More stories

  • in

    Facilitative priority effects drive parasite assembly under coinfection

    1.
    Dobson, A., Lafferty, K. D., Kuris, A. M., Hechinger, R. F. & Jetz, W. Homage to Linnaeus: how many parasites? How many hosts? Proc. Natl Acad. Sci. USA 105, 11482–11489 (2008).
    CAS  PubMed  Google Scholar 
    2.
    Mideo, N. Parasite adaptations to within-host competition. Trends Parasitol. 25, 261–268 (2009).
    PubMed  Google Scholar 

    3.
    Greischar, M. A. et al. Evolutionary consequences of feedbacks between within-host competition and disease control. Evol. Med. Public Health 2020, 30–34 (2020).
    PubMed  PubMed Central  Google Scholar 

    4.
    Wale, N. et al. Resource limitation prevents the emergence of drug resistance by intensifying within-host competition. Proc. Natl Acad. Sci. USA 114, 13774–13779 (2017).
    CAS  PubMed  Google Scholar 

    5.
    Bhattacharya, A., Toro Díaz, V. C., Morran, L. T. & Bashey, F. Evolution of increased virulence is associated with decreased spite in the insect-pathogenic bacterium Xenorhabdus nematophila. Biol. Lett. 15, 20190432 (2019).
    PubMed  PubMed Central  Google Scholar 

    6.
    Susi, H., Barrès, B., Vale, P. F. & Laine, A.-L. Co-infection alters population dynamics of infectious disease. Nat. Commun. 6, 5975 (2015).
    CAS  PubMed  PubMed Central  Google Scholar 

    7.
    Read, A. F. & Taylor, L. H. The ecology of genetically diverse infections. Science 292, 1099–1102 (2001).
    CAS  PubMed  Google Scholar 

    8.
    Hawley, D. M. & Altizer, S. M. Disease ecology meets ecological immunology: understanding the links between organismal immunity and infection dynamics in natural populations. Funct. Ecol. 25, 48–60 (2011).
    Google Scholar 

    9.
    Hoverman, J. T., Hoye, B. J. & Johnson, P. T. J. Does timing matter? How priority effects influence the outcome of parasite interactions within hosts. Oecologia 173, 1471–1480 (2013).
    PubMed  Google Scholar 

    10.
    Zhan, J. & McDonald, B. A. Experimental measures of pathogen competition and relative fitness. Annu. Rev. Phytopathol. 51, 131–153 (2013).
    CAS  PubMed  Google Scholar 

    11.
    Hellard, E., Fouchet, D., Vavre, F. & Pontier, D. Parasite–parasite interactions in the wild: how to detect them? Trends Parasitol. 31, 640–652 (2015).
    PubMed  Google Scholar 

    12.
    Tollenaere, C., Susi, H. & Laine, A. L. Evolutionary and epidemiological implications of multiple infection in plants. Trends Plant Sci. 21, 80–90 (2015).
    PubMed  Google Scholar 

    13.
    Budischak, S. A. et al. Competing for blood: the ecology of parasite resource competition in human malaria–helminth co-infections. Ecol. Lett. 21, 536–545 (2018).
    PubMed  Google Scholar 

    14.
    Griffiths, E. C., Pedersen, A. B., Fenton, A. & Petchey, O. L. Analysis of a summary network of co-infection in humans reveals that parasites interact most via shared resources. Proc. R. Soc. B 281, 20132286 (2014).
    PubMed  Google Scholar 

    15.
    Ezenwa, V. O. Helminth–microparasite co-infection in wildlife: lessons from ruminants, rodents and rabbits. Parasite Immunol. 38, 527–534 (2016).
    CAS  PubMed  Google Scholar 

    16.
    Lello, J., Boag, B., Fenton, A., Stevenson, I. R. & Hudson, P. J. Competition and mutualism among the gut helminths of a mammalian host. Nature 428, 840–844 (2004).
    CAS  PubMed  Google Scholar 

    17.
    Chung, E., Petit, E., Antonovics, J., Pedersen, A. B. & Hood, M. E. Variation in resistance to multiple pathogen species: anther smuts of Silene uniflora. Ecol. Evol. 2, 2304–2314 (2012).
    PubMed  PubMed Central  Google Scholar 

    18.
    Halliday, F. W., Umbanhowar, J. & Mitchell, C. E. A host immune hormone modifies parasite species interactions and epidemics: insights from a field manipulation. Proc. R. Soc. B 285, 20182075 (2018).
    PubMed  Google Scholar 

    19.
    Eswarappa, S. M., Estrela, S. & Brown, S. P. Within-host dynamics of multi-species infections: facilitation, competition and virulence. PLoS ONE 7, e38730 (2012).
    CAS  PubMed  PubMed Central  Google Scholar 

    20.
    Zélé, F., Magalhães, S., Kéfi, S. & Duncan, A. B. Ecology and evolution of facilitation among symbionts. Nat. Commun. 9, 4869 (2018).
    PubMed  PubMed Central  Google Scholar 

    21.
    Jenner, E. An Inquiry into the Causes and Effects of the Variolae Vaccinae, a Disease Discovered in Some of the Western Countries of England, Particularly Gloucestershire, and Known by the Name of “The Cow Pox” (1798) Vol. 84 (R. Lier, 1923).

    22.
    Fulton, R. W. Practices and precautions in the use of cross protection for plant virus disease control. Annu. Rev. Phytopathol. 24, 67–81 (1986).
    Google Scholar 

    23.
    Van Loon, L. C. Induced resistance in plants and the role of pathogenesis-related proteins. Eur. J. Plant Pathol. 103, 753–765 (1997).
    Google Scholar 

    24.
    Conrath, U. et al. Priming: getting ready for battle. Mol. Plant Microbe Interact. 19, 1062–1071 (2006).
    CAS  PubMed  Google Scholar 

    25.
    Pieterse, C. M. J. et al. Induced systemic resistance by beneficial microbes. Annu. Rev. Phytopathol. 52, 347–375 (2014).
    CAS  PubMed  Google Scholar 

    26.
    Spoel, S. H., Johnson, J. S. & Dong, X. Regulation of tradeoffs between plant defenses against pathogens with different lifestyles. Proc. Natl Acad. Sci. USA 104, 18842–18847 (2007).
    CAS  PubMed  Google Scholar 

    27.
    Kliebenstein, D. J. & Rowe, H. C. Ecological costs of biotrophic versus necrotrophic pathogen resistance, the hypersensitive response and signal transduction. Plant Sci. 174, 551–556 (2008).
    CAS  Google Scholar 

    28.
    Koornneef, A. et al. Kinetics of salicylate-mediated suppression of jasmonate signaling reveal a role for redox modulation. Plant Physiol. 147, 1358–1368 (2008).
    CAS  PubMed  PubMed Central  Google Scholar 

