More stories

  • in

    The concept and future prospects of soil health

    1.
    Ladyman, J., Lambert, J. & Wiesner, K. What is a complex system? Eur. J. Philos. Sci. 3, 33–67 (2013).
    Google Scholar 
    2.
    Brevik, E. C. et al. The interdisciplinary nature of SOIL. Soil 1, 117–129 (2015).
    Google Scholar 

    3.
    Blum, W. E. Functions of soil for society and the environment. Rev. Environ. Sci. Biotechnol. 4, 75–79 (2005).
    Google Scholar 

    4.
    Baveye, P. C., Baveye, J. & Gowdy, J. Soil “ecosystem” services and natural capital: critical appraisal of research on uncertain ground. Front. Environ. Sci. 4, 41 (2016).
    Google Scholar 

    5.
    Keith, A. M., Schmidt, O. & McMahon, B. J. Soil stewardship as a nexus between ecosystem services and one health. Ecosyst. Serv. 17, 40–42 (2016).
    Google Scholar 

    6.
    Bünemann, E. K. et al. Soil quality–a critical review. Soil Biol. Biochem. 120, 105–125 (2018).
    Google Scholar 

    7.
    Patzel, N., Sticher, H. & Karlen, D. L. Soil fertility – phenomenon and concept. J. Plant Nutr. Soil Sci. 163, 129–142 (2000).
    Google Scholar 

    8.
    Doran, J. W. & Parkin, T. B. in Defining Soil Quality for a Sustainable Environment Vol. 32 (eds Doran, J. W., Coleman, D. C., Bezdicek, D. F. & Stewart, B. A.) 1–21 (Soil Science Society of America, 1994).

    9.
    Pankhurst, C. E., Doube, B. M. & Gupta, V. V. S. R. in Biological Indicators of Soil Health (eds Pankhurst, C., Doube, B. & Gupta, V.) 419–435 (CAB International, 1997).

    10.
    McBratney, A., Field, D. J. & Koch, A. The dimensions of soil security. Geoderma 213, 203–213 (2014).
    Google Scholar 

    11.
    Koch, A. et al. Soil security: solving the global soil crisis. Glob. Policy 4, 434–441 (2013).
    Google Scholar 

    12.
    Stankovics, P., Tóth, G. & Tóth, Z. Identifying gaps between the legislative tools of soil protection in the EU member states for a common European soil protection legislation. Sustainability 10, 2886 (2018).
    Google Scholar 

    13.
    Montanarella, L. Agricultural policy: govern our soils. Nature 528, 32–33 (2015).
    Google Scholar 

    14.
    Jian, J., Du, X. & Stewart, R. D. A database for global soil health assessment. Sci. Data 7, 16 (2020).
    Google Scholar 

    15.
    Karlen, D. L., Veum, K. S., Sudduth, K. A., Obrycki, J. F. & Nunes, M. R. Soil health assessment: past accomplishments, current activities, and future opportunities. Soil Tillage Res. 195, 104365 (2019).
    Google Scholar 

    16.
    Norris, C. E. & Congreves, K. A. Alternative management practices improve soil health indices in intensive vegetable cropping systems: a review. Front. Environ. Sci. 6, 50 (2018).
    Google Scholar 

    17.
    O’Dell, R. E. & Claassen, V. P. Vertical distribution of organic amendment influences the rooting depth of revegetation species on barren, subgrade serpentine substrate. Plant Soil 285, 19–29 (2006).
    Google Scholar 

    18.
    Congreves, K. A., Hayes, A., Verhallen, E. A. & Van Eerd, L. L. Long-term impact of tillage and crop rotation on soil health at four temperate agroecosystems. Soil Tillage Res. 152, 17–28 (2015).
    Google Scholar 

    19.
    Hamza, M. A. & Anderson, W. K. Soil compaction in cropping systems: a review of the nature, causes and possible solutions. Soil Tillage Res. 82, 121–145 (2005).
    Google Scholar 

    20.
    Jenkinson, D. S. The Rothamsted long-term experiments: Are they still of use? Agron. J. 83, 2–10 (1991).
    Google Scholar 

    21.
    Berendsen, R. L., Pieterse, C. M. & Bakker, P. A. The rhizosphere microbiome and plant health. Trends Plant Sci. 17, 478–486 (2012).
    Google Scholar 

    22.
    Chaparro, J. M., Sheflin, A. M., Manter, D. K. & Vivanco, J. M. Manipulating the soil microbiome to increase soil health and plant fertility. Biol. Fertil. Soils 48, 489–499 (2012).
    Google Scholar 

    23.
    Bonanomi, G., Lorito, M., Vinale, F. & Woo, S. L. Organic amendments, beneficial microbes, and soil microbiota: toward a unified framework for disease suppression. Annu. Rev. Phytopathol. 56, 1–20 (2018).
    Google Scholar 

    24.
    Chen, X. D. et al. Soil biodiversity and biogeochemical function in managed ecosystems. Soil Res. 58, 1–20 (2020).
    Google Scholar 

    25.
    Pittelkow, C. M. et al. Productivity limits and potentials of the principles of conservation agriculture. Nature 517, 365–368 (2015).
    Google Scholar 

    26.
    Ogle, S. M., Swan, A. & Paustian, K. No-till management impacts on crop productivity, carbon input and soil carbon sequestration. Agric. Ecosyst. Environ. 149, 37–49 (2012).
    Google Scholar 

    27.
    Zimnicki, T. et al. On quantifying water quality benefits of healthy soils. BioScience 70, 343–352 (2020).
    Google Scholar 

    28.
    Evans, A. E., Mateo-Sagasta, J., Qadir, M., Boelee, E. & Ippolito, A. Agricultural water pollution: key knowledge gaps and research needs. Curr. Opin. Environ. Sustain. 36, 20–27 (2019).
    Google Scholar 

    29.
    Carpenter, S. R. et al. Nonpoint pollution of surface waters with phosphorus and nitrogen. Ecol. Appl. 8, 559–568 (1998).
    Google Scholar 

    30.
    Lamichhane, S., Krishna, K. B. & Sarukkalige, R. Polycyclic aromatic hydrocarbons (PAHs) removal by sorption: a review. Chemosphere 148, 336–353 (2016).
    Google Scholar 

    31.
    Tournebize, J., Chaumont, C. & Mander, Ü. Implications for constructed wetlands to mitigate nitrate and pesticide pollution in agricultural drained watersheds. Ecol. Eng. 103, 415–425 (2017).
    Google Scholar 

    32.
    Hanson, J. R., Macalady, J. L., Harris, D. & Scow, K. M. Linking toluene degradation with specific microbial populations in soil. Appl. Environ. Microbiol. 65, 5403–5408 (1999).
    Google Scholar 

    33.
    Li, G., Sun, G. X., Ren, Y., Luo, X. S. & Zhu, Y. G. Urban soil and human health: a review. Eur. J. Soil Sci. 69, 196–215 (2018).
    Google Scholar 

    34.
    Laurenson, G., Laurenson, S., Bolan, N., Beecham, S. & Clark, I. The role of bioretention systems in the treatment of stormwater. Adv. Agron. 120, 223–274 (2013).
    Google Scholar 

    35.
    Wagg, C., Bender, S. F., Widmer, F. & van der Heijden, M. G. Soil biodiversity and soil community composition determine ecosystem multifunctionality. Proc. Natl Acad. Sci. USA 111, 5266–5270 (2014).
    Google Scholar 

    36.
    Kadam, A. M., Oza, G. H., Nemade, P. D. & Shankar, H. S. Pathogen removal from municipal wastewater in constructed soil filter. Ecol. Eng. 33, 37–44 (2008).
    Google Scholar 

    37.
    Welch, R. M. & Graham, R. D. Breeding for micronutrients in staple food crops from a human nutrition perspective. J. Exp. Bot. 55, 353–364 (2004).
    Google Scholar 

    38.
    Barrett, C. B. & Bevis, L. E. The self-reinforcing feedback between low soil fertility and chronic poverty. Nat. Geosci. 8, 907–912 (2015).
    Google Scholar 

    39.
    Wood, S. A., Tirfessa, D. & Baudron, F. Soil organic matter underlies crop nutritional quality and productivity in smallholder agriculture. Agric. Ecosyst. Environ. 266, 100–108 (2018).
    Google Scholar 

    40.
    Wall, D. H., Nielsen, U. N. & Six, J. Soil biodiversity and human health. Nature 528, 69–76 (2015).
    Google Scholar 

    41.
    Jacoby, R., Peukert, M., Succurro, A., Koprivova, A. & Kopriva, S. The role of soil microorganisms in plant mineral nutrition—current knowledge and future directions. Front. Plant Sci. 8, 1617 (2017).
    Google Scholar 

    42.
    Schlatter, D., Kinkel, L., Thomashow, L., Weller, D. & Paulitz, T. Disease suppressive soils: new insights from the soil microbiome. Phytopathology 107, 1284–1297 (2017).
    Google Scholar 

    43.
    Rillig, M. C., Lehmann, A., Lehmann, J., Camenzind, T. & Rauh, C. Soil biodiversity effects from field to fork. Trends Plant Sci. 23, 17–24 (2018).
    Google Scholar 

    44.
    Oliver, M. A. & Gregory, P. J. Soil, food security and human health: a review. Eur. J. Soil Sci. 66, 257–276 (2015).
    Google Scholar 

    45.
    Hussein, H. S. & Brasel, J. M. Toxicity, metabolism, and impact of mycotoxins on humans and animals. Toxicology 167, 101–134 (2001).
    Google Scholar 

    46.
    Bethony, J. et al. Soil-transmitted helminth infections: ascariasis, trichuriasis, and hookworm. Lancet 367, 1521–1532 (2006).
    Google Scholar 

    47.
    Schatz, A., Bugle, E. & Waksman, S. A. Streptomycin, a substance exhibiting antibiotic activity against gram-positive and gram-negative bacteria. Proc. Soc. Exp. Biol. Med. 55, 66–69 (1944).
    Google Scholar 

    48.
    Ling, L. L. et al. A new antibiotic kills pathogens without detectable resistance. Nature 517, 455–459 (2015).
    Google Scholar 

    49.
    Veresoglou, S. D., Halley, J. M. & Rillig, M. C. Extinction risk of soil biota. Nat. Commun. 6, 8862 (2015).
    Google Scholar 

    50.
    Lal, R. Soil carbon sequestration impacts on global climate change and food security. Science 304, 1623–1627 (2004).
    Google Scholar 

    51.
    Paustian, K. et al. Climate-smart soils. Nature 532, 49–57 (2016).
    Google Scholar 

    52.
    Denef, K. & Six, J. Clay mineralogy determines the importance of biological versus abiotic processes for macroaggregate formation and stabilization. Eur. J. Soil Sci. 56, 469–479 (2005).
    Google Scholar 

    53.
    Rinot, O., Levy, G. J., Steinberger, Y., Svoray, T. & Eshel, G. Soil health assessment: A critical review of current methodologies and a proposed new approach. Sci. Total. Environ. 648, 1484–1491 (2019).
    Google Scholar 

    54.
    Van Wesemael, B. et al. An indicator for organic matter dynamics in temperate agricultural soils. Agric. Ecosyst. Environ. 274, 62–75 (2019).
    Google Scholar 

    55.
    Bouma, J. et al. in Global Soil Security (eds Field, D. J., Morgan, C. L. S. & McBratney, A. B.) 27–44 (Springer, 2017).

    56.
    Schoenholtz, S. H., Van Miegroet, H. & Burger, J. A. A review of chemical and physical properties as indicators of forest soil quality: challenges and opportunities. For. Ecol. Manag. 138, 335–356 (2000).
    Google Scholar 

    57.
    Andrews, S. S. & Carroll, C. R. Designing a soil quality assessment tool for sustainable agroecosystem management. Ecol. Appl. 11, 1573–1585 (2001).
    Google Scholar 

    58.
    Lilburne, L. R., Hewitt, A. E., Sparling, G. P. & Selvarajah, N. Soil quality in New Zealand: policy and the science response. J. Environ. Qual. 31, 1768–1773 (2002).
    Google Scholar 

    59.
    Idowu, O. J. et al. Use of an integrative soil health test for evaluation of soil management impacts. Renew. Agric. Food Syst. 24, 214–224 (2009).
    Google Scholar 

    60.
    Cherubin, M. R. et al. A Soil Management Assessment Framework (SMAF) evaluation of Brazilian sugarcane expansion on soil quality. Soil Sci. Soc. Am. J. 80, 215–226 (2016).
    Google Scholar 

    61.
    E.U. Mission Board Soil Health and Food. Caring for Soil is Caring for Life. The Publications Office of the European Union https://op.europa.eu/en/web/eu-law-and-publications/publication-detail/-/publication/32d5d312-b689-11ea-bb7a-01aa75ed71a1 (European Commission, 2020).

    62.
    Nunes, M. R., Karlen, D. L., Veum, K. S., Moorman, T. B. & Cambardella, C. A. Biological soil health indicators respond to tillage intensity: a US meta-analysis. Geoderma 369, 114335 (2020).
    Google Scholar 

    63.
    Kaiser, E. A. et al. Nitrous oxide release from arable soil: importance of N-fertilization, crops and temporal variation. Soil Biol. Biochem. 30, 1553–1563 (1998).
    Google Scholar 

    64.
    Baldock, J. A., Beare, M. H., Curtin, D. & Hawke, B. Stocks, composition and vulnerability to loss of soil organic carbon predicted using mid-infrared spectroscopy. Soil Res. 56, 468–480 (2018).
    Google Scholar 

    65.
    Rossel, R. V. et al. Continental-scale soil carbon composition and vulnerability modulated by regional environmental controls. Nat. Geosci. 12, 547–552 (2019).
    Google Scholar 

    66.
    Six, J., Bossuyt, H., Degryze, S. & Denef, K. A history of research on the link between (micro)aggregates, soil biota, and soil organic matter dynamics. Soil Tillage Res. 79, 7–31 (2004).
    Google Scholar 

    67.
    Pietrelli, A., Bavasso, I., Lovecchio, N., Ferrara, V. & Allard, B. in 8th IEEE International Workshop on Advances in Sensors and Interfaces (IWASI) 302–306 (IEEE, 2019).

    68.
    Shaikh, F. K. & Zeadally, S. Energy harvesting in wireless sensor networks: a comprehensive review. Renew. Sustain. Energy Rev. 55, 1041–1054 (2016).
    Google Scholar 

    69.
    Tan, X., Sun, Z., Wang, P. & Sun, Y. Environment-aware localization for wireless sensor networks using magnetic induction. Ad Hoc Netw. 98, 102030 (2020).
    Google Scholar 

    70.
    Lehmann, J. et al. Persistence of soil organic carbon caused by functional complexity. Nat. Geosci. 13, 529–534 (2020).
    Google Scholar 

    71.
    Tedersoo, L. et al. Global diversity and geography of soil fungi. Science 346, 1078 (2014).
    Google Scholar 

    72.
    Van Den Hoogen, J. et al. Soil nematode abundance and functional group composition at a global scale. Nature 572, 194–198 (2019).
    Google Scholar 

    73.
    Rillig, M. C., Bonneval, K. & Lehmann, J. Sounds of soil: a new world of interactions under our feet? Soil Syst. 3, 45 (2019).
    Google Scholar 

    74.
    Smolka, M. et al. A mobile lab-on-a-chip device for on-site soil nutrient analysis. Precision Agric. 18, 152–168 (2017).
    Google Scholar 

    75.
    Rossel, R. A. V. & Bouma, J. Soil sensing: a new paradigm for agriculture. Agric. Syst. 148, 71–74 (2016).
    Google Scholar 

    76.
    Ali, M. A., Dong, L., Dhau, J., Khosla, A. & Kaushik, A. Perspective — electrochemical sensors for soil quality assessment. J. Electrochem. Soc. 167, 037550 (2020).
    Google Scholar 

    77.
    Enell, A. et al. Combining leaching and passive sampling to measure the mobility and distribution between porewater, DOC, and colloids of native oxy-PAHs, N-PACs, and PAHs in historically contaminated soil. Environ. Sci. Technol. 50, 11797–11805 (2016).
    Google Scholar 

    78.
    Sismaet, H. J. & Goluch, E. D. Electrochemical probes of microbial community behaviour. Annu. Rev. Anal. Chem. 11, 441–461 (2018).
    Google Scholar 

    79.
    Chabrillat, S. et al. Imaging spectroscopy for soil mapping and monitoring. Surv. Geophys. 40, 361–399 (2019).
    Google Scholar 

    80.
    Mohanty, B. P., Cosh, M. H., Lakshmi, V. & Montzka, C. Soil moisture remote sensing: state-of-the-science. Vadose Zone J. 16, 1–9 (2017).
    Google Scholar 

    81.
    Paustian, K. et al. Quantifying carbon for agricultural soil management: from the current status toward a global soil information system. Carbon Manage. 10, 567–587 (2019).
    Google Scholar 

    82.
    Duckett, T. et al. Agricultural robotics: the future of robotic agriculture. Preprint arXiv https://arxiv.org/abs/1806.06762 (2018).

