoffs between plant defenses against pathogens with different lifestyles. Proc. Natl Acad. Sci. USA 104, 18842–18847 (2007).
CAS PubMed Google Scholar
27.
Kliebenstein, D. J. & Rowe, H. C. Ecological costs of biotrophic versus necrotrophic pathogen resistance, the hypersensitive response and signal transduction. Plant Sci. 174, 551–556 (2008).
CAS Google Scholar
28.
Koornneef, A. et al. Kinetics of salicylate-mediated suppression of jasmonate signaling reveal a role for redox modulation. Plant Physiol. 147, 1358–1368 (2008).
CAS PubMed PubMed Central Google Scholar
29.
Glazebrook, J. Contrasting mechanisms of defense against biotrophic and necrotrophic pathogens. Annu. Rev. Phytopathol. 43, 205–227 (2005).
CAS PubMed Google Scholar
30.
Ezenwa, V. O., Etienne, R. S., Luikart, G., Beja-Pereira, A. & Jolles, A. E. Hidden consequences of living in a wormy world: nematode‐induced immune suppression facilitates tuberculosis invasion in African buffalo. Am. Nat. 176, 613–624 (2010).
PubMed Google Scholar
31.
Clay, P. A., Cortez, M. H., Duffy, M. A. & Rudolf, V. H. W. Priority effects within coinfected hosts can drive unexpected population‐scale patterns of parasite prevalence. Oikos 128, 571–583 (2019).
Google Scholar
32.
Clay, P. A., Duffy, M. A. & Rudolf, V. H. W. Within-host priority effects and epidemic timing determine outbreak severity in co-infected populations. Proc. R. Soc. B 287, 20200046 (2020).
PubMed Google Scholar
33.
Clark, P., Ward, W., Lang, S., Saghbini, A. & Kristan, D. Order of inoculation during Heligmosomoides bakeri and Hymenolepis microstoma coinfection alters parasite life history and host responses. Pathogens 2, 130–152 (2013).
PubMed PubMed Central Google Scholar
34.
Fukami, T. Historical contingency in community assembly: integrating niches, species pools, and priority effects. Annu. Rev. Ecol. Evol. Syst. 46, 1–23 (2015).
Google Scholar
35.
Vannette, R. L. & Fukami, T. Historical contingency in species interactions: towards niche-based predictions. Ecol. Lett. 17, 115–124 (2014).
PubMed Google Scholar
36.
Halliday, F. W., Umbanhowar, J. & Mitchell, C. E. Interactions among symbionts operate across scales to influence parasite epidemics. Ecol. Lett. 20, 1285–1294 (2017).
PubMed Google Scholar
37.
Johnson, P. T. J., de Roode, J. C. & Fenton, A. Why infectious disease research needs community ecology. Science 349, 1259504 (2015).
PubMed PubMed Central Google Scholar
38.
Karvonen, A., Jokela, J. & Laine, A.-L. Importance of sequence and timing in parasite coinfections. Trends Parasitol. 35, 109–118 (2019).
PubMed Google Scholar
39.
Mordecai, E. A., Gross, K. & Mitchell, C. E. Within-host niche differences and fitness trade-offs promote coexistence of plant viruses. Am. Nat. 187, E13–E26 (2016).
PubMed Google Scholar
40.
Kuris, A. M., Blaustein, A. R. & Alio, J. J. Hosts as islands. Am. Nat. 116, 570–586 (1980).
Google Scholar
41.
Rynkiewicz, E. C., Pedersen, A. B. & Fenton, A. An ecosystem approach to understanding and managing within-host parasite community dynamics. Trends Parasitol. 31, 212–221 (2015).
PubMed Google Scholar
42.
Sousa, W. P. Interspecific interactions among larval trematode parasites of freshwater and marine snails. Am. Zool. 32, 583–592 (1992).
Google Scholar
43.
Graham, A. L. Ecological rules governing helminth microparasite coinfection. Proc. Natl Acad. Sci. USA 105, 566–570 (2008).
CAS PubMed Google Scholar
44.
Seabloom, E. W. et al. The community ecology of pathogens: coinfection, coexistence and community composition. Ecol. Lett. 18, 401–415 (2015).
PubMed Google Scholar
45.
Cobey, S. & Lipsitch, M. Pathogen diversity and hidden regimes of apparent competition. Am. Nat. 181, 12–24 (2013).
PubMed Google Scholar
46.
Greischar, M. A. & Koskella, B. A synthesis of experimental work on parasite local adaptation. Ecol. Lett. 10, 418–434 (2007).
PubMed Google Scholar
47.