    29.
    Glazebrook, J. Contrasting mechanisms of defense against biotrophic and necrotrophic pathogens. Annu. Rev. Phytopathol. 43, 205–227 (2005).
    CAS  PubMed  Google Scholar 

    30.
    Ezenwa, V. O., Etienne, R. S., Luikart, G., Beja-Pereira, A. & Jolles, A. E. Hidden consequences of living in a wormy world: nematode‐induced immune suppression facilitates tuberculosis invasion in African buffalo. Am. Nat. 176, 613–624 (2010).
    PubMed  Google Scholar 

    31.
    Clay, P. A., Cortez, M. H., Duffy, M. A. & Rudolf, V. H. W. Priority effects within coinfected hosts can drive unexpected population‐scale patterns of parasite prevalence. Oikos 128, 571–583 (2019).
    Google Scholar 

    32.
    Clay, P. A., Duffy, M. A. & Rudolf, V. H. W. Within-host priority effects and epidemic timing determine outbreak severity in co-infected populations. Proc. R. Soc. B 287, 20200046 (2020).
    PubMed  Google Scholar 

    33.
    Clark, P., Ward, W., Lang, S., Saghbini, A. & Kristan, D. Order of inoculation during Heligmosomoides bakeri and Hymenolepis microstoma coinfection alters parasite life history and host responses. Pathogens 2, 130–152 (2013).
    PubMed  PubMed Central  Google Scholar 

    34.
    Fukami, T. Historical contingency in community assembly: integrating niches, species pools, and priority effects. Annu. Rev. Ecol. Evol. Syst. 46, 1–23 (2015).
    Google Scholar 

    35.
    Vannette, R. L. & Fukami, T. Historical contingency in species interactions: towards niche-based predictions. Ecol. Lett. 17, 115–124 (2014).
    PubMed  Google Scholar 

    36.
    Halliday, F. W., Umbanhowar, J. & Mitchell, C. E. Interactions among symbionts operate across scales to influence parasite epidemics. Ecol. Lett. 20, 1285–1294 (2017).
    PubMed  Google Scholar 

    37.
    Johnson, P. T. J., de Roode, J. C. & Fenton, A. Why infectious disease research needs community ecology. Science 349, 1259504 (2015).
    PubMed  PubMed Central  Google Scholar 

    38.
    Karvonen, A., Jokela, J. & Laine, A.-L. Importance of sequence and timing in parasite coinfections. Trends Parasitol. 35, 109–118 (2019).
    PubMed  Google Scholar 

    39.
    Mordecai, E. A., Gross, K. & Mitchell, C. E. Within-host niche differences and fitness trade-offs promote coexistence of plant viruses. Am. Nat. 187, E13–E26 (2016).
    PubMed  Google Scholar 

    40.
    Kuris, A. M., Blaustein, A. R. & Alio, J. J. Hosts as islands. Am. Nat. 116, 570–586 (1980).
    Google Scholar 

    41.
    Rynkiewicz, E. C., Pedersen, A. B. & Fenton, A. An ecosystem approach to understanding and managing within-host parasite community dynamics. Trends Parasitol. 31, 212–221 (2015).
    PubMed  Google Scholar 

    42.
    Sousa, W. P. Interspecific interactions among larval trematode parasites of freshwater and marine snails. Am. Zool. 32, 583–592 (1992).
    Google Scholar 

    43.
    Graham, A. L. Ecological rules governing helminth microparasite coinfection. Proc. Natl Acad. Sci. USA 105, 566–570 (2008).
    CAS  PubMed  Google Scholar 

    44.
    Seabloom, E. W. et al. The community ecology of pathogens: coinfection, coexistence and community composition. Ecol. Lett. 18, 401–415 (2015).
    PubMed  Google Scholar 

    45.
    Cobey, S. & Lipsitch, M. Pathogen diversity and hidden regimes of apparent competition. Am. Nat. 181, 12–24 (2013).
    PubMed  Google Scholar 

    46.
    Greischar, M. A. & Koskella, B. A synthesis of experimental work on parasite local adaptation. Ecol. Lett. 10, 418–434 (2007).
    PubMed  Google Scholar 

    47.
    Hoeksema, J. D. & Forde, S. E. A meta-analysis of factors affecting local adaptation between interacting species. Am. Nat. 171, 275–290 (2008).
    PubMed  Google Scholar 

    48.
    Burdon, J. J. & Laine, A.-L. Evolutionary Dynamics of Plant Pathogen Interactions (Cambridge Univ. Press, 2019).

    49.
    Lambrechts, L., Fellous, S. & Koella, J. C. Coevolutionary interactions between host and parasite genotypes. Trends Parasitol. 22, 12–16 (2006).
    PubMed  Google Scholar 

    50.
    Ferro, K. et al. Experimental evolution of immunological specificity. Proc. Natl Acad. Sci. USA 116, 20598–20604 (2019).
    CAS  PubMed  Google Scholar 

    51.
    Westman, S. M., Kloth, K. J., Hanson, J., Ohlsson, A. B. & Albrectsen, B. R. Defence priming in Arabidopsis—a meta-analysis. Sci. Rep. 9, 13309 (2019).
    PubMed  PubMed Central  Google Scholar 

    52.
    Pedersen, A. B. & Fenton, A. Emphasizing the ecology in parasite community ecology. Trends Ecol. Evol. 22, 133–139 (2007).
    PubMed  Google Scholar 

    53.
    Pedersen, A. B. & Fenton, A. The role of antiparasite treatment experiments in assessing the impact of parasites on wildlife. Trends Parasitol. 31, 200–211 (2015).
    PubMed  Google Scholar 

    54.
    Laine, A. L. Context-dependent effects of induced resistance under co-infection in a plant–pathogen interaction. Evol. Appl. 4, 696–707 (2011).
    PubMed  PubMed Central  Google Scholar 

    55.
    Conrath, U., Beckers, G. J. M., Langenbach, C. J. G. & Jaskiewicz, M. R. Priming for enhanced defense. Annu. Rev. Phytopathol. 53, 97–119 (2015).
    CAS  PubMed  Google Scholar 

    56.
    Douma, J. C., Vermeulen, P. J., Poelman, E. H., Dicke, M. & Anten, N. P. R. When does it pay off to prime for defense? A modeling analysis. N. Phytol. 216, 782–797 (2017).
    CAS  Google Scholar 

    57.
    Mauch-Mani, B., Baccelli, I., Luna, E. & Flors, V. Defense priming: an adaptive part of induced resistance. Annu. Rev. Plant Biol. 68, 485–512 (2017).
    CAS  PubMed  Google Scholar 

    58.
    Budischak, S. A. et al. Resource limitation alters the consequences of co-infection for both hosts and parasites. Int. J. Parasitol. 45, 455–463 (2015).
    PubMed  Google Scholar 