    83.
    Hussain, I., Olson, K. R., Wander, M. M. & Karlen, D. L. Adaptation of soil quality indices and application to three tillage systems in southern Illinois. Soil Tillage Res. 50, 237–249 (1999).
    Google Scholar 

    84.
    Fine, A. K., van Es, H. M. & Schindelbeck, R. R. Statistics, scoring functions, and regional analysis of a comprehensive soil health database. Soil Sci. Soc. Am. J. 81, 589–601 (2017).
    Google Scholar 

    85.
    Svoray, T., Hassid, I., Atkinson, P. M., Moebius-Clune, B. N. & van Es, H. M. Mapping soil health over large agriculturally important areas. Soil Sci. Soc. Am. J. 79, 1420–1434 (2015).
    Google Scholar 

    86.
    Moebius-Clune, B. N. et al. Comprehensive Assessment of Soil Health – The Cornell Framework, Edition 3.1 (Cornell Univ. Press, 2016).

    87.
    Wiesmeier, M. et al. Soil organic carbon storage as a key function of soils-a review of drivers and indicators at various scales. Geoderma 333, 149–162 (2019).
    Google Scholar 

    88.
    Lima, A. C. R., Brussaard, L., Totola, M. R., Hoogmoed, W. B. & de Goede, R. G. M. A functional evaluation of three indicator sets for assessing soil quality. Appl. Soil Ecol. 64, 194–200 (2013).
    Google Scholar 

    89.
    Verheijen, F. G., Bellamy, P. H., Kibblewhite, M. G. & Gaunt, J. L. Organic carbon ranges in arable soils of England and Wales. Soil Use Manage. 21, 2–9 (2005).
    Google Scholar 

    90.
    Bucka, F. B., Kölbl, A., Uteau, D., Peth, S. & Kögel-Knabner, I. Organic matter input determines structure development and aggregate formation in artificial soils. Geoderma 354, 113881 (2019).
    Google Scholar 

    91.
    Kaiser, K. et al. Driving forces of soil bacterial community structure, diversity, and function in temperate grasslands and forests. Sci. Rep. 6, 33696 (2016).
    Google Scholar 

    92.
    Jordan-Meille, L. et al. An overview of fertilizer-P recommendations in Europe: soil testing, calibration and fertilizer recommendations. Soil Use Manage. 28, 419–435 (2012).
    Google Scholar 

    93.
    McLellan, E. L. et al. The nitrogen balancing act: tracking the environmental performance of food production. Bioscience 68, 194–203 (2018).
    Google Scholar 

    94.
    Brevik, E. C. & Sauer, T. J. The past, present, and future of soils and human health studies. Soil 1, 35–46 (2015).
    Google Scholar 

    95.
    Pereira, P., Bogunovic, I., Muñoz-Rojas, M. & Brevik, E. C. Soil ecosystem services, sustainability, valuation and management. Curr. Opin. Environ. Sci. Health 5, 7–13 (2018).
    Google Scholar 

    96.
    Bampa, F. et al. Harvesting European knowledge on soil functions and land management using multi-criteria decision analysis. Soil Use Manage. 35, 6–20 (2019).
    Google Scholar 

    97.
    Schulte, R. P. et al. Demands on land: mapping competing societal expectations for the functionality of agricultural soils in Europe. Environ. Sci. Policy 100, 113–125 (2019).
    Google Scholar 

    98.
    Ward, M. O., Grinstein, G. & Keim, D. Interactive Data Visualization: Foundations, Techniques, and Applications (AK Peters/CRC Press, 2015).

    99.
    Villamil, M. B., Miguez, F. E. & Bollero, G. A. Multivariate analysis and visualization of soil quality data for no-till systems. J. Environ. Qual. 37, 2063–2069 (2008).
    Google Scholar 

    100.
    Börner, K., Bueckle, A. & Ginda, M. Data visualization literacy: definitions, conceptual frameworks, exercises, and assessments. Proc. Natl Acad. Sci. USA 116, 1857–1864 (2019).
    Google Scholar 

    101.
    Reichstein, M. et al. Deep learning and process understanding for data-driven Earth system science. Nature 566, 195–204 (2019).
    Google Scholar 

    102.
    Tian, R. & Wu, J. Groundwater quality appraisal by improved set pair analysis with game theory weightage and health risk estimation of contaminants for Xuecha drinking water source in a loess area in Northwest China. Hum. Ecol. Risk Assess. Int. J. 25, 132–157 (2019).
    Google Scholar 

    103.
    Finger, R., Swinton, S. M., Benni, N. E. & Walter, A. Precision farming at the nexus of agricultural production and the environment. Annu. Rev. Resour. Econ. 11, 313–335 (2019).
    Google Scholar 

    104.
    van Joolingen, W. R., de Jong, T., Lazonder, A. W., Savelsbergh, E. R. & Manlove, S. Co-Lab: research and development of an online learning environment for collaborative scientific discovery learning. Comput. Hum. Behav. 21, 671–688 (2005).
    Google Scholar 

    105.
    Stott, D. E. Recommended Soil Health Indicators and Associated Laboratory Procedures. Soil Health Technical Note No. 450-03 (U.S. Department of Agriculture, Natural Resources Conservation Service, 2019).

    106.
    Haberern, J. A soil health index. J. Soil Water Conserv. 47, 6 (1992).
    Google Scholar 

    107.
    Pankhurst, C. E. et al. Evaluation of soil biological properties as potential bioindicators of soil health. Austr. J. Exp. Agric. 35, 1015–1028 (1995).
    Google Scholar 

    108.
    Doran, J. W. & Zeiss, M. R. Soil health and sustainability: managing the biotic component of soil quality. Appl. Soil Ecol. 15, 3–11 (2000).
    Google Scholar 

    109.
    Winiwarter, V. & Blum, W. E. in Footprints in the Soil. People and Ideas in Soil History (ed. Warkentin, B.) 107–122 (Elsevier, 2006).

    110.
    Capra, G. F., Ganga, A. & Moore, A. F. Songs for our soils. How soil themes have been represented in popular song. Soil Sci. Plant Nutr. 63, 517–525 (2017).
    Google Scholar 

    111.
    Jenny, H. in Study Week on Organic Matter and Soil Fertility. Pontificiae Academiae Scientarium Scripta, Varia 32. 947–979 (North Holland Publ. Co and Wiley Interscience Division, 1968).

    112.
    Feller, C., Landa, E. R., Toland, A. & Wessolek, G. Case studies of soil in art. Soil 1, 543–559 (2015).
    Google Scholar 

    113.
    Brevik, E. C. & Hartemink, A. E. Early soil knowledge and the birth and development of soil science. Catena 83, 23–33 (2010).
    Google Scholar 

    114.
    Carson, R. Silent Spring (Houghton Mifflin, 1962).

    115.
    Lovelock, J. E. Gaia, a New Look at Life on Earth (Oxford Univ. Press, 1979).

    116.
    Keesstra, S. D. et al. The significance of soils and soil science towards realization of the United Nations Sustainable Development Goals. Soil 2, 111–128 (2016).
    Google Scholar 

    117.
    Mausel, P. W. Soil quality in Illinois — an example of a soils geography resource analysis. Prof. Geogr. 23, 127–136 (1971).
    Google Scholar 

    118.
    Sojka, R. E. & Upchurch, D. R. Reservations regarding the soil quality concept. Soil Sci. Soc. Am. J. 63, 1039–1054 (1999).
    Google Scholar 

    119.
    Rumpel, C. et al. Put more carbon in soils to meet Paris climate pledges. Nature 564, 32–34 (2018).
    Google Scholar 

    120.
    Freidberg, S. Assembled but unrehearsed: corporate food power and the ‘dance’ of supply chain sustainability. J. Peasant Stud. 47, 383–400 (2020).
    Google Scholar 

    121.
    Chabbi, A. et al. Aligning agriculture and climate policy. Nat. Clim. Change 7, 307–309 (2017).
    Google Scholar 

    122.
    Puig de la Bellacasa, M. Re-animating soils: transforming human–soil affections through science, culture and community. Sociol. Rev. 67, 391–407 (2019).
    Google Scholar  More

  • in

    Longer-lived tropical songbirds reduce breeding activity as they buffer impacts of drought

    1.
    Dai, A. Increasing drought under global warming in observations and models. Nat. Clim. Change 3, 52–58 (2013).
    Google Scholar 
    2.
    Cook, B. I., Smerdon, J. E., Seager, R. & Coats, S. Global warming and 21st century drying. Clim. Dynam. 43, 2607–2627 (2014).
    Google Scholar 

    3.
    Trenberth, K. E. et al. Global warming and changes in drought. Nat. Clim. Change 4, 17–22 (2014).
    Google Scholar 

    4.
    Webb, J. K., Brook, B. W. & Shine, R. What makes a species vulnerable to extinction? Comparative life‐history traits of two sympatric snakes. Ecol. Res. 17, 59–67 (2002).
    Google Scholar 

    5.
    Clark, M. E. & Martin, T. E. Modeling tradeoffs in avian life history traits and consequences for population growth. Ecol. Model. 209, 110–120 (2007).
    Google Scholar 

    6.
    MacArthur, R. H. & Wilson, E. O. The Theory of Island Biogeography (Princeton Univ. Press, 1967).

    7.
    Bennett, P. M. & Owens, I. P. F. Variation in extinction risk among birds: chance or evolutionary predisposition? Proc. R. Soc. Lond. B 264, 401–408 (1997).
    Google Scholar 

    8.
    Pfister, C. A. Patterns of variance in stage-structured populations: evolutionary predictions and ecological implications. Proc. Natl Acad. Sci. USA 95, 213–218 (1998).
    CAS  Google Scholar 

    9.
    Nelson, R. J. Simulated drought affect male reproductive function in deer mice (Permoyscus maniculatus bairdii). Phys. Zool. 66, 99–114 (1993).
    Google Scholar 

    10.
    Winne, C. T., Willson, J. D. & Gibbons, J. W. Income breeding allows an aquatic snake Seminatrix pygaea to reproduce normally following prolonged drought-induced aestivation. J. Anim. Ecol. 75, 1352–1360 (2006).
    Google Scholar 

    11.
    Boag, P. T. & Grant, P. R. Intense natural selection in a population of Darwin’s finches (Geospizinae) in the Galapagos. Science 214, 82–85 (1981).
    CAS  Google Scholar 

    12.
    Grant, P. R., Grant, B. R., Keller, L. F. & Petren, K. Effect of El Niño events on Darwin’s finch productivity. Ecology 81, 2442–2457 (2000).
    Google Scholar 

    13.
    Cruz-McDonnell, K. K. & Wolf, B. O. Rapid warming and drought negatively impact population size and reproductive dynamics of an avian predator in the arid southwest. Glob. Change Biol. 22, 237–253 (2016).
    Google Scholar 

    14.
    Sperry, J. H. & Weatherhead, P. J. Prey-mediated effects of drought on condition and survival in a terrestrial snake. Ecology 89, 2770–2776 (2008).
    Google Scholar 

    15.
    Allen, C. D. et al. A global overview of drought and heat-induced tree mortality reveals emerging climate change risks for forests. For. Ecol. Manage. 259, 660–684 (2010).
    Google Scholar 

    16.
    Calow, P. The cost of reproduction—a physiological approach. Biol. Rev. 54, 23–40 (1979).
    CAS  Google Scholar 

    17.
    Reznick, D. Costs of reproduction: an evaluation of the empirical evidence. Oikos 44, 257–267 (1985).
    Google Scholar 

    18.
    Flatt, T. Survival costs of reproduction in Drosophila. Exp. Geron. 46, 369–375 (2011).
    Google Scholar 

    19.
    Forbes, M. R. L., Clark, R. G., Weatherhead, P. J. & Armstrong, T. Risk-taking by female ducks: intra- and interspecific tests of nest defense theory. Behav. Ecol. Sociobiol. 34, 79–85 (1994).
    Google Scholar 

    20.
    Ghalambor, C. K. & Martin, T. E. Fecundity-survival trade-offs and parental risk-taking in birds. Science 292, 494–497 (2001).
    CAS  Google Scholar 

    21.
    Møller, A. P. & Liang, W. Tropical birds take small risks. Behav. Ecol. 24, 267–272 (2012).
    Google Scholar 

    22.
    Deutsch, C. A. et al. Impacts of climate warming on terrestrial ectotherms across latitude. Proc. Natl Acad. Sci. USA 105, 6668–6672 (2008).
    CAS  Google Scholar 

    23.
    Tewksbury, J. J., Huey, R. B. & Deutsch, C. A. Putting the heat on tropical animals. Science 320, 1296–1297 (2008).
    CAS  Google Scholar 

    24.
    Martin, T. E., Riordan, M. M., Repin, R., Mouton, J. C. & Blake, W. M. Apparent annual survival estimates of tropical songbirds better reflect life history variation when based on intensive field methods. Glob. Ecol. Biogeogr. 26, 1386–1397 (2017).
    Google Scholar 

    25.
    Martin, T. E. Age-related mortality explains life history strategies of tropical and temperate songbirds. Science 349, 966–970 (2015).
    CAS  Google Scholar 

    26.
    Martin, T. E., Oteyza, J. C., Boyce, A. J., Lloyd, P. & Ton, R. Adult mortality probability and nest predation rates explain parental effort in warming eggs with consequences for embryonic development time. Am. Nat. 186, 223–236 (2015).
    Google Scholar 

    27.
    Arslan, N. Ş. & Martin, T. E. Reproductive biology of Grey-breasted Wood-Wren (Henicorhina leucophrys): a comparative study of tropical and temperate wrens. Wilson J. Ornithol. 131, 1–11 (2019).
    Google Scholar 

    28.
    Stutchbury, B. J. & Morton, E. S. Behavioral Ecology of Tropical Birds Ch. 5 (Academic Press, 2001).

    29.
    Collar, N. in Handbook of the Birds of the World Alive (eds del Hoyo, J. et al.) (Lynx Edicions, 2019); https://doi.org/10.2173/bow.borwht1.01

    30.
    Caswell, H. Matrix Population Models: Construction, Analysis, and Interpretation (Sinauer, 2001).

    31.
    Wisdom, M. J., Mills, L. S. & Doak, D. F. Life stage simulation analysis: estimating vital-rate effects on population growth for conservation. Ecology 81, 628–641 (2000).
    Google Scholar 

    32.
    Muñoz, A. P., Kéry, M., Martins, P. V. & Ferraz, G. Age effects on survival of Amazon forest birds and the latitudinal gradient in bird survival. Auk 135, 299–313 (2018).
    Google Scholar 

    33.
    Lloyd, P. & Martin, T. E. Fledgling survival increases with development time and adult survival across north and south temperate zones. Ibis 158, 135–143 (2016).
    Google Scholar 

    34.
    Ropelewski, C. F. & Jones, P. D. An extension of the Tahiti-Darwin Southern Oscillation Index. Mon. Weather Rev. 115, 2161–2165 (1987).
    Google Scholar 

    35.
    Aiba, S. I. & Kitayama, K. Effects of the 1997–98 El Nino drought on rain forests of Mount Kinabalu, Borneo. J. Trop. Ecol. 18, 215–230 (2002).
    Google Scholar 

    36.
    Hirshfield, M. F. & Tinkle, D. W. Natural selection and the evolution of reproductive effort. Proc. Natl Acad. Sci. USA 72, 2227–2231 (1975).
    CAS  Google Scholar 

    37.
    Martin, T. E., Ton, R. & Oteyza, J. C. Adaptive influence of extrinsic and intrinsic factors on variation of incubation periods among tropical and temperate passerines. Auk 135, 101–113 (2018).
    Google Scholar 

    38.
    Wilmers, C. C. & Post, E. Predicting the influence of wolf-provided carrion on scavenger community dynamics under climate change scenarios. Glob. Change Biol. 12, 403–409 (2006).
    Google Scholar 

    39.
    Lenssen, N. et al. Improvements in the GISTEMP uncertainty model. J. Geophys. Res. Atmos. 124, 6307–6326 (2019).
    Google Scholar 

    40.
    IPCC Climate Change 2013: The Physical Science Basis (eds Stocker, T. F. et al.) 1311–1393 (Cambridge Univ. Press, 2013).

