More stories

  • in

    An ancient tropical origin, dispersals via land bridges and Miocene diversification explain the subcosmopolitan disjunctions of the liverwort genus Lejeunea

    1.
    Sanmartín, I., Enghoff, H. & Ronquist, F. Patterns of animal dispersal, vicariance and diversification in the Holarctic. Biol. J. Linn. Soc. 73, 345–390 (2001).
    Google Scholar 
    2.
    Sanmartín, I. & Ronquist, F. Southern hemisphere biogeography inferred by event-based models: Plant versus animal patterns. Syst. Biol. 53, 216–243 (2004).
    PubMed  Google Scholar 

    3.
    Shaw, A. J. Biogeographic patterns and cryptic speciation in bryophytes. J. Biogeogr. 28, 253–261 (2001).
    Google Scholar 

    4.
    Feldberg, K. et al. Phylogenetic biogeography of the leafy liverwort Herbertus (Jungermanniales, Herbertaceae) based on nuclear and chloroplast DNA sequence data: correlation between genetic variation and geographical distribution. J. Biogeogr. 34, 688–698 (2007).
    Google Scholar 

    5.
    Shaw, A. J. et al. Intercontinental genetic structure in the amphi-Pacific peatmoss Sphagnum miyabeanum (Bryophyta: Sphagnaceae). Biol. J. Linn. Soc. 111, 17–37 (2014).
    Google Scholar 

    6.
    Vanderpoorten, A., Devos, N., Goffinet, B., Hardy, O. J. & Shaw, A. J. The barriers to oceanic island radiation in bryophytes: Insights from the phylogeogaphy of the moss Grimmia montana. J. Biogeogr. 35, 654–663 (2008).
    Google Scholar 

    7.
    Ono, F. Moss spore can tolerate ultra-high pressure. In High pressure Bioscience (eds Akasaka, K. & Matsuki, H.) 443–466 (Springer, New York, 2015).
    Google Scholar 

    8.
    van Zanten, B. O. Experimental studies on trans-oceanic long-range dispersal of moss spores in the Southern Hemisphere. J. Hattori Bot. Lab. 44, 455–482 (1978).
    Google Scholar 

    9.
    Muñoz, J., Felicísimo, ÁM., Cabezas, F., Burgaz, A. R. & Martínez, I. Wind as a long-distance dispersal vehicle in the Southern Hemisphere. Science 304, 1144–1147 (2004).
    ADS  PubMed  Google Scholar 

    10.
    van Zanten, B. O. & Gradstein, S. R. Experimental dispersal geography of neotropical liverworts. Beih. Nova Hedwigia 90, 41–94 (1988).
    Google Scholar 

    11.
    Kyrkjeeide, M. O. et al. Long-distance dispersal and barriers shape genetic structure of peatmosses (Sphagnum) across the Northern Hemisphere. J. Biogeogr. 43, 1215–1226 (2016).
    Google Scholar 

    12.
    Patiño, J., Goffinet, B., Sim-Sim, M. & Vanderpoorten, A. Is the sword moss (Bryoxiphium) a preglacial Tertiary relict?. Mol. Phylogenet. Evol. 96, 200–206 (2016).
    PubMed  Google Scholar 

    13.
    Bechteler, J. et al. Geographical structure, narrow species ranges, and Cenozoic diversification in a pantropical clade of epiphyllous leafy liverworts. Ecol. Evol. 7, 638–653 (2017).
    PubMed  Google Scholar 

    14.
    Carter, B. E. et al. Species delimitation and biogeography of a southern hemisphere liverwort clade, Frullania subgenus Microfrullania (Frullaniaceae, Marchantiophyta). Mol. Phylogenet. Evol. 107, 16–26 (2017).
    PubMed  Google Scholar 

    15.
    Scheben, A. et al. Multiple transoceanic dispersals and geographical structure in the pantropical leafy liverwort Ceratolejeunea (Lejeuneaceae, Porellales). J. Biogeogr. 43, 1739–1749 (2016).
    Google Scholar 

    16.
    Patiño, J. et al. The anagenetic world of spore-producing land plants. New Phytol. 201, 305–311 (2014).
    PubMed  Google Scholar 

    17.
    Norhazrina, N., Vanderpoorten, A., Hedenäs, L. & Patiño, J. What are the evolutionary mechanisms explaining the similar species richness patterns in tropical mosses? Insights from the phylogeny of the pantropical genus Pelekium. Mol. Phylogenet. Evol. 105, 139–145 (2016).
    PubMed  Google Scholar 

    18.
    Puttik, M. N. et al. The interrelationships of land plants and the nature of the ancestral embryophyte. Curr. Biol. 28, 733–745 (2018).
    Google Scholar 

    19.
    Qiu, Y. L., Cho, Y. R., Cox, J. C. & Palmer, J. D. The gain of three mitochondrial introns identifies liverworts as the earliest land plants. Nature 394, 671–674 (1998).
    ADS  CAS  PubMed  Google Scholar 

    20.
    Wickett, N. J. et al. Phylotranscriptomic analysis of the origin and early diversification of land plants. Proc. Natl. Acad. Sci. U.S.A. 111, E4859–E4868 (2014).
    CAS  PubMed  PubMed Central  Google Scholar 

    21.
    Morris, J. L. et al. The timescale of early land plant evolution. Proc. Natl. Acad. Sci. USA 115, 2274–2283 (2018).
    Google Scholar 

    22.
    Heinrichs, J. et al. Lejeuneaceae (Marchantiophyta) from a species-rich taphocoenosis in Miocene Mexican amber, with a review of liverworts fossilised in amber. Rev. Palaeobot. Palynol. 221, 59–70 (2015).
    Google Scholar 

    23.
    Wilson, R., Heinrichs, J., Hentschel, J., Gradstein, S. R. & Schneider, H. Steady diversification of derived liverworts under tertiary climatic fluctuations. Biol. Lett. 3, 566–569 (2007).
    PubMed  PubMed Central  Google Scholar 

    24.
    Gradstein, S. R. The Liverworts and Hornworts of Colombia and Ecuador 1–880 (Springer, New York, 2020).
    Google Scholar 

    25.
    Lee, G. E. A systematic revision of the genus Lejeunea Lib. (Marchantiophyta: Lejeuneaceae) in Malaysia. Cryptogam. Bryol. 34, 381–484 (2013).
    Google Scholar 

    26.
    Lee, G. E., Bechteler, J. & Heinrichs, J. A revision of unrevised taxon names of Taxilejeunea (Marchantiophyta: Lejeuneaceae) from Asia. Phytotaxa 358, 226–248 (2018).
    Google Scholar 

    27.
    Heinrichs, J. et al. Molecular phylogeny of the leafy liverwort Lejeunea (Porellales): Evidence for a neotropical origin, uneven distribution of sexual systems and insufficient taxonomy. PLoS ONE 8, e82547 (2013).
    ADS  PubMed  PubMed Central  Google Scholar 

    28.
    Heinrichs, J. et al. Crown group Lejeuneaceae and pleurocarpous mosses in early eocene (Ypresian) Indian amber. PLoS ONE 8, e82547 (2016).
    Google Scholar 

    29.
    Tiffney, B. H. The eocene north atlantic land bridge: Its importance in Tertiary and modern phytogeography of the Northern Hemisphere. J. Arnold Arbor. 66, 243–273 (1985).
    Google Scholar 

    30.
    Tiffney, B. H. & Manchester, S. R. The use of geological and paleontological evidence in evaluating plant phylogeographic hypotheses in the Northern Hemisphere tertiary. Int. J. Plant Sci. 162, 3–17 (2001).
    Google Scholar 

    31.
    Brikiatis, L. The De Geer, Thulean and Beringia routes: Key concepts for understanding early Cenozoic biogeography. J. Biogeogr. 41, 1036–1054 (2014).
    Google Scholar 

    32.
    Laenen, B. et al. Increased diversification rates follow shifts to bisexuality in liverworts. New Phytol. 210, 1121–1129 (2016).
    PubMed  Google Scholar 

    33.
    Erwin, D. H. Climate as a driver of evolutionary change. Curr. Biol. 19, R575-583 (2009).
    CAS  PubMed  Google Scholar 

    34.
    Condamine, F. L., Rolland, J. & Morlon, H. Assessing the causes of diversification slowdowns: Temperature-dependent and diversity-dependent models receive equivalent support. Ecol. Lett. 22, 1900–1912 (2019).
    PubMed  Google Scholar 

    35.
    Reiner-Drehwald, M. E. Catalogue of the genus Lejeunea Lib. (Hepaticae) of Latin America. Bryophyt. Bibl. 54, 1–101 (1999).
    Google Scholar 

    36.
    Lee, G. E. et al. The leafy liverwort genus Lejeunea (Porellales, Jungermanniopsida) in Miocene Domican amber. Rev. Palaeobot. Palynol. 238, 144–150 (2017).
    Google Scholar 

    37.
    Lee, G. E., Schäfer-Verwimp, A., Schmidt, A. R. & Heinrichs, J. Transfer of the miocene Lejeunea palaeomexicana grolle to Ceratolejeunea. Cryptogam. Bryol. 36, 335–341 (2015).
    Google Scholar 

    38.
    Denk, T., Grimsson, F., Zetter, R. & Simonarson, L. The Biogeographic history of Iceland – The North Atlantic Land Bridge revisited. in Late Cainozoic floras of Iceland, 15 million years of vegetation and climate history in the northern North Atlantic, 647–666 (Springer, 2011).

    39.
    Graham, A. The role of land bridges, ancient environments, and migrations in the assembly of the North America flora. J. Syst. Evol. 56, 405–429 (2018).
    Google Scholar 

    40.
    Jiang, D. et al. Asymmetric biotic interchange across the Bering land bridge between Eurasia and North America. Natl. Sci. Rev. 6, 739–745 (2019).
    Google Scholar 

    41.
    Morley, R. J. Why are there so many primitive angiosperms in the rain forests of Asia-Australia? In Floral and Faunal Migrations and Evolution in SE Asia-Australia (eds Metcalfe, I. et al.) 185–200 (Swetz & Zeitliner, Lisse, 2001).
    Google Scholar 

    42.
    Couvreur, T. L. P. et al. Early evolutionary history of the flowering plant family Annonaceae: Steady diversification and boreotropical geodispersal. J. Biogeogr. 38, 664–680 (2011).
    Google Scholar 

    43.
    Davis, C. C., Bell, C. D., Mathews, S. & Donoghue, M. J. Laurasian migration explains Gondwanan disjunctions: Evidence from Malpighiaceae. Proc. Natl. Acad. Sci. U.S.A. 99, 6833–6837 (2002).
    ADS  CAS  PubMed  PubMed Central  Google Scholar 

    44.
    Muellner, A. N., Savolainen, V., Samuel, R. & Chase, M. W. The mahogamy family “out of Africa”: Divergence time estimation, global biogeographic patterns inferred from plastid rbcL DNA sequences, extant, and fossil distribution of diversity. Mol. Phylogenet. Evol. 40, 236–250 (2006).
    CAS  PubMed  Google Scholar 

    45.
    Schneider, H. et al. Chloroplast phylogeny of asplenioid ferns based on rbcL and trnL-F spacer sequences (Polypodiidae, Aspleniaceae) and its implications for biogeography. Syst. Bot. 29, 260–274 (2004).
    Google Scholar 

    46.
    Wei, R. et al. Eurasian origin, boreotropical migration and transoceanic dispersal in the pantropical fern genus Diplazium (Athyriaceae). J. Biogeogr. 42, 1809–1819 (2015).
    Google Scholar 

    47.
    Hennequin, S., Hovenkamp, P., Christenhusz, M. J. M. & Schneider, H. Phylogenetics and biogeography of Nephrolepis—A tale of old settlers and young tramps. Bot. J. Linn. Soc. 164, 113–127 (2010).
    Google Scholar 

    48.
    Wen, J., Nie, Z. L. & Ickert-Bond, S. M. Intercontinental disjunctions between eastern Asia and western North America in vascular plants highlight the biogeographic importance of the Bering land bridge from late Cretaceous to Neogene. J. Syst. Evol. 54, 469–490 (2016).
    Google Scholar 

    49.
    Shaw, A. J. et al. Pleistocene survival, regional genetic structure and interspecific gene flow among three northern peat-mosses: Sphagnum inexspectatum, S. orientale and S. miyabeanum. J. Biogeogr. 42, 364–376 (2014).
    Google Scholar 

    50.
    Bosboom, R. E. et al. Late Eocene sea retreat from the Tarim Basin (west China) and concomitant Asian paleoenvironmental change. Palaeogeogr. Palaeoclimatol. Palaeoecol. 299, 385–398 (2011).
    Google Scholar 

    51.
    Chmielewski, M. W. & Eppley, S. M. Forest passerines as a novel dispersal vector of viable bryophyte propagules. Proc. R. Soc. B 286, 20182253 (2019).
    CAS  PubMed  Google Scholar 

    52.
    Heinken, T., Lees, R., Raudnitschka, D. & Rung, S. Epizoochorous dispersal of bryophytes stem fragments by roe deer (Capreoluscapreolus) and wild boar (Susscrofa). J. Bryol. 23, 293–300 (2001).
    Google Scholar 

    53.
    Pérez-Escobar, O. A. et al. Recent origin and rapid speciation of neotropical orchids in the world’s richest plant biodiversity hotspot. New Phytol. 215, 891–905 (2017).
    PubMed  PubMed Central  Google Scholar 

    54.
    Nie, Z. L. et al. Recent assembly of the global herbaceous flora: Evidence from the paper daisies (Asteraceae: Gnaphalieae). New Phytol. 209, 1795–1806 (2016).
    CAS  PubMed  Google Scholar 

    55.
    Morley, R. J. Cretaceous and Tertiary climate change and the past distribution of megathermal rainforests. In Tropical Rainforest Responses to Climate Change (eds Bush, M. B. et al.) 1–34 (Springer, New York, 2011).
    Google Scholar 

    56.
    Jaramillo, C., Rueda, M. J. & Mora, G. Cenozoic plant diversity in the Neotropics. Science 311, 1893–1896 (2006).
    ADS  CAS  PubMed  Google Scholar 

    57.
    Kong, H. et al. Both temperature fluctuations and East Asian monsoons have driven plant diversification in the karst ecosystems from southern China. Mol. Ecol. 26, 6414–6429 (2017).
    PubMed  Google Scholar 

    58.
    Tada, R., Zheng, H. & Clift, D. Evolution and variability of the Asian monsoon and its potential linkage with uplift of the Himalaya and Tibetan Plateau. Prog. Earth Planet Sci. 3, 4–26 (2016).
    ADS  Google Scholar 

    59.
    Proctor, M. C. F. et al. Desiccation-tolerance in bryophytes. Bryologist 110, 595–621 (2007).
    CAS  Google Scholar 

    60.
    McDaniel, S. F., Atwood, J. & Burleigh, J. G. Recurrent evolution of dioecy in bryophytes. Evolution 67, 567–572 (2012).
    PubMed  Google Scholar 

    61.
    van Zanten, B. O. & Pócs, T. Distribution and dispersal of bryophytes. Adv. Bryol. 1, 479–562 (1981).
    Google Scholar 

    62.
    Laenen, B. et al. Geographical range in liverworts: Does sex really matter?. J. Biogeogr. 43, 627–635 (2016).
    Google Scholar 