    59.
    Borer, E. T., Laine, A.-L. & Seabloom, E. W. A multiscale approach to plant disease using the metacommunity concept. Annu. Rev. Phytopathol. 54, 397–418 (2016).
    CAS  PubMed  Google Scholar 

    60.
    Bushnell, W. R. in The Powdery Mildews: A Comprehensive Treatise (eds Belanger, R. R. et al.) 1–12 (APS, 2002).

    61.
    Warton, D. I., Wright, S. T. & Wang, Y. Distance-based multivariate analyses confound location and dispersion effects. Methods Ecol. Evol. 3, 89–101 (2012).
    Google Scholar 

    62.
    Wang, Y., Naumann, U., Wright, S. T. & Warton, D. I. Mvabund—an R package for model-based analysis of multivariate abundance data. Methods Ecol. Evol. 3, 471–474 (2012).
    Google Scholar 

    63.
    Benesh, D. P. & Kalbe, M. Experimental parasite community ecology: intraspecific variation in a large tapeworm affects community assembly. J. Anim. Ecol. 85, 1004–1013 (2016).
    PubMed  Google Scholar 

    64.
    Mucha, J. et al. Effect of simulated climate warming on the ectomycorrhizal fungal community of boreal and temperate host species growing near their shared ecotonal range limits. Microb. Ecol. 75, 348–363 (2018).
    CAS  PubMed  Google Scholar 

    65.
    Chang, A. L., Brown, C. W., Crooks, J. A. & Ruiz, G. M. Dry and wet periods drive rapid shifts in community assembly in an estuarine ecosystem. Glob. Change Biol. 24, e627–e642 (2018).
    Google Scholar 

    66.
    David, A. S., Seabloom, E. W. & May, G. Disentangling environmental and host sources of fungal endophyte communities in an experimental beachgrass study. Mol. Ecol. 26, 6157–6169 (2017).
    PubMed  Google Scholar 

    67.
    Penczykowski, R. M., Parratt, S. R., Barrès, B., Sallinen, S. K. & Laine, A. L. Manipulating host resistance structure reveals impact of pathogen dispersal and environmental heterogeneity on epidemics. Ecology 99, 2853–2863 (2018).
    PubMed  Google Scholar 

    68.
    Pieterse, C. M. J. et al. Hormonal modulation of plant immunity. Annu. Rev. Cell Dev. Biol. 28, 489–521 (2012).
    CAS  PubMed  Google Scholar 

    69.
    Susi, H. & Laine, A.-L. The effectiveness and costs of pathogen resistance strategies in a perennial plant. J. Ecol. 103, 303–315 (2015).
    Google Scholar 

    70.
    Höckerstedt, L. Evolutionary and Ecological Dimensions of Disease Resistance. PhD dissertation, Univ. of Helsinki (2020); https://helda.helsinki.fi/handle/10138/314983

    71.
    Macke, E. et al. Diet and genotype of an aquatic invertebrate affect the composition of free-living microbial communities. Front. Microbiol. 11, 380 (2020).
    PubMed  PubMed Central  Google Scholar 

    72.
    Wagner, M. R. et al. Host genotype and age shape the leaf and root microbiomes of a wild perennial plant. Nat. Commun. 7, 12151 (2016).
    CAS  PubMed  PubMed Central  Google Scholar 

    73.
    Koch, H. & Schmid-Hempel, P. Socially transmitted gut microbiota protect bumble bees against an intestinal parasite. Proc. Natl Acad. Sci. USA 108, 19288–19292 (2011).
    CAS  PubMed  Google Scholar 

    74.
    Biere, A. & Goverse, A. Plant-mediated systemic interactions between pathogens, parasitic nematodes, and herbivores above- and belowground. Annu. Rev. Phytopathol. 54, 499–527 (2016).
    CAS  PubMed  Google Scholar 

    75.
    Little, T. J., Watt, K. & Ebert, D. Parasite–host specificity: experimental studies on the basis of parasite adaptation. Evolution 60, 31–38 (2006).
    PubMed  Google Scholar 

    76.
    Seybold, H. et al. A fungal pathogen induces systemic susceptibility and systemic shifts in wheat metabolome and microbiome composition. Nat. Commun. 11, 1910 (2020).
    CAS  PubMed  PubMed Central  Google Scholar 

    77.
    Cui, J. et al. Pseudomonas syringae manipulates systemic plant defenses against pathogens and herbivores. Proc. Natl Acad. Sci. USA 102, 1791–1796 (2005).
    CAS  PubMed  Google Scholar 

    78.
    Mideo, N., Alizon, S. & Day, T. Linking within- and between-host dynamics in the evolutionary epidemiology of infectious diseases. Trends Ecol. Evol. 23, 511–517 (2008).
    PubMed  Google Scholar 

    79.
    Pedersen, A. B. & Greives, T. J. The interaction of parasites and resources cause crashes in a wild mouse population. J. Anim. Ecol. 77, 370–377 (2008).
    PubMed  Google Scholar 

    80.
    Laine, A.-L., Barrès, B., Numminen, E. & Siren, J. P. Variable opportunities for outcrossing result in hotspots of novel genetic variation in a pathogen metapopulation. eLife 8, e47091 (2019).
    PubMed  PubMed Central  Google Scholar 

    81.
    Vaumourin, E. & Laine, A.-L. Role of temperature and coinfection in mediating pathogen life-history traits. Front. Plant Sci. 9, 1670 (2018).
    PubMed  PubMed Central  Google Scholar 

    82.
    Numminen, E., Vaumourin, E., Parratt, S. R., Poulin, L. & Laine, A.-L. Variation and correlations between sexual, asexual and natural enemy resistance life-history traits in a natural plant pathogen population. BMC Evol. Biol. 19, 142 (2019).
    PubMed  PubMed Central  Google Scholar 

    83.
    Tack, A. J. M., Thrall, P. H., Barrett, L. G., Burdon, J. J. & Laine, A.-L. Variation in infectivity and aggressiveness in space and time in wild host–pathogen systems: causes and consequences. J. Evol. Biol. 25, 1918–1936 (2012).
    CAS  PubMed  PubMed Central  Google Scholar 

    84.
    Penczykowski, R. M., Laine, A. L. & Koskella, B. Understanding the ecology and evolution of host–parasite interactions across scales. Evol. Appl. 9, 37–52 (2016).
    PubMed  Google Scholar 

    85.
    Rynkiewicz, E. C., Fenton, A. & Pedersen, A. B. Linking community assembly and structure across scales in a wild mouse parasite community. Ecol. Evol. 9, 13752–13763 (2019).
    PubMed  PubMed Central  Google Scholar 

    86.
    Bolnick, D. I. et al. Why intraspecific trait variation matters in community ecology. Trends Ecol. Evol. 26, 183–192 (2011).
    PubMed  PubMed Central  Google Scholar 

    87.
    Siefert, A. Incorporating intraspecific variation in tests of trait-based community assembly. Oecologia 170, 767–775 (2012).
    PubMed  Google Scholar 