    41.
    Taylor, I. H. et al. The impact of climate mitigation on projections of future drought. Hydrol. Earth Syst. Sci. 17, 2339–2358 (2013).
    Google Scholar 

    42.
    Kitayama, K. An altitudinal transect study of the vegetation on Mount Kinabalu, Borneo. Vegetation 102, 149–171 (1992).
    Google Scholar 

    43.
    Blake, J. G. & Loiselle, B. A. Enigmatic declines in bird numbers in lowland forest of eastern Ecuador may be a consequence of climate change. Peer J. 3, e1177 (2015).
    Google Scholar 

    44.
    Mitchell, A. E., Tuh, F. & Martin, T. E. Breeding biology of an endemic Bornean turdid, the Fruithunter (Chlamydochaera jefferyi), and life history comparisons with Turdus species of the world. Wilson J. Ornithol. 129, 36–45 (2017).
    Google Scholar 

    45.
    White, G. C. & Burnham, K. P. Program MARK: survival estimation from populations of marked animals. Bird Study 46, 120–139 (1999).
    Google Scholar 

    46.
    Shaffer, T. L. A unified approach to analyzing nest success. Auk 121, 526–540 (2004).
    Google Scholar 

    47.
    Burnham, K. P. & Anderson, D. R. Model Selection and Multimodel Inference: A Practical Information–Theoretic Approach (Springer-Verlag, 2002).

    48.
    Pradel, R., Hines, J. E., Lebreton, J. D. & Nichols, J. D. Capture–recapture survival models taking account of transients. Biometrics 53, 60–72 (1997).
    Google Scholar 

    49.
    Burnham, K. P., Anderson, D. R., White, G. C., Brownie, C. & Pollock, K. H. Design and Analysis Methods for Fish Survival Experiments Based on Release–recapture (Amer Fisheries Society, 1987).

    50.
    Felsenstein, J. Phylogenies and the comparative method. Am. Nat. 125, 1–15 (1985).
    Google Scholar 

    51.
    Orme, D. The caper package: comparative analysis of phylogenetics and evolution in R. R package version 3.5.0 http://cran.r-project.org/web/packages/caper/vignettes/caper.pdf (2013).

    52.
    Jetz, W., Thomas, G. H., Joy, J. B., Hartmann, K. & Mooers, A. O. The global diversity of birds in space and time. Nature 491, 444–448 (2012).
    CAS  Google Scholar 

    53.
    Hackett, S. J. et al. A phylogenomic study of birds reveals their evolutionary history. Science 320, 1763–1768 (2008).
    CAS  Google Scholar 

    54.
    Maddison, W. P. & Maddison, D. R. Mesquite: a modular system for evolutionary analysis. R package version 2.75 http://mesquiteproject.org (2011).

    55.
    Pagel, M. D. A method for the analysis of comparative data. J. Theor. Biol. 156, 431–442 (1992).
    Google Scholar 

    56.
    Symonds, M. R. & Blomberg, S. P. in Modern Phylogenetic Comparative Methods and their Application in Evolutionary Biology (eds Garamszegi, L. Z.) Ch. 5 (Springer, 2014).

    57.
    Bates, D., Maechler, M., Bolker, B. & Walker, S. Fitting linear mixed-effects models using lme4. J. Stat. Softw. 67, 1–48 (2015).
    Google Scholar  More

  • in

    The saccharibacterium TM7x elicits differential responses across its host range

    TM7x has restricted host range
    In this study we expanded the number of Actinomyces host species/strains that were previously tested on TM7x infection [8] and conducted thorough phenotypic and comparative genomic analyses. TM7x cells were isolated apart from their original co-cultivated bacterial host XH001 (Actinomyces odontolyticus strain) and added back to cultures of diverse Actinomyces strains (n = 27) that span the Actinomyces lineage, as well as other common oral bacterial strains (n = 10) in an established re-infection assay (see methods, Table S1). By 16S phylogeny, Actinomyces lineages are divided into two major clades (clade-1 and −2), with XH001 in clade-2, agreeing with previous study [8] (Fig. 1). TM7x did not grow on any clade-1 Actinomyces strains after multiple passages, nor the common oral bacteria; while all tested strains (12 in addition to XH001) in clade-2 were infected with TM7x over multiple passages (Fig. 1) based on imaging techniques and PCR. These results suggest that the tested Actinomyces species fall into two major groups: resistant or susceptible to TM7x infection (Fig. S1a).
    Different phenotypic responses of bacterial hosts to TM7x infection
    Infection of naïve XH001 cells by TM7x induces a “growth-crash”, in which host cell density drops precipitously, followed by recovery in their bacterial hosts (Fig. S1b) [8]. This is analogous to a previously hypothesized cyclically-recurring population crash during parasite-host dynamics [30, 31], but interestingly in our case only a single crash was observed followed by stable growth. Recovered XH001 were found to have single-nucleotide variants relative to their naïve ancestors, presumably imparting the observed regain of fitness [7, 8]. The host growth is measured by cell density (OD600) whereas TM7x abundance is scored visually by phase-contrast imaging (see methods; [8]. These methods assess the host and TM7x abundances qualitatively but rapidly and accurately [8].
    To further investigate the initial response to TM7x infection, the re-infection assay was conducted by adding TM7x to the 12 susceptible Actinomyces strains with a three-to-one TM7x-to-host cell ratio, and their growth was monitored by OD600 and TM7x scores (Fig. 2). Nine of these hosts displayed varying growth/crash/recovery patterns, and all of these included a clear crash phase and thus are referred to as “permissive” hosts (Fig. 2a–i). However, the remaining three hosts (F0311, ICM47, ICM58) lacked a discernable crash phase, hereafter referred to as “nonpermissive” hosts (Figs. 2j–l, S1c). Furthermore, three of the nine permissive hosts (ATCC17982, F0543, W712) had extended, 4–5 passage-long growth-crash phases before recovery while the rest of the hosts had only one passage-long growth-crashes (Fig. 2a–c). TM7x scoring was consistent with the observed host growth-crashes. When initial increase of the TM7x score was plotted for all hosts (Figs. 2, S1d), the three nonpermissive hosts (F0311, ICM47, ICM58) had a late increase in TM7x score compared to the rest of the hosts. F0310 was the only permissive host to have very late TM7x increase and growth-crash at passage twelve (Fig. 2i).
    Fig. 2: Re-infection of susceptible bacteria by TM7x.

    a–l Isolated TM7x cells from XH001-TM7x coculture were added to the 12 susceptible host cells at passage 0, and cell density (blue, circles) and TM7x scores (red, squares) were monitored during subsequent passages. Host alone control is shown in gray triangles. a–i Host strains where cell density drops precipitously are referred to as ‘permissive’ hosts. j–l Three strains that do not have growth-crash are termed ‘nonpermissive’ hosts. Host strain names are labeled on the top right corner of each graph.

    Full size image

    Previously, during the growth-crash phase, both attached and free-floating TM7x cells were observed, with individual XH001 cells often infected with multiple TM7x cells [8]. This induced host cell swelling and elongation, both common morphological stress responses, with XH001 cell length increasing from ~1.7 µm in monoculture to ~3.7 µm in cocultures, and eventually led to cell death [17]. Phase-contrast imaging illustrated similar results, with increased numbers of attached and free-floating TM7x observed for all nine permissive hosts and one nonpermissive host (Fig. S2a–i, j). However, two of the nonpermissive hosts (ICM47, IMC58) did not display an increased level of TM7x bacteria on their surfaces, nor increased cell length (Fig. S2k, l). To assess cell length quantitatively, we measured the cell length for all 12 bacterial hosts after infection. All hosts had significantly increased cell length (Figs. S1e, S3a, b, d–j) except two nonpermissive (ICM47, ICM58) and one permissive (W712) strains maintained or even slightly decreased their cell length after TM7x infection (Fig. S3c, k, l). The decrease in W712 cell length could be a result of W712 having the longest cells before TM7x infection or an inherent limitation in the image analysis of long cells (see methods). Nevertheless, W712 cells were swollen when they were infected with TM7x (Fig. S2c). Furthermore, although F0311 is a nonpermissive host, it did show many TM7x bacteria on its surface during the infection (Fig. S2j), which could be contributing to its increased cell length. Our findings suggest that TM7x-susceptible hosts divide into two broad categories (Fig. S1a): permissive and nonpermissive, though the permissive strains do present a spectrum of crash intensity and duration (Fig. 2).
    Host sensitivity to TM7x infection
    Our data showed that even though similar TM7x-to-host ratios were used in re-infection experiments, different hosts displayed drastically different crash/recovery dynamics (Fig. 2), suggesting these hosts have differential sensitivity to TM7x. Notably, a rapid increase of TM7x abundance within the first two passages was observed for three strains: A. odontolyticus ATCC17982 and two A. meyeri strains (W712 and ATCC35568) (Fig. 2a, c, f). To investigate this differential sensitivity further, dose-dependent TM7x infection of naïve XH001 cells was carried out. Results showed that the passage at which XH001 crashed, referred to as the ‘crash point’, was TM7x concentration dependent —with increasing TM7x, we observed earlier crash points (Figs. 3a, S4). Total colony forming units and irregular colony numbers, reflecting the number of total viable hosts and the TM7x infected hosts, respectively [8], were also determined during all passages. By these measurements, the crash points were dependent on the number of TM7x added to the assay. TM7x was able to infect at extremely low concentrations (three TM7x per 4.5 × 106 XH001 cells), and able to completely inhibit XH001 at higher concentrations (2.7 × 108 TM7x per 4.5 × 106 XH001 cells). A similar pattern of TM7x and XH001 growth dynamics were observed at each TM7x concentration (Fig. S4). During the XH001 crash phase (by OD600 or total cfu), the amount of TM7x (by TM7x score or irregular colony) always increased to a maximum and then decreased during XH001 recovery. The crash points determined by total colony forming unit always occurred ~1–1.5 passages before the OD600 crash point, which was consistent with our previous study [8]. This passage difference may be explained by the fact that dead cells can contribute to the cell density measurements.
    Fig. 3: Host sensitivity determined by varying TM7x dosage.

    Isolated TM7x cells were added to host cells XH001 a, W712 b and ICM47 c in increasing concentrations. For each concentration of TM7x, shown as a TM7x to XH001 ratio, cell density (column one) and total colony forming units (column two) were determined, and only the region leading up to the growth-crash point is graphed. The full data are shown in Figs. S4–6. Total colony forming units were determined in triplicate and error bars indicate the standard deviation.

    Full size image

    The sensitivity of A. meyeri strain W712 to TM7x was similarly tested. Remarkably, while dose-dependent growth-crash was also observed (Figs. 3b, S5), it took close to tenfold fewer TM7x cells (3.5 × 107 TM7x per 4.5 × 106 W712 cells) to completely inhibit the initial growth of W712 compared to XH001 (Fig. 3b), suggesting that the sensitivity of W712 to TM7x allows faster TM7x growth at the expense of W712. This was reflected by both the OD600/TM7x score and total/irregular colony measurements (Fig. S5). Again, similar to what was observed in the initial coculture experiment (Fig. 2c), all growth-crashes in W712 had prolonged growth-crashes (Fig. S5). In contrast, the nonpermissive strain ICM47 was completely resistant to growth-crash even at the TM7x-to-ICM47 ratio of 4.9 × 108:4.5 × 106 (Figs. 3c, S6). Despite TM7x infection and growth on ICM47, no growth-crash was observed by cell density measurement and total colony forming units. ICM47 strains also did not form obvious irregular colony morphology, suggesting TM7x does not stress or damage host growth as with the other strains.
    TM7x has unique cell localization on the nonpermissive ICM58
    TM7x and XH001 have various morphological cell shapes depending on growth conditions and nutrient availability (Fig. S7a) [17]. For all permissive and nonpermissive strains, we observed normally shaped TM7x bacteria growing on the cell surface of the host bacteria by FISH (Figs. 4, S7). Consistent with our previous findings, TM7x attached to bacterial hosts had simple dot/cocci or teardrop-like morphology, shown in green (Figs. 4, S7) [17]. Remarkably, compared to all tested bacterial hosts, only on ICM58, many TM7x localized to the cell poles (Fig. 4f). The polar localization was previously not observed in the close relatives of TM7x, but was shown in a distant lineage (HMT-351) that grows on Actinomyces sp. HMT-897 [32]. Exactly how and why pole localization occurs is yet to be determined. Typically, gram-positive bacteria have significant long-axis polarization in terms of protein composition and cell wall structure [33], and TM7x could be targeting those areas. The polar localization of TM7x on ICM58 suggests a different mechanism for attachment compared to other hosts.
    Fig. 4: TM7x localization on ICM58.

    FISH imaging was carried out for all permissive (a–c, see Fig. S7) and all nonpermissive (d–f) bacterial hosts. TM7x (green) was visualized using a Saccharibacteria-specific DNA probe tagged with the Cy5 fluorescent molecule. The host bacteria were visualized by universal nucleic acid stain syto9, which also stains TM7x. Only sample strains are shown in this figure, and the complete set can be found in Fig. S7, including a few of the resistant strains visualized by FISH. Scale bars are 5 μm.