    63.
    Lee, G. E., Bechteler, J., Pócs, T., Schäfer-Verwimp, A. & Heinrichs, J. Molecular and morphological evidence for an intercontinental range of the liverwort Lejeunea pulchriflora (Marchantiophyta: Lejeuneaceae). Org. Divers. Evol. 16, 13–21 (2016).
    Google Scholar 

    64.
    Hall, T. A. BioEdit: a user-friendly biological sequence alignment editor and analysis program for Windows 95/98/NT. Nucleic Acids Symp. Ser. 41, 95–98 (1999).
    CAS  Google Scholar 

    65.
    Janssen, T. et al. Neoendemism in Madagascan scaly tree ferns results from recent, coincident diversification bursts. Evolution 62, 1876–1889 (2008).
    PubMed  Google Scholar 

    66.
    Katoh, K. & Standley, D. M. MAFFT multiple sequence alignment software version 7: Improvements in performance and usability. Mol. Biol. Evol. 30, 772–780 (2013).
    CAS  PubMed  PubMed Central  Google Scholar 

    67.
    Lanfear, R., Calcott, B., Ho, S. Y. W. & Guindon, S. PartitionFinder: Combined selection of partitioning schemes and substitution models for phylogenetic analyses. Mol. Biol. Evol. 29, 1695–1701 (2012).
    CAS  PubMed  Google Scholar 

    68.
    Stamatakis, A. RAxML Version 8: A tool for phylogenetic analysis and post-analysis of large phylogenies. Bioinformatics 30, 1312–1313 (2014).
    CAS  PubMed  PubMed Central  Google Scholar 

    69.
    Mason-Gamer, R. J. & Kellogg, E. A. Testing for phylogenetic conflict among molecular data sets in the tribe Triticeae (Gramineae). Syst. Biol. 45, 524–545 (1996).
    Google Scholar 

    70.
    Ronquist, F. et al. MrBayes 3.2: Efficient Bayesian phylogenetic inference and model choice across a large model space. Syst. Biol. 61, 539–542 (2012).
    PubMed  PubMed Central  Google Scholar 

    71.
    Rambaut, A., Drummond, A. J., Xie, D., Baele, G. & Suchard, M. A. Posterior summarization in Bayesian phylogenetics using tracer 1.7. Syst. Biol. 67, 901–904 (2018).
    CAS  PubMed  PubMed Central  Google Scholar 

    72.
    Larget, B. & Simon, D. L. Markov chain Monte Carlo algorithms for the Bayesian analysis of phylogenetic trees. Mol. Biol. Evol. 16, 750–759 (1999).
    CAS  Google Scholar 

    73.
    Drummond, A. J., Suchard, M. A., Xie, D. & Rambaut, A. Bayesian phylogenetics with BEAUti and the BEAST 1.7. Mol. Biol. Evol. 29, 1969–1973 (2012).
    CAS  PubMed  PubMed Central  Google Scholar 

    74.
    Nagori, M. L., Khosla, S. C. & Jakhar, S. R. middle eocene ostracoda from the tadkeshwar lignite mine, Camba Basin, Gujarat. J. Geol. Soc. India 81, 514–520 (2013).
    Google Scholar 

    75.
    Benton, M. J. & Donoghue, P. C. J. Paleontological evidence to date the tree of life. Mol. Biol. Evol. 24, 26–53 (2007).
    CAS  PubMed  Google Scholar 

    76.
    Donoghue, P. C. J. & Benton, M. J. Rocks and clocks: Calibrating the tree of life using fossils and molecules. Trends Ecol. Evol. 22, 424–431 (2007).
    PubMed  Google Scholar 

    77.
    Ho, S. Y. W. & Phillips, M. J. Accounting for calibration uncertainty in phylogenetic estimation of evolutionary divergence times. Syst. Biol. 58, 367–380 (2009).
    PubMed  Google Scholar 

    78.
    Graur, D. & Martin, W. Reading the entails of chickens: Molecular timescales of evolution and the illusion of precision. Trends Genet. 20, 80–86 (2004).
    CAS  PubMed  Google Scholar 

    79.
    Reisz, R. R. & Müller, J. Molecular timescales and the fossil record: A paleontological perspective. Trends Genet. 20, 237–241 (2004).
    CAS  PubMed  Google Scholar 

    80.
    Palmer, J. D. Plastid chromosome, structure and evolution. In The Molecular Biology of Plastids (eds Bogorad, L. & Vasil, I. K.) 5–53 (Academic Press, Cambridge, 1991).
    Google Scholar 

    81.
    Villarreal, J. C. & Renner, S. S. Hornwort pyrenoids, a carbon-concentrating mechanism, evolved and were lost at least five times during the last 100 million years. Proc. Natl. Acad. Sci. U.S.A. 109, 18873–18878 (2012).
    ADS  CAS  PubMed  PubMed Central  Google Scholar 

    82.
    Les, D. H., Crawford, D. J., Kimball, R. T., Moody, M. L. & Landolt, E. Biogeography of discontinuously distributed hydrophytes, a molecular appraisal of intercontinental disjunctions. Int. J. Plant Sci. 164, 917–932 (2003).
    Google Scholar 

    83.
    Villarreal, J. C. & Renner, S. S. A review of molecular-clock calibrations and substitution rates in liverworts, mosses, and hornworts, and a timeframe for a taxonomically cleaned-up genus Nothoceros. Mol. Phylogenet. Evol. 78, 25–35 (2014).
    PubMed  Google Scholar 

    84.
    Drummond, A. J., Ho, S. Y. M., Phillips, M. J. & Rambaut, A. Relaxed phylogenetics and dating with confidence. PLoS Biol. 4, e88 (2006).
    PubMed  PubMed Central  Google Scholar 

    85.
    Stadler, T. On incomplete sampling under birth-death models and connections to the sampling-based coalescent. J. Theor. Biol. 261, 58–66 (2009).
    MathSciNet  PubMed  MATH  Google Scholar 

    86.
    Lartillot, N. & Philippe, H. Computing Bayes factor using thermodynamic integration. Syst. Biol. 55, 195–207 (2006).
    PubMed  Google Scholar 

    87.
    Xie, W., Lewis, P. O., Fan, Y., Kuo, L. & Chen, M. H. Improving marginal likelihood estimation for Bayesian phylogenetic model selection. Syst. Biol. 60, 150–160 (2011).
    PubMed  Google Scholar 

    88.
    Baele, G. et al. Improving the accuracy of demographic and molecular clock model comparison while accommodating phylogenetic uncertainty. Mol. Biol. Evol. 29, 2157–2167 (2012).
    CAS  PubMed  PubMed Central  Google Scholar 

    89.
    Baele, G., Lemey, P. & Vansteelandt, S. Make the most of your samples: Bayes factor estimators for high-dimensional models of sequence evolution. BMC Bioinform. 14, 85 (2013).
    Google Scholar 

    90.
    Matzke, N. J. Model selection in historical biogeography reveals that founder-event speciation in a crucial process in island clades. Syst. Biol. 63, 951–970 (2014).
    PubMed  Google Scholar 

    91.
    Ree, R. H. & Smith, S. A. Maximum likelihood inference of geographic range evolution by dispersal, local extinction, and cladogenesis. Syst. Biol. 57, 4–14 (2008).
    PubMed  Google Scholar 

    92.
    Ree, R. H. & Sanmartín, I. Conceptual and statistical problems with the DEC+J model of founder-event speciation and its comparison with DEC via model selection. J. Biogeogr. 45, 741–749 (2018).
    Google Scholar 

    93.
    Condamine, F. L., Rolland, J. & Morlon, H. Macroevolutionary perspectives to environmental change. Ecol. Lett. 16, 72–85 (2013).
    PubMed  Google Scholar 

    94.
    Zachos, J. C., Dickens, G. R. & Zeebe, R. E. An early cenozoic perspective on greenhouse warming and carbon-cycle dynamics. Nature 451, 279–283 (2008).
    ADS  CAS  PubMed  Google Scholar 

    95.
    Maddison, W. P., Midford, P. E. & Otto, S. P. Estimation a binary character’s effect on speciation and extinction. Syst. Biol. 56, 701–710 (2007).
    PubMed  Google Scholar 

    96.
    FitzJohn, R. G. Diversitree: Comparative phylogenetic analyses of diversification in R. Methods Ecol. Evol. 3, 1084–1092 (2012).
    Google Scholar 

    97.
    Rabosky, D. L. & Goldberg, E. E. Model inadequacy and mistaken inferences of trait-dependent speciation. Syst. Biol. 64, 340–355 (2015).
    CAS  PubMed  Google Scholar 

    98.
    Beaulieu, J. M. & O’Meara, B. C. Detecting hidden diversification shifts in models of trait-dependent speciation and extinction. Syst. Biol. 65, 583–601 (2016).
    PubMed  Google Scholar 

    99.
    Caetano, D. S., O’Meara, B. C. & Beaulieu, J. M. Hidden state models improve state-dependent diversification approaches, including biogeographical models. Evolution 72, 2308–2324 (2018).
    PubMed  Google Scholar  More

  • in

    Responses of global waterbird populations to climate change vary with latitude

    1.
    Chen, I. C. et al. Rapid range shifts of species associated with high levels of climate warming. Science 333, 1024–1026 (2011).
    CAS  Google Scholar 
    2.
    Thackeray, S. J. et al. Phenological sensitivity to climate across taxa and trophic levels. Nature 535, 241–245 (2016).
    CAS  Google Scholar 

    3.
    Stephens, P. A. et al. Consistent response of bird populations to climate change on two continents. Science 352, 84–87 (2016).
    CAS  Google Scholar 

    4.
    Pearce-Higgins, J. W. et al. Geographical variation in species’ population responses to changes in temperature and precipitation. Proc. R. Soc. Lond. B 282, 20151561 (2015).
    Google Scholar 

    5.
    Pecl, G. T. et al. Biodiversity redistribution under climate change: impacts on ecosystems and human well-being. Science 355, eaai9214 (2017).
    Google Scholar 

    6.
    Perez, T. M., Stroud, J. T. & Feeley, K. J. Thermal trouble in the tropics. Science 351, 1392–1393 (2016).
    CAS  Google Scholar 

    7.
    Feeley, K. J., Stroud, J. T., Perez, T. M. & Kühn, I. Most ‘global’ reviews of species’ responses to climate change are not truly global. Divers. Distrib. 23, 231–234 (2017).
    Google Scholar 

    8.
    Stroud, J. T. & Thompson, M. E. Looking to the past to understand the future of tropical conservation: the importance of collecting basic data. Biotropica 51, 293–299 (2019).
    Google Scholar 

    9.
    Spooner, F. E. B., Pearson, R. G. & Freeman, R. Rapid warming is associated with population decline among terrestrial birds and mammals globally. Glob. Change Biol. 24, 4521–4531 (2018).
    Google Scholar 

    10.
    IUCN Red List Categories and Criteria: Version 3.1 (IUCN, 2001).

    11.
    Winfree, R. et al. Abundance of common species, not species richness, drives delivery of a real-world ecosystem service. Ecol. Lett. 18, 626–635 (2015).
    Google Scholar 

    12.
    Bowler, D. E. et al. Cross-realm assessment of climate change impacts on species’ abundance trends. Nat. Ecol. Evol. 1, 0067 (2017).
    Google Scholar 

    13.
    Myers-Smith, I. H. et al. Climate sensitivity of shrub growth across the tundra biome. Nat. Clim. Change 5, 887 (2015).
    Google Scholar 

    14.
    Lowe, J. R. et al. Responses of coral reef wrasse assemblages to disturbance and marine reserve protection on the Great Barrier Reef. Mar. Biol. 166, 119 (2019).
    Google Scholar 

    15.
    Martay, B. et al. Impacts of climate change on national biodiversity population trends. Ecography 40, 1139–1151 (2017).
    Google Scholar 

    16.
    Khaliq, I. et al. Global variation in thermal tolerances and vulnerability of endotherms to climate change. Proc. R. Soc. Lond. B 281, 20141097 (2014).
    Google Scholar 

    17.
    Amano, T. et al. Successful conservation of global waterbird populations depends on effective governance. Nature 553, 199–202 (2018).
    CAS  Google Scholar 

    18.
    Ramsar Convention on Wetlands Global Wetland Outlook: State of the World’s Wetlands and Their Services to People (Ramsar Convention Secretariat, 2018).

    19.
    Mac Nally, R. Hierarchical partitioning as an interpretative tool in multivariate inference. Aust. J. Ecol. 21, 224–228 (1996).
    Google Scholar 

    20.
    Cadena, C. D. et al. Latitude, elevational climatic zonation and speciation in New World vertebrates. Proc. R. Soc. Lond. B 279, 194–201 (2012).
    Google Scholar 

    21.
    Jezkova, T. & Wiens, J. J. Rates of change in climatic niches in plant and animal populations are much slower than projected climate change. Proc. R. Soc. Lond. B 283, 20162104 (2016).
    Google Scholar 

    22.
    Wiens, J. J. Climate-related local extinctions are already widespread among plant and animal species. PLoS Biol. 14, e2001104 (2016).
    Google Scholar 

    23.
    Maclean, I. M. D., Rehfisch, M. M., Delany, S. & Robinson, R. A. The Effects of Climate Change on Migratory Waterbirds within the African-Eurasian Flyway (AEWA, 2007).

    24.
    Ockendon, N. et al. Mechanisms underpinning climatic impacts on natural populations: altered species interactions are more important than direct effects. Glob. Change Biol. 20, 2221–2229 (2014).
    Google Scholar 

    25.
    Cahill, A. E. et al. How does climate change cause extinction? Proc. R. Soc. Lond. B 280, 20121890 (2013).
    Google Scholar 

    26.
    Angert, A. L. et al. Do species’ traits predict recent shifts at expanding range edges? Ecol. Lett. 14, 677–689 (2011).
    Google Scholar 

    27.
    Gómez, C., Tenorio, E. A., Montoya, P. & Cadena, C. D. Niche-tracking migrants and niche-switching residents: evolution of climatic niches in New World warblers (Parulidae). Proc. R. Soc. Lond. B 283, 20152458 (2016).
    Google Scholar 

    28.
    Betts, M. G. et al. Synergistic effects of climate and land-cover change on long-term bird population trends of the western USA: a test of modeled predictions. Front. Ecol. Evol. 7, 186 (2019).
    Google Scholar 

    29.
    Kingsford, R. T., Bino, G. & Porter, J. L. Continental impacts of water development on waterbirds, contrasting two Australian river basins: global implications for sustainable water use. Glob. Change Biol. 23, 4958–4969 (2017).
    Google Scholar 

    30.
    Canepuccia, A. D. et al. Waterbird response to changes in habitat area and diversity generated by rainfall in a SW Atlantic coastal lagoon. Waterbirds 30, 541–553 (2007).
    Google Scholar 

    31.
    Delany, S. Guidance on Waterbird Monitoring Methodology: Field Protocol for Waterbird Counting (Wetlands International, 2010).

    32.
    van Roomen, M., van Winden, E. & van Turnhout, C. Analyzing Population Trends at the Flyway Level for Bird Populations Covered by the African Eurasian Waterbird Agreement: Details of a Methodology (SOVON Dutch Centre for Field Ornithology, 2011).