    88.
    Laughlin, D. C. et al. A predictive model of community assembly that incorporates intraspecific trait variation. Ecol. Lett. 15, 1291–1299 (2012).
    PubMed  Google Scholar 

    89.
    Shaw, D. J. & Dobson, A. P. Patterns of macroparasite abundance and aggregation in wildlife populations: a quantitative review. Parasitology 111, S111–S133 (1995).
    PubMed  Google Scholar 

    90.
    Lloyd-Smith, J. O., Schreiber, S. J., Kopp, P. E. & Getz, W. M. Superspreading and the effect of individual variation on disease emergence. Nature 438, 355–359 (2005).
    CAS  PubMed  PubMed Central  Google Scholar 

    91.
    Sagar, G. R. & Harper, J. L. Plantago major L., P. media L. and P. lanceolata. J. Ecol. 52, 189–221 (1964).
    Google Scholar 

    92.
    Ross, M. D. Inheritance of self-incompatibility in Plantago lanceolata. Heredity (Edinb.) 30, 169–176 (1973).
    Google Scholar 

    93.
    Ojanen, S. P., Nieminen, M., Meyke, E., Pöyry, J. & Hanski, I. Long-term metapopulation study of the Glanville fritillary butterfly (Melitaea cinxia): survey methods, data management, and long-term population trends. Ecol. Evol. 3, 3713–3737 (2013).
    PubMed  PubMed Central  Google Scholar 

    94.
    Tollenaere, C. & Laine, A. L. Investigating the production of sexual resting structures in a plant pathogen reveals unexpected self-fertility and genotype-by-environment effects. J. Evol. Biol. 26, 1716–1726 (2013).
    CAS  PubMed  Google Scholar 

    95.
    Tack, A. & Laine, A. Ecological and evolutionary implications of spatial heterogeneity during the off‐season for a wild plant pathogen. N. Phytol. 65, 297–308 (2014).
    Google Scholar 

    96.
    Laine, A. L. & Hanski, I. Large-scale spatial dynamics of a specialist plant pathogen in a fragmented landscape. J. Ecol. 94, 217–226 (2006).
    Google Scholar 

    97.
    Jousimo, J. et al. Ecological and evolutionary effects of fragmentation on infectious disease dynamics. Science 344, 1289–1293 (2014).
    CAS  PubMed  Google Scholar 

    98.
    Laine, A. L. Resistance variation within and among host populations in a plant-pathogen metapopulation: implications for regional pathogen dynamics. J. Ecol. 92, 990–1000 (2004).
    Google Scholar 

    99.
    Penczykowski, R. M., Walker, E., Soubeyrand, S. & Laine, A.-L. Linking winter conditions to regional disease dynamics in a wild plant-pathogen metapopulation. N. Phytol. 205, 1142–1152 (2015).
    Google Scholar 

    100.
    Laine, A. L. Pathogen fitness components and genotypes differ in their sensitivity to nutrient and temperature variation in a wild plant–pathogen association. J. Evol. Biol. 20, 2371–2378 (2007).
    PubMed  Google Scholar 

    101.
    Tollenaere, C. et al. SNP design from 454 sequencing of Podosphaera plantaginis transcriptome reveals a genetically diverse pathogen metapopulation with high levels of mixed-genotype infection. PLoS ONE 7, e52492 (2012).
    CAS  PubMed  PubMed Central  Google Scholar 

    102.
    Nicot, P. C., Bardin, M. & Dik, A. J. in The Powdery Mildews: A Comprehensive Treatise (eds Belanger, R. R. et al.) 83–99 (APS, 2002).

    103.
    Parratt, S. R., Barrès, B., Penczykowski, R. M. & Laine, A.-L. Local adaptation at higher trophic levels: contrasting hyperparasite–pathogen infection dynamics in the field and laboratory. Mol. Ecol. 26, 1964–1979 (2017).
    CAS  PubMed  Google Scholar 

    104.
    R: A Language and Environment for Statistical Computing v.3.5.2 (R Core Team, 2015); https://doi.org/10.1007/978-3-540-74686-7

    105.
    Bates, D., Mächler, M., Bolker, B. & Walker, S. Fitting linear mixed-effects models using lme4. J. Stat. Softw. 67, 1–48 (2014).
    Google Scholar 

    106.
    Lenth, R. et al. Emmeans: Estimated marginal means, aka least-squares means. R package version 1.3.3 (2018).

    107.
    Hui, F. K. C. boral—Bayesian ordination and regression analysis of multivariate abundance data in R. Methods Ecol. Evol. 7, 744–750 (2016).
    Google Scholar 

    108.
    Bedward, M. ggboral: View BORAL model results with ggplot. R package version 0.1.6 (2019).

    109.
    Ploner, M. & Heinze, G. coxphf: Cox regression with Firth’s penalized likelihood. R package version 1.13 (2015). More

  • in

    Females of the red damselfly Mnesarete pudica are attracted to more ornamented males and attract rival males

    1.
    Höglund, J. & Alatalo, R. V. Leks (Princeton University Press, Princeton, 1995).
    Google Scholar 
    2.
    Alcock, J. Leks and hilltopping in insects. J. Nat. Hist. 21, 319–328 (1987).
    Google Scholar 

    3.
    Bradbury, J. W. Lek mating behavior in the hammer-headed bat. Z. Tierpsychol. 45, 225–255 (1977).
    Google Scholar 

    4.
    Bradbury, J. W. Contrast between insects and vertebrates in the evolution of male display, female choice, and lek mating. Fortschr. Zool. 31, 273–289 (1985).
    Google Scholar 

    5.
    Shelly, T. E. Sexual selection on leks: A fruit fly primer. J. Insect Sci. https://doi.org/10.1093/jisesa/iey048 (2018).
    Article  PubMed  PubMed Central  Google Scholar 

    6.
    Shelly, T. E. & Whittier, T. S. Lek behavior of insects. Evol. Mating Syst. Insects Arachnids https://doi.org/10.1017/cbo9780511721946.017 (2010).
    Article  Google Scholar 

    7.
    Dodson, G. Lek mating system and large male aggressive advantage in a gall-forming tephritid fly (Diptera: Tephritidae). Ethology 72, 99–108 (1986).
    Google Scholar 

    8.
    Andersson, S., Rydell, J. & Svensson, M. G. E. Light, predation and the lekking behaviour of the ghost swift Hepialus humuli (L.) (Lepidoptera: Hepialidae). Proc. R. Soc. B Biol. Sci. 265, 1345–1351 (1998).
    Google Scholar 

    9.
    Alem, S., Koselj, K., Siemers, B. M. & Greenfield, M. D. Bat predation and the evolution of leks in acoustic moths. Behav. Ecol. Sociobiol. 65, 2105–2116 (2011).
    Google Scholar 