    Full size image

    Genome content separates permissive and nonpermissive hosts
    As genomes of twenty-three out of the twenty-seven tested Actinomyces strains are publicly available, we downloaded them for comparative genomic analyses. To place the currently unnamed genomes (e.g., Actinomyces sp. F0310) in context with named species, we first related genomes by average AAI and constructed a phylogenomic tree from concatenated core genes (Fig. S8a, b). From the AAI data, clear patterns emerged: the thirteen TM7x-susceptible genomes, including XH001, span the two closely-related species A. odontolyticus and A. meyeri ( >83% AAI to XH001) and a few unnamed strains ranging from 74 to 85% AAI to XH001 (Fig. S8a). These relationships were confirmed by a phylogenomic tree generated with PhyloPhlAn based on 387 concatenated core genes (Fig. S8b). The phylogenomic tree revealed an A. odontolyticus clade including four A. odontolyticus strains and A. sp. ICM39, which is sister to a monophyletic clade of the three nonpermissive strains, and another clade containing two A. meyeri strains and A. sp F0310.
    We then performed a pangenome analysis to compare the genome content of these strains (Fig. 5) to identify genomic signatures associated with different susceptibility to TM7x infection. By grouping genomes based on gene content (Fig. 5, top right dendrogram), the resistant strains (concentric layers colored red) are clearly separated from the susceptible strains (permissive (blue) and nonpermissive (purple); Fig. 5), agreeing closely with the phylogenomic tree (Fig. S8b). Remarkably, within the susceptible strains the nonpermissive strains (purple) form an internal subgroup distinct from permissive strains (blue) (Fig. 5). All phylogenomic analyses and AAI are consistent with the observed separation of groups (heatmap in Fig. 5), while the 16S rRNA gene phylogeny fails to indicate that the purple group of nonpermissive hosts is distinct (Fig. 1). As the susceptible strains span at least two phylogenetically classified species (A. odontolyticus and A. meyeri) and potentially other closely related but unnamed species, the genome grouping by gene content broadly reflects the previously observed phylogenomic and AAI distinctions (Figs. 5, S8). F0310 was the only strain that shifted places from being similar to A. meyeri species based on genome sequence (in phylogenomic tree) to being in middle of the A. odontolyticus species. Based on the gene content and phylogenomic tree, the nonpermissive genomes are a genetically distinct group most closely related to A. odontolyticus and less so to A. meyeri.
    Fig. 5: Pangenome of the experimentally tested Actinomyces strains.

    The central, radial dendrogram arranges each of 12,372 unique gene clusters (groups of putatively homologous genes) according to their presence/absence across genomes. Each concentric 270˚ layer represents a different genome, colored according to TM7x susceptibility, and is filled or left unfilled to mark which gene clusters are found in each genome. Layers are arranged by frequency of gene clusters, displayed as a dendrogram on the top righthand side of plot. Extending off the end of the plot show bar charts reporting various statistics for each genome and a heatmap showing average amino acid identity. The heatmap is also shown in Fig. S7 in higher magnification. Sets of key gene clusters are highlighted with a labeled arc spanning gene clusters of interest.

    Full size image

    Furthermore, core gene clusters for the various groups can be readily discerned, with 346 gene clusters forming the core of all 23 genomes, 464 exclusively shared by all susceptible strains, and 51 and 28 gene clusters exclusively shared by the resistant and nonpermissive strains, respectively (Fig. 5, Table S2). For context, each genome contains ~1700–2800 gene clusters (Fig. 5, light gray bar chart on right). While most genomes are estimated to be nearly complete and a handful are closed, most of the genomes are not closed and may be missing genes for methodological rather than biological reasons (Fig. 5, bar charts of genome statistics). Yet, the correlation of gene content with response to TM7x raises the possibility that certain shared genomic features may underly the observed phenotypes.
    Comparative genomics reveal functional characteristics of different groups
    We observed clades of strains defined by phylogeny and response to TM7x, e.g., permissive hosts. Ranking the predicted functions found across genomes for each TM7x response category (permissive, nonpermissive, or resistant) and combinations thereof can reveal functions enriched for each response type. The differentially enriched functions for these groups span multiple functional categories, from central metabolism to cell wall synthesis to regulation and recombination (Table 1).
    Table 1 Enriched Pfam functions in resistant, susceptible, permissive, nonpermissive, and nonpermissive/resistant genomes. Only the top five gene functions are shown.
    Full size table

    For resistant vs. susceptible Actinomyces, numerous gene functions were exclusive to each (Table S2), potentially due to the strong genetic distinction between the two groups. Most pronounced of all functions were cell wall modification associated genes. Within the top five scored genes, we found Mur ligase family [34] and bacitracin resistance [35] proteins associated with resistant strains, and glycosyl transferase family [36] and O-mannosyltrasferase [37] proteins from susceptible strains (Table 1). These genes may directly or indirectly influence the TM7x attachment to the host. In addition, a key gene in the arginine deaminase (ADI) pathway, amidinotransferase arcA, was found in all ten of the resistant strains but none of the susceptible strains (Table 1). The ADI pathway can facilitate growth in acidic environments by increasing the pH, raising the possibility that TM7x, which encode a complete ADI pathway, could complement their ADI-less hosts [38]. Given the drastic oral pH shifts [39, 40] as well as localized pH stress from streptococcal neighbors [41], pH modulation and tolerance could be key for oral Actinomyces [40].
    Permissive and nonpermissive genomes also contained distinctive functions (Table 1). For example, permissive strains are enriched for a GlcNAc-PI de-N-acetylase [42] and family 4 glycosyl hydrolase [43], which could be putatively involved in the hydrolysis of cell envelope glycoproteins, and may have the potential to regulate TM7x attachment levels. Interestingly, resistant and nonpermissive strains also share some functions not found in any permissive strains, such as a cytidine triphosphate (CTP) synthase.
    Amino acid variants reveal genes phylogenetically correlated with TM7x response
    While comparing gene presence can reveal major traits that may be involved in the observed phenotypes, it cannot distinguish between subtle but potentially critical variations in the sequence of shared proteins. If TM7x susceptibility is not due to clade-specific genes but instead distinct sequence variants of certain core genes, those sequence variants should correlate with TM7x sensitivity.
    Thus, we employed a phylogenetic approach to look for core genes with sequence variants that match the observed phenotypes. This is a powerful way to identify shared genes in a pangenome that are correlated with an ecological phenotype [44], though sometimes prone to false positives and noise. From each of the 291 and 419 gene clusters with a single copy in each of the 23 genomes and the 13 susceptible genomes, respectively (Fig. 6a), we created a phylogenetic tree and compared it against topologies that differentiated sequence variants from nonpermissive (purple) vs. permissive (blue) vs. resistant (red). Fifteen gene clusters produced such topologies that distinguished each response type (Fig. 6b–d). While some are almost certainly noise (e.g., ribosomal protein rplR), many functionally interesting genes are identified including several cell envelope-associated proteins like the protein translocase secA, the ABC transporter sn-glycerol-3-phosphate ugpC, and an L,D-transpeptidase (Fig. 6b–d). The genes listed here represent a relatively short list of hypotheses that await future experimental investigation before any confident assertions can be made about their relevance to Actinomyces/TM7x associations.
    Fig. 6: Gene trees from core gene clusters reveal gene variants that correlate with TM7x susceptibility.

    a Cartoon showing a simplified topology of the genome similarity dendrogram from Fig. 5, with the blue, purple, and red clades representing the permissive, nonpermissive, and resistant genomes respectively. Single-copy core gene clusters, those with only one gene sequence from each genome, core to all 23 genomes (first column of boxes, 291 gene clusters) and core to susceptible genomes (second column of boxes, 419 genes) were identified. For each gene cluster a phylogenetic tree was created and compared against three topologies of interest; gene clusters core to all genomes (b and c), and gene clusters core to susceptible genomes (d). Gene clusters core to all genomes could reveal each observed clade to be monophyletic with variable relationships (b) or place resistant sequences sister to those from nonpermissive hosts (c). The number over each arrow reports the number of gene clusters producing the illustrated topology. Polytomies represent either real polytomies or an unspecified hierarchy that preserves the monophyly of the illustrated clades. The text lists the predicted Pfam functions for each gene cluster.

    Full size image More

  • in

    An ancient tropical origin, dispersals via land bridges and Miocene diversification explain the subcosmopolitan disjunctions of the liverwort genus Lejeunea

    1.
    Sanmartín, I., Enghoff, H. & Ronquist, F. Patterns of animal dispersal, vicariance and diversification in the Holarctic. Biol. J. Linn. Soc. 73, 345–390 (2001).
    Google Scholar 
    2.
    Sanmartín, I. & Ronquist, F. Southern hemisphere biogeography inferred by event-based models: Plant versus animal patterns. Syst. Biol. 53, 216–243 (2004).
    PubMed  Google Scholar 

    3.
    Shaw, A. J. Biogeographic patterns and cryptic speciation in bryophytes. J. Biogeogr. 28, 253–261 (2001).
    Google Scholar 

    4.
    Feldberg, K. et al. Phylogenetic biogeography of the leafy liverwort Herbertus (Jungermanniales, Herbertaceae) based on nuclear and chloroplast DNA sequence data: correlation between genetic variation and geographical distribution. J. Biogeogr. 34, 688–698 (2007).
    Google Scholar 

    5.
    Shaw, A. J. et al. Intercontinental genetic structure in the amphi-Pacific peatmoss Sphagnum miyabeanum (Bryophyta: Sphagnaceae). Biol. J. Linn. Soc. 111, 17–37 (2014).
    Google Scholar 

    6.
    Vanderpoorten, A., Devos, N., Goffinet, B., Hardy, O. J. & Shaw, A. J. The barriers to oceanic island radiation in bryophytes: Insights from the phylogeogaphy of the moss Grimmia montana. J. Biogeogr. 35, 654–663 (2008).
    Google Scholar 

    7.
    Ono, F. Moss spore can tolerate ultra-high pressure. In High pressure Bioscience (eds Akasaka, K. & Matsuki, H.) 443–466 (Springer, New York, 2015).
    Google Scholar 

    8.
    van Zanten, B. O. Experimental studies on trans-oceanic long-range dispersal of moss spores in the Southern Hemisphere. J. Hattori Bot. Lab. 44, 455–482 (1978).
    Google Scholar 

    9.
    Muñoz, J., Felicísimo, ÁM., Cabezas, F., Burgaz, A. R. & Martínez, I. Wind as a long-distance dispersal vehicle in the Southern Hemisphere. Science 304, 1144–1147 (2004).
    ADS  PubMed  Google Scholar 

    10.
    van Zanten, B. O. & Gradstein, S. R. Experimental dispersal geography of neotropical liverworts. Beih. Nova Hedwigia 90, 41–94 (1988).
    Google Scholar 

    11.
    Kyrkjeeide, M. O. et al. Long-distance dispersal and barriers shape genetic structure of peatmosses (Sphagnum) across the Northern Hemisphere. J. Biogeogr. 43, 1215–1226 (2016).
    Google Scholar 

    12.
    Patiño, J., Goffinet, B., Sim-Sim, M. & Vanderpoorten, A. Is the sword moss (Bryoxiphium) a preglacial Tertiary relict?. Mol. Phylogenet. Evol. 96, 200–206 (2016).
    PubMed  Google Scholar 

    13.
    Bechteler, J. et al. Geographical structure, narrow species ranges, and Cenozoic diversification in a pantropical clade of epiphyllous leafy liverworts. Ecol. Evol. 7, 638–653 (2017).
    PubMed  Google Scholar 

    14.
    Carter, B. E. et al. Species delimitation and biogeography of a southern hemisphere liverwort clade, Frullania subgenus Microfrullania (Frullaniaceae, Marchantiophyta). Mol. Phylogenet. Evol. 107, 16–26 (2017).
    PubMed  Google Scholar 

    15.
    Scheben, A. et al. Multiple transoceanic dispersals and geographical structure in the pantropical leafy liverwort Ceratolejeunea (Lejeuneaceae, Porellales). J. Biogeogr. 43, 1739–1749 (2016).
    Google Scholar 

    16.
    Patiño, J. et al. The anagenetic world of spore-producing land plants. New Phytol. 201, 305–311 (2014).
    PubMed  Google Scholar 

    17.
    Norhazrina, N., Vanderpoorten, A., Hedenäs, L. & Patiño, J. What are the evolutionary mechanisms explaining the similar species richness patterns in tropical mosses? Insights from the phylogeny of the pantropical genus Pelekium. Mol. Phylogenet. Evol. 105, 139–145 (2016).
    PubMed  Google Scholar 

    18.
    Puttik, M. N. et al. The interrelationships of land plants and the nature of the ancestral embryophyte. Curr. Biol. 28, 733–745 (2018).
    Google Scholar 

    19.
    Qiu, Y. L., Cho, Y. R., Cox, J. C. & Palmer, J. D. The gain of three mitochondrial introns identifies liverworts as the earliest land plants. Nature 394, 671–674 (1998).
    ADS  CAS  PubMed  Google Scholar 

    20.
    Wickett, N. J. et al. Phylotranscriptomic analysis of the origin and early diversification of land plants. Proc. Natl. Acad. Sci. U.S.A. 111, E4859–E4868 (2014).
    CAS  PubMed  PubMed Central  Google Scholar 

    21.
    Morris, J. L. et al. The timescale of early land plant evolution. Proc. Natl. Acad. Sci. USA 115, 2274–2283 (2018).
    Google Scholar 

    22.
    Heinrichs, J. et al. Lejeuneaceae (Marchantiophyta) from a species-rich taphocoenosis in Miocene Mexican amber, with a review of liverworts fossilised in amber. Rev. Palaeobot. Palynol. 221, 59–70 (2015).
    Google Scholar 

    23.
    Wilson, R., Heinrichs, J., Hentschel, J., Gradstein, S. R. & Schneider, H. Steady diversification of derived liverworts under tertiary climatic fluctuations. Biol. Lett. 3, 566–569 (2007).
    PubMed  PubMed Central  Google Scholar 

    24.
    Gradstein, S. R. The Liverworts and Hornworts of Colombia and Ecuador 1–880 (Springer, New York, 2020).
    Google Scholar 

    25.
    Lee, G. E. A systematic revision of the genus Lejeunea Lib. (Marchantiophyta: Lejeuneaceae) in Malaysia. Cryptogam. Bryol. 34, 381–484 (2013).
    Google Scholar 

    26.
    Lee, G. E., Bechteler, J. & Heinrichs, J. A revision of unrevised taxon names of Taxilejeunea (Marchantiophyta: Lejeuneaceae) from Asia. Phytotaxa 358, 226–248 (2018).
    Google Scholar 

    27.
    Heinrichs, J. et al. Molecular phylogeny of the leafy liverwort Lejeunea (Porellales): Evidence for a neotropical origin, uneven distribution of sexual systems and insufficient taxonomy. PLoS ONE 8, e82547 (2013).
    ADS  PubMed  PubMed Central  Google Scholar 

    28.
    Heinrichs, J. et al. Crown group Lejeuneaceae and pleurocarpous mosses in early eocene (Ypresian) Indian amber. PLoS ONE 8, e82547 (2016).
    Google Scholar 

    29.
    Tiffney, B. H. The eocene north atlantic land bridge: Its importance in Tertiary and modern phytogeography of the Northern Hemisphere. J. Arnold Arbor. 66, 243–273 (1985).
    Google Scholar 

    30.
    Tiffney, B. H. & Manchester, S. R. The use of geological and paleontological evidence in evaluating plant phylogeographic hypotheses in the Northern Hemisphere tertiary. Int. J. Plant Sci. 162, 3–17 (2001).
    Google Scholar 

    31.
    Brikiatis, L. The De Geer, Thulean and Beringia routes: Key concepts for understanding early Cenozoic biogeography. J. Biogeogr. 41, 1036–1054 (2014).
    Google Scholar 

    32.
    Laenen, B. et al. Increased diversification rates follow shifts to bisexuality in liverworts. New Phytol. 210, 1121–1129 (2016).
    PubMed  Google Scholar 

    33.
    Erwin, D. H. Climate as a driver of evolutionary change. Curr. Biol. 19, R575-583 (2009).
    CAS  PubMed  Google Scholar 

    34.
    Condamine, F. L., Rolland, J. & Morlon, H. Assessing the causes of diversification slowdowns: Temperature-dependent and diversity-dependent models receive equivalent support. Ecol. Lett. 22, 1900–1912 (2019).
    PubMed  Google Scholar 

    35.
    Reiner-Drehwald, M. E. Catalogue of the genus Lejeunea Lib. (Hepaticae) of Latin America. Bryophyt. Bibl. 54, 1–101 (1999).
    Google Scholar 

    36.
    Lee, G. E. et al. The leafy liverwort genus Lejeunea (Porellales, Jungermanniopsida) in Miocene Domican amber. Rev. Palaeobot. Palynol. 238, 144–150 (2017).
    Google Scholar 

    37.
    Lee, G. E., Schäfer-Verwimp, A., Schmidt, A. R. & Heinrichs, J. Transfer of the miocene Lejeunea palaeomexicana grolle to Ceratolejeunea. Cryptogam. Bryol. 36, 335–341 (2015).
    Google Scholar 

    38.
    Denk, T., Grimsson, F., Zetter, R. & Simonarson, L. The Biogeographic history of Iceland – The North Atlantic Land Bridge revisited. in Late Cainozoic floras of Iceland, 15 million years of vegetation and climate history in the northern North Atlantic, 647–666 (Springer, 2011).