    33.
    LeBaron, G. S. The 115th Christmas Bird Count (National Audubon Society, 2015).

    34.
    Gill, F. & Donsker, D. (eds) IOC World Bird List Version 5.1 (IOC, 2015).

    35.
    Harris, I., Jones, P. D., Osborn, T. J. & Lister, D. H. Updated high-resolution grids of monthly climatic observations—the CRU TS3.10 Dataset. Int. J. Climatol. 34, 623–642 (2014).
    Google Scholar 

    36.
    R Core Team R: A language and Environment for Statistical Computing (R Foundation for Statistical Computing, 2017).

    37.
    Zeileis, A. & Grothendieck, G. zoo: S3 infrastructure for regular and irregular time series. J. Stat. Softw. 14, 6 (2005).
    Google Scholar 

    38.
    Walsh, C. & Nally, R. M. hier.part: Hierarchical Partitioning: R package v.1.0-4 (R Foundation for Statistical Computing, 2013).

    39.
    Link, W. A. & Sauer, J. R. Seasonal components of avian population change: joint analysis of two large-scale monitoring programs. Ecology 88, 49–55 (2007).
    Google Scholar 

    40.
    Stroud, J. T. & Feeley, K. J. Neglect of the tropics is widespread in ecology and evolution: a comment on Clarke et al. Trends Ecol. Evol. 32, 626–628 (2017).
    Google Scholar 

    41.
    Amano, T. & Sutherland, W. J. Four barriers to the global understanding of biodiversity conservation: wealth, language, geographical location and security. Proc. R. Soc. Lond. B 280, 20122649 (2013).
    Google Scholar 

    42.
    Turner, A. G. & Annamalai, H. Climate change and the South Asian summer monsoon. Nat. Clim. Change 2, 587–595 (2012).
    Google Scholar 

    43.
    van de Pol, M. & Wright, J. A simple method for distinguishing within- versus between-subject effects using mixed models. Anim. Behav. 77, 753–758 (2009).
    Google Scholar 

    44.
    de Villemereuil, P., Wells, J., Edwards, R. & Blomberg, S. Bayesian models for comparative analysis integrating phylogenetic uncertainty. BMC Evol. Biol. 12, 102 (2012).
    Google Scholar 

    45.
    Abadi, F. et al. Importance of accounting for phylogenetic dependence in multi-species mark-recapture studies. Ecol. Modell. 273, 236–241 (2014).
    Google Scholar 

    46.
    Pagel, M. Inferring the historical patterns of biological evolution. Nature 401, 877–884 (1999).
    CAS  Google Scholar 

    47.
    Freckleton, R. P., Harvey, P. H. & Pagel, M. Phylogenetic analysis and comparative data: a test and review of evidence. Am. Nat. 160, 712–726 (2002).
    CAS  Google Scholar 

    48.
    Donoghue, M. J. & Ackerly, D. D. Phylogenetic uncertainties and sensitivity analyses in comparative biology. Phil. Trans. R. Soc. Lond. B 351, 1241–1249 (1996).
    Google Scholar 

    49.
    Jetz, W. et al. The global diversity of birds in space and time. Nature 491, 444–448 (2012).
    CAS  Google Scholar 

    50.
    Spiegelhalter, D., Thomas, A., Best, N. & Lunn, D. OpenBUGS User Manual Version 3.2.3 (2014).

    51.
    Sturtz, S., Ligges, U. & Gelman, A. R2WinBUGS: a package for running WinBUGS from R. J. Stat. Softw. 12, 3 (2005).
    Google Scholar 

    52.
    The BirdLife Checklist of the Birds of the World Version 7 (BirdLife International, 2014); http://www.birdlife.org/datazone/userfiles/file/Species/Taxonomy/BirdLife_Checklist_Version_70.zip

    53.
    Paradis, E., Claude, J. & Strimmer, K. APE: analyses of phylogenetics and evolution in R language. Bioinformatics 20, 289–290 (2004).
    CAS  Google Scholar 

    54.
    Dowle, M. & Srinivasan, A. data.table: Extension of ‘data.frame’: R package v.1.10.4-3 (R Foundation for Statistical Computing, 2017).

    55.
    Wickham, H., Francois, R., Henry, L. & Muller, K. dplyr: A Grammar of Data Manipulation: R package v.0.7.4 (R Foundation for Statistical Computing, 2017).

    56.
    Wickham, H. ggplot2: Elegant Graphics for Data Analysis (Springer-Verlag, 2016).

    57.
    Auguie, B. gridExtra: Miscellaneous Functions for “grid” Graphics: R package v.2.3 (R Foundation for Statistical Computing, 2017).

    58.
    Brownrigg, R. mapdata: Extra Map Databases: R package v.2.3.0 (R Foundation for Statistical Computing, 2018).

    59.
    Wickham, H. The split-apply-combine strategy for data analysis. J. Stat. Softw. 40, 1 (2011).
    Google Scholar 

    60.
    Urbanek, S. png: Read and Write PNG Images: R package v.0.1-7 (R Foundation for Statistical Computing, 2013).

    61.
    Neuwirth, E. RColorBrewer: ColorBrewer Palettes: R package v.1.1-2 (R Foundation for Statistical Computing, 2014).

    62.
    Bivand, R., Keitt, T. & Rowlingson, B. rgdal: Bindings for the Geospatial Data Abstraction Library: R package v.1.2-8 (R Foundation for Statistical Computing, 2017).

    63.
    Hijmans, R. J. raster: Geographic Data Analysis and Modeling: R package v.2.6-7 (R Foundation for Statistical Computing, 2017).

    64.
    Garnier, S. viridis: Default Color Maps from ‘matplotlib’: R package v.0.5.1 (R Foundation for Statistical Computing, 2018).

    65.
    Nadeau, C. P., Urban, M. C. & Bridle, J. R. Climates past, present, and yet-to-come shape climate change vulnerabilities. Trends Ecol. Evol. 32, 786–800 (2017).
    Google Scholar 

    66.
    Breed, G. A., Stichter, S. & Crone, E. E. Climate-driven changes in northeastern US butterfly communities. Nat. Clim. Change 3, 142–145 (2012).
    Google Scholar 

    67.
    Valladares, F. et al. The effects of phenotypic plasticity and local adaptation on forecasts of species range shifts under climate change. Ecol. Lett. 17, 1351–1364 (2014).
    Google Scholar 

    68.
    Hawkins, B. A. et al. Energy, water, and broad-scale geographic patterns of species richness. Ecology 84, 3105–3117 (2003).
    Google Scholar 

    69.
    Sexton, J. P., McIntyre, P. J., Angert, A. L. & Rice, K. J. Evolution and ecology of species range limits. Annu. Rev. Ecol. Evol. Syst. 40, 415–436 (2009).
    Google Scholar 

    70.
    Mills, S. C. et al. European butterfly populations vary in sensitivity to weather across their geographical ranges. Glob. Ecol. Biogeogr. 26, 1374–1385 (2017).
    Google Scholar 

    71.
    Johnston, A. et al. Observed and predicted effects of climate change on species abundance in protected areas. Nat. Clim. Change 3, 1055–1061 (2013).
    Google Scholar 

    72.
    Faragó, S. & Hangya, K. Effects of water level on waterbird abundance and diversity along the middle section of the Danube River. Hydrobiologia 697, 15–21 (2012).
    Google Scholar 

    73.
    Kleijn, D. et al. Waterbirds increase more rapidly in Ramsar-designated wetlands than in unprotected wetlands. J. Appl. Ecol. 51, 289–298 (2014).
    Google Scholar 

    74.
    Slatyer, R. A., Hirst, M. & Sexton, J. P. Niche breadth predicts geographical range size: a general ecological pattern. Ecol. Lett. 16, 1104–1114 (2013).
    Google Scholar 

    75.
    Estrada, A., Morales-Castilla, I., Caplat, P. & Early, R. Usefulness of species traits in predicting range shifts. Trends Ecol. Evol. 31, 190–203 (2016).
    Google Scholar 

    76.
    Dhanjal-Adams, K. L. et al. Distinguishing local and global correlates of population change in migratory species. Divers. Distrib. 25, 797–808 (2019).
    Google Scholar 

    77.
    Wilman, H. et al. EltonTraits 1.0: species-level foraging attributes of the world’s birds and mammals. Ecology 95, 2027 (2014).
    Google Scholar  More

  • in

    Differences in epidemic spread patterns of norovirus and influenza seasons of Germany: an application of optical flow analysis in epidemiology

    1.
    Iuliano, A. D. et al. Estimates of global seasonal influenza-associated respiratory mortality: a modelling study. Lancet 391, 1285–1300. https://doi.org/10.1016/s0140-6736(17)33293-2 (2018).
    Article  PubMed  Google Scholar 
    2.
    Ahmed, S. M. et al. Global prevalence of norovirus in cases of gastroenteritis: a systematic review and meta-analysis. Lancet Infect. Dis. 14, 725–730. https://doi.org/10.1016/s1473-3099(14)70767-4 (2014).
    Article  PubMed  Google Scholar 

    3.
    Robert-Koch-Institute (Germany). Infektionsepidemiologisches Jahrbuch für 2018.

    4.
    Saunders-Hastings, P. & Krewski, D. Reviewing the history of pandemic influenza: Understanding patterns of emergence and transmission. Pathogens 5, 66. https://doi.org/10.3390/pathogens5040066 (2016).
    Article  PubMed Central  Google Scholar 

    5.
    de Picoli Junior, S. et al. Spreading patterns of the influenza a (h1n1) pandemic. PLoS ONE 6, e17823. https://doi.org/10.1371/journal.pone.0017823 (2011).
    ADS  CAS  Article  PubMed  PubMed Central  Google Scholar 

    6.
    Lofgren, E., Fefferman, N. H., Naumov, Y. N., Gorski, J. & Naumova, E. N. Influenza seasonality: Underlying causes and modeling theories. J. Virol. 81, 5429–5436. https://doi.org/10.1128/jvi.01680-06 (2006).
    Article  PubMed  PubMed Central  Google Scholar 

    7.
    Bjørnstad, O. N. & Viboud, C. Timing and periodicity of influenza epidemics. Proc. Natl. Acad. Sci. 113, 12899–12901. https://doi.org/10.1073/pnas.1616052113 (2016).
    CAS  Article  PubMed  Google Scholar 

    8.
    Liu, X.-X. et al. Seasonal pattern of influenza activity in a subtropical city, China, 2010–2015. Sci. Rep. 7, https://doi.org/10.1038/s41598-017-17806-z (2017).

    9.
    Bozick, B. A. & Real, L. A. The role of human transportation networks in mediating the genetic structure of seasonal influenza in the united states. PLOS Pathog. 11, e1004898. https://doi.org/10.1371/journal.ppat.1004898 (2015).
    CAS  Article  PubMed  PubMed Central  Google Scholar 

    10.
    Dahlgren, F. S. et al. Patterns of seasonal influenza activity in U.S. core-based statistical areas, described using prescriptions of oseltamivir in medicare claims data. Epidemics 26, 23–31. https://doi.org/10.1016/j.epidem.2018.08.002 (2019).
    Article  PubMed  Google Scholar 

    11.
    Lopman, B. et al. Increase in viral gastroenteritis outbreaks in europe and epidemic spread of new norovirus variant. Lancet 363, 682–688. https://doi.org/10.1016/s0140-6736(04)15641-9 (2004).
    Article  PubMed  Google Scholar 

    12.
    Bloom-Feshbach, K. et al. Latitudinal variations in seasonal activity of influenza and respiratory syncytial virus (RSV): A global comparative review. PLoS ONE 8, e54445. https://doi.org/10.1371/journal.pone.0054445 (2013).
    ADS  CAS  Article  PubMed  PubMed Central  Google Scholar 

    13.
    Ahmed, S. M., Lopman, B. A. & Levy, K. A systematic review and meta-analysis of the global seasonality of norovirus. PLoS ONE 8, e75922. https://doi.org/10.1371/journal.pone.0075922 (2013).
    ADS  CAS  Article  PubMed  PubMed Central  Google Scholar 

    14.
    Petrova, V. N. & Russell, C. A. The evolution of seasonal influenza viruses. Nat Rev Microbiol 16, 47–60. https://doi.org/10.1038/nrmicro.2017.118 (2018).
    CAS  Article  PubMed  Google Scholar 

    15.
    Su, S., Fu, X., Li, G., Kerlin, F. & Veit, M. Novel influenza d virus: Epidemiology, pathology, evolution and biological characteristics. Virulence 8, 1580–1591. https://doi.org/10.1080/21505594.2017.1365216 (2017).
    Article  PubMed  PubMed Central  Google Scholar 

    16.
    Conrad, O. et al. System for automated geoscientific analyses (SAGA) v. 2.1.4.. Geosci. Model Dev. 8, 1991–2007. https://doi.org/10.5194/gmd-8-1991-2015 (2015).
    ADS  Article  Google Scholar 

    17.
    BKG. Geobasis-de/bkg dl-de/by-2-0. Database. http://www.bkg.bund.de (2019).

    18.
    OriginLab Corporation, Northampton. Origin(Pro) 2019b. Website https://www.originlab.com/ (2019).

    19.
    Rajao, D. S., Vincent, A. L. & Perez, D. R. Adaptation of human influenza viruses to swine. Front. Vet. Sci. 5, https://doi.org/10.3389/fvets.2018.00347 (2019).

    20.
    Brankston, G., Gitterman, L., Hirji, Z., Lemieux, C. & Gardam, M. Transmission of influenza a in human beings. Lancet Infect. Dis. 7, 257–265. https://doi.org/10.1016/s1473-3099(07)70029-4 (2007).
    Article  PubMed  Google Scholar 

    21.
    Ward, J. W. Twelve diseases that changed our world. Emerg. Infect. Dis. 14, 866a–8866. https://doi.org/10.3201/eid1405.080072 (2008).
    Article  Google Scholar 

    22.
    Rao, S., Nyquist, A.-C. & Stillwell, P. C. 27 – influenza. In Wilmott, R. W. et al. (eds.) Kendig’s Disorders of the Respiratory Tract in Children (Ninth Edition), 460–465, https://doi.org/10.1016/B978-0-323-44887-1.00027-4 (2019).

    23.
    Pauly, M. D., Procario, M. & Lauring, A. S. The mutation rates and mutational bias of influenza a virus. eLifehttps://doi.org/10.1101/110197 (2017).