    10.
    de Souza, A. R., Lino-Neto, J., Tibbetts, E. A., Turillazzi, S. & Beani, L. The leks of Polistes dominula paper wasps: tiny abdominal spots play a critical role in male attacks toward potential rivals. Ethol. Ecol. Evol. 29, 410–419 (2017).
    Google Scholar 

    11.
    Kimsey, L. S. The behaviour of male orchid bees (Apidae, Hymenoptera, Insecta) and the question of leks. Anim. Behav. 28, 996–1004 (1980).
    Google Scholar 

    12.
    Wickman, P. O. & Jansson, P. An estimate of female mate searching costs in the lekking butterfly Coenonympha pamphilus. Behav. Ecol. Sociobiol. 40(5), 321–328 (1997).
    Google Scholar 

    13.
    Lederhouse, R. C. Territorial defense and lek behavior of the black swallowtail butterfly, Papilio polyxenes. Behav. Ecol. Sociobiol. 10, 109–118 (1982).
    Google Scholar 

    14.
    Alcock, J. Consistency in the relative attractiveness of a set of landmark territorial sites to two generations of male tarantula hawk wasps (Hymenoptera: Pompilidae). Anim. Behav. 31, 74–80 (1983).
    Google Scholar 

    15.
    Beehler, B. M. & Foster, M. S. Hotshots, hotspots, and female preference in the organization of lek mating systems. Am. Nat. 131, 203–219 (1988).
    Google Scholar 

    16.
    Bradbury, J. & Gibson, R. M. Leks and mate choice. Mate choice (1983).

    17.
    Stillman, R. A., Cutton-Brock, T. H. & Sutherland, W. J. Black holes, mate retention, and the evolution of ungulate leks. Behav. Ecol. 4, 1–6 (1993).
    Google Scholar 

    18.
    Karino, K. Female mate preference for males having long and symmetric fins in the bower-holding cichlid Cyathopharynx furcifer. Ethology 103, 883–892 (1997).
    Google Scholar 

    19.
    Carbone, C. & Taborsky, M. Mate choice or harassment avoidance? A question of female control at the lek. Behav. Ecol. 7, 370–378 (1996).
    Google Scholar 

    20.
    Pilastro, A., Benetton, S. & Bisazza, A. Female aggregation and male competition reduce costs of sexual harassment in the mosquitofish Gambusia holbrooki. Anim. Behav. 65, 1161–1167 (2003).
    Google Scholar 

    21.
    Gibson, R. M., Bradbury, J. W. & Vehrencamp, S. L. Mate choice in lekking sage grouse revisited: the roles of vocal display, female site fidelity, and copying. Behav. Ecol. 2, 165–180 (1991).
    Google Scholar 

    22.
    Cordoba-Aguilar, A. & Cordero-Rivera, A. Evolution and ecology of Calopterygidae (Zygoptera:Odonata ): status of knowledge and research perspectives. Neotrop. Entomol. 34, 861–879 (2005).
    Google Scholar 

    23.
    Pajunen, V. I. Aggressive behaviour and territoriality in a population of Calopteryx virgo L. (Odon, Calopterygidae). Ann. Zool. Fennici 3, 201–214 (1966).
    Google Scholar 

    24.
    Guillermo-Ferreira, R. & Bispo, P. C. Male and female interactions during courtship of the Neotropical damselfly Mnesarete pudica (Odonata: Calopterygidae). Acta Ethol. 15, 173–178 (2012).
    Google Scholar 

    25.
    Günther, A., Hilfert-Rüppell, D. & Rüppell, G. Reproductive behaviour and the system of signalling in Neurobasis chinensis: a kinematic analysis. Int. J. Odonatol. 17, 37–41 (2014).
    Google Scholar 

    26.
    Córdoba-Aguilar, A. & Cordero-Rivera, A. Evolution and ecology of Calopterygidae (Zygoptera: Odonata): status of knowledge and research perspectives. Neotrop. Entomol. 34, 861–879 (2005).
    Google Scholar 

    27.
    Outomuro, D., Söderquist, L., Johansson, F., Ödeen, A. & Nordström, K. The price of looking sexy: visual ecology of a three-level predator–prey system. Funct. Ecol. 31, 707–718 (2017).
    Google Scholar 

    28.
    Contreras-Garduño, J., Buzatto, B. A., Serrano-Meneses, M. A., Nájera-Cordero, K. & Córdoba-Aguilar, A. The size of the red wing spot of the American rubyspot as a heightened condition-dependent ornament. Behav. Ecol. 19, 724–732 (2008).
    Google Scholar 

    29.
    Koskimäki, J., Rantala, M. J., Taskinen, J., Tynkkynen, K. & Suhonen, J. Immunocompetence and resource holding potential in the damselfly, Calopteryx virgo L. Behav. Ecol. 15, 169–173 (2004).
    Google Scholar 

    30.
    Guillermo-Ferreira, R. & Del-Claro, K. Resource defense polygyny by Hetaerina rosea Selys (Odonata: Calopterygidae): influence of age and wing pigmentation. Neotrop. Entomol. 40, 78–84 (2011).
    CAS  PubMed  Google Scholar 

    31.
    Plaistow, S. & Siva-Jothy, M. T. Energetic constraints and male mate-securing tactics in the damselfly Calopteryx splendens xanthostoma (Charpentier). Proc. R. Soc. B Biol. Sci. 263, 1233–1239 (1996).
    ADS  Google Scholar 

    32.
    Córdoba-Aguilar, A., Serrano-Meneses, M. A., Contreras-Garduño, J. & Raihani, G. The lek mating system of Hetaerina damselflies (Insecta: Calopterygidae). Behaviour 146, 189–207 (2009).
    Google Scholar 

    33.
    Dumont, H. J. et al. phylogenetic relationships, divergence time estimation, and global biogeographic patterns of calopterygoid damselflies (odonata, zygoptera) inferred from ribosomal DNA sequences. Syst. Biol. 54, 347–362 (2005).
    PubMed  Google Scholar 

    34.
    Dijkstra, K. D. B., Kalkman, V. J., Dow, R. A., Stokvis, F. R. & Van Tol, J. Redefining the damselfly families: a comprehensive molecular phylogeny of Zygoptera (Odonata). Syst. Entomol. 39, 68–96 (2014).
    Google Scholar 

    35.
    Guillermo-Ferreira, R., Gorb, S. N., Appel, E., Kovalev, A. & Bispo, P. C. Variable assessment of wing colouration in aerial contests of the red-winged damselfly Mnesarete pudica (Zygoptera, Calopterygidae). Sci. Nat. 102, 13 (2015).
    Google Scholar 

    36.
    Weatherhead, P. & Robertson, R. male behavior and female recruitment in the red-winged blackbird. Wilson Bull. (1977).