    39.
    Graham, A. The role of land bridges, ancient environments, and migrations in the assembly of the North America flora. J. Syst. Evol. 56, 405–429 (2018).
    Google Scholar 

    40.
    Jiang, D. et al. Asymmetric biotic interchange across the Bering land bridge between Eurasia and North America. Natl. Sci. Rev. 6, 739–745 (2019).
    Google Scholar 

    41.
    Morley, R. J. Why are there so many primitive angiosperms in the rain forests of Asia-Australia? In Floral and Faunal Migrations and Evolution in SE Asia-Australia (eds Metcalfe, I. et al.) 185–200 (Swetz & Zeitliner, Lisse, 2001).
    Google Scholar 

    42.
    Couvreur, T. L. P. et al. Early evolutionary history of the flowering plant family Annonaceae: Steady diversification and boreotropical geodispersal. J. Biogeogr. 38, 664–680 (2011).
    Google Scholar 

    43.
    Davis, C. C., Bell, C. D., Mathews, S. & Donoghue, M. J. Laurasian migration explains Gondwanan disjunctions: Evidence from Malpighiaceae. Proc. Natl. Acad. Sci. U.S.A. 99, 6833–6837 (2002).
    ADS  CAS  PubMed  PubMed Central  Google Scholar 

    44.
    Muellner, A. N., Savolainen, V., Samuel, R. & Chase, M. W. The mahogamy family “out of Africa”: Divergence time estimation, global biogeographic patterns inferred from plastid rbcL DNA sequences, extant, and fossil distribution of diversity. Mol. Phylogenet. Evol. 40, 236–250 (2006).
    CAS  PubMed  Google Scholar 

    45.
    Schneider, H. et al. Chloroplast phylogeny of asplenioid ferns based on rbcL and trnL-F spacer sequences (Polypodiidae, Aspleniaceae) and its implications for biogeography. Syst. Bot. 29, 260–274 (2004).
    Google Scholar 

    46.
    Wei, R. et al. Eurasian origin, boreotropical migration and transoceanic dispersal in the pantropical fern genus Diplazium (Athyriaceae). J. Biogeogr. 42, 1809–1819 (2015).
    Google Scholar 

    47.
    Hennequin, S., Hovenkamp, P., Christenhusz, M. J. M. & Schneider, H. Phylogenetics and biogeography of Nephrolepis—A tale of old settlers and young tramps. Bot. J. Linn. Soc. 164, 113–127 (2010).
    Google Scholar 

    48.
    Wen, J., Nie, Z. L. & Ickert-Bond, S. M. Intercontinental disjunctions between eastern Asia and western North America in vascular plants highlight the biogeographic importance of the Bering land bridge from late Cretaceous to Neogene. J. Syst. Evol. 54, 469–490 (2016).
    Google Scholar 

    49.
    Shaw, A. J. et al. Pleistocene survival, regional genetic structure and interspecific gene flow among three northern peat-mosses: Sphagnum inexspectatum, S. orientale and S. miyabeanum. J. Biogeogr. 42, 364–376 (2014).
    Google Scholar 

    50.
    Bosboom, R. E. et al. Late Eocene sea retreat from the Tarim Basin (west China) and concomitant Asian paleoenvironmental change. Palaeogeogr. Palaeoclimatol. Palaeoecol. 299, 385–398 (2011).
    Google Scholar 

    51.
    Chmielewski, M. W. & Eppley, S. M. Forest passerines as a novel dispersal vector of viable bryophyte propagules. Proc. R. Soc. B 286, 20182253 (2019).
    CAS  PubMed  Google Scholar 

    52.
    Heinken, T., Lees, R., Raudnitschka, D. & Rung, S. Epizoochorous dispersal of bryophytes stem fragments by roe deer (Capreoluscapreolus) and wild boar (Susscrofa). J. Bryol. 23, 293–300 (2001).
    Google Scholar 

    53.
    Pérez-Escobar, O. A. et al. Recent origin and rapid speciation of neotropical orchids in the world’s richest plant biodiversity hotspot. New Phytol. 215, 891–905 (2017).
    PubMed  PubMed Central  Google Scholar 

    54.
    Nie, Z. L. et al. Recent assembly of the global herbaceous flora: Evidence from the paper daisies (Asteraceae: Gnaphalieae). New Phytol. 209, 1795–1806 (2016).
    CAS  PubMed  Google Scholar 

    55.
    Morley, R. J. Cretaceous and Tertiary climate change and the past distribution of megathermal rainforests. In Tropical Rainforest Responses to Climate Change (eds Bush, M. B. et al.) 1–34 (Springer, New York, 2011).
    Google Scholar 

    56.
    Jaramillo, C., Rueda, M. J. & Mora, G. Cenozoic plant diversity in the Neotropics. Science 311, 1893–1896 (2006).
    ADS  CAS  PubMed  Google Scholar 

    57.
    Kong, H. et al. Both temperature fluctuations and East Asian monsoons have driven plant diversification in the karst ecosystems from southern China. Mol. Ecol. 26, 6414–6429 (2017).
    PubMed  Google Scholar 

    58.
    Tada, R., Zheng, H. & Clift, D. Evolution and variability of the Asian monsoon and its potential linkage with uplift of the Himalaya and Tibetan Plateau. Prog. Earth Planet Sci. 3, 4–26 (2016).
    ADS  Google Scholar 

    59.
    Proctor, M. C. F. et al. Desiccation-tolerance in bryophytes. Bryologist 110, 595–621 (2007).
    CAS  Google Scholar 

    60.
    McDaniel, S. F., Atwood, J. & Burleigh, J. G. Recurrent evolution of dioecy in bryophytes. Evolution 67, 567–572 (2012).
    PubMed  Google Scholar 

    61.
    van Zanten, B. O. & Pócs, T. Distribution and dispersal of bryophytes. Adv. Bryol. 1, 479–562 (1981).
    Google Scholar 

    62.
    Laenen, B. et al. Geographical range in liverworts: Does sex really matter?. J. Biogeogr. 43, 627–635 (2016).
    Google Scholar 

    63.
    Lee, G. E., Bechteler, J., Pócs, T., Schäfer-Verwimp, A. & Heinrichs, J. Molecular and morphological evidence for an intercontinental range of the liverwort Lejeunea pulchriflora (Marchantiophyta: Lejeuneaceae). Org. Divers. Evol. 16, 13–21 (2016).
    Google Scholar 

    64.
    Hall, T. A. BioEdit: a user-friendly biological sequence alignment editor and analysis program for Windows 95/98/NT. Nucleic Acids Symp. Ser. 41, 95–98 (1999).
    CAS  Google Scholar 

    65.
    Janssen, T. et al. Neoendemism in Madagascan scaly tree ferns results from recent, coincident diversification bursts. Evolution 62, 1876–1889 (2008).
    PubMed  Google Scholar 

    66.
    Katoh, K. & Standley, D. M. MAFFT multiple sequence alignment software version 7: Improvements in performance and usability. Mol. Biol. Evol. 30, 772–780 (2013).
    CAS  PubMed  PubMed Central  Google Scholar 

    67.
    Lanfear, R., Calcott, B., Ho, S. Y. W. & Guindon, S. PartitionFinder: Combined selection of partitioning schemes and substitution models for phylogenetic analyses. Mol. Biol. Evol. 29, 1695–1701 (2012).
    CAS  PubMed  Google Scholar 

    68.
    Stamatakis, A. RAxML Version 8: A tool for phylogenetic analysis and post-analysis of large phylogenies. Bioinformatics 30, 1312–1313 (2014).
    CAS  PubMed  PubMed Central  Google Scholar 

    69.
    Mason-Gamer, R. J. & Kellogg, E. A. Testing for phylogenetic conflict among molecular data sets in the tribe Triticeae (Gramineae). Syst. Biol. 45, 524–545 (1996).
    Google Scholar 

    70.
    Ronquist, F. et al. MrBayes 3.2: Efficient Bayesian phylogenetic inference and model choice across a large model space. Syst. Biol. 61, 539–542 (2012).
    PubMed  PubMed Central  Google Scholar 

    71.
    Rambaut, A., Drummond, A. J., Xie, D., Baele, G. & Suchard, M. A. Posterior summarization in Bayesian phylogenetics using tracer 1.7. Syst. Biol. 67, 901–904 (2018).
    CAS  PubMed  PubMed Central  Google Scholar 

    72.
    Larget, B. & Simon, D. L. Markov chain Monte Carlo algorithms for the Bayesian analysis of phylogenetic trees. Mol. Biol. Evol. 16, 750–759 (1999).
    CAS  Google Scholar 

    73.
    Drummond, A. J., Suchard, M. A., Xie, D. & Rambaut, A. Bayesian phylogenetics with BEAUti and the BEAST 1.7. Mol. Biol. Evol. 29, 1969–1973 (2012).
    CAS  PubMed  PubMed Central  Google Scholar 

    74.
    Nagori, M. L., Khosla, S. C. & Jakhar, S. R. middle eocene ostracoda from the tadkeshwar lignite mine, Camba Basin, Gujarat. J. Geol. Soc. India 81, 514–520 (2013).
    Google Scholar 

    75.
    Benton, M. J. & Donoghue, P. C. J. Paleontological evidence to date the tree of life. Mol. Biol. Evol. 24, 26–53 (2007).
    CAS  PubMed  Google Scholar 

    76.
    Donoghue, P. C. J. & Benton, M. J. Rocks and clocks: Calibrating the tree of life using fossils and molecules. Trends Ecol. Evol. 22, 424–431 (2007).
    PubMed  Google Scholar 

    77.
    Ho, S. Y. W. & Phillips, M. J. Accounting for calibration uncertainty in phylogenetic estimation of evolutionary divergence times. Syst. Biol. 58, 367–380 (2009).
    PubMed  Google Scholar 

    78.
    Graur, D. & Martin, W. Reading the entails of chickens: Molecular timescales of evolution and the illusion of precision. Trends Genet. 20, 80–86 (2004).
    CAS  PubMed  Google Scholar 

    79.
    Reisz, R. R. & Müller, J. Molecular timescales and the fossil record: A paleontological perspective. Trends Genet. 20, 237–241 (2004).
    CAS  PubMed  Google Scholar 

    80.
    Palmer, J. D. Plastid chromosome, structure and evolution. In The Molecular Biology of Plastids (eds Bogorad, L. & Vasil, I. K.) 5–53 (Academic Press, Cambridge, 1991).
    Google Scholar 

    81.
    Villarreal, J. C. & Renner, S. S. Hornwort pyrenoids, a carbon-concentrating mechanism, evolved and were lost at least five times during the last 100 million years. Proc. Natl. Acad. Sci. U.S.A. 109, 18873–18878 (2012).
    ADS  CAS  PubMed  PubMed Central  Google Scholar 

    82.
    Les, D. H., Crawford, D. J., Kimball, R. T., Moody, M. L. & Landolt, E. Biogeography of discontinuously distributed hydrophytes, a molecular appraisal of intercontinental disjunctions. Int. J. Plant Sci. 164, 917–932 (2003).
    Google Scholar 

    83.
    Villarreal, J. C. & Renner, S. S. A review of molecular-clock calibrations and substitution rates in liverworts, mosses, and hornworts, and a timeframe for a taxonomically cleaned-up genus Nothoceros. Mol. Phylogenet. Evol. 78, 25–35 (2014).
    PubMed  Google Scholar 

    84.
    Drummond, A. J., Ho, S. Y. M., Phillips, M. J. & Rambaut, A. Relaxed phylogenetics and dating with confidence. PLoS Biol. 4, e88 (2006).
    PubMed  PubMed Central  Google Scholar 

    85.
    Stadler, T. On incomplete sampling under birth-death models and connections to the sampling-based coalescent. J. Theor. Biol. 261, 58–66 (2009).
    MathSciNet  PubMed  MATH  Google Scholar 

    86.
    Lartillot, N. & Philippe, H. Computing Bayes factor using thermodynamic integration. Syst. Biol. 55, 195–207 (2006).
    PubMed  Google Scholar 

    87.
    Xie, W., Lewis, P. O., Fan, Y., Kuo, L. & Chen, M. H. Improving marginal likelihood estimation for Bayesian phylogenetic model selection. Syst. Biol. 60, 150–160 (2011).
    PubMed  Google Scholar 

    88.
    Baele, G. et al. Improving the accuracy of demographic and molecular clock model comparison while accommodating phylogenetic uncertainty. Mol. Biol. Evol. 29, 2157–2167 (2012).
    CAS  PubMed  PubMed Central  Google Scholar 

    89.
    Baele, G., Lemey, P. & Vansteelandt, S. Make the most of your samples: Bayes factor estimators for high-dimensional models of sequence evolution. BMC Bioinform. 14, 85 (2013).
    Google Scholar 

    90.
    Matzke, N. J. Model selection in historical biogeography reveals that founder-event speciation in a crucial process in island clades. Syst. Biol. 63, 951–970 (2014).
    PubMed  Google Scholar 

    91.
    Ree, R. H. & Smith, S. A. Maximum likelihood inference of geographic range evolution by dispersal, local extinction, and cladogenesis. Syst. Biol. 57, 4–14 (2008).
    PubMed  Google Scholar 

    92.
    Ree, R. H. & Sanmartín, I. Conceptual and statistical problems with the DEC+J model of founder-event speciation and its comparison with DEC via model selection. J. Biogeogr. 45, 741–749 (2018).
    Google Scholar 

    93.
    Condamine, F. L., Rolland, J. & Morlon, H. Macroevolutionary perspectives to environmental change. Ecol. Lett. 16, 72–85 (2013).
    PubMed  Google Scholar 

    94.
    Zachos, J. C., Dickens, G. R. & Zeebe, R. E. An early cenozoic perspective on greenhouse warming and carbon-cycle dynamics. Nature 451, 279–283 (2008).
    ADS  CAS  PubMed  Google Scholar 

    95.
    Maddison, W. P., Midford, P. E. & Otto, S. P. Estimation a binary character’s effect on speciation and extinction. Syst. Biol. 56, 701–710 (2007).
    PubMed  Google Scholar 

    96.
    FitzJohn, R. G. Diversitree: Comparative phylogenetic analyses of diversification in R. Methods Ecol. Evol. 3, 1084–1092 (2012).
    Google Scholar 

    97.
    Rabosky, D. L. & Goldberg, E. E. Model inadequacy and mistaken inferences of trait-dependent speciation. Syst. Biol. 64, 340–355 (2015).
    CAS  PubMed  Google Scholar 

    98.
    Beaulieu, J. M. & O’Meara, B. C. Detecting hidden diversification shifts in models of trait-dependent speciation and extinction. Syst. Biol. 65, 583–601 (2016).
    PubMed  Google Scholar 

    99.
    Caetano, D. S., O’Meara, B. C. & Beaulieu, J. M. Hidden state models improve state-dependent diversification approaches, including biogeographical models. Evolution 72, 2308–2324 (2018).
    PubMed  Google Scholar  More