    24.
    Gregorio, E. D. & Rappuoli, R. From empiricism to rational design: a personal perspective of the evolution of vaccine development. Nat. Rev. Immunol. 14, 505–514. https://doi.org/10.1038/nri3694 (2014).
    CAS  Article  PubMed  PubMed Central  Google Scholar 

    25.
    Shah, M. P. & Hall, A. J. Norovirus illnesses in children and adolescents. Infect. Dis. Clin. N. Am. 32, 103–118. https://doi.org/10.1016/j.idc.2017.11.004 (2018).
    Article  Google Scholar 

    26.
    Patel, M. M. et al. Systematic literature review of role of noroviruses in sporadic gastroenteritis. Emerg Infect Dis 14, 1224–31. https://doi.org/10.3201/eid1408.071114 (2008).
    Article  PubMed  PubMed Central  Google Scholar 

    27.
    Lanata, C. F. et al. Global causes of diarrheal disease mortality in children More

  • in

    Intracellular amorphous Ca-carbonate and magnetite biomineralization by a magnetotactic bacterium affiliated to the Alphaproteobacteria

    1.
    Weiner S, Dove PM. An overview of biomineralization processes and the problem of the vital effect. Rev Miner Geochem. 2003;54:1–29.
    CAS  Google Scholar 
    2.
    Benzerara K, Miot J, Morin G, Ona-Nguema G, Skouri-Panet F, Férard C. Significance, mechanisms and environmental implications of microbial biomineralization. Comptes Rendus Geosci. 2011;343:160–7.
    CAS  Google Scholar 

    3.
    Lowenstam HA. Minerals formed by organisms. Science. 1981;211:1126–31.
    CAS  PubMed  Google Scholar 

    4.
    Blakemore R. Magnetotactic bacteria. Science. 1975;190:377–9.
    CAS  PubMed  Google Scholar 

    5.
    Uebe R, Schüler D. Magnetosome biogenesis in magnetotactic bacteria. Nat Rev Microbiol. 2016;14:621–37.
    CAS  PubMed  Google Scholar 

    6.
    Grant CR, Wan J, Komeili A. Organelle formation in bacteria and archaea. Annu Rev Cell Dev Biol. 2018;34:217–38.
    CAS  PubMed  Google Scholar 

    7.
    Schewiakoff W. Über einen neuen bacterienahnlichen organismus des Süsswassers. Heidelb Habilit. 1893;1–38.

    8.
    West GS, Griffiths BM. The lime-sulphur bacteria of the genus hillhousia. Ann Bot. 1913;os-27:83–91.
    Google Scholar 

    9.
    Head IM, Gray ND, Clarke KJ, Pickup RW, Jones JG. The phylogenetic position and ultrastructure of the uncultured bacterium Achromatium oxaliferum. Microbiol Read Engl. 1996;142(Pt 9):2341–54.
    CAS  Google Scholar 

    10.
    Salman V, Yang T, Berben T, Klein F, Angert E, Teske A. Calcite-accumulating large sulfur bacteria of the genus Achromatium in Sippewissett Salt Marsh. ISME J. 2015;9:2503–14.
    CAS  PubMed  PubMed Central  Google Scholar 

    11.
    Mansor M, Hamilton TL, Fantle MS, Macalady J. Metabolic diversity and ecological niches of Achromatium populations revealed with single-cell genomic sequencing. Front Microbiol. 2015;6:822.
    PubMed  PubMed Central  Google Scholar 

    12.
    Gray N, Head I. The family achromatiaceae. In: Rosenberg E, DeLong EF, Lory S, Stackebrandt E, Thompson F, editors. The Prokaryotes: Gammaproteobacteria. Berlin, Heidelberg: Springer; 2014. p. 1–14.

    13.
    Head IM, Gray ND, Howarth R, Pickup RW, Clarke KJ, Jones JG. Achromatium oxaliferum Understanding the Unmistakable. In: Schink B, editor. Advances in microbial ecology. Boston, MA: Springer US; 2000. p. 1–40.

    14.
    Babenzien H-D, Sass H. The sediment-water interface—habitat of the unusual bacterium Achromatium oxaliferum. Adv Limnol. 1996;48:247–51.
    Google Scholar 

    15.
    Gray ND, Pickup RW, Jones JG, Head IM. Ecophysiological evidence that achromatium oxaliferum is responsible for the oxidation of reduced sulfur species to sulfate in a freshwater sediment. Appl Environ Microbiol. 1997;63:1905–10.
    CAS  PubMed  PubMed Central  Google Scholar 

    16.
    Gray ND, Howarth R, Pickup RW, Jones JG, Head IM. Substrate uptake by uncultured bacteria from the genus Achromatium determined by microautoradiography. Appl Environ Microbiol. 1999;65:5100–6.
    CAS  PubMed  PubMed Central  Google Scholar 

    17.
    Babenzien H-D. Achromatium oxaliferum and its ecological niche. Zentralblatt Für Mikrobiol. 1991;146:41–49.
    Google Scholar 

    18.
    Gray ND, Comaskey D, Miskin IP, Pickup RW, Suzuki K, Head IM. Adaptation of sympatric Achromatium spp. to different redox conditions as a mechanism for coexistence of functionally similar sulphur bacteria. Environ Microbiol. 2004;6:669–77.
    CAS  PubMed  Google Scholar 

    19.
    Couradeau E, Benzerara K, Gérard E, Moreira D, Bernard S, Brown GE, et al. An early-branching microbialite cyanobacterium forms intracellular carbonates. Science. 2012;336:459–62.
    CAS  PubMed  Google Scholar 

    20.
    Cam N, Benzerara K, Georgelin T, Jaber M, Lambert J-F, Poinsot M, et al. Selective Uptake of Alkaline Earth Metals by Cyanobacteria Forming Intracellular Carbonates. Environ Sci Technol. 2016;50:11654–62.
    CAS  PubMed  Google Scholar 

    21.
    Blondeau M, Sachse M, Boulogne C, Gillet C, Guigner J-M, Skouri-Panet F, et al. Amorphous calcium carbonate granules form within an intracellular compartment in calcifying cyanobacteria. Front Microbiol. 2018;9:1768.
    PubMed  PubMed Central  Google Scholar 

    22.
    Li J, Margaret Oliver I, Cam N, Boudier T, Blondeau M, Leroy E, et al. Biomineralization patterns of intracellular carbonatogenesis in cyanobacteria: molecular hypotheses. Minerals. 2016;6:10.

    23.
    Benzerara K, Skouri-Panet F, Li J, Férard C, Gugger M, Laurent T, et al. Intracellular Ca-carbonate biomineralization is widespread in cyanobacteria. Proc Natl Acad Sci USA. 2014;111:10933–8.
    CAS  PubMed  Google Scholar 

    24.
    Bradley JA, Daille LK, Trivedi CB, Bojanowski CL, Stamps BW, Stevenson BS, et al. Carbonate-rich dendrolitic cones: insights into a modern analog for incipient microbialite formation, Little Hot Creek, Long Valley Caldera, California. NPJ Biofilms Microbiomes. 2017;3:32.
    PubMed  PubMed Central  Google Scholar 

    25.
    Moreira D, Tavera R, Benzerara K, Skouri-Panet F, Couradeau E, Gérard E, et al. Description of Gloeomargarita lithophora gen. nov., sp. nov., a thylakoid-bearing, basal-branching cyanobacterium with intracellular carbonates, and proposal for Gloeomargaritales ord. nov. Int J Syst Evol Microbiol. 2017;67:653–8.
    CAS  PubMed  PubMed Central  Google Scholar 

    26.
    Mehta N, Benzerara K, Kocar BD, Chapon V. Sequestration of radionuclides radium-226 and strontium-90 by cyanobacteria forming intracellular calcium carbonates. Environ Sci Technol. 2019;53:12639–47.
    CAS  PubMed  Google Scholar 

    27.
    Ponce-Toledo RI, Deschamps P, López-García P, Zivanovic Y, Benzerara K, Moreira D. An early-branching freshwater cyanobacterium at the origin of plastids. Curr Biol CB. 2017;27:386–91.
    CAS  PubMed  Google Scholar 

    28.
    la Rivière JWM, Schmidt K. Morphologically Conspicuous Sulfur-Oxidizing Eubacteria. In: Starr MP, Stolp H, Trüper HG, Balows A, Schlegel HG, editors. The prokaryotes: a handbook on habitats, isolation, and identification of bacteria. Berlin Heidelberg: Springer; 1981. p. 1037–48.

    29.
    Gray ND. The unique role of intracellular calcification in the genus achromatium. In: Shively JM, editor. Inclusions in prokaryotes. Berlin, Heidelberg: Springer; 2006. p. 299–309.

    30.
    Miot J, Jezequel D, Benzerara K, Cordier L, Rivas-Lamelo S, Skouri-Panet F, et al. Mineralogical diversity in lake pavin: connections with water column chemistry and biomineralization processes. Minerals. 2016;6:UNSP 24.
    Google Scholar 

    31.
    Podda F, Michard G. Mesure colorimétrique de l’alcalinité. Comptes Rendus Acad Sci – Sér II. 1994;319:651–7.
    CAS  Google Scholar 

    32.
    Sarazin G, Michard G, Prevot F. A rapid and accurate spectroscopic method for alkalinity measurements in sea water samples. Water Res. 1999;33:290–4.
    CAS  Google Scholar 

    33.
    Zeyen N, Daval D, Lopez-Garcia P, Moreira D, Gaillardet J, Benzerara K. Geochemical conditions allowing the formation of modern lacustrine microbialites. Procedia Earth Planet Sci. 2017;17:380–3.
    Google Scholar 

    34.
    Purgstaller B, Goetschl KE, Mavromatis V, Dietzel M. Solubility investigations in the amorphous calcium magnesium carbonate system. CrystEngComm. 2018;21:155–64.
    PubMed  PubMed Central  Google Scholar 

    35.
    Schüler D. The biomineralization of magnetosomes in Magnetospirillum gryphiswaldense. Int Microbiol J Span Soc Microbiol. 2002;5:209–14.
    Google Scholar 

    36.
    Lane DJ. 16S/23S sequencing. In: Stackebrandt E, Goodfellow M, editor. Nucleic acid techniques in bacterial systematics. New York: John Wiley & Sons; 1991. p. 115–75.

    37.
    Altschul SF, Madden TL, Schaffer AA, Zhang JH, Zhang Z, Miller W, et al. Gapped BLAST and PSI-BLAST: a new generation of protein database search programs. Nucleic Acids Res. 1997;25:3389–402.
    CAS  PubMed  PubMed Central  Google Scholar 

    38.
    Edgar RC. UCHIME2: improved chimera prediction for amplicon sequencing. bioRxiv 2016. https://www.biorxiv.org/content/10.1101/074252v1.

    39.
    Gascuel O. BIONJ: an improved version of the NJ algorithm based on a simple model of sequence data. Mol Biol Evol. 1997;14:685–95.
    CAS  PubMed  Google Scholar 

    40.
    Katoh K, Standley DM. MAFFT multiple sequence alignment software version 7: improvements in performance and usability. Mol Biol Evol. 2013;30:772–80.
    CAS  PubMed  PubMed Central  Google Scholar 

    41.
    Talavera G, Castresana J. Improvement of phylogenies after removing divergent and ambiguously aligned blocks from protein sequence alignments. Syst Biol. 2007;56:564–77.
    CAS  PubMed  Google Scholar 

    42.
    Nguyen L-T, Schmidt HA, von Haeseler A, Minh BQ. IQ-TREE: a fast and effective stochastic algorithm for estimating maximum-likelihood phylogenies. Mol Biol Evol. 2015;32:268–74.
    CAS  PubMed  PubMed Central  Google Scholar 

    43.
    Kalyaanamoorthy S, Minh BQ, Wong TKF, von Haeseler A, Jermiin LS. ModelFinder: fast model selection for accurate phylogenetic estimates. Nat Methods. 2017;14:587–9.
    CAS  PubMed  PubMed Central  Google Scholar 

    44.
    Pernthaler J, Glockner FO, Schonhuber W, Amann R. Fluorescence in situ hybridization (FISH) with rRNA-targeted oligonucleotide probes. Methods Microbiol Vol 30. 2001;30:207–26.
    CAS  Google Scholar 

    45.
    Cole JR, Chai B, Marsh TL, Farris RJ, Wang Q, Kulam SA, et al. The Ribosomal Database Project (RDP-II): previewing a new autoaligner that allows regular updates and the new prokaryotic taxonomy. Nucleic Acids Res. 2003;31:442–3.
    CAS  PubMed  PubMed Central  Google Scholar 

    46.
    Rivas-Lamelo S, Benzerara K, Lefèvre CT, Jézéquel D, Menguy N, Viollier E, et al. Magnetotactic bacteria as a new model for P sequestration in the ferruginous Lake Pavin. Geochem Perspect Lett. 2017;5:35–41.
    Google Scholar 

    47.
    Bolger AM, Lohse M, Usadel B. Trimmomatic: a flexible trimmer for Illumina sequence data. Bioinforma Oxf Engl. 2014;30:2114–20.
    CAS  Google Scholar 

    48.
    Seemann T. Prokka: rapid prokaryotic genome annotation. Bioinformatics. 2014;30:2068–9.
    CAS  PubMed  Google Scholar 

    49.
    Parks DH, Imelfort M, Skennerton CT, Hugenholtz P, Tyson GW. CheckM: assessing the quality of microbial genomes recovered from isolates, single cells, and metagenomes. Genome Res. 2015;25:1043–55.
    CAS  PubMed  PubMed Central  Google Scholar 

    50.
    Belkhou R, Stanescu S, Swaraj S, Besson A, Ledoux M, Hajlaoui M, et al. HERMES: a soft X-ray beamline dedicated to X-ray microscopy. J Synchrotron Radiat. 2015;22:968–79.
    PubMed  Google Scholar 

    51.
    Swaraj S, Belkhou R, Stanescu S, Rioult M, Besson A, Hitchcock AP. Performance of the HERMES beamline at the carbon K-edge. J Phys Conf Ser. 2017;849:012046.
    Google Scholar 

    52.
    Le Nagard L, Zhu X, Yuan H, Benzerara K, Bazylinski DA, Fradin C, et al. Magnetite magnetosome biomineralization in Magnetospirillum magneticum strain AMB-1: A time course study. Chem Geol. 2019;530:119348.
    Google Scholar 

    53.
    Cosmidis J, Benzerara K. Soft x-ray scanning transmission spectro-microscopy. In: Elaine DiMasi, Laurie B. Gower, editors. Biomineralization sourcebook: characterization of biominerals and biomimetic materials. CRC Press; 2014.