    37.
    Rantala, M. J., Koskimäki, J., Taskinen, J., Tynkkynen, K. & Suhonen, J. Immunocompetence, developmental stability and wingspot size in the damselfly Calopteryx splendens L. Proc. Biol. Sci. 267, 2453–2457 (2000).
    CAS  PubMed  PubMed Central  Google Scholar 

    38.
    Siva-Jothy, M. T. Male wing pigmentation may affect reproductive success via female choice in a calopterygid damselfly (Zygoptera). Behaviour 136, 1365–1377 (1999).
    Google Scholar 

    39.
    Heymer, A. Étude du comportement reproducteur et analyse des mécanismes déclencheurs innés (MDI) optiques chez les Calopterygidae (Odon. Zygoptera). Ann. Soc. Entomol. Fr. 9, 219–225 (1973).
    Google Scholar 

    40.
    Cordero, A. Forced copulations and female contact guarding at a high male density in a calopterygid damselfly. J. Insect Behav. 12, 27–37 (1999).
    Google Scholar 

    41.
    Córdoba-Aguilar, A. A female evolutionary response when survival is at risk: male harassment mediates early reallocation of resources to increase egg number and size. Behav. Ecol. Sociobiol. 63, 751–763 (2009).
    Google Scholar 

    42.
    Córdoba-Aguilar, A. & González-Tokman, D. M. Male harassment and female energetics in the territorial damselfly hetaerina Americana (fabricius) (zygoptera: Calopterygidae). Odonatologica 40, 1–15 (2011).
    Google Scholar 

    43.
    Takahashi, Y. & Watanabe, M. Female reproductive success is affected by selective male harassment in the damselfly Ischnura senegalensis. Anim. Behav. 79, 211–216 (2010).
    Google Scholar 

    44.
    Córdoba-Aguilar, A. Seasonal variation in genital and body size, sperm displacement ability, female mating rate, and male harassment in two calopterygid damselflies (Odonata: Calopterygidae). Biol. J. Linn. Soc. 96, 815–829 (2009).
    Google Scholar 

    45.
    Van Gossum, H., Stoks, R. & De Bruyn, L. Frequency-dependent male mate harassment and intra-specific variation in its avoidance by females of the damselfly Ischnura elegans. Behav. Ecol. Sociobiol. 51, 69–75 (2001).
    Google Scholar 

    46.
    Gosden, T. P. & Svensson, E. I. Density-dependent male mating harassment, female resistance, and male mimicry. Am. Nat. 173, 709–721 (2009).
    PubMed  Google Scholar 

    47.
    Yasukawa, K. Male quality and female choice of mate in the red-winged blackbird (Agelaius phoeniceus). Ecology 62, 922–929 (1981).
    Google Scholar 

    48.
    Jennings, D. J., Carlin, C. M., Hayden, T. J. & Gammell, M. P. Investment in fighting in relation to body condition, age and dominance rank in the male fallow deer, Dama dama. Anim. Behav. 79, 1293–1300 (2010).
    Google Scholar 

    49.
    Murai, M., Koga, T. & Yong, H. S. The assessment of female reproductive state during courtship and scramble competition in the fiddler, Uca Paradussumieri. Behav. Ecol. Sociobiol. 52, 137–142 (2002).
    Google Scholar 

    50.
    Contreras-Garduño, J., Canales-Lazcano, J. & Córdoba-Aguilar, A. Wing pigmentation, immune ability, fat reserves and territorial status in males of the rubyspot damselfly, Hetaerina americana. J. Ethol. 24, 165–173 (2006).
    Google Scholar 

    51.
    Corbet, P. S. Dragonflies: Behaviour and Ecology of Odonata (Harley books, Essex, 1999).
    Google Scholar 

    52.
    Guillermo-Ferreira, R., Therézio, E. M., Gehlen, M. H., Bispo, P. C. & Marletta, A. The role of wing pigmentation, UV and fluorescence as signals in a neotropical damselfly. J. Insect Behav. 27, 67–80 (2014).
    Google Scholar 

    53.
    Altmann, J. Observational study of behavior: sampling methods. Behavior 49, 227–267 (1974).
    CAS  Google Scholar 

    54.
    Utzeri, C. Female” refusal display” versus male” threat display” in Zygoptera: is it a case of intraspecific imitation?. Odonatologica 17, 45–54 (1988).
    Google Scholar 

    55.
    Koskimäki, J., Rantala, M. J. & Suhonen, I. Wandering males are smaller than territorial males in the damselfly Calopteryx virgo (L.) (zygoptera: calopterygidae). Odonatologica 38, 159–165 (2009).
    Google Scholar 

    56.
    Bürkner, P. C. Advanced Bayesian multilevel modeling with the R package brms. R J. 10, 395–411 (2018).
    Google Scholar 

    57.
    Wickham, H. ggplot2: elegant graphics for data analysis. J. R. Stat. Soc. A https://doi.org/10.1007/978-3-319-24277-4 (2016).
    Article  MATH  Google Scholar 

    58.
    R Core Team. (2017). R: a language and environment for statistical computing. https://www.R-project.org/. More

  • in

    Akkermansia muciniphila uses human milk oligosaccharides to thrive in the early life conditions in vitro

    1.
    Derrien, M. et al. Mucin-bacterial interactions in the human oral cavity and digestive tract. Gut Microbes 1, 254–268. https://doi.org/10.4161/gmic.1.4.12778 (2010).
    Article  PubMed  PubMed Central  Google Scholar 
    2.
    Derrien, M. Akkermansia muciniphila gen. nov., sp. Nov., a human intestinal mucin-degrading bacterium. Int. J. Syst. Evol. Microbiol. 54, 1469–1476. https://doi.org/10.1099/ijs.0.02873-0 (2004).
    CAS  Article  PubMed  Google Scholar 

    3.
    Dao, M. C. et al. Akkermansia muciniphila and improved metabolic health during a dietary intervention in obesity: Relationship with gut microbiome richness and ecology. Gut 65, 426–436. https://doi.org/10.1136/gutjnl-2014-308778 (2016).
    CAS  Article  PubMed  Google Scholar 

    4.
    Karlsson, C. L. J. et al. The microbiota of the gut in preschool children with normal and excessive body weight. Obesity 20, 2257–2261. https://doi.org/10.1038/oby.2012.110 (2012).
    Article  PubMed  Google Scholar 

    5.
    Zhang, X. et al. Human gut microbiota changes reveal the progression of glucose intolerance. PLoS ONE 8, e71108. https://doi.org/10.1371/journal.pone.0071108 (2013).
    ADS  CAS  Article  PubMed  PubMed Central  Google Scholar 

    6.
    Png, C. W. et al. Mucolytic bacteria with increased prevalence in IBD mucosa augment in vitro utilization of mucin by other bacteria. Am. J. Gastroenterol. 105, 2420–2428. https://doi.org/10.1038/ajg.2010.281 (2010).
    ADS  CAS  Article  PubMed  Google Scholar 