  • in

    Responses of global waterbird populations to climate change vary with latitude

    1.
    Chen, I. C. et al. Rapid range shifts of species associated with high levels of climate warming. Science 333, 1024–1026 (2011).
    CAS  Google Scholar 
    2.
    Thackeray, S. J. et al. Phenological sensitivity to climate across taxa and trophic levels. Nature 535, 241–245 (2016).
    CAS  Google Scholar 

    3.
    Stephens, P. A. et al. Consistent response of bird populations to climate change on two continents. Science 352, 84–87 (2016).
    CAS  Google Scholar 

    4.
    Pearce-Higgins, J. W. et al. Geographical variation in species’ population responses to changes in temperature and precipitation. Proc. R. Soc. Lond. B 282, 20151561 (2015).
    Google Scholar 

    5.
    Pecl, G. T. et al. Biodiversity redistribution under climate change: impacts on ecosystems and human well-being. Science 355, eaai9214 (2017).
    Google Scholar 

    6.
    Perez, T. M., Stroud, J. T. & Feeley, K. J. Thermal trouble in the tropics. Science 351, 1392–1393 (2016).
    CAS  Google Scholar 

    7.
    Feeley, K. J., Stroud, J. T., Perez, T. M. & Kühn, I. Most ‘global’ reviews of species’ responses to climate change are not truly global. Divers. Distrib. 23, 231–234 (2017).
    Google Scholar 

    8.
    Stroud, J. T. & Thompson, M. E. Looking to the past to understand the future of tropical conservation: the importance of collecting basic data. Biotropica 51, 293–299 (2019).
    Google Scholar 

    9.
    Spooner, F. E. B., Pearson, R. G. & Freeman, R. Rapid warming is associated with population decline among terrestrial birds and mammals globally. Glob. Change Biol. 24, 4521–4531 (2018).
    Google Scholar 

    10.
    IUCN Red List Categories and Criteria: Version 3.1 (IUCN, 2001).

    11.
    Winfree, R. et al. Abundance of common species, not species richness, drives delivery of a real-world ecosystem service. Ecol. Lett. 18, 626–635 (2015).
    Google Scholar 

    12.
    Bowler, D. E. et al. Cross-realm assessment of climate change impacts on species’ abundance trends. Nat. Ecol. Evol. 1, 0067 (2017).
    Google Scholar 

    13.
    Myers-Smith, I. H. et al. Climate sensitivity of shrub growth across the tundra biome. Nat. Clim. Change 5, 887 (2015).
    Google Scholar 

    14.
    Lowe, J. R. et al. Responses of coral reef wrasse assemblages to disturbance and marine reserve protection on the Great Barrier Reef. Mar. Biol. 166, 119 (2019).
    Google Scholar 

    15.
    Martay, B. et al. Impacts of climate change on national biodiversity population trends. Ecography 40, 1139–1151 (2017).
    Google Scholar 

    16.
    Khaliq, I. et al. Global variation in thermal tolerances and vulnerability of endotherms to climate change. Proc. R. Soc. Lond. B 281, 20141097 (2014).
    Google Scholar 

    17.
    Amano, T. et al. Successful conservation of global waterbird populations depends on effective governance. Nature 553, 199–202 (2018).
    CAS  Google Scholar 

    18.
    Ramsar Convention on Wetlands Global Wetland Outlook: State of the World’s Wetlands and Their Services to People (Ramsar Convention Secretariat, 2018).

    19.
    Mac Nally, R. Hierarchical partitioning as an interpretative tool in multivariate inference. Aust. J. Ecol. 21, 224–228 (1996).
    Google Scholar 

    20.
    Cadena, C. D. et al. Latitude, elevational climatic zonation and speciation in New World vertebrates. Proc. R. Soc. Lond. B 279, 194–201 (2012).
    Google Scholar 

    21.
    Jezkova, T. & Wiens, J. J. Rates of change in climatic niches in plant and animal populations are much slower than projected climate change. Proc. R. Soc. Lond. B 283, 20162104 (2016).
    Google Scholar 

    22.
    Wiens, J. J. Climate-related local extinctions are already widespread among plant and animal species. PLoS Biol. 14, e2001104 (2016).
    Google Scholar 

    23.
    Maclean, I. M. D., Rehfisch, M. M., Delany, S. & Robinson, R. A. The Effects of Climate Change on Migratory Waterbirds within the African-Eurasian Flyway (AEWA, 2007).

    24.
    Ockendon, N. et al. Mechanisms underpinning climatic impacts on natural populations: altered species interactions are more important than direct effects. Glob. Change Biol. 20, 2221–2229 (2014).
    Google Scholar 

    25.
    Cahill, A. E. et al. How does climate change cause extinction? Proc. R. Soc. Lond. B 280, 20121890 (2013).
    Google Scholar 

    26.
    Angert, A. L. et al. Do species’ traits predict recent shifts at expanding range edges? Ecol. Lett. 14, 677–689 (2011).
    Google Scholar 

    27.
    Gómez, C., Tenorio, E. A., Montoya, P. & Cadena, C. D. Niche-tracking migrants and niche-switching residents: evolution of climatic niches in New World warblers (Parulidae). Proc. R. Soc. Lond. B 283, 20152458 (2016).
    Google Scholar 

    28.
    Betts, M. G. et al. Synergistic effects of climate and land-cover change on long-term bird population trends of the western USA: a test of modeled predictions. Front. Ecol. Evol. 7, 186 (2019).
    Google Scholar 

    29.
    Kingsford, R. T., Bino, G. & Porter, J. L. Continental impacts of water development on waterbirds, contrasting two Australian river basins: global implications for sustainable water use. Glob. Change Biol. 23, 4958–4969 (2017).
    Google Scholar 

    30.
    Canepuccia, A. D. et al. Waterbird response to changes in habitat area and diversity generated by rainfall in a SW Atlantic coastal lagoon. Waterbirds 30, 541–553 (2007).
    Google Scholar 

    31.
    Delany, S. Guidance on Waterbird Monitoring Methodology: Field Protocol for Waterbird Counting (Wetlands International, 2010).

    32.
    van Roomen, M., van Winden, E. & van Turnhout, C. Analyzing Population Trends at the Flyway Level for Bird Populations Covered by the African Eurasian Waterbird Agreement: Details of a Methodology (SOVON Dutch Centre for Field Ornithology, 2011).

    33.
    LeBaron, G. S. The 115th Christmas Bird Count (National Audubon Society, 2015).

    34.
    Gill, F. & Donsker, D. (eds) IOC World Bird List Version 5.1 (IOC, 2015).

    35.
    Harris, I., Jones, P. D., Osborn, T. J. & Lister, D. H. Updated high-resolution grids of monthly climatic observations—the CRU TS3.10 Dataset. Int. J. Climatol. 34, 623–642 (2014).
    Google Scholar 

    36.
    R Core Team R: A language and Environment for Statistical Computing (R Foundation for Statistical Computing, 2017).

    37.
    Zeileis, A. & Grothendieck, G. zoo: S3 infrastructure for regular and irregular time series. J. Stat. Softw. 14, 6 (2005).
    Google Scholar 

    38.
    Walsh, C. & Nally, R. M. hier.part: Hierarchical Partitioning: R package v.1.0-4 (R Foundation for Statistical Computing, 2013).

    39.
    Link, W. A. & Sauer, J. R. Seasonal components of avian population change: joint analysis of two large-scale monitoring programs. Ecology 88, 49–55 (2007).
    Google Scholar 

    40.
    Stroud, J. T. & Feeley, K. J. Neglect of the tropics is widespread in ecology and evolution: a comment on Clarke et al. Trends Ecol. Evol. 32, 626–628 (2017).
    Google Scholar 

    41.
    Amano, T. & Sutherland, W. J. Four barriers to the global understanding of biodiversity conservation: wealth, language, geographical location and security. Proc. R. Soc. Lond. B 280, 20122649 (2013).
    Google Scholar 

    42.
    Turner, A. G. & Annamalai, H. Climate change and the South Asian summer monsoon. Nat. Clim. Change 2, 587–595 (2012).
    Google Scholar 

    43.
    van de Pol, M. & Wright, J. A simple method for distinguishing within- versus between-subject effects using mixed models. Anim. Behav. 77, 753–758 (2009).
    Google Scholar 

    44.
    de Villemereuil, P., Wells, J., Edwards, R. & Blomberg, S. Bayesian models for comparative analysis integrating phylogenetic uncertainty. BMC Evol. Biol. 12, 102 (2012).
    Google Scholar 

    45.
    Abadi, F. et al. Importance of accounting for phylogenetic dependence in multi-species mark-recapture studies. Ecol. Modell. 273, 236–241 (2014).
    Google Scholar 

    46.
    Pagel, M. Inferring the historical patterns of biological evolution. Nature 401, 877–884 (1999).
    CAS  Google Scholar 

    47.
    Freckleton, R. P., Harvey, P. H. & Pagel, M. Phylogenetic analysis and comparative data: a test and review of evidence. Am. Nat. 160, 712–726 (2002).
    CAS  Google Scholar 

    48.
    Donoghue, M. J. & Ackerly, D. D. Phylogenetic uncertainties and sensitivity analyses in comparative biology. Phil. Trans. R. Soc. Lond. B 351, 1241–1249 (1996).
    Google Scholar 

    49.
    Jetz, W. et al. The global diversity of birds in space and time. Nature 491, 444–448 (2012).
    CAS  Google Scholar 

    50.
    Spiegelhalter, D., Thomas, A., Best, N. & Lunn, D. OpenBUGS User Manual Version 3.2.3 (2014).

    51.
    Sturtz, S., Ligges, U. & Gelman, A. R2WinBUGS: a package for running WinBUGS from R. J. Stat. Softw. 12, 3 (2005).
    Google Scholar 

    52.
    The BirdLife Checklist of the Birds of the World Version 7 (BirdLife International, 2014); http://www.birdlife.org/datazone/userfiles/file/Species/Taxonomy/BirdLife_Checklist_Version_70.zip

    53.
    Paradis, E., Claude, J. & Strimmer, K. APE: analyses of phylogenetics and evolution in R language. Bioinformatics 20, 289–290 (2004).
    CAS  Google Scholar 

    54.
    Dowle, M. & Srinivasan, A. data.table: Extension of ‘data.frame’: R package v.1.10.4-3 (R Foundation for Statistical Computing, 2017).

    55.
    Wickham, H., Francois, R., Henry, L. & Muller, K. dplyr: A Grammar of Data Manipulation: R package v.0.7.4 (R Foundation for Statistical Computing, 2017).

    56.
    Wickham, H. ggplot2: Elegant Graphics for Data Analysis (Springer-Verlag, 2016).

    57.
    Auguie, B. gridExtra: Miscellaneous Functions for “grid” Graphics: R package v.2.3 (R Foundation for Statistical Computing, 2017).

    58.
    Brownrigg, R. mapdata: Extra Map Databases: R package v.2.3.0 (R Foundation for Statistical Computing, 2018).

    59.
    Wickham, H. The split-apply-combine strategy for data analysis. J. Stat. Softw. 40, 1 (2011).
    Google Scholar 

    60.
    Urbanek, S. png: Read and Write PNG Images: R package v.0.1-7 (R Foundation for Statistical Computing, 2013).

    61.
    Neuwirth, E. RColorBrewer: ColorBrewer Palettes: R package v.1.1-2 (R Foundation for Statistical Computing, 2014).

    62.
    Bivand, R., Keitt, T. & Rowlingson, B. rgdal: Bindings for the Geospatial Data Abstraction Library: R package v.1.2-8 (R Foundation for Statistical Computing, 2017).

    63.
    Hijmans, R. J. raster: Geographic Data Analysis and Modeling: R package v.2.6-7 (R Foundation for Statistical Computing, 2017).

    64.
    Garnier, S. viridis: Default Color Maps from ‘matplotlib’: R package v.0.5.1 (R Foundation for Statistical Computing, 2018).

    65.
    Nadeau, C. P., Urban, M. C. & Bridle, J. R. Climates past, present, and yet-to-come shape climate change vulnerabilities. Trends Ecol. Evol. 32, 786–800 (2017).
    Google Scholar 

    66.
    Breed, G. A., Stichter, S. & Crone, E. E. Climate-driven changes in northeastern US butterfly communities. Nat. Clim. Change 3, 142–145 (2012).
    Google Scholar 

    67.
    Valladares, F. et al. The effects of phenotypic plasticity and local adaptation on forecasts of species range shifts under climate change. Ecol. Lett. 17, 1351–1364 (2014).
    Google Scholar 

    68.
    Hawkins, B. A. et al. Energy, water, and broad-scale geographic patterns of species richness. Ecology 84, 3105–3117 (2003).
    Google Scholar 

    69.
    Sexton, J. P., McIntyre, P. J., Angert, A. L. & Rice, K. J. Evolution and ecology of species range limits. Annu. Rev. Ecol. Evol. Syst. 40, 415–436 (2009).
    Google Scholar 

    70.
    Mills, S. C. et al. European butterfly populations vary in sensitivity to weather across their geographical ranges. Glob. Ecol. Biogeogr. 26, 1374–1385 (2017).
    Google Scholar 

    71.
    Johnston, A. et al. Observed and predicted effects of climate change on species abundance in protected areas. Nat. Clim. Change 3, 1055–1061 (2013).
    Google Scholar 

    72.
    Faragó, S. & Hangya, K. Effects of water level on waterbird abundance and diversity along the middle section of the Danube River. Hydrobiologia 697, 15–21 (2012).
    Google Scholar 

    73.
    Kleijn, D. et al. Waterbirds increase more rapidly in Ramsar-designated wetlands than in unprotected wetlands. J. Appl. Ecol. 51, 289–298 (2014).
    Google Scholar 

    74.
    Slatyer, R. A., Hirst, M. & Sexton, J. P. Niche breadth predicts geographical range size: a general ecological pattern. Ecol. Lett. 16, 1104–1114 (2013).
    Google Scholar 

    75.
    Estrada, A., Morales-Castilla, I., Caplat, P. & Early, R. Usefulness of species traits in predicting range shifts. Trends Ecol. Evol. 31, 190–203 (2016).
    Google Scholar 

    76.
    Dhanjal-Adams, K. L. et al. Distinguishing local and global correlates of population change in migratory species. Divers. Distrib. 25, 797–808 (2019).
    Google Scholar 

    77.
    Wilman, H. et al. EltonTraits 1.0: species-level foraging attributes of the world’s birds and mammals. Ecology 95, 2027 (2014).
    Google Scholar  More

  • in

    Differences in epidemic spread patterns of norovirus and influenza seasons of Germany: an application of optical flow analysis in epidemiology

    1.
    Iuliano, A. D. et al. Estimates of global seasonal influenza-associated respiratory mortality: a modelling study. Lancet 391, 1285–1300. https://doi.org/10.1016/s0140-6736(17)33293-2 (2018).
    Article  PubMed  Google Scholar 
    2.
    Ahmed, S. M. et al. Global prevalence of norovirus in cases of gastroenteritis: a systematic review and meta-analysis. Lancet Infect. Dis. 14, 725–730. https://doi.org/10.1016/s1473-3099(14)70767-4 (2014).
    Article  PubMed  Google Scholar 

    3.
    Robert-Koch-Institute (Germany). Infektionsepidemiologisches Jahrbuch für 2018.

    4.
    Saunders-Hastings, P. & Krewski, D. Reviewing the history of pandemic influenza: Understanding patterns of emergence and transmission. Pathogens 5, 66. https://doi.org/10.3390/pathogens5040066 (2016).
    Article  PubMed Central  Google Scholar 

    5.
    de Picoli Junior, S. et al. Spreading patterns of the influenza a (h1n1) pandemic. PLoS ONE 6, e17823. https://doi.org/10.1371/journal.pone.0017823 (2011).
    ADS  CAS  Article  PubMed  PubMed Central  Google Scholar 

    6.
    Lofgren, E., Fefferman, N. H., Naumov, Y. N., Gorski, J. & Naumova, E. N. Influenza seasonality: Underlying causes and modeling theories. J. Virol. 81, 5429–5436. https://doi.org/10.1128/jvi.01680-06 (2006).
    Article  PubMed  PubMed Central  Google Scholar 

    7.
    Bjørnstad, O. N. & Viboud, C. Timing and periodicity of influenza epidemics. Proc. Natl. Acad. Sci. 113, 12899–12901. https://doi.org/10.1073/pnas.1616052113 (2016).
    CAS  Article  PubMed  Google Scholar 

    8.
    Liu, X.-X. et al. Seasonal pattern of influenza activity in a subtropical city, China, 2010–2015. Sci. Rep. 7, https://doi.org/10.1038/s41598-017-17806-z (2017).