    54.
    Lefèvre CT. Genomic insights into the early-diverging magnetotactic bacteria. Environ Microbiol. 2016;18:1–3.
    PubMed  Google Scholar 

    55.
    Benzerara K, Yoon TH, Tyliszczak T, Constantz B, Spormann AM, Brown GE. Scanning transmission X-ray microscopy study of microbial calcification. Geobiology. 2004;2:249–59.
    Google Scholar 

    56.
    Michard G, Viollier E, Jézéquel D, Sarazin G. Geochemical study of a crater lake: Pavin Lake, France — Identification, location and quantification of the chemical reactions in the lake. Chem Geol. 1994;115:103–15.
    CAS  Google Scholar 

    57.
    Konstantinidis KT, Rosselló-Móra R, Amann R. Uncultivated microbes in need of their own taxonomy. ISME J. 2017;11:2399–406.
    PubMed  PubMed Central  Google Scholar 

    58.
    Cai H, Wang Y, Xu H, Yan Z, Jia B, Majid Maszenan A, et al. Niveispirillum cyanobacteriorum sp. nov., a nitrogen-fixing bacterium isolated from cyanobacterial aggregates in a eutrophic lake. Int J Syst Evol Microbiol. 2015;65:2537–41.
    CAS  PubMed  Google Scholar 

    59.
    Zhang D, Yang H, Zhang W, Huang Z, Liu S-J. Rhodocista pekingensis sp. nov., a cyst-forming phototrophic bacterium from a municipal wastewater treatment plant. Int J Syst Evol Microbiol. 2003;53:1111–4.
    CAS  PubMed  Google Scholar 

    60.
    Chung EJ, Park TS, Kim KH, Jeon CO, Lee H-I, Chang W-S, et al. Nitrospirillum irinus sp. nov., a diazotrophic bacterium isolated from the rhizosphere soil of Iris and emended description of the genus Nitrospirillum. Antonie Van Leeuwenhoek. 2015;108:721–9.
    CAS  PubMed  Google Scholar 

    61.
    Bashan Y, Holguin G, de-Bashan LE. Azospirillum-plant relationships: physiological, molecular, agricultural, and environmental advances (1997-2003). Can J Microbiol. 2004;50:521–77.
    CAS  PubMed  Google Scholar 

    62.
    Guo Q, Zhou Z, Zhang L, Zhang C, Chen M, Wang B, et al. Skermanella pratensis sp. nov., isolated from meadow soil, and emended description of the genus Skermanella. Int J Syst Evol Microbiol. 2020;70:1605–9.
    PubMed  Google Scholar 

    63.
    Lefèvre CT, Bazylinski DA. Ecology, diversity, and evolution of magnetotactic bacteria. Microbiol Mol Biol Rev. 2013;77:497–526.
    PubMed  PubMed Central  Google Scholar 

    64.
    Lin W, Bazylinski DA, Xiao T, Wu L-F, Pan Y. Life with compass: diversity and biogeography of magnetotactic bacteria. Environ Microbiol. 2014;16:2646–58.
    CAS  PubMed  Google Scholar 

    65.
    Bazylinski DA, Dean AJ, Williams TJ, Long LK, Middleton SL, Dubbels BL. Chemolithoautotrophy in the marine, magnetotactic bacterial strains MV-1 and MV-2. Arch Microbiol. 2004;182:373–87.
    CAS  PubMed  Google Scholar 

    66.
    Schultheiss D, Handrick R, Jendrossek D, Hanzlik M, Schüler D. The presumptive magnetosome protein Mms16 is a poly(3-hydroxybutyrate) granule-bound protein (phasin) in Magnetospirillum gryphiswaldense. J Bacteriol. 2005;187:2416–25.
    CAS  PubMed  PubMed Central  Google Scholar 

    67.
    Lefèvre CT, Bernadac A, Yu-Zhang K, Pradel N, Wu L-F. Isolation and characterization of a magnetotactic bacterial culture from the Mediterranean Sea. Environ Microbiol. 2009;11:1646–57.
    PubMed  Google Scholar 

    68.
    Qian X-X, Liu J, Menguy N, Li J, Alberto F, Teng Z, et al. Identification of novel species of marine magnetotactic bacteria affiliated with Nitrospirae phylum. Environ Microbiol Rep. 2019;11:330–7.
    CAS  PubMed  Google Scholar 

    69.
    Lefèvre CT, Frankel RB, Abreu F, Lins U, Bazylinski DA. Culture-independent characterization of a novel, uncultivated magnetotactic member of the Nitrospirae phylum. Environ Microbiol. 2011;13:538–49.
    PubMed  Google Scholar 

    70.
    Cox BL, Popa R, Bazylinski DA, Lanoil B, Douglas S, Belz A, et al. Organization and elemental analysis of P-, S-, and Fe-rich inclusions in a population of freshwater magnetococci. Geomicrobiol J. 2002;19:387–406.
    CAS  Google Scholar 

    71.
    Byrne ME, Ball DA, Guerquin-Kern J-L, Rouiller I, Wu T-D, Downing KH, et al. Desulfovibrio magneticus RS-1 contains an iron- and phosphorus-rich organelle distinct from its bullet-shaped magnetosomes. Proc Natl Acad Sci USA. 2010;107:12263–8.
    CAS  PubMed  Google Scholar 

    72.
    Keim CN, Solórzano G, Farina M, Lins U. Intracellular inclusions of uncultured magnetotactic bacteria. Int Microbiol J Span Soc Microbiol. 2005;8:111–7.
    CAS  Google Scholar 

    73.
    Schulz-Vogt HN, Pollehne F, Jürgens K, Arz HW, Beier S, Bahlo R, et al. Effect of large magnetotactic bacteria with polyphosphate inclusions on the phosphate profile of the suboxic zone in the Black Sea. ISME J. 2019;13:1198–208.
    CAS  PubMed  PubMed Central  Google Scholar 

    74.
    Blondeau M, Benzerara K, Ferard C, Guigner J-M, Poinsot M, Coutaud M, et al. Impact of the cyanobacterium Gloeomargarita lithophora on the geochemical cycles of Sr and Ba. Chem Geol. 2018;483:88–97.
    CAS  Google Scholar 

    75.
    Anbu P, Kang C-H, Shin Y-J, So J-S. Formations of calcium carbonate minerals by bacteria and its multiple applications. Springerplus. 2016;5:250.
    PubMed  PubMed Central  Google Scholar 

    76.
    Cam N, Benzerara K, Georgelin T, Jaber M, Lambert J-F, Poinsot M, et al. Cyanobacterial formation of intracellular Ca-carbonates in undersaturated solutions. Geobiology. 2018;16:49–61.
    CAS  PubMed  Google Scholar 

    77.
    Toro-Nahuelpan M, Müller FD, Klumpp S, Plitzko JM, Bramkamp M, Schüler D. Segregation of prokaryotic magnetosomes organelles is driven by treadmilling of a dynamic actin-like MamK filament. BMC Biol. 2016;14:88.
    PubMed  PubMed Central  Google Scholar 

    78.
    Toro-Nahuelpan M, Giacomelli G, Raschdorf O, Borg S, Plitzko JM, Bramkamp M, et al. MamY is a membrane-bound protein that aligns magnetosomes and the motility axis of helical magnetotactic bacteria. Nat Microbiol. 2019;4:1978–89.
    CAS  PubMed  PubMed Central  Google Scholar 

    79.
    Lefèvre CT, Bennet M, Klumpp S, Faivre D. Positioning the flagellum at the center of a dividing cell to combine bacterial division with magnetic polarity. mBio. 2015;6:e02286.
    PubMed  PubMed Central  Google Scholar 

    80.
    Judd EM, Ryan KR, Moerner WE, Shapiro L, McAdams HH. Fluorescence bleaching reveals asymmetric compartment formation prior to cell division in Caulobacter. Proc Natl Acad Sci USA. 2003;100:8235–40.
    CAS  PubMed  Google Scholar 

    81.
    Klumpp S, Lefèvre CT, Bennet M, Faivre D. Swimming with magnets: From biological organisms to synthetic devices. Phys Rep. 2019;789:1–54.
    Google Scholar 

    82.
    Lefèvre CT, Abreu F, Lins U, Bazylinski DA. Nonmagnetotactic multicellular prokaryotes from low-saline, nonmarine aquatic environments and their unusual negative phototactic behavior. Appl Environ Microbiol. 2010;76:3220–7.
    PubMed  PubMed Central  Google Scholar 

    83.
    Walsby AE. Gas vesicles. Microbiol Rev. 1994;58:94–144.
    CAS  PubMed  PubMed Central  Google Scholar 

    84.
    Walsby A. The properties and buoyancy-providing role of gas vacuoles in trichodesmium ehrenberg. Br Phycol J. 1978;13:103–16.
    Google Scholar 

    85.
    Monteil CL, Menguy N, Prévéral S, Warren A, Pignol D, Lefèvre CT. Accumulation and dissolution of magnetite crystals in a magnetically responsive ciliate. Appl Environ Microbiol. 2018;84:e02865-17.
    CAS  PubMed  PubMed Central  Google Scholar 

    86.
    Monteil CL, Vallenet D, Menguy N, Benzerara K, Barbe V, Fouteau S, et al. Ectosymbiotic bacteria at the origin of magnetoreception in a marine protist. Nat Microbiol. 2019;4:1088–95.
    CAS  PubMed  PubMed Central  Google Scholar 

    87.
    Leão P, Nagard LL, Yuan H, Cypriano J, Silva‐Neto ID, Bazylinski DA, et al. Magnetosome magnetite biomineralization in a flagellated protist: evidence for an early evolutionary origin for magnetoreception in eukaryotes. Environ Microbiol. 2020;22:1495–506.
    PubMed  Google Scholar 

    88.
    Isambert A, Menguy N, Larquet E, Guyot F, Valet J-P. Transmission electron microscopy study of magnetites in a freshwater population of magnetotactic bacteria. Am Miner. 2007;92:621–30.
    CAS  Google Scholar 

    89.
    Taoka A, Kondo J, Oestreicher Z, Fukumori Y. Characterization of uncultured giant rod-shaped magnetotactic Gammaproteobacteria from a freshwater pond in Kanazawa, Japan. Microbiol Read Engl. 2014;160:2226–34.
    CAS  Google Scholar 

    90.
    Monteil CL, Perrière G, Menguy N, Ginet N, Alonso B, Waisbord N, et al. Genomic study of a novel magnetotactic Alphaproteobacteria uncovers the multiple ancestry of magnetotaxis. Environ Microbiol. 2018;20:4415–30.
    CAS  PubMed  Google Scholar  More

  • in

    Keystone taxa indispensable for microbiome recovery

    1.
    Dethlefsen, L. & Relman, D. A. Proc. Natl Acad. Sci. USA 108 (Suppl. 1), 4554–4561 (2011).
    CAS  Article  Google Scholar 
    2.
    Gibbons, S. M., Kearney, S. M., Smillie, C. S. & Alm, E. J. PLoS Comput. Biol. 13, e1005364 (2017).
    Article  Google Scholar 

    3.
    Ng, K. M. et al. Cell Host Microbe 26, 650–665 (2019).
    CAS  Article  Google Scholar 

    4.
    Suez, J. et al. Cell 174, 1406–1423 (2018).
    CAS  Article  Google Scholar 

    5.
    Chng, K. R. et al. Nat. Ecol. Evol. https://doi.org/10.1038/s41559-020-1236-0 (2020).

    6.
    Paine, R. T. Conserv. Biol. 9, 962–964 (1995).
    Article  Google Scholar 

    7.
    Raymond, F. et al. ISME J. 10, 707–720 (2016).
    CAS  Article  Google Scholar 

    8.
    Zaura, E. et al. mBio 6, e01693-15 (2015).
    Article  Google Scholar 

    9.
    Duvallet, C., Gibbons, S. M., Gurry, T., Irizarry, R. A. & Alm, E. J. Nat. Commun. 8, 1784 (2017).
    Article  Google Scholar 

    10.
    Horn, H. S. Annu. Rev. Ecol. Syst. 5, 25–37 (1974).
    Article  Google Scholar  More

  • in

    A preliminary study of mirror-induced self-directed behaviour on wildlife at the Royal Belum Rainforest Malaysia

    1.
    Gallup, G. G. Jr. Chimpanzees: self-recognition. Science 167, 86–87 (1970).
    ADS  Google Scholar 
    2.
    Gallup, G. G. Jr., McClure, M. K., Hill, S. D. & Bundy, R. A. Capacity for self-recognition in differentially reared chimpanzees. Psychol. Rec. 21, 69–74 (1971).
    Google Scholar 

    3.
    Gallup, G. G. Jr. et al. Further reflections on self-recognition in primates. Anim. Behav. 50, 1525–1532 (1995).
    Google Scholar 

    4.
    Prior, H., Schwarz, A. & Gunturkun, O. Mirror-induced behaviour in the magpie (pica pica): evidence of self-recognition. PLoS Biol. 6, e202 (2008).
    PubMed  PubMed Central  Google Scholar 

    5.
    De Groot, B. & Cheyne, S. M. Does mirror enrichment improve primate well-being?. Anim. Welf. 25(2), 163–170 (2016).
    Google Scholar 

    6.
    Ma, X. et al. Giant pandas failed to show mirror self-recognition. Anim. Cogn. 18(3), 713–721 (2015).
    PubMed  Google Scholar 

    7.
    Plotnik, J. M., de Waal, F. B. M. & Reiss, D. Self-recognition in an Asian elephant. PNAS 103(45), 17053–17057 (2006).
    ADS  CAS  PubMed  Google Scholar 

    8.
    Reiss, D. & Marino, L. Mirror self-recognition in the bottlenose dolphin: a case of cognitive convergence. PNAS 98, 5937–5942 (2001).
    ADS  CAS  PubMed  Google Scholar 

    9.
    Leavens, D. A., Aureli, F. & Hopkins, W. D. Scratching and cognitive stress: performance and reinforcement effects on hand use, scratch type, and afferent cutaneous pathways during computer cognitive testing by a chimpanzee (Pan troglodytes). Am. J. Primatol. 42, 126–127 (1997).
    Google Scholar 

    10.
    Leavens, D. A., Aureli, F., Hopkins, W. D. & Hyatt, C. W. Effects of cognitive challenge on self-directed behaviors by chimpanzees (Pan troglodytes). Am. J. Primatol. 55(1), 1–14 (2001).
    CAS  PubMed  PubMed Central  Google Scholar 

    11.
    Heschl, A. & Burkart, J. A new mark test for mirror self-recognition in non-human primates. Primates 47, 187–198 (2006).
    PubMed  Google Scholar 

    12.
    Hecht, E. E., Mahovetz, L. M., Preuss, T. M. & Hopkins, W. D. A neuroanatomical predictor of mirror self-recognition in chimpanzees. Soc. Cogn. Affect. Neurosci. 12(1), 37–48 (2017).
    CAS  PubMed  Google Scholar 

    13.
    Parker, S. T. A developmental approach to the origins of self- recognition in great apes. Hum. Evol. 6, 435–449 (1991).
    Google Scholar 

    14.
    Hafandi, A. et al. The preliminary study of mirror self-recognition (MSR) on Malayan sunbear (Helarctos malayanus). J. Vet. Malaysia 30(1), 23–25 (2018).
    Google Scholar 

    15.
    Povinelli, D. J. Failure to find self-recognition in Asian elephants (Elephas maximus) in contrast to their use of mirror cues to discover hidden food. J. Comp. Psychol. 103(2), 122–131 (1989).
    Google Scholar 

    16.
    Cammaerts, M.-C. & Cammaerts, R. Are ants (hymenoptera, formicidae) capable of selfrecognition?. J. Sci. 5, 521–532 (2015).
    Google Scholar 

    17.
    Kohda, M. et al. If a fish can pass the mark test, what are the implications for consciousness and self-awareness testing in animals?. PLoS Biol. 17(2), e3000021 (2019).
    CAS  PubMed  PubMed Central  Google Scholar 

    18.
    Buniyaadi, A., Taufque, S. K. T. & Kumar, V. Self-recognition in corvids: evidence from the mirror-mark test in Indian house crows (Corvus splendens). J. Ornithol. 161, 341–350 (2020).
    Google Scholar 

    19.
    Schwabe, K. A. et al. Creation of Malaysia’s Royal Belum State Park: a case study of conservation in a developing country. J. Environ. Dev. 24(1), 54–81 (2015).
    Google Scholar 

    20.
    Matsubayashi, H. et al. Importance of natural licks for mammals in Bornean Inland tropical rainforest. Ecol. Res. 22, 742 (2007).
    Google Scholar 

    21.
    Lazarus, B. A. et al. Topographical differences impacting wildlife dynamics at natural saltlicks in the Royal Belum rainforest. Asian J. Conserv. Biol. 8(2), 97–101 (2019).
    Google Scholar 

    22.
    Oli, M. K. & Jacobson, H. A. Vocalizations of barking deer (Muntiacus muntjac). Mammalia 59(2), 179–186 (1995).
    Google Scholar 

    23.
    Odden, M. & Wegge, P. Predicting spacing behavior and mating systems of solitary cervids: a study of hog deer and Indian muntjac. Zoology 110, 261–270 (2007).
    PubMed  Google Scholar 

    24.
    Pokharel, K. & Chalise, M. K. Status and distribution pattern of barking deer (Muntiacus muntjac Zimmermann) in Hemja VDC, Kaski. Nepal J. Sci. Technol. 11, 223–228 (2010).
    Google Scholar 