Hoeksema, J. D. & Forde, S. E. A meta-analysis of factors affecting local adaptation between interacting species. Am. Nat. 171, 275–290 (2008).
PubMed Google Scholar
48.
Burdon, J. J. & Laine, A.-L. Evolutionary Dynamics of Plant Pathogen Interactions (Cambridge Univ. Press, 2019).
49.
Lambrechts, L., Fellous, S. & Koella, J. C. Coevolutionary interactions between host and parasite genotypes. Trends Parasitol. 22, 12–16 (2006).
PubMed Google Scholar
50.
Ferro, K. et al. Experimental evolution of immunological specificity. Proc. Natl Acad. Sci. USA 116, 20598–20604 (2019).
CAS PubMed Google Scholar
51.
Westman, S. M., Kloth, K. J., Hanson, J., Ohlsson, A. B. & Albrectsen, B. R. Defence priming in Arabidopsis—a meta-analysis. Sci. Rep. 9, 13309 (2019).
PubMed PubMed Central Google Scholar
52.
Pedersen, A. B. & Fenton, A. Emphasizing the ecology in parasite community ecology. Trends Ecol. Evol. 22, 133–139 (2007).
PubMed Google Scholar
53.
Pedersen, A. B. & Fenton, A. The role of antiparasite treatment experiments in assessing the impact of parasites on wildlife. Trends Parasitol. 31, 200–211 (2015).
PubMed Google Scholar
54.
Laine, A. L. Context-dependent effects of induced resistance under co-infection in a plant–pathogen interaction. Evol. Appl. 4, 696–707 (2011).
PubMed PubMed Central Google Scholar
55.
Conrath, U., Beckers, G. J. M., Langenbach, C. J. G. & Jaskiewicz, M. R. Priming for enhanced defense. Annu. Rev. Phytopathol. 53, 97–119 (2015).
CAS PubMed Google Scholar
56.
Douma, J. C., Vermeulen, P. J., Poelman, E. H., Dicke, M. & Anten, N. P. R. When does it pay off to prime for defense? A modeling analysis. N. Phytol. 216, 782–797 (2017).
CAS Google Scholar
57.
Mauch-Mani, B., Baccelli, I., Luna, E. & Flors, V. Defense priming: an adaptive part of induced resistance. Annu. Rev. Plant Biol. 68, 485–512 (2017).
CAS PubMed Google Scholar
58.
Budischak, S. A. et al. Resource limitation alters the consequences of co-infection for both hosts and parasites. Int. J. Parasitol. 45, 455–463 (2015).
PubMed Google Scholar
59.
Borer, E. T., Laine, A.-L. & Seabloom, E. W. A multiscale approach to plant disease using the metacommunity concept. Annu. Rev. Phytopathol. 54, 397–418 (2016).
CAS PubMed Google Scholar
60.
Bushnell, W. R. in The Powdery Mildews: A Comprehensive Treatise (eds Belanger, R. R. et al.) 1–12 (APS, 2002).
61.
Warton, D. I., Wright, S. T. & Wang, Y. Distance-based multivariate analyses confound location and dispersion effects. Methods Ecol. Evol. 3, 89–101 (2012).
Google Scholar
62.
Wang, Y., Naumann, U., Wright, S. T. & Warton, D. I. Mvabund—an R package for model-based analysis of multivariate abundance data. Methods Ecol. Evol. 3, 471–474 (2012).
Google Scholar
63.
Benesh, D. P. & Kalbe, M. Experimental parasite community ecology: intraspecific variation in a large tapeworm affects community assembly. J. Anim. Ecol. 85, 1004–1013 (2016).
PubMed Google Scholar
64.
Mucha, J. et al. Effect of simulated climate warming on the ectomycorrhizal fungal community of boreal and temperate host species growing near their shared ecotonal range limits. Microb. Ecol. 75, 348–363 (2018).
CAS PubMed Google Scholar
65.
Chang, A. L., Brown, C. W., Crooks, J. A. & Ruiz, G. M. Dry and wet periods drive rapid shifts in community assembly in an estuarine ecosystem. Glob. Change Biol. 24, e627–e642 (2018).
Google Scholar
66.
David, A. S., Seabloom, E. W. & May, G. Disentangling environmental and host sources of fungal endophyte communities in an experimental beachgrass study. Mol. Ecol. 26, 6157–6169 (2017).
PubMed Google Scholar
67.
Penczykowski, R. M., Parratt, S. R., Barrès, B., Sallinen, S. K. & Laine, A. L. Manipulating host resistance structure reveals impact of pathogen dispersal and environmental heterogeneity on epidemics. Ecology 99, 2853–2863 (2018).