    9.
    Bozick, B. A. & Real, L. A. The role of human transportation networks in mediating the genetic structure of seasonal influenza in the united states. PLOS Pathog. 11, e1004898. https://doi.org/10.1371/journal.ppat.1004898 (2015).
    CAS  Article  PubMed  PubMed Central  Google Scholar 

    10.
    Dahlgren, F. S. et al. Patterns of seasonal influenza activity in U.S. core-based statistical areas, described using prescriptions of oseltamivir in medicare claims data. Epidemics 26, 23–31. https://doi.org/10.1016/j.epidem.2018.08.002 (2019).
    Article  PubMed  Google Scholar 

    11.
    Lopman, B. et al. Increase in viral gastroenteritis outbreaks in europe and epidemic spread of new norovirus variant. Lancet 363, 682–688. https://doi.org/10.1016/s0140-6736(04)15641-9 (2004).
    Article  PubMed  Google Scholar 

    12.
    Bloom-Feshbach, K. et al. Latitudinal variations in seasonal activity of influenza and respiratory syncytial virus (RSV): A global comparative review. PLoS ONE 8, e54445. https://doi.org/10.1371/journal.pone.0054445 (2013).
    ADS  CAS  Article  PubMed  PubMed Central  Google Scholar 

    13.
    Ahmed, S. M., Lopman, B. A. & Levy, K. A systematic review and meta-analysis of the global seasonality of norovirus. PLoS ONE 8, e75922. https://doi.org/10.1371/journal.pone.0075922 (2013).
    ADS  CAS  Article  PubMed  PubMed Central  Google Scholar 

    14.
    Petrova, V. N. & Russell, C. A. The evolution of seasonal influenza viruses. Nat Rev Microbiol 16, 47–60. https://doi.org/10.1038/nrmicro.2017.118 (2018).
    CAS  Article  PubMed  Google Scholar 

    15.
    Su, S., Fu, X., Li, G., Kerlin, F. & Veit, M. Novel influenza d virus: Epidemiology, pathology, evolution and biological characteristics. Virulence 8, 1580–1591. https://doi.org/10.1080/21505594.2017.1365216 (2017).
    Article  PubMed  PubMed Central  Google Scholar 

    16.
    Conrad, O. et al. System for automated geoscientific analyses (SAGA) v. 2.1.4.. Geosci. Model Dev. 8, 1991–2007. https://doi.org/10.5194/gmd-8-1991-2015 (2015).
    ADS  Article  Google Scholar 

    17.
    BKG. Geobasis-de/bkg dl-de/by-2-0. Database. http://www.bkg.bund.de (2019).

    18.
    OriginLab Corporation, Northampton. Origin(Pro) 2019b. Website https://www.originlab.com/ (2019).

    19.
    Rajao, D. S., Vincent, A. L. & Perez, D. R. Adaptation of human influenza viruses to swine. Front. Vet. Sci. 5, https://doi.org/10.3389/fvets.2018.00347 (2019).

    20.
    Brankston, G., Gitterman, L., Hirji, Z., Lemieux, C. & Gardam, M. Transmission of influenza a in human beings. Lancet Infect. Dis. 7, 257–265. https://doi.org/10.1016/s1473-3099(07)70029-4 (2007).
    Article  PubMed  Google Scholar 

    21.
    Ward, J. W. Twelve diseases that changed our world. Emerg. Infect. Dis. 14, 866a–8866. https://doi.org/10.3201/eid1405.080072 (2008).
    Article  Google Scholar 

    22.
    Rao, S., Nyquist, A.-C. & Stillwell, P. C. 27 – influenza. In Wilmott, R. W. et al. (eds.) Kendig’s Disorders of the Respiratory Tract in Children (Ninth Edition), 460–465, https://doi.org/10.1016/B978-0-323-44887-1.00027-4 (2019).

    23.
    Pauly, M. D., Procario, M. & Lauring, A. S. The mutation rates and mutational bias of influenza a virus. eLifehttps://doi.org/10.1101/110197 (2017).

    24.
    Gregorio, E. D. & Rappuoli, R. From empiricism to rational design: a personal perspective of the evolution of vaccine development. Nat. Rev. Immunol. 14, 505–514. https://doi.org/10.1038/nri3694 (2014).
    CAS  Article  PubMed  PubMed Central  Google Scholar 

    25.
    Shah, M. P. & Hall, A. J. Norovirus illnesses in children and adolescents. Infect. Dis. Clin. N. Am. 32, 103–118. https://doi.org/10.1016/j.idc.2017.11.004 (2018).
    Article  Google Scholar 

    26.
    Patel, M. M. et al. Systematic literature review of role of noroviruses in sporadic gastroenteritis. Emerg Infect Dis 14, 1224–31. https://doi.org/10.3201/eid1408.071114 (2008).
    Article  PubMed  PubMed Central  Google Scholar 

    27.
    Lanata, C. F. et al. Global causes of diarrheal disease mortality in children More

  • in

    Intracellular amorphous Ca-carbonate and magnetite biomineralization by a magnetotactic bacterium affiliated to the Alphaproteobacteria

    1.
    Weiner S, Dove PM. An overview of biomineralization processes and the problem of the vital effect. Rev Miner Geochem. 2003;54:1–29.
    CAS  Google Scholar 
    2.
    Benzerara K, Miot J, Morin G, Ona-Nguema G, Skouri-Panet F, Férard C. Significance, mechanisms and environmental implications of microbial biomineralization. Comptes Rendus Geosci. 2011;343:160–7.
    CAS  Google Scholar 

    3.
    Lowenstam HA. Minerals formed by organisms. Science. 1981;211:1126–31.
    CAS  PubMed  Google Scholar 

    4.
    Blakemore R. Magnetotactic bacteria. Science. 1975;190:377–9.
    CAS  PubMed  Google Scholar 

    5.
    Uebe R, Schüler D. Magnetosome biogenesis in magnetotactic bacteria. Nat Rev Microbiol. 2016;14:621–37.
    CAS  PubMed  Google Scholar 

    6.
    Grant CR, Wan J, Komeili A. Organelle formation in bacteria and archaea. Annu Rev Cell Dev Biol. 2018;34:217–38.
    CAS  PubMed  Google Scholar 

    7.
    Schewiakoff W. Über einen neuen bacterienahnlichen organismus des Süsswassers. Heidelb Habilit. 1893;1–38.

    8.
    West GS, Griffiths BM. The lime-sulphur bacteria of the genus hillhousia. Ann Bot. 1913;os-27:83–91.
    Google Scholar 

    9.
    Head IM, Gray ND, Clarke KJ, Pickup RW, Jones JG. The phylogenetic position and ultrastructure of the uncultured bacterium Achromatium oxaliferum. Microbiol Read Engl. 1996;142(Pt 9):2341–54.
    CAS  Google Scholar 

    10.
    Salman V, Yang T, Berben T, Klein F, Angert E, Teske A. Calcite-accumulating large sulfur bacteria of the genus Achromatium in Sippewissett Salt Marsh. ISME J. 2015;9:2503–14.
    CAS  PubMed  PubMed Central  Google Scholar 

    11.
    Mansor M, Hamilton TL, Fantle MS, Macalady J. Metabolic diversity and ecological niches of Achromatium populations revealed with single-cell genomic sequencing. Front Microbiol. 2015;6:822.
    PubMed  PubMed Central  Google Scholar 

    12.
    Gray N, Head I. The family achromatiaceae. In: Rosenberg E, DeLong EF, Lory S, Stackebrandt E, Thompson F, editors. The Prokaryotes: Gammaproteobacteria. Berlin, Heidelberg: Springer; 2014. p. 1–14.

    13.
    Head IM, Gray ND, Howarth R, Pickup RW, Clarke KJ, Jones JG. Achromatium oxaliferum Understanding the Unmistakable. In: Schink B, editor. Advances in microbial ecology. Boston, MA: Springer US; 2000. p. 1–40.

    14.
    Babenzien H-D, Sass H. The sediment-water interface—habitat of the unusual bacterium Achromatium oxaliferum. Adv Limnol. 1996;48:247–51.
    Google Scholar 

    15.
    Gray ND, Pickup RW, Jones JG, Head IM. Ecophysiological evidence that achromatium oxaliferum is responsible for the oxidation of reduced sulfur species to sulfate in a freshwater sediment. Appl Environ Microbiol. 1997;63:1905–10.
    CAS  PubMed  PubMed Central  Google Scholar 

    16.
    Gray ND, Howarth R, Pickup RW, Jones JG, Head IM. Substrate uptake by uncultured bacteria from the genus Achromatium determined by microautoradiography. Appl Environ Microbiol. 1999;65:5100–6.
    CAS  PubMed  PubMed Central  Google Scholar 

    17.
    Babenzien H-D. Achromatium oxaliferum and its ecological niche. Zentralblatt Für Mikrobiol. 1991;146:41–49.
    Google Scholar 

    18.
    Gray ND, Comaskey D, Miskin IP, Pickup RW, Suzuki K, Head IM. Adaptation of sympatric Achromatium spp. to different redox conditions as a mechanism for coexistence of functionally similar sulphur bacteria. Environ Microbiol. 2004;6:669–77.
    CAS  PubMed  Google Scholar 

    19.
    Couradeau E, Benzerara K, Gérard E, Moreira D, Bernard S, Brown GE, et al. An early-branching microbialite cyanobacterium forms intracellular carbonates. Science. 2012;336:459–62.
    CAS  PubMed  Google Scholar 

    20.
    Cam N, Benzerara K, Georgelin T, Jaber M, Lambert J-F, Poinsot M, et al. Selective Uptake of Alkaline Earth Metals by Cyanobacteria Forming Intracellular Carbonates. Environ Sci Technol. 2016;50:11654–62.
    CAS  PubMed  Google Scholar 

    21.
    Blondeau M, Sachse M, Boulogne C, Gillet C, Guigner J-M, Skouri-Panet F, et al. Amorphous calcium carbonate granules form within an intracellular compartment in calcifying cyanobacteria. Front Microbiol. 2018;9:1768.
    PubMed  PubMed Central  Google Scholar 

    22.
    Li J, Margaret Oliver I, Cam N, Boudier T, Blondeau M, Leroy E, et al. Biomineralization patterns of intracellular carbonatogenesis in cyanobacteria: molecular hypotheses. Minerals. 2016;6:10.

    23.
    Benzerara K, Skouri-Panet F, Li J, Férard C, Gugger M, Laurent T, et al. Intracellular Ca-carbonate biomineralization is widespread in cyanobacteria. Proc Natl Acad Sci USA. 2014;111:10933–8.
    CAS  PubMed  Google Scholar 

    24.
    Bradley JA, Daille LK, Trivedi CB, Bojanowski CL, Stamps BW, Stevenson BS, et al. Carbonate-rich dendrolitic cones: insights into a modern analog for incipient microbialite formation, Little Hot Creek, Long Valley Caldera, California. NPJ Biofilms Microbiomes. 2017;3:32.
    PubMed  PubMed Central  Google Scholar 

    25.
    Moreira D, Tavera R, Benzerara K, Skouri-Panet F, Couradeau E, Gérard E, et al. Description of Gloeomargarita lithophora gen. nov., sp. nov., a thylakoid-bearing, basal-branching cyanobacterium with intracellular carbonates, and proposal for Gloeomargaritales ord. nov. Int J Syst Evol Microbiol. 2017;67:653–8.
    CAS  PubMed  PubMed Central  Google Scholar 

    26.
    Mehta N, Benzerara K, Kocar BD, Chapon V. Sequestration of radionuclides radium-226 and strontium-90 by cyanobacteria forming intracellular calcium carbonates. Environ Sci Technol. 2019;53:12639–47.
    CAS  PubMed  Google Scholar 

    27.
    Ponce-Toledo RI, Deschamps P, López-García P, Zivanovic Y, Benzerara K, Moreira D. An early-branching freshwater cyanobacterium at the origin of plastids. Curr Biol CB. 2017;27:386–91.
    CAS  PubMed  Google Scholar 

    28.
    la Rivière JWM, Schmidt K. Morphologically Conspicuous Sulfur-Oxidizing Eubacteria. In: Starr MP, Stolp H, Trüper HG, Balows A, Schlegel HG, editors. The prokaryotes: a handbook on habitats, isolation, and identification of bacteria. Berlin Heidelberg: Springer; 1981. p. 1037–48.

    29.
    Gray ND. The unique role of intracellular calcification in the genus achromatium. In: Shively JM, editor. Inclusions in prokaryotes. Berlin, Heidelberg: Springer; 2006. p. 299–309.

    30.
    Miot J, Jezequel D, Benzerara K, Cordier L, Rivas-Lamelo S, Skouri-Panet F, et al. Mineralogical diversity in lake pavin: connections with water column chemistry and biomineralization processes. Minerals. 2016;6:UNSP 24.
    Google Scholar 

    31.
    Podda F, Michard G. Mesure colorimétrique de l’alcalinité. Comptes Rendus Acad Sci – Sér II. 1994;319:651–7.
    CAS  Google Scholar 

    32.
    Sarazin G, Michard G, Prevot F. A rapid and accurate spectroscopic method for alkalinity measurements in sea water samples. Water Res. 1999;33:290–4.
    CAS  Google Scholar 

    33.
    Zeyen N, Daval D, Lopez-Garcia P, Moreira D, Gaillardet J, Benzerara K. Geochemical conditions allowing the formation of modern lacustrine microbialites. Procedia Earth Planet Sci. 2017;17:380–3.
    Google Scholar 

    34.
    Purgstaller B, Goetschl KE, Mavromatis V, Dietzel M. Solubility investigations in the amorphous calcium magnesium carbonate system. CrystEngComm. 2018;21:155–64.
    PubMed  PubMed Central  Google Scholar 

    35.
    Schüler D. The biomineralization of magnetosomes in Magnetospirillum gryphiswaldense. Int Microbiol J Span Soc Microbiol. 2002;5:209–14.
    Google Scholar 

    36.
    Lane DJ. 16S/23S sequencing. In: Stackebrandt E, Goodfellow M, editor. Nucleic acid techniques in bacterial systematics. New York: John Wiley & Sons; 1991. p. 115–75.

    37.
    Altschul SF, Madden TL, Schaffer AA, Zhang JH, Zhang Z, Miller W, et al. Gapped BLAST and PSI-BLAST: a new generation of protein database search programs. Nucleic Acids Res. 1997;25:3389–402.
    CAS  PubMed  PubMed Central  Google Scholar 

    38.
    Edgar RC. UCHIME2: improved chimera prediction for amplicon sequencing. bioRxiv 2016. https://www.biorxiv.org/content/10.1101/074252v1.