    25.
    de Waal, F. B. M., Dindo, M., Freeman, C. A. & Hall, M. J. The monkey in the mirror: hardly a stranger. PNAS 102(32), 11140–11147 (2005).
    ADS  PubMed  Google Scholar 

    26.
    Morgan, K. N. & Tromborg, C. T. Sources of stress in captivity. Appl. Anim. Behav. Sci. 102(3), 262–302 (2007).
    Google Scholar 

    27.
    Tobler, M. W., Carrillo-Percategui, S. E. & Powell, G. Habitat use, activity patterns and use of mineral licks by five species of ungulate in south-eastern Peru. J. Trop. Ecol. 25, 261–270 (2009).
    Google Scholar 

    28.
    Cruz, P., Paviolo, A., Bo, R. F., Thompson, J. J. & Di Bitetti, M. S. Daily activity patterns and habitat use of the lowland tapir (Tapirus terrestris) in the Atlantic Forest. Mamm. Biol. 79, 376–383 (2014).
    Google Scholar 

    29.
    Houpt, K. A. & McDonnell, S. M. Equine stereotypies. Comp. Cont. Educ. Pract. Vet. 15, 1265–1271 (1993).
    Google Scholar 

    30.
    Arumugam, K. A., Buesching, C. D. & Annavi, G. Lip licking behavior in captive Malayan tapirs (Tapirus indicus): Manifestation of a stereotypic or stress related response?. Int. J. Recent Adv. Multidiscip. Res. 6(3), 4724–4727 (2019).
    Google Scholar 

    31.
    Hranchuk, K. B. & Webster, W. G. Interocular transfer of lateral mirror-image discrimination by cats. J. Comp. Physiol. Psychol. 88(1), 368–372 (1975).
    CAS  PubMed  Google Scholar 

    32.
    Rayan, M. D. & Linkie, M. Conserving tigers in Malaysia: a science-driven approach for eliciting conservation policy change. Biol. Cons. 184, 18–26 (2015).
    Google Scholar 

    33.
    Breton, G. & Barrot, S. Influence of enclosure size on the distances covered and paced by captive tigers (Panthera tigris). Appl. Anim. Behav. Sci. 154, 66–75 (2014).
    Google Scholar 

    34.
    Biolatti, C. et al. Behavioural analysis of captive tigers (Panthera tigris): a water pool makes the difference. Appl. Anim. Behav. Sci. 174, 173–180 (2016).
    Google Scholar 

    35.
    Williams, E., Carter, A., Hall, C. & Bremner-Harrison, S. Social interactions in zoo-housed elephants: factors affecting social relationships. Animals 9, 747 (2019).
    Google Scholar 

    36.
    Williams, M. F. Primate encephalization and intelligence. Med. Hypotheses 58(4), 284–290 (2002).
    CAS  PubMed  Google Scholar 

    37.
    Anderson, J. R. & Gallup, G. G. Jr. Mirror self-recognition: a review and critique of attemps to promote and engineer self-recognition in primates. Primates 56, 317–326 (2015).
    PubMed  Google Scholar 

    38.
    Deaner, R. O., Isler, K., Burkart, J. & van Schaik, C. Overall brain size and not encephalization quotient, best predicts cognitive ability across non-human primates. Brain Behav. Evol. 70, 115–124 (2007).
    PubMed  Google Scholar 

    39.
    Matiju, J. et al. Absolute, not relative brain size correlates with sociality in ground squirrels. Proc. Biol. Sci. 30(283), 1827 (2016).
    Google Scholar 

    40.
    Caravaggi, A. et al. A review of camera trapping for conservation behaviour research. Conservation 3(3), 109–122 (2017).
    Google Scholar  More

  • in

    Public institutions’ capacities regarding climate change adaptation and risk management support in agriculture: the case of Punjab Province, Pakistan

    Climate change and agriculture: an institutional perspective
    In Pakistan, public institutions are considered among the key stakeholders in irrigated agriculture due to their importance in providing a range of services, i.e., surface irrigation, on-farm water management, pest and disease management, advisory, credit, and marketing services12. Hence it is pertinent to understand how these institutions perceive climate variability and its impacts in the study area.
    Regarding observation on changes in climate, the majority of the office bearers reported substantial changes in temperature, rainfall, and cropping season expansion over the past 2 decades (Table 3). Notably, a significant increase in temperature and a decrease in rainfall is observed. Specifically, many respondents were of the view that summer seasons have become warmer. In contrast, monsoon rains, which account for two-thirds of the annual precipitation, has significantly decreased (shifting to late summer months). These observations are in line with the historical temperature and rainfall trends in the study area1,3. Further, respondents also indicated a variation in the duration of both Rabi (winter) and Kharif (summer) cropping seasons. An official from DoAE described that during the past few years, winter wheat cultivation is merged nearly a month to the summer season due to which the next crop faces delays in sowing and subsequent yield losses.
    Table 3 Perceived climate changes and impacts at the farm level.
    Full size table

    In terms of climate-induced impact, the findings show that most of the effects reported are biophysical (droughts, floods, and water resources) and biological (insect, diseases, and weeds) in nature. Officials from PID and OFWM reported increasing water scarcity due to the reduced surface water flows and critical depletion of groundwater reserves that lead to the overall reduction in cultivated area under rice crop. Further, increased incidents of extreme temperature during early crop growth stages and intensive rainfall during harvesting seasons have severely affected rice yield. Heavy rain in late monsoon season leads to flooding in plain areas of Punjab and poses a severe threat to the sustainability of agriculture in the province.
    Further, officials indicated that high temperatures and heatwaves have resulted in an increase in crop water requirements due to high evapotranspiration. Similarly, changing patterns of rainfall and extreme temperature events have increased the presence of fungal diseases, insect and weed attacks. Similar findings have been reported by a recent study showing a significant increase in the incidence and severity of climate-induced biological and biophysical risk in Pakistan5. Moreover, an official from DoAE reported a 100–150 kg/ha in general and 150–200 kg/ ha (in worst case scenario) reduction in wheat and rice yields due to increases in weed germination. Several respondents revealed that due to excessive use of insecticides and pesticides, aiming to control pests and diseases, the penetration of various harmful chemicals has alarmingly increased in both soil and water and resulted in degradation of water and soil quality.
    In general, various respondents also highlighted the increase in unrest among farmers due to decreasing profit margins on account of the increasing cost of production and productivity decline due to climate change. Many farmers have been switched to non-farm businesses, and this lacking interest may further risk the national goal of sustainable food self-sufficiency and security.
    Institutional capacities regarding CCA/ CRM in agriculture
    This study further analyzed the capabilities of agricultural institutions using seven indicators-based index approach. Results of the selected indicators are given in Table 4, which shows a medium level of preparedness and capacities of the selected institutions. Specifically, the results of each indicator are explained in the following.
    Table 4 Institutional Capacities Index (ICI).
    Full size table

    Perception and knowledge
    Literature shows that stakeholders’ perception and knowledge of climate change and its impact are among the key factors that define the level of intentions to make efforts regarding CCA/CRM19. These attributes allow an actor to formulate practices based on their knowledge and beliefs, which leads towards adequate risk management support19,37. Hence, officials’ perception and understanding of climate change impacts and risk management strategies were selected as the first indicator of institutional capacities assessment. Results (Table 4) show that overall, this indicator’s index maintained a good score, which is highest amongst all indicators. Specifically, most of the respondents had a significant perception of climate change and its induced impacts at the farm level. However, their knowledge and beliefs on adaptation strategies and their effectiveness are limited. Most of the respondents with negative beliefs about climate change adaptation were mainly from research and credit institutions. As reported by Farani37, a vigilant understanding of climate change is imperative to implement risk management mechanisms. Hence these findings imply to mainstream the climate change agenda across all agricultural institutions as they are part of the same institutional chain. This may lead to an equal understanding of climate-smart practices and hence improve institutions’ tendency to design and implement risk management mechanisms at the local level. A study reports similar findings on public health institutions, which also indicated the positive behavior of supervisors as an essential determinant of effective risk management services38.
    Training and expertise
    Institution’s technical resources, such as professional training and expertise, are also considered as crucial elements while dealing with climate hazards19. Such training helps office bearers to be well prepared and respond to catastrophes39. Current findings show that public institutions attained a medium level of training and expertise, as only 39% of the respondents possessed some knowledge regarding CCA/CRM. Similarly, two-third of the officials did not have any prior experience in climate risk management. Similarly, results show that only 12% of the officials received appropriate training related to CCA and CRM. However, one of the officials reported that since the last few years, some understanding of climate change had been developed at their department, and more officials are being invited for climate change-related training. Low training and expertise of agricultural office bearers in dealing with climatic risks may be translated into little support from public institutions to farming communities and hence may further increase the vulnerability of agriculture. Roosli39 was also of the view that skilled human resource is a pivotal attribute of institutions’ risk management capacity, as they have exceptional ability to provide technical aid to the disaster-prone communities by integrating and effectively using available resources. Fideldman19 has also raised the importance of staff’s skills in terms of integrating and implementing knowledge and mobilizing available resources against the environmental uncertainties. Further, professional knowledge and expertise not only improve the emergency response against climatic catastrophes but also improve the farmers’ and peers’ skills39.
    Human resources
    According to the Gupta’s Adaptive Capacity Wheel (ACW) framework, human resource has critical significance in determining the institutions’ abilities while dealing with climate risks16. Following ACW, human resources were also chosen as an indicator to assess institutional capacities. According to the findings, the HR index of the institutions reported a deficient value of 0.44. Sub-indicators further revealed that only 31% of institutions had sufficient human resources, and particularly only 26% of the institutions had adequate human resources to meet the operational requirement dealing with risk management emergencies. Officials from DoAE, OFWM, and PID indicated a severe shortage of skilled human resources to meet climate change challenges in the field operations. An official from PID described that, in case of any extreme climate event such as canal breakage, windstorm, or extreme hailing, sometimes quick response and technical support was not provided or possible due to limited skilled human resources.
    These findings revealed that lack of human resources in public institutions might lead to limited risk management support and hence may further increase the vulnerability of farming communities to climate change. These results are supported by a study conducted in Congo, where forest institutions lacked in human resources in terms of climate change response15. Gupta was also of this view that institutions with adequate human resources have a greater ability to mobilize climate change adaption and risk management processes in agriculture. These findings conclude that sufficient human resources in public institutions are the prerequisite of active risk management support.
    Plan and priorities
    Institutions’ priorities, planning, and emergency response mechanism are widely reported as important factors in dealing with the environmental uncertainties10,17,38. According to our findings, public institutions attained a satisfactory score regarding this indicator (0.66). Specifically, one-third of the office barriers indicated climate change as an important agenda for their department. Similarly, in terms of programs and initiatives regarding climate change, 42% of the institutions reported that they are carrying related initiatives and programs. While one-third of the respondents were of the view that they are planning to add CCA/CRM in their priorities. Further, 35% of the institutions, mainly the field institutions such as PID, DoAE, DoAF, and CRS, indicated having an active emergency response mechanism dealing with climatic catastrophes.
    Wenger40 reported that effective risk management response is closely associated with emergency planning within the institutions. Huq10, has also stressed the significance of defined objectives and plan among the key factors of successful implementation of adaptation and risk management response to flood disasters. Hence our study implies further strengthening the planning infrastructure by removing existing gaps, which will increase the institution’s abilities in dealing with environmental catastrophes.
    Coordination and collaboration
    A wide range of literature shows that coordination between different stakeholders is among the critical determinants of the institution’s adaptive and risk management capacities15,16,28 and often support collective action and decision making regarding climate change adaptation15,41. The CCI value of 0.45 showed that institutions had a minimal level of coordination with other stakeholders. For instance, in terms of community interaction, one-third of the institutions reported direct coordination with the farmers, indicating a reduced level of cooperation between the farmers and institutions. The officials who indicated coordination with farmers were mainly from the field institutions (PID, OFWM, DoAE, and SWTL). However, the research institutions had also acknowledged the significance of institution-community coordination. An official from a research institution (FTAR) stated that it is very pertinent for all institutions to have interactive communication with the farmers. However, most of the research institutions have a deficient level of community coordination, due to which most of the contingency plans and alerts (which usually go through the filed institutions) do not reach to the farmers timely. There is a need to develop such a communication system that could connect agricultural institutions and the farmers on a single communication platform.
    In terms of inter-departmental collaboration, 27% of the respondents indicate that their respective institutions have a coordination mechanism with other public sector institutions. In comparison, merely 6% of them stated coordination with the private sector’s institutions. However, a decent level of coordination (63%) was indicated within the same institution. A minimal level of coordination, particularly between public and private institutions, is worrisome, as non-governmental bodies of Pakistan, which are already at the emerging stage, could face further marginalization12. Literature also advocates smooth coordination between the public and private organizations for effective adaptation and risk management support in agriculture16. Brown15 stated that a well-coordinated network between the actors of the same institution chain is critical for an active response to a challenge like climate change. Hence these findings conclude that a well-coordinated institutional setup may be more capable in coping with agricultural hazards.
    Financial resources
    Financial resources are also widely quoted among the significant determinants of institutional adaptive capacity16,28. Financial resources of the institution facilitate the actors’ preparedness and emergency response-ability towards natural disasters42. However, in the current study, the financial resources of the agricultural institutions were severely deficient (FRI 0.36). Findings revealed that only 15% of the institutions indicated funds availability for the CCA/CRM related operations. A significant majority of the officials (85%) reported the insufficiency of the financial resources available for climate change. Overall, a gap of nearly 40% was reported in terms of funds availability and requirement.
    The respondents who indicated the availability of funds, particularly for CCA/CRM, were mainly from the research intuitions such as FTAR, SWTR, PWQP. Even though field institutions such as DoAE, DoAF, OFWM, PID have significant importance to carry community-level activities did not indicate enough financial support specified for CCA/CRM related operation. For instance, an official from DoAE reported a severe shortage of funds for launching emergency awareness campaigns and training seminars during the period of extreme weather events such as droughts, floods, heavy rains, and insect attacks. Due to financial constraints, such activities have been restricted to a few official visits or small gatherings in a few villages.
    Apart from the field institutions, some credit providing institutions have also raised similar concerns. An official from ZTBL mentioned that in some situations when a cropping season faces unexpected yield losses due to rainfall or insect and disease attack. Farmers, particularly the smallholders, desperately need a loan to cultivate the next crop, and due to the unavailability of credit for such emergencies, the institution is unable to offer credit to these farmers.
    Our findings are in line with the studies conducted in Cambodia28 and Cameron15, where institutions reported similar challenges while implementing climate response strategies. As argued by Gupta16, institutions’ financial resources are among the foremost determinants of effective adaptive and risk management in agriculture. These findings imply that the institutions, which are farmers’ first line of defense in an emergency, need to be strengthened in such a significant resource.
    Physical resources
    Access to adequate physical resources is considered as another critical component to define their role in supporting farmers to manage climate risks at the community level15,43. In terms of physical resources, availability of vehicles, machinery (harvesters, bulldozers, cranes), communication equipment, and hardware are considered for the capacity assessment of field and market institutions. In contrast, instruments, apparatuses, and laboratory equipment are considered for research institutions.
    According to the results, the critical index value of the physical resources (0.39) indicates insufficient availability of infrastructure and physical resources in public institutions. Results of sub-indicators further revealed a vast gap (51%) between the availability and actual requirement of these resources. Only 21% of institutions indicated enough availability of machinery and hardware for extreme climatic conditions and emergencies. These figures are alarming as physical resources are pivotal elements while providing community support against catastrophes. Field intuitions, particularly the DoAE, DoAF, and PID, have indicated the critical shortage of these resources.
    The officials from DoAE and PID have specifically indicated the lack of vehicles as the critical constraint limiting their efficiency while conducting the field operations. An official from DoAE revealed that most of the available vehicles are either very old or non-functional, which means filed staff has to wait hours and days to complete assigned field operations. Similar challenges were reported in terms of communication infrastructure as the officials from the DoAE highlighted a huge communication gap between farmers and their department due to the unavailability of contemporary communication tools. Previous studies43 have also reported similar findings of lacking logistic and communication resources and urged the provision of these resources for capacitated community support regarding natural disasters. In a nutshell, the physical resources of agricultural institutions are deficient in terms of meeting catastrophic challenges and seek serious consideration from concerned authorities.
    Institutional capacities across different types of institutions
    To have a comprehensive understanding of institutional capacities across different types of Institutions, ICI was compared by categorizing the agricultural institutions into three categories, i.e., research, field, and market and credit institutions. Cumulative ICI values (Fig. 1) across these categories show that research institutions have attained higher index value, while credit and market, and field institutions are among the low capacitated institutions. The ICI values further show that perception and knowledge were high in case of field institutions, which could be due to their more field experience and interaction with farming communities. Such communication enables them to have a better understanding of climatic risks and farm level CCA/CRM practices. Moreover, financial resources showed the lowest value across all types of institutions. In terms of plans and priorities regarding CCA/CRM, research institutions maintained a higher index value.
    Figure 1

    Institutional capacities index (ICI) across different categories of institutions.