    7.
    Rajilić-Stojanović, M., Shanahan, F., Guarner, F. & De Vos, W. M. Phylogenetic analysis of dysbiosis in ulcerative colitis during remission. Inflamm. Bowel Dis. 19, 481–488. https://doi.org/10.1097/MIB.0b013e31827fec6d (2013).
    Article  PubMed  Google Scholar 

    8.
    Swidsinski, A. et al. Acute appendicitis is characterised by local invasion with Fusobacterium nucleatum/necrophorum. Gut 60, 34–40. https://doi.org/10.1136/gut.2009.191320 (2011).
    Article  PubMed  Google Scholar 

    9.
    Derrien, M., Collado, M. C., Ben-Amor, K., Salminen, S. & de Vos, W. M. The mucin degrader Akkermansia muciniphila is an abundant resident of the human intestinal tract. Appl. Environ. Microbiol. 74, 1646–1648. https://doi.org/10.1128/AEM.01226-07 (2008).
    CAS  Article  PubMed  Google Scholar 

    10.
    Collado, M. C., Derrien, M., Isolauri, E., de Vos, W. M. & Salminen, S. Intestinal integrity and Akkermansia muciniphila, a mucin-degrading member of the intestinal microbiota present in infants, adults, and the elderly. Appl. Environ. Microbiol. 73, 7767–7770. https://doi.org/10.1128/AEM.01477-07 (2007).
    CAS  Article  PubMed  PubMed Central  Google Scholar 

    11.
    Collado, M. C., Laitinen, K., Salminen, S. & Isolauri, E. Maternal weight and excessive weight gain during pregnancy modify the immunomodulatory potential of breast milk. Pediatr. Res. 72, 77–85. https://doi.org/10.1038/pr.2012.42 (2012).
    CAS  Article  PubMed  Google Scholar 

    12.
    Aakko, J. et al. Human milk oligosaccharide categories define the microbiota composition in human colostrum. Benef. Microbes 8, 563–567. https://doi.org/10.3920/BM2016.0185 (2017).
    CAS  Article  PubMed  Google Scholar 

    13.
    Urbaniak, C. et al. Microbiota of human breast tissue. Appl. Environ. Microbiol. 80, 3007–3014. https://doi.org/10.1128/AEM.00242-14 (2014).
    CAS  Article  PubMed  PubMed Central  Google Scholar 

    14.
    Azad, M. B. et al. Gut microbiota of healthy Canadian infants: Profiles by mode of delivery and infant diet at 4 months. Can. Med. Assoc. J. 185, 385–394. https://doi.org/10.1503/cmaj.121189 (2013).
    Article  Google Scholar 

    15.
    Bergström, A. et al. Establishment of intestinal microbiota during early life: A longitudinal. Explor. Study Large Cohort Danish Infants. https://doi.org/10.1128/AEM.00342-14 (2014).
    Article  Google Scholar 

    16.
    Bäckhed, F. et al. Dynamics and stabilization of the human gut microbiome during the first year of life. Cell Host Microbe 17, 690–703. https://doi.org/10.1016/j.chom.2015.04.004 (2015).
    CAS  Article  PubMed  Google Scholar 

    17.
    Neville, M. C. et al. Lactation and neonatal nutrition: Defining and refining the critical questions. J. Mammary Gland Biol. Neoplasia 17, 167–188. https://doi.org/10.1007/s10911-012-9261-5 (2012).
    Article  PubMed  PubMed Central  Google Scholar 

    18.
    Koropatkin, N. M., Cameron, E. A. & Martens, E. C. How glycan metabolism shapes the human gut microbiota. Nat. Rev. Microbiol. 10, 323–335. https://doi.org/10.1038/nrmicro2746 (2012).
    CAS  Article  PubMed  PubMed Central  Google Scholar 

    19.
    Ninonuevo, M. R. et al. A strategy for annotating the human milk glycome. J. Agric. Food Chem. 54, 7471–7480. https://doi.org/10.1021/jf0615810 (2006).
    CAS  Article  PubMed  Google Scholar 

    20.
    Ruiz-Palacios, G. M., Cervantes, L. E., Ramos, P., Chavez-Munguia, B. & Newburg, D. S. Campylobacter jejuni binds intestinal H(O) antigen (Fucα1, 2Galβ1, 4GlcNAc), and Fucosyloligosaccharides of human milk inhibit its binding and infection. J. Biol. Chem. 278, 14112–14120. https://doi.org/10.1074/jbc.M207744200 (2003).
    CAS  Article  PubMed  Google Scholar 

    21.
    Stahl, B. et al. Oligosaccharides from human milk as revealed by matrix-assisted laser desorption/ionization mass spectrometry. Anal. Biochem. 223, 218–226. https://doi.org/10.1006/abio.1994.1577 (1994).
    CAS  Article  PubMed  Google Scholar 

    22.
    Urashima, T., Hirabayashi, J., Sato, S. & Kobata, A. Human milk oligosaccharides as essential tools for basic and application studies on galectins. Trends Glycosci. Glycotechnol. 30, 51–65. https://doi.org/10.4052/tigg.1734.1SE (2018).
    Article  Google Scholar 

    23.
    Ayechu-Muruzabal, V. et al. Diversity of human milk oligosaccharides and effects on early life immune development. Front. Pediatr. 6, 239. https://doi.org/10.3389/fped.2018.00239 (2018).
    Article  PubMed  PubMed Central  Google Scholar 

    24.
    Zivkovic, A. M., German, J. B., Lebrilla, C. B. & Mills, D. A. Human milk glycobiome and its impact on the infant gastrointestinal microbiota. Proc. Natl. Acad. Sci. 108, 4653–4658. https://doi.org/10.1073/pnas.1000083107 (2011).
    ADS  Article  PubMed  Google Scholar 

    25.
    Wu, S., Tao, N., German, J. B., Grimm, R. & Lebrilla, C. B. Development of an annotated library of neutral human milk oligosaccharides. J. Proteome Res. 9, 4138–4151. https://doi.org/10.1021/pr100362f (2010).
    CAS  Article  PubMed  PubMed Central  Google Scholar 

    26.
    Weiss, G. A. & Hennet, T. The role of milk sialyllactose in intestinal bacterial colonization. Adv. Nutr. 3, 483S-488S. https://doi.org/10.3945/an.111.001651 (2012).
    CAS  Article  PubMed  PubMed Central  Google Scholar 

    27.
    Bode, L. Human milk oligosaccharides: Every baby needs a sugar mama. Glycobiology 22, 1147–1162. https://doi.org/10.1093/glycob/cws074 (2012).
    CAS  Article  PubMed  PubMed Central  Google Scholar 

    28.
    Vandenplas, Y. et al. Human milk oligosaccharides: 2′-fucosyllactose (2′-FL) and lacto-N-neotetraose (LNnT) in infant formula. Nutrients 10, 1161. https://doi.org/10.3390/nu10091161 (2018).
    CAS  Article  PubMed Central  Google Scholar 