    39.
    Gascuel O. BIONJ: an improved version of the NJ algorithm based on a simple model of sequence data. Mol Biol Evol. 1997;14:685–95.
    CAS  PubMed  Google Scholar 

    40.
    Katoh K, Standley DM. MAFFT multiple sequence alignment software version 7: improvements in performance and usability. Mol Biol Evol. 2013;30:772–80.
    CAS  PubMed  PubMed Central  Google Scholar 

    41.
    Talavera G, Castresana J. Improvement of phylogenies after removing divergent and ambiguously aligned blocks from protein sequence alignments. Syst Biol. 2007;56:564–77.
    CAS  PubMed  Google Scholar 

    42.
    Nguyen L-T, Schmidt HA, von Haeseler A, Minh BQ. IQ-TREE: a fast and effective stochastic algorithm for estimating maximum-likelihood phylogenies. Mol Biol Evol. 2015;32:268–74.
    CAS  PubMed  PubMed Central  Google Scholar 

    43.
    Kalyaanamoorthy S, Minh BQ, Wong TKF, von Haeseler A, Jermiin LS. ModelFinder: fast model selection for accurate phylogenetic estimates. Nat Methods. 2017;14:587–9.
    CAS  PubMed  PubMed Central  Google Scholar 

    44.
    Pernthaler J, Glockner FO, Schonhuber W, Amann R. Fluorescence in situ hybridization (FISH) with rRNA-targeted oligonucleotide probes. Methods Microbiol Vol 30. 2001;30:207–26.
    CAS  Google Scholar 

    45.
    Cole JR, Chai B, Marsh TL, Farris RJ, Wang Q, Kulam SA, et al. The Ribosomal Database Project (RDP-II): previewing a new autoaligner that allows regular updates and the new prokaryotic taxonomy. Nucleic Acids Res. 2003;31:442–3.
    CAS  PubMed  PubMed Central  Google Scholar 

    46.
    Rivas-Lamelo S, Benzerara K, Lefèvre CT, Jézéquel D, Menguy N, Viollier E, et al. Magnetotactic bacteria as a new model for P sequestration in the ferruginous Lake Pavin. Geochem Perspect Lett. 2017;5:35–41.
    Google Scholar 

    47.
    Bolger AM, Lohse M, Usadel B. Trimmomatic: a flexible trimmer for Illumina sequence data. Bioinforma Oxf Engl. 2014;30:2114–20.
    CAS  Google Scholar 

    48.
    Seemann T. Prokka: rapid prokaryotic genome annotation. Bioinformatics. 2014;30:2068–9.
    CAS  PubMed  Google Scholar 

    49.
    Parks DH, Imelfort M, Skennerton CT, Hugenholtz P, Tyson GW. CheckM: assessing the quality of microbial genomes recovered from isolates, single cells, and metagenomes. Genome Res. 2015;25:1043–55.
    CAS  PubMed  PubMed Central  Google Scholar 

    50.
    Belkhou R, Stanescu S, Swaraj S, Besson A, Ledoux M, Hajlaoui M, et al. HERMES: a soft X-ray beamline dedicated to X-ray microscopy. J Synchrotron Radiat. 2015;22:968–79.
    PubMed  Google Scholar 

    51.
    Swaraj S, Belkhou R, Stanescu S, Rioult M, Besson A, Hitchcock AP. Performance of the HERMES beamline at the carbon K-edge. J Phys Conf Ser. 2017;849:012046.
    Google Scholar 

    52.
    Le Nagard L, Zhu X, Yuan H, Benzerara K, Bazylinski DA, Fradin C, et al. Magnetite magnetosome biomineralization in Magnetospirillum magneticum strain AMB-1: A time course study. Chem Geol. 2019;530:119348.
    Google Scholar 

    53.
    Cosmidis J, Benzerara K. Soft x-ray scanning transmission spectro-microscopy. In: Elaine DiMasi, Laurie B. Gower, editors. Biomineralization sourcebook: characterization of biominerals and biomimetic materials. CRC Press; 2014.

    54.
    Lefèvre CT. Genomic insights into the early-diverging magnetotactic bacteria. Environ Microbiol. 2016;18:1–3.
    PubMed  Google Scholar 

    55.
    Benzerara K, Yoon TH, Tyliszczak T, Constantz B, Spormann AM, Brown GE. Scanning transmission X-ray microscopy study of microbial calcification. Geobiology. 2004;2:249–59.
    Google Scholar 

    56.
    Michard G, Viollier E, Jézéquel D, Sarazin G. Geochemical study of a crater lake: Pavin Lake, France — Identification, location and quantification of the chemical reactions in the lake. Chem Geol. 1994;115:103–15.
    CAS  Google Scholar 

    57.
    Konstantinidis KT, Rosselló-Móra R, Amann R. Uncultivated microbes in need of their own taxonomy. ISME J. 2017;11:2399–406.
    PubMed  PubMed Central  Google Scholar 

    58.
    Cai H, Wang Y, Xu H, Yan Z, Jia B, Majid Maszenan A, et al. Niveispirillum cyanobacteriorum sp. nov., a nitrogen-fixing bacterium isolated from cyanobacterial aggregates in a eutrophic lake. Int J Syst Evol Microbiol. 2015;65:2537–41.
    CAS  PubMed  Google Scholar 

    59.
    Zhang D, Yang H, Zhang W, Huang Z, Liu S-J. Rhodocista pekingensis sp. nov., a cyst-forming phototrophic bacterium from a municipal wastewater treatment plant. Int J Syst Evol Microbiol. 2003;53:1111–4.
    CAS  PubMed  Google Scholar 

    60.
    Chung EJ, Park TS, Kim KH, Jeon CO, Lee H-I, Chang W-S, et al. Nitrospirillum irinus sp. nov., a diazotrophic bacterium isolated from the rhizosphere soil of Iris and emended description of the genus Nitrospirillum. Antonie Van Leeuwenhoek. 2015;108:721–9.
    CAS  PubMed  Google Scholar 

    61.
    Bashan Y, Holguin G, de-Bashan LE. Azospirillum-plant relationships: physiological, molecular, agricultural, and environmental advances (1997-2003). Can J Microbiol. 2004;50:521–77.
    CAS  PubMed  Google Scholar 

    62.
    Guo Q, Zhou Z, Zhang L, Zhang C, Chen M, Wang B, et al. Skermanella pratensis sp. nov., isolated from meadow soil, and emended description of the genus Skermanella. Int J Syst Evol Microbiol. 2020;70:1605–9.
    PubMed  Google Scholar 

    63.
    Lefèvre CT, Bazylinski DA. Ecology, diversity, and evolution of magnetotactic bacteria. Microbiol Mol Biol Rev. 2013;77:497–526.
    PubMed  PubMed Central  Google Scholar 

    64.
    Lin W, Bazylinski DA, Xiao T, Wu L-F, Pan Y. Life with compass: diversity and biogeography of magnetotactic bacteria. Environ Microbiol. 2014;16:2646–58.
    CAS  PubMed  Google Scholar 

    65.
    Bazylinski DA, Dean AJ, Williams TJ, Long LK, Middleton SL, Dubbels BL. Chemolithoautotrophy in the marine, magnetotactic bacterial strains MV-1 and MV-2. Arch Microbiol. 2004;182:373–87.
    CAS  PubMed  Google Scholar 

    66.
    Schultheiss D, Handrick R, Jendrossek D, Hanzlik M, Schüler D. The presumptive magnetosome protein Mms16 is a poly(3-hydroxybutyrate) granule-bound protein (phasin) in Magnetospirillum gryphiswaldense. J Bacteriol. 2005;187:2416–25.
    CAS  PubMed  PubMed Central  Google Scholar 

    67.
    Lefèvre CT, Bernadac A, Yu-Zhang K, Pradel N, Wu L-F. Isolation and characterization of a magnetotactic bacterial culture from the Mediterranean Sea. Environ Microbiol. 2009;11:1646–57.
    PubMed  Google Scholar 

    68.
    Qian X-X, Liu J, Menguy N, Li J, Alberto F, Teng Z, et al. Identification of novel species of marine magnetotactic bacteria affiliated with Nitrospirae phylum. Environ Microbiol Rep. 2019;11:330–7.
    CAS  PubMed  Google Scholar 

    69.
    Lefèvre CT, Frankel RB, Abreu F, Lins U, Bazylinski DA. Culture-independent characterization of a novel, uncultivated magnetotactic member of the Nitrospirae phylum. Environ Microbiol. 2011;13:538–49.
    PubMed  Google Scholar 

    70.
    Cox BL, Popa R, Bazylinski DA, Lanoil B, Douglas S, Belz A, et al. Organization and elemental analysis of P-, S-, and Fe-rich inclusions in a population of freshwater magnetococci. Geomicrobiol J. 2002;19:387–406.
    CAS  Google Scholar 

    71.
    Byrne ME, Ball DA, Guerquin-Kern J-L, Rouiller I, Wu T-D, Downing KH, et al. Desulfovibrio magneticus RS-1 contains an iron- and phosphorus-rich organelle distinct from its bullet-shaped magnetosomes. Proc Natl Acad Sci USA. 2010;107:12263–8.
    CAS  PubMed  Google Scholar 

    72.
    Keim CN, Solórzano G, Farina M, Lins U. Intracellular inclusions of uncultured magnetotactic bacteria. Int Microbiol J Span Soc Microbiol. 2005;8:111–7.
    CAS  Google Scholar 

    73.
    Schulz-Vogt HN, Pollehne F, Jürgens K, Arz HW, Beier S, Bahlo R, et al. Effect of large magnetotactic bacteria with polyphosphate inclusions on the phosphate profile of the suboxic zone in the Black Sea. ISME J. 2019;13:1198–208.
    CAS  PubMed  PubMed Central  Google Scholar 

    74.
    Blondeau M, Benzerara K, Ferard C, Guigner J-M, Poinsot M, Coutaud M, et al. Impact of the cyanobacterium Gloeomargarita lithophora on the geochemical cycles of Sr and Ba. Chem Geol. 2018;483:88–97.
    CAS  Google Scholar 

    75.
    Anbu P, Kang C-H, Shin Y-J, So J-S. Formations of calcium carbonate minerals by bacteria and its multiple applications. Springerplus. 2016;5:250.
    PubMed  PubMed Central  Google Scholar 

    76.
    Cam N, Benzerara K, Georgelin T, Jaber M, Lambert J-F, Poinsot M, et al. Cyanobacterial formation of intracellular Ca-carbonates in undersaturated solutions. Geobiology. 2018;16:49–61.
    CAS  PubMed  Google Scholar 

    77.
    Toro-Nahuelpan M, Müller FD, Klumpp S, Plitzko JM, Bramkamp M, Schüler D. Segregation of prokaryotic magnetosomes organelles is driven by treadmilling of a dynamic actin-like MamK filament. BMC Biol. 2016;14:88.
    PubMed  PubMed Central  Google Scholar 

    78.
    Toro-Nahuelpan M, Giacomelli G, Raschdorf O, Borg S, Plitzko JM, Bramkamp M, et al. MamY is a membrane-bound protein that aligns magnetosomes and the motility axis of helical magnetotactic bacteria. Nat Microbiol. 2019;4:1978–89.
    CAS  PubMed  PubMed Central  Google Scholar 

    79.
    Lefèvre CT, Bennet M, Klumpp S, Faivre D. Positioning the flagellum at the center of a dividing cell to combine bacterial division with magnetic polarity. mBio. 2015;6:e02286.
    PubMed  PubMed Central  Google Scholar 

    80.
    Judd EM, Ryan KR, Moerner WE, Shapiro L, McAdams HH. Fluorescence bleaching reveals asymmetric compartment formation prior to cell division in Caulobacter. Proc Natl Acad Sci USA. 2003;100:8235–40.
    CAS  PubMed  Google Scholar 

    81.
    Klumpp S, Lefèvre CT, Bennet M, Faivre D. Swimming with magnets: From biological organisms to synthetic devices. Phys Rep. 2019;789:1–54.
    Google Scholar 

    82.
    Lefèvre CT, Abreu F, Lins U, Bazylinski DA. Nonmagnetotactic multicellular prokaryotes from low-saline, nonmarine aquatic environments and their unusual negative phototactic behavior. Appl Environ Microbiol. 2010;76:3220–7.
    PubMed  PubMed Central  Google Scholar 

    83.
    Walsby AE. Gas vesicles. Microbiol Rev. 1994;58:94–144.
    CAS  PubMed  PubMed Central  Google Scholar 

    84.
    Walsby A. The properties and buoyancy-providing role of gas vacuoles in trichodesmium ehrenberg. Br Phycol J. 1978;13:103–16.
    Google Scholar 

    85.
    Monteil CL, Menguy N, Prévéral S, Warren A, Pignol D, Lefèvre CT. Accumulation and dissolution of magnetite crystals in a magnetically responsive ciliate. Appl Environ Microbiol. 2018;84:e02865-17.
    CAS  PubMed  PubMed Central  Google Scholar 

    86.
    Monteil CL, Vallenet D, Menguy N, Benzerara K, Barbe V, Fouteau S, et al. Ectosymbiotic bacteria at the origin of magnetoreception in a marine protist. Nat Microbiol. 2019;4:1088–95.
    CAS  PubMed  PubMed Central  Google Scholar 

    87.
    Leão P, Nagard LL, Yuan H, Cypriano J, Silva‐Neto ID, Bazylinski DA, et al. Magnetosome magnetite biomineralization in a flagellated protist: evidence for an early evolutionary origin for magnetoreception in eukaryotes. Environ Microbiol. 2020;22:1495–506.
    PubMed  Google Scholar 

    88.
    Isambert A, Menguy N, Larquet E, Guyot F, Valet J-P. Transmission electron microscopy study of magnetites in a freshwater population of magnetotactic bacteria. Am Miner. 2007;92:621–30.
    CAS  Google Scholar 

    89.
    Taoka A, Kondo J, Oestreicher Z, Fukumori Y. Characterization of uncultured giant rod-shaped magnetotactic Gammaproteobacteria from a freshwater pond in Kanazawa, Japan. Microbiol Read Engl. 2014;160:2226–34.
    CAS  Google Scholar 

    90.
    Monteil CL, Perrière G, Menguy N, Ginet N, Alonso B, Waisbord N, et al. Genomic study of a novel magnetotactic Alphaproteobacteria uncovers the multiple ancestry of magnetotaxis. Environ Microbiol. 2018;20:4415–30.
    CAS  PubMed  Google Scholar  More

  • in

    Keystone taxa indispensable for microbiome recovery

    1.
    Dethlefsen, L. & Relman, D. A. Proc. Natl Acad. Sci. USA 108 (Suppl. 1), 4554–4561 (2011).
    CAS  Article  Google Scholar 
    2.
    Gibbons, S. M., Kearney, S. M., Smillie, C. S. & Alm, E. J. PLoS Comput. Biol. 13, e1005364 (2017).
    Article  Google Scholar 

    3.
    Ng, K. M. et al. Cell Host Microbe 26, 650–665 (2019).
    CAS  Article  Google Scholar 

    4.
    Suez, J. et al. Cell 174, 1406–1423 (2018).
    CAS  Article  Google Scholar 

    5.
    Chng, K. R. et al. Nat. Ecol. Evol. https://doi.org/10.1038/s41559-020-1236-0 (2020).

    6.
    Paine, R. T. Conserv. Biol. 9, 962–964 (1995).
    Article  Google Scholar 

    7.
    Raymond, F. et al. ISME J. 10, 707–720 (2016).
    CAS  Article  Google Scholar 

    8.
    Zaura, E. et al. mBio 6, e01693-15 (2015).
    Article  Google Scholar 

    9.
    Duvallet, C., Gibbons, S. M., Gurry, T., Irizarry, R. A. & Alm, E. J. Nat. Commun. 8, 1784 (2017).
    Article  Google Scholar 

    10.
    Horn, H. S. Annu. Rev. Ecol. Syst. 5, 25–37 (1974).
    Article  Google Scholar  More