    Full size image

    In contrast, field, and credit and market institutions lacked in this indicator, highlighting the need for planning and prioritizing climate change agenda among these institutions. In terms of physical resources, which are regarded among the most critical resources, revealed alarming indications as both research and field institutions had a deficient amount of machinery and hardware resources. These findings imply that focus should be given to these institutions as they play a more crucial role (in terms of community support) when compared to credit and market institutions. Field institutions were also found lacking in terms of human resources, which could constraint the efficiency of these institutions in managing farm-level activities.
    Gaps and solutions
    After exploring institutions’ capacities in the selected indicators, officials were asked to indicate existing gaps and related solutions, which are essential to increase the capacities in the context of climate governance and CCA/CRM in agriculture. The following gaps and solutions were identified and prioritized.
    Need for an effective administrative mechanism
    An effective administration and coordination mechanism has been listed as a top priority by most of the office-bearers to enhance the institutional capacity in managing climate risks. Officials also highlighted the importance of ensuring effective administrative mechanisms to implement and monitor the individual and collective performances in ongoing projects. That will improve the output of resources being invested at various levels. Fidelman and Madan19 have also indicated a sound administrative system among the critical components of the institution’s capacity dealing with CCA/CRM. Bettini raised the importance of constructing such a rule system that identifies accountability and defines boundaries and hierarchy in water management institutions18. Hence it is needed to develop or customize such institutional arrangements that are interactive, effectively administered, and target oriented.
    Need for physical and financial resources
    The second suggested measure is the provision of physical and financial resources required to support farm-level adaptation. Officials indicated that the current state of these resources is not enough to meet the institutional operational requirements to conduct CCA/CRM related operations. Brown has also identified similar gaps among the Congo’s forest institutions dealing with climate risk management15; however, Grecksch14 reported a higher level of physical and financial resources among the German institutions. Officials suggested that an appropriate amount of financial support should be specified for extreme climate events, along with emphasizing the need for communication and logistic resource. Literature also ranks these resources among the pertinent element of effective risk management44. The institutions equipped with such crucial resources would be more likely to overcome the climatic challenges. For instance, at the farm level, well-equipped institutions may have a better ability to reach farmers’ knowledge as well as technical requirements, to reduce the actual and potential losses. Similarly, the research institutions having contemporary technology apparatuses and instruments may create better innovation, i.e., climate-resilient farm inputs (seeds, water-efficient measures) that will ultimately reduce the farmers’ vulnerability of climate risks.
    Need for professional training
    Thirdly, a considerable portion of the respondent indicated the training need of staff regarding CCA and CRM. Institutions reported that human resources generally in the non-administrative and research positions, while particularly in field operations, are in much need of training. As indicated by Roosli that stakeholders may enhance the skilled humane resource by launching a series of training and disaster management programs that may lead to effective risk management response39. This study stresses that departmental training courses could be launched where indigenous and research knowledge could be integrated. Field staff should particularly be trained regarding emergency response in extreme climate events such as excessive rains, floods, wind storms. At the same time, the researcher’s skills should be enhanced in terms of the development of climate-smart practices and modeling farm-level risks and vulnerability.
    Need for enhanced support
    The last indicated challenge by the public institutions was the lack of support from the higher authorities. Institutions urged the need for a shared understanding and realization of agricultural vulnerability to climate change at both policy and higher administrative levels, which may put the energy into the local level. Similar capacity recommendations were identified by Brown15, where institutions reported a need for a common understanding between the stakeholders of forest communities for effective climate response. More

  • in

    Signatures of local adaptation in the spatial genetic structure of the ascidian Pyura chilensis along the southeast Pacific coast

    1.
    Cárdenas, L., Castilla, J. C. & Viard, F. A phylogeographical analysis across three biogeographical provinces of the south-eastern Pacific: the case of the marine gastropod Concholepas concholepas. J. Biogeogr. 36, 969–981 (2009).
    Google Scholar 
    2.
    Kelly, R. P. & Palumbi, S. R. Genetic structure among 50 species of the northeastern pacific rocky intertidal community. PLoS ONE 5, e8594 (2010).
    ADS  PubMed  PubMed Central  Google Scholar 

    3.
    Haye, P. A. et al. Phylogeographic structure in benthic marine invertebrates of the southeast pacific coast of Chile with differing dispersal potential. PLoS ONE 9, e88613 (2014).
    ADS  PubMed  PubMed Central  Google Scholar 

    4.
    Hellberg, M. E., Burton, R. S., Neigel, J. E. & Palumbi, S. R. Genetic assessment of connectivity among marine populations. B. Mar. Sci. 70, 273–290 (2002).
    Google Scholar 

    5.
    Shanks, A. L., Grantham, B. A. & Carr, M. H. Propagule dispersal distance and the size and spacing of marine reserves. Ecol. Appl. 13, 159–169 (2003).
    Google Scholar 

    6.
    Marko, P. B. ‘What’s larvae got to do with it?’ Disparate patterns of post-glacial population structure in two benthic marine gastropods with identical dispersal potential. Mol. Ecol. 13, 597–611 (2004).
    PubMed  CAS  Google Scholar 

    7.
    Weersing, K. & Toonen, R. J. Population genetics, larval dispersal, and connectivity in marine systems. Mar. Ecol. Prog. Ser. 393, 1–12 (2009).
    ADS  Google Scholar 

    8.
    Haye, P. A. & Muñoz-Herrera, N. C. Isolation with differentiation followed by expansion with admixture in the tunicate Pyura chilensis. BMC Evol. Biol. 13, 252 (2013).
    PubMed  PubMed Central  Google Scholar 

    9.
    Mercier, A. et al. Pelagic propagule duration and developmental mode: reassessment of a fading link. Glob. Ecol. Biogeogr. 22, 517–530 (2013).
    Google Scholar 

    10.
    Waters, J. M. & Roy, M. S. Phylogeography of a high-dispersal New Zealand sea-star: does upwelling block gene-flow?. Mol. Ecol. 13, 2797–2806 (2004).
    PubMed  CAS  Google Scholar 

    11.
    Teske, P. R. et al. Molecular evidence for long-distance colonization in an Indo-Pacific seahorse lineage. Mar. Ecol. Prog. Ser. 286, 249–260 (2005).
    ADS  CAS  Google Scholar 

    12.
    McGovern, T. M., Keever, C. A., Hart, M. W., Saski, C. & Marko, P. B. Divergence genetics analysis reveals historical population genetic processes leading to contrasting phylogeographic patterns in co-distributed species. Mol. Ecol. 19, 5043–5060 (2010).
    PubMed  Google Scholar 

    13.
    Gillespie, R. G. et al. Long-distance dispersal: a framework for hypothesis testing. Trends. Ecol. Evol. 27, 47–56 (2012).
    PubMed  Google Scholar 

    14.
    Brante, A., Fernandez, M. & Viard, F. Phylogeography and biogeography concordance in the marine gastropod Crepipatella dilatata (Calyptraeidae) along the Southeastern Pacific coast. J. Hered. 103, 630–663 (2012).
    PubMed  Google Scholar 

    15.
    Kawecki, T. J. & Ebert, D. Conceptual issues in local adaptation. Ecol. Lett. 7, 1225–1241 (2004).
    Google Scholar 

    16.
    Marshall, D. J., Monro, K., Bode, M., Keough, M. J. & Swearer, S. Phenotype-environment mismatches reduce connectivity in the sea. Ecol. Lett. 13, 128–140 (2010).
    PubMed  CAS  Google Scholar 

    17.
    Sanford, E. & Kelly, M. W. Local adaptation in marine invertebrates. Ann. Rev. Mar. Sci. 3, 509–535 (2011).
    PubMed  Google Scholar 

    18.
    Rellstab, C., Gugerli, F., Eckert, A. J., Hancock, A. M. & Holderegger, R. A practical guide to environmental association analysis in landscape genomics. Mol. Ecol. 24, 4348–4370 (2015).
    PubMed  Google Scholar 

    19.
    Riginos, C., Crandall, E. D., Liggins, L., Bongaerts, P. & Treml, E. A. Navigating the currents of seascape genomics: how spatial analyses can augment population genomic studies. Curr. Zool. 62, 581–601 (2016).
    PubMed  PubMed Central  Google Scholar 

    20.
    Selkoe, K. A. et al. A decade of seascape genetics: contributions to basic and applied marine connectivity. Mar. Ecol. Prog. Ser. 554, 1–19 (2016).
    ADS  Google Scholar 

    21.
    Shirk, A. J., Landguth, E. L. & Cushman, S. A. A comparison of individual-based genetic distance metrics for landscape genetics. Mol. Ecol. Res. 17, 1308–1317 (2017).
    CAS  Google Scholar 

    22.
    Martins, K. et al. Landscape genomics provides evidence of climate-associated genetic variation in Mexican populations of Quercus rugosa. Evol. App. 11, 1842–1858 (2018).
    CAS  Google Scholar 

    23.
    Razgour, O. et al. An integrated framework to identify wildlife populations under threat from climate change. Mol. Ecol. Res. 18, 18–31 (2018).
    Google Scholar 

    24.
    Hedgecock, D. Is gene flow from pelagic larval dispersal important in the adaptation and evolution of marine invertebrates?. Bull. Mar. Sci. 39, 550–564 (1986).
    Google Scholar 

    25.
    Slatkin, M. Gene flow and the geographic structure of natural populations. Science 15, 787–792 (1987).
    ADS  Google Scholar 

    26.
    Attard, C. R. M. et al. Ecological disturbance influences adaptive divergence despite high gene flow in golden perch (Macquaria ambigua): implications for management and resilience to climate change. Mol. Ecol. 27, 196–215 (2017).
    PubMed  Google Scholar 

    27.
    Benestan, L. et al. Seascape genomics provides evidence for thermal adaptation and current-mediated population structure in American lobster (Homarus americanus). Mol. Ecol. 25, 5073–5092 (2016).
    PubMed  Google Scholar 

    28.
    Banks, S. C. et al. Oceanic variability and coastal topography shape genetic structure in a long-dispersing sea urchin. Ecology 88, 3055–3064 (2007).
    PubMed  Google Scholar 

    29.
    Galindo, H. M. et al. Seascape genetics along a steep cline: using genetic patterns to test predictions of marine larval dispersal. Mol. Ecol. 19, 3692–3707 (2010).
    PubMed  Google Scholar 

    30.
    Selkoe, K. A. et al. Taking the chaos out of genetic patchiness: seascape genetics reveals ecological and oceanographic drivers of genetic patterns in three temperate reef species. Mol. Ecol. 19, 3708–3726 (2010).
    PubMed  Google Scholar 

    31.
    Schiavina, M., Marino, J. A. M., Zane, L. & Mellà, P. Matching oceanography and genetics at the basin scale. Seascape connectivity of the Mediterranean shore crab in the Adriatic Sea. Mol. Ecol. 23, 5496–5507 (2014).
    PubMed  CAS  Google Scholar 

    32.
    Giles, E. C., Saenz-Agudelo, P., Hussey, N. E., Ravasi, T. & Berumen, M. L. Exploring seascape genetics and kinship in the reef sponge Stylissa carteri in the Red Sea. Ecol. Evol. 5, 2487–2502 (2015).
    PubMed  PubMed Central  Google Scholar 

    33.
    Pardo-Gandarillas, M. C. et al. Phylogeography and species distribution modelling reveal the effects of the Pleistocene ice ages on an intertidal limpet from the south-eastern Pacific. J. Biogeogr. 45, 1751–1767 (2018).
    Google Scholar 

    34.
    Pujolar, J. M. et al. Genome-wide single-generation signatures of local selection in the panmictic European eel. Mol. Ecol. 23, 2514–2528 (2014).
    PubMed  CAS  Google Scholar 

    35.
    Tepolt, C. K. & Palumbi, S. R. Transcriptome sequencing reveals both neutral and adaptive genome dynamics in a marine invader. Mol. Ecol. 24, 4145–4158 (2015).
    PubMed  CAS  Google Scholar 

    36.
    Sandoval-Castillo, J., Robinson, N. A., Hart, A. M., Strain, L. W. S. & Beheregaray, L. B. Seascape genomics reveals adaptive divergence in a connected and commercially important mollusc, the greenlip abalone (Haliotis laevigata), along a longitudinal environmental gradient. Mol. Ecol. 27, 1603–1020 (2018).
    PubMed  Google Scholar 

    37.
    Carreras, C. et al. East is east and west is west: population genomics and hierarchical analyses reveal genetic structure and adaptation footprints in the keystone species Paracentrotus lividus (Echinoidea). Div. Dis. 26, 382–398 (2020).
    Google Scholar 

    38.
    Tellier, F., Meynard, A. P., Correa, J. A., Faugeron, S. & Valero, M. Phylogeographic analyses of the 30°S south-east Pacific biogeographic transition zone establishes the occurrence of a sharp genetic discontinuity in the kelp Lessonia nigrescens: vicariance or parapatry?. Mol. Phyl. Evol. 53, 679–693 (2009).
    CAS  Google Scholar 

    39.
    Haye, P. A. et al. Genetic and morphological divergence at a biogeographic break in the beach-dwelling brooder Excirolana hirsuticauda Menzies (Crustacea, Peracarida). BMC Evol. Biol. 19, 118 (2019).
    PubMed  PubMed Central  Google Scholar 

    40.
    Sánchez, R., Sepúlveda, R. D., Brante, A. & Cárdenas, L. Spatial patterns of genetic and morphological diversity in the direct developer Acanthina monodon (Gastropoda: Mollusca). Mar. Ecol. Prog. Ser. 434, 121–131 (2011).
    ADS  Google Scholar 

    41.
    Lara, C. et al. Coastal biophysical processes and the biogeography of rocky intertidal species along the south-eastern Pacific. J. Biogeogr. 46, 420–431 (2019).
    Google Scholar 

    42.
    Lancellotti, D. & Vásquez, J. A. Zoogeografía de macroinvertebrados bentónicos de la costa de Chile: contribución para la conservación marina. Rev. Chil. Hist. Nat. 73, 99–129 (2000).
    Google Scholar 

    43.
    Cea, G. Contribución al conocimiento de algunos aspectos de la biología de Pyura chilensis Molina, 1782 (Chordata, Tunicata, Ascidiacea). Tesis de Licenciatura en Biología, Universidad de Concepción, Concepción, Chile. 205 pp. (1970).