PubMed Google Scholar
68.
Pieterse, C. M. J. et al. Hormonal modulation of plant immunity. Annu. Rev. Cell Dev. Biol. 28, 489–521 (2012).
CAS PubMed Google Scholar
69.
Susi, H. & Laine, A.-L. The effectiveness and costs of pathogen resistance strategies in a perennial plant. J. Ecol. 103, 303–315 (2015).
Google Scholar
70.
Höckerstedt, L. Evolutionary and Ecological Dimensions of Disease Resistance. PhD dissertation, Univ. of Helsinki (2020); https://helda.helsinki.fi/handle/10138/314983
71.
Macke, E. et al. Diet and genotype of an aquatic invertebrate affect the composition of free-living microbial communities. Front. Microbiol. 11, 380 (2020).
PubMed PubMed Central Google Scholar
72.
Wagner, M. R. et al. Host genotype and age shape the leaf and root microbiomes of a wild perennial plant. Nat. Commun. 7, 12151 (2016).
CAS PubMed PubMed Central Google Scholar
73.
Koch, H. & Schmid-Hempel, P. Socially transmitted gut microbiota protect bumble bees against an intestinal parasite. Proc. Natl Acad. Sci. USA 108, 19288–19292 (2011).
CAS PubMed Google Scholar
74.
Biere, A. & Goverse, A. Plant-mediated systemic interactions between pathogens, parasitic nematodes, and herbivores above- and belowground. Annu. Rev. Phytopathol. 54, 499–527 (2016).
CAS PubMed Google Scholar
75.
Little, T. J., Watt, K. & Ebert, D. Parasite–host specificity: experimental studies on the basis of parasite adaptation. Evolution 60, 31–38 (2006).
PubMed Google Scholar
76.
Seybold, H. et al. A fungal pathogen induces systemic susceptibility and systemic shifts in wheat metabolome and microbiome composition. Nat. Commun. 11, 1910 (2020).
CAS PubMed PubMed Central Google Scholar
77.
Cui, J. et al. Pseudomonas syringae manipulates systemic plant defenses against pathogens and herbivores. Proc. Natl Acad. Sci. USA 102, 1791–1796 (2005).
CAS PubMed Google Scholar
78.
Mideo, N., Alizon, S. & Day, T. Linking within- and between-host dynamics in the evolutionary epidemiology of infectious diseases. Trends Ecol. Evol. 23, 511–517 (2008).
PubMed Google Scholar
79.
Pedersen, A. B. & Greives, T. J. The interaction of parasites and resources cause crashes in a wild mouse population. J. Anim. Ecol. 77, 370–377 (2008).
PubMed Google Scholar
80.
Laine, A.-L., Barrès, B., Numminen, E. & Siren, J. P. Variable opportunities for outcrossing result in hotspots of novel genetic variation in a pathogen metapopulation. eLife 8, e47091 (2019).
PubMed PubMed Central Google Scholar
81.
Vaumourin, E. & Laine, A.-L. Role of temperature and coinfection in mediating pathogen life-history traits. Front. Plant Sci. 9, 1670 (2018).
PubMed PubMed Central Google Scholar
82.
Numminen, E., Vaumourin, E., Parratt, S. R., Poulin, L. & Laine, A.-L. Variation and correlations between sexual, asexual and natural enemy resistance life-history traits in a natural plant pathogen population. BMC Evol. Biol. 19, 142 (2019).
PubMed PubMed Central Google Scholar
83.
Tack, A. J. M., Thrall, P. H., Barrett, L. G., Burdon, J. J. & Laine, A.-L. Variation in infectivity and aggressiveness in space and time in wild host–pathogen systems: causes and consequences. J. Evol. Biol. 25, 1918–1936 (2012).
CAS PubMed PubMed Central Google Scholar
84.
Penczykowski, R. M., Laine, A. L. & Koskella, B. Understanding the ecology and evolution of host–parasite interactions across scales. Evol. Appl. 9, 37–52 (2016).
PubMed Google Scholar
85.
Rynkiewicz, E. C., Fenton, A. & Pedersen, A. B. Linking community assembly and structure across scales in a wild mouse parasite community. Ecol. Evol. 9, 13752–13763 (2019).
PubMed PubMed Central Google Scholar
86.
Bolnick, D. I. et al. Why intraspecific trait variation matters in community ecology. Trends Ecol. Evol. 26, 183–192 (2011).
PubMed PubMed Central Google Scholar
87.
Siefert, A. Incorporating intraspecific variation in tests of trait-based community assembly. Oecologia 170, 767–775 (2012).
PubMed Google Scholar
88.
Laughlin, D. C. et al. A predictive model of community assembly that incorporates intraspecific trait variation. Ecol. Lett. 15, 1291–1299 (2012).
PubMed Google Scholar
89.
Shaw, D. J. & Dobson, A. P. Patterns of macroparasite abundance and aggregation in wildlife populations: a quantitative review. Parasitology 111, S111–S133 (1995).
PubMed Google Scholar
90.
Lloyd-Smith, J. O., Schreiber, S. J., Kopp, P. E. & Getz, W. M. Superspreading and the effect of individual variation on disease emergence. Nature 438, 355–359 (2005).
CAS PubMed PubMed Central Google Scholar
91.
Sagar, G. R. & Harper, J. L. Plantago major L., P. media L. and P. lanceolata. J. Ecol. 52, 189–221 (1964).
Google Scholar
92.
Ross, M. D. Inheritance of self-incompatibility in Plantago lanceolata. Heredity (Edinb.) 30, 169–176 (1973).
Google Scholar
93.
Ojanen, S. P., Nieminen, M., Meyke, E., Pöyry, J. & Hanski, I. Long-term metapopulation study of the Glanville fritillary butterfly (Melitaea cinxia): survey methods, data management, and long-term population trends. Ecol. Evol. 3, 3713–3737 (2013).
PubMed PubMed Central Google Scholar
94.
Tollenaere, C. & Laine, A. L. Investigating the production of sexual resting structures in a plant pathogen reveals unexpected self-fertility and genotype-by-environment effects. J. Evol. Biol. 26, 1716–1726 (2013).
CAS PubMed Google Scholar
95.
Tack, A. & Laine, A. Ecological and evolutionary implications of spatial heterogeneity during the off‐season for a wild plant pathogen. N. Phytol. 65, 297–308 (2014).
Google Scholar
96.
Laine, A. L. & Hanski, I. Large-scale spatial dynamics of a specialist plant pathogen in a fragmented landscape. J. Ecol. 94, 217–226 (2006).
Google Scholar
97.
Jousimo, J. et al. Ecological and evolutionary effects of fragmentation on infectious disease dynamics. Science 344, 1289–1293 (2014).
CAS PubMed Google Scholar
98.
Laine, A. L. Resistance variation within and among host populations in a plant-pathogen metapopulation: implications for regional pathogen dynamics. J. Ecol. 92, 990–1000 (2004).
Google Scholar
99.
Penczykowski, R. M., Walker, E., Soubeyrand, S. & Laine, A.-L. Linking winter conditions to regional disease dynamics in a wild plant-pathogen metapopulation. N. Phytol. 205, 1142–1152 (2015).
Google Scholar
100.
Laine, A. L. Pathogen fitness components and genotypes differ in their sensitivity to nutrient and temperature variation in a wild plant–pathogen association. J. Evol. Biol. 20, 2371–2378 (2007).
PubMed Google Scholar
101.
Tollenaere, C. et al. SNP design from 454 sequencing of Podosphaera plantaginis transcriptome reveals a genetically diverse pathogen metapopulation with high levels of mixed-genotype infection. PLoS ONE 7, e52492 (2012).
CAS PubMed PubMed Central Google Scholar
102.
Nicot, P. C., Bardin, M. & Dik, A. J. in The Powdery Mildews: A Comprehensive Treatise (eds Belanger, R. R. et al.) 83–99 (APS, 2002).
103.
Parratt, S. R., Barrès, B., Penczykowski, R. M. & Laine, A.-L. Local adaptation at higher trophic levels: contrasting hyperparasite–pathogen infection dynamics in the field and laboratory. Mol. Ecol. 26, 1964–1979 (2017).
CAS PubMed Google Scholar
104.
R: A Language and Environment for Statistical Computing v.3.5.2 (R Core Team, 2015); https://doi.org/10.1007/978-3-540-74686-7
105.
Bates, D., Mächler, M., Bolker, B. & Walker, S. Fitting linear mixed-effects models using lme4. J. Stat. Softw. 67, 1–48 (2014).
Google Scholar
106.
Lenth, R. et al. Emmeans: Estimated marginal means, aka least-squares means. R package version 1.3.3 (2018).
107.
Hui, F. K. C. boral—Bayesian ordination and regression analysis of multivariate abundance data in R. Methods Ecol. Evol. 7, 744–750 (2016).
Google Scholar
108.
Bedward, M. ggboral: View BORAL model results with ggplot. R package version 0.1.6 (2019).
109.
Ploner, M. & Heinze, G. coxphf: Cox regression with Firth’s penalized likelihood. R package version 1.13 (2015). More