    44.
    Davis, A. R. Association among ascidians: facilitation of recruitment in Pyura spinifera. Mar. Biol. 126, 35–41 (1996).
    Google Scholar 

    45.
    Manríquez, P. & Castilla, J. Role of larval behaviour and microhabitat traits in determining spatial aggregations in the ascidian Pyura chilensis. Mar. Ecol. Prog. Ser. 332, 155–165 (2007).
    ADS  Google Scholar 

    46.
    Astorga, M. O. & Ortiz, J. C. Genetic variability and population structure in the tunicate Pyura chilensis Molina, 1782, in the coast of Chile. Rev. Chil. Hist. Nat. 79, 423–434 (2006).
    Google Scholar 

    47.
    Segovia, N. I., Gallardo-Escárate, C., Poulin, E. & Haye, P. A. Lineage divergence, local adaptation across a biogeographic break, and artificial transport, shape the genetic structure in the ascidian Pyura chilensis. Sci. Rep. 7, 44559 (2017).
    ADS  PubMed  PubMed Central  Google Scholar 

    48.
    Hudson, J., Viard, F., Roby, C. & Rius, M. Anthropogenic transport of species across native ranges: unpredictable genetic and evolutionary consequences. Biol. Lett. 12, 20160620 (2016).
    PubMed  PubMed Central  Google Scholar 

    49.
    Ordoñez, V., Pascual, M., Rius, M. & Turon, X. Mixed but not admixed: a spatial analysis of genetic variation of an invasive ascidian on natural and artificial substrates. Mar. Biol. 160, 1645–1660 (2013).
    Google Scholar 

    50.
    Valdivia, N., Heidemann, A., Thiel, M., Molis, M. & Wahl, M. Effects of disturbance on diversity of hard-bottom macrobenthic communities at the coast of Chile. Mar. Ecol. Prog. Ser. 299, 45–54 (2005).
    ADS  Google Scholar 

    51.
    Cifuentes, M., Kamlah, C., Thiel, M., Lenz, M. & Wahl, M. Effects of temporal variability of disturbance on the succession in marine fouling communities in northern-central Chile. J. Exp. Mar. Biol. 352, 280–294 (2007).
    Google Scholar 

    52.
    Aravena, G., Broitman, B. & Stenseth, N. C. Twelve years of change in coastal upwelling along the Central-Northern Coast of Chile: spatially heterogeneous responses to climatic variability. PLoS ONE 9, e90276 (2014).
    ADS  PubMed  PubMed Central  Google Scholar 

    53.
    Torres, R. et al. Air-sea CO2 fluxes along the coast of Chile: from CO2 outgassing in central northern upwelling waters to CO2 uptake in southern Patagonian fjords. J. Geophys. Res. 116, C09006 (2011).
    ADS  Google Scholar 

    54.
    Tapia, F. J., Largier, J. L., Castillo, M., Wieters, E. A. & Navarrete, S. A. Latitudinal discontinuity in thermal conditions along the nearshore of Central-Northern Chile. PLoS ONE 9, e110841 (2014).
    ADS  PubMed  PubMed Central  Google Scholar 

    55.
    Montecinos, A. et al. Species replacement along a lineal coastal habitat: phylogeography and speciation in the red alga Mazzaella laminarioides along the south-east Pacific. BMC Evol. Biol. 12, 97 (2012).
    PubMed  PubMed Central  Google Scholar 

    56.
    Araneda, C. et al. Adaptive genetic variation distinguishes Chilean blue mussels (Mytilus chilensis) from different marine environments. Ecol. Evol. https://doi.org/10.1002/ece3.2110 (2016).
    Article  PubMed  PubMed Central  Google Scholar 

    57.
    Cahill, A. & Levinton, J. S. Genetic differentiation and reduced genetic diversity at the northern range edge of two species with different dispersal modes. Mol. Ecol. 25, 515–526 (2016).
    PubMed  Google Scholar 

    58.
    Xu, T. et al. Genome-wide discovery of single nucleotide polymorphisms (SNPs) and single nucleotide variants (SNVs) in deep-sea mussels: potential use in population genomics and cross-species application. Deep-sea. Res. PT II. https://doi.org/10.1016/j.dsr2.2016.03.011 (2016).
    Article  Google Scholar 

    59.
    Lal, M. M. et al. A parallel population genomic and hydrodynamic approach to fishery management of highly-dispersive marine invertebrates: the case of the Fijian Black-Lip Pearl Oyster Pinctada margaritifera. PLoS ONE 11, e0161390 (2016).
    PubMed  PubMed Central  Google Scholar 

    60.
    Arcos, D. & Navarro, N. Análisis de un índice de surgencia para la zona de Talcahuano, Chile (Lat. 37°S). Inv. Pesqueras. 33, 91–98 (1986).
    Google Scholar 

    61.
    Broitman, B. R., Navarrete, S. A., Smith, F. & Gaines, S. D. Geographic variation of southeastern Pacific intertidal communities. Mar. Ecol. Prog. Ser. 224, 21–34 (2001).
    ADS  Google Scholar 

    62.
    Blanchette, C. A. et al. Biogeographical patterns of rocky intertidal communities along the Pacific coast of North America. J. Biogeogr. 35, 1593–1607 (2008).
    Google Scholar 

    63.
    Espinoza, P. et al. Trophic structure in the northern Humboldt Current system: new perspectives from stable isotope analysis. Mar. Biol. 164, 86 (2017).
    Google Scholar 

    64.
    Menge, B. A. & Menge, D. N. L. Dynamics of coastal meta-ecosystems: the intermittent upwelling hypothesis and a test in rocky intertidal regions. Ecol. Monogr. 83, 283–310 (2013).
    Google Scholar 

    65.
    Fenberg, P. B., Menge, B. A., Raimondi, P. T. & Rivadeneira, M. M. Biogeographic structure of the northeastern Pacific rocky intertidal: the role of upwelling and dispersal to drive patterns. Ecography 38, 93–95 (2015).
    Google Scholar 

    66.
    Gaitán-Espitia, J. D. et al. Exploring physiological plasticity and local thermal adaptation in an intertidal crab along a latitudinal cline. J. Therm. Biol. 68, 14–20 (2014).
    Google Scholar 

    67.
    Gaitán-Espitia, J. D. et al. Geographic variation in thermal physiological performance of the intertidal crab Petrolisthes violaceus along a latitudinal gradient. J. Exp. Biol. 217, 4379–4386 (2017).
    Google Scholar 

    68.
    Tapia, F. J. & Gallardo-Escárate, C. Spatio-temporal transcriptome analysis in the marine snail Tegula atra along central-northern Chile (28–31°S). Mar. Genomics. 61, 5 (2015).
    Google Scholar 

    69.
    Ambler, R. P. & Cañete, J. I. Asentamiento y reclutamiento de Pyura chilensis Molina, 1782 (Urochordata: Ascidiacea) sobre placas artificiales suspendidas en Bahía La Herradura, Coquimbo Chille. Rev. Biol. Mar. 26, 403–413 (1991).
    Google Scholar 

    70.
    Pérez-Valdés, M., Figueroa-Aguilera, D. & Rojas-Perez, C. Reproductive cycle of sea squirt Pyura chilensis (Urochordata: Ascidiacea) originating from aquaculture mussel systems. Rev. Biol. Mar. Oceanogr. 52, 333–342 (2017).
    Google Scholar 

    71.
    Giles, E. C., Petersen-Zúñiga, C., Morales-González, S., Quesada-Calderón, S. & Saenz-Agudelo, P. Novel microsatellite markers for Pyura chilensis reveal fine-scale genetic structure along the southern coast of Chile. Mar. Biodiv. 23, 1–10 (2017).
    Google Scholar 

    72.
    Morales-González, S., Giles, E. C., Quesada-Calderón, S. & Saenz-Agudelo, P. Fine-scale hierarchical genetic structure and kinship analysis of the ascidian Pyura chilensis in the southeastern Pacific. Ecol. Evol. 10, 15–20. https://doi.org/10.1002/ece3.5526 (2019).
    Article  Google Scholar 

    73.
    Gaggiotti, O. E. et al. Disentangling the effects of evolutionary, demographic, and environmental factors influencing genetic structure of natural populations: Atlantic herring as a case study. Evolution 63, 2939–2951 (2009).
    PubMed  Google Scholar 

    74.
    Gagnaire, P. A. et al. Using neutral, selected, and hitchhiker loci to assess connectivity of marine populations in the genomic era. Evol. Appl 8, 769–786 (2015).
    PubMed  PubMed Central  Google Scholar 

    75.
    Gagnaire, P. A. & Gaggiotti, O. E. Detecting polygenic selection in marine populations by combining population genomics and quantitative genetics approaches. Curr. Zool. 62, 603–616 (2016).
    PubMed  PubMed Central  Google Scholar 

    76.
    Gili, J. O. & Coma, R. Benthic suspension feeders: their paramount role in littoral marine food webs. Trends Ecol. Evol. 13, 316–321 (1998).
    PubMed  CAS  Google Scholar 

    77.
    Riisgård, H. U. & Larsen, P. S. Minireview: ciliary filter feeding and bio-fluid mechanics—present understanding and unsolved problems. Limnol. Ocenogr. 46, 882–891 (2001).
    ADS  Google Scholar 

    78.
    Petersen, J. K., Mayer, M. & Knudsen, A. Beat frequency of cilia in the branchial basket of the ascidian Ciona intestinalis in relation to temperature and algal cell concentration. Mar. Biol. 133, 185–192 (1999).
    Google Scholar 

    79.
    Vargas, C. A. et al. Species-specific responses to ocean acidification should account for local adaptation and adaptive plasticity. Nat. Ecol. Evol. 1, 0084 (2017).
    Google Scholar 

    80.
    Thiel, M. et al. The Humboldt current system of Northern and Central Chile: oceanographic processes, ecological interactions and socioeconomic feedback. Oceanogr. Mar. Biol. 45, 195–344 (2007).
    Google Scholar 

    81.
    Riginos, C. & Liggins, L. Seascape genetics: populations, individuals, and genes Marooned and Adrift. Geograph. Comp. 7, 197–216 (2013).
    Google Scholar 

    82.
    De Donato, M., Peters, S. O., Mitchell, S. E., Hussain, T. & Imumorin, I. G. Genotyping-by-sequencing (GBS): a novel, efficient and cost-effective genotyping method for cattle using next-generation sequencing. PLoS ONE 8, e62137 (2013).
    ADS  PubMed  PubMed Central  Google Scholar 

    83.
    Elshire, R. J. et al. A robust, simple genotyping-by-sequencing (GBS) approach for high diversity species. PLoS ONE 6, e19379 (2011).
    ADS  PubMed  PubMed Central  CAS  Google Scholar 

    84.
    Lu, F. et al. Switchgrass genomic diversity, ploidy, and evolution: novel insights from a network- based SNP discovery protocol. PLoS Genet. 9, e1003215 (2013).
    PubMed  PubMed Central  CAS  Google Scholar 

    85.
    Tyberghein, L. et al. Bio-ORACLE: a global environmental dataset for marine species distribution modelling. Global Ecol. Biogeogr. 21, 272–328 (2012).
    Google Scholar 

    86.
    Assis, J. et al. Bio-ORACLE v2.0: extending marine data layers for bioclimatic modelling. Global Ecol. Biogeogr. 27, 277–284 (2017).
    Google Scholar 

    87.
    Foll, M. & Gaggiotti, O. A genome-scan method to identify selected loci appropriate for both dominant and codominant markers: a Bayesian perspective. Genetics 180, 977–993 (2008).
    PubMed  PubMed Central  Google Scholar 

    88.
    Jeffreys, H. The Theory of Probability 3rd edn. (Oxford University Press, Oxford, UK, 1961).
    Google Scholar 

    89.
    Whitlock, M. C. & Lotterhos, K. E. Reliable detection of loci responsible for local adaptation: inference of a null model through trimming the distribution of FST. Am. Nat. 186, 24–36 (2015).
    Google Scholar 

    90.
    Luu, K., Bazin, E. & Blum, M. G. PCADAPT: an R package to perform genome scans for selection based on principal component analysis. Mol. Ecol. Res. 17, 67–77 (2017).
    CAS  Google Scholar 

    91.
    Lotterhos, K. E. & Whitlock, M. C. The relative power of genome scans to detect local adaptation depends on sampling design and statistical method. Mol. Ecol. 24, 1031–1046 (2015).
    PubMed  Google Scholar 

    92.
    Dray, S., Legendre, P. & Peres-Neto, P. Spatial modelling: a comprehensive framework for principal coordinate analysis of neighbor matrices (PCNM). Ecol. Mod. 96, 483–493 (2006).
    Google Scholar 

    93.
    Legendre, P. & Legendre, L. Numerical Ecology (Elsevier, Amsterdam, The Netherlands, 2012).
    Google Scholar 

    94.
    Oksanen, J. et al. VEGAN: community Ecology Package—R package version 2.4–3. https://CRAN.R-project.org/package=vegan (2017)

    95.
    Excoffier, L. & Lischer, H. E. Arlequin suite ver 3.5: a new series of programs to perform population genetics analyses under Linux and Windows. Mol. Ecol. Resour. 10, 564–567 (2010).
    PubMed  Google Scholar 

    96.
    de Villemereuil, P., Frichot, E., Bazin, E., François, O. & Gaggiotti, O. Genome scan methods against more complex models: when and how much should we trust them?. Mol. Ecol. 23, 2006–2019 (2014).
    PubMed  Google Scholar 

    97.
    Frichot, E., Schoville, S. D., de Villermeuil, P., Gaggiotti, O. E. & François, O. Detecting adaptive evolution based on association with ecological gradients: orientation matters!. Heredity 115, 22–28 (2015).
    PubMed  PubMed Central  CAS  Google Scholar 

    98.
    Jombart, T. ADEGENET: a R package for the multivariate analysis of genetic markers. Bioinformatics 24, 1403–1405 (2008).
    PubMed  PubMed Central  CAS  Google Scholar 

    99.
    Frichot, E., Schoville, S. D., Bouchard, G. & François, O. Testing for Associations between loci and environmental gradients using latent factor mixed models. Mol. Biol. Evol. 30, 1687–1699 (2013).
    PubMed  PubMed Central  CAS  Google Scholar 

    100.
    Guenther, T. & Coop, G. Robust identification of local adaptation from allele frequencies. Genetics 195, 205–220 (2013).
    Google Scholar 

    101.
    Stucki, S. et al. High performance computation of landscape genomic models integrating local indices of spatial association. Mol. Ecol. Res. 17, 1072–1089 (2016).
    Google Scholar 

    102.
    Bairoch, A. & Apweiler, R. The SWISS-PROT protein sequence database and its supplement TREMBL in 2000. Nucleic. Acids. Res. 28, 45–48 (2000).
    PubMed  PubMed Central  CAS  Google Scholar  More