    29.
    Garrido, D., Dallas, D. C. & Mills, D. A. Consumption of human milk glycoconjugates by infant-associated bifidobacteria: Mechanisms and implications. Microbiology (United Kingdom) 159, 649–664. https://doi.org/10.1099/mic.0.064113-0 (2013).
    CAS  Article  Google Scholar 

    30.
    Tailford, L. E., Crost, E. H., Kavanaugh, D. & Juge, N. Mucin glycan foraging in the human gut microbiome. Front. Genet. 6, 81. https://doi.org/10.3389/fgene.2015.00081 (2015).
    CAS  Article  PubMed  PubMed Central  Google Scholar 

    31.
    Bansil, R. & Turner, B. S. Mucin structure, aggregation, physiological functions and biomedical applications. Curr. Opin. Colloid Interface Sci. 11, 164–170. https://doi.org/10.1016/j.cocis.2005.11.001 (2006).
    CAS  Article  Google Scholar 

    32.
    Abodinar, A., Tømmeraas, K., Ronander, E., Smith, A. M. & Morris, G. A. The physicochemical characterisation of pepsin degraded pig gastric mucin. Int. J. Biol. Macromol. 87, 281–286. https://doi.org/10.1016/J.IJBIOMAC.2016.02.062 (2016).
    CAS  Article  PubMed  Google Scholar 

    33.
    Johansson, M. E. V. et al. The inner of the two Muc2 mucin-dependent mucus layers in colon is devoid of bacteria. Proc. Natl. Acad. Sci. 105, 15064–15069. https://doi.org/10.1073/pnas.0803124105 (2008).
    ADS  Article  PubMed  Google Scholar 

    34.
    Ottman, N. et al. Genome-scale model and omics analysis of metabolic capacities of Akkermansia muciniphila reveal a preferential mucin-degrading lifestyle. Appl. Environ. Microbiol. 83, e01014-e1017. https://doi.org/10.1128/AEM.01014-17 (2017).
    CAS  Article  PubMed  PubMed Central  Google Scholar 

    35.
    Ottman, N. et al. Characterization of outer membrane proteome of akkermansia muciniphila reveals sets of novel proteins exposed to the human intestine. Front. Microbiol. 7, 1157. https://doi.org/10.3389/fmicb.2016.01157 (2016).
    Article  PubMed  PubMed Central  Google Scholar 

    36.
    Moran, A. P., Gupta, A. & Joshi, L. Sweet-talk: Role of host glycosylation in bacterial pathogenesis of the gastrointestinal tract. Gut 60, 1412–1425. https://doi.org/10.1136/gut.2010.212704 (2011).
    CAS  Article  PubMed  Google Scholar 

    37.
    Kumazaki, T. & Yoshida, A. Biochemical evidence that secretor gene, Se, is a structural gene encoding a specific fucosyltransferase. Proc. Natl. Acad. Sci. 81, 4193–4197. https://doi.org/10.1073/pnas.81.13.4193 (1984).
    ADS  CAS  Article  PubMed  Google Scholar 

    38.
    Korpela, K. et al. Fucosylated oligosaccharides in mother’s milk alleviate the effects of caesarean birth on infant gut microbiota. Sci. Rep. 8, 13757. https://doi.org/10.1038/s41598-018-32037-6 (2018).
    ADS  CAS  Article  PubMed  PubMed Central  Google Scholar 

    39.
    Engels, C., Ruscheweyh, H.-J., Beerenwinkel, N., Lacroix, C. & Schwab, C. The common gut microbe Eubacterium hallii also contributes to intestinal propionate formation. Front. Microbiol. 7, 1–12. https://doi.org/10.3389/fmicb.2016.00713 (2016).
    Article  Google Scholar 

    40.
    Amin, H. M., Hashem, A. M., Ashour, M. S. & Hatti-Kaul, R. 1,2 Propanediol utilization by Lactobacillus reuteri DSM 20016, role in bioconversion of glycerol to 1,3 propanediol, 3-hydroxypropionaldehyde and 3-hydroxypropionic acid. J. Genet. Eng. Biotechnol. 11, 53–59. https://doi.org/10.1016/j.jgeb.2012.12.002 (2013).
    Article  Google Scholar 

    41.
    Staib, L. & Fuchs, T. M. Regulation of fucose and 1,2-propanediol utilization by Salmonella enterica serovar Typhimurium. Front. Microbiol. 6, 1–11. https://doi.org/10.3389/fmicb.2015.01116 (2015).
    Article  Google Scholar 

    42.
    Faber, F. et al. Respiration of microbiota-derived 1,2-propanediol drives salmonella expansion during colitis. PLOS Pathog. 13, e1006129. https://doi.org/10.1371/journal.ppat.1006129 (2017).
    CAS  Article  PubMed  PubMed Central  Google Scholar 

    43.
    Huang, K. et al. Biochemical characterisation of the neuraminidase pool of the human gut symbiont Akkermansia muciniphila. Carbohydr. Res. 415, 60–65. https://doi.org/10.1016/j.carres.2015.08.001 (2015).
    CAS  Article  PubMed  Google Scholar 

    44.
    Tailford, L. E. et al. Discovery of intramolecular trans-sialidases in human gut microbiota suggests novel mechanisms of mucosal adaptation. Nat. Commun. 6, 7624. https://doi.org/10.1038/ncomms8624 (2015).
    ADS  Article  PubMed  PubMed Central  Google Scholar 

    45.
    van Passel, M. W. J. et al. The genome of Akkermansia muciniphila, a dedicated intestinal mucin degrader, and its use in exploring intestinal metagenomes. PLoS ONE 6, e16876. https://doi.org/10.1371/journal.pone.0016876 (2011).
    ADS  CAS  Article  PubMed  PubMed Central  Google Scholar 

    46.
    Nishiyama, K. et al. Bifidobacterium bifidum extracellular sialidase enhances adhesion to the mucosal surface and supports carbohydrate assimilation. MBio https://doi.org/10.1128/mBio.00928-17 (2017).
    Article  PubMed  PubMed Central  Google Scholar 

    47.
    Nishiyama, K. et al. Two extracellular sialidases from Bifidobacterium bifidum promote the degradation of sialyl-oligosaccharides and support the growth of Bifidobacterium breve. Anaerobe 52, 22–28. https://doi.org/10.1016/j.anaerobe.2018.05.007 (2018).
    CAS  Article  PubMed  Google Scholar 

    48.
    Crost, E. H. et al. The mucin-degradation strategy of Ruminococcus gnavus: The importance of intramolecular trans-sialidases. Gut Microbes 7, 302–312. https://doi.org/10.1080/19490976.2016.1186334 (2016).
    CAS  Article  PubMed  PubMed Central  Google Scholar 

    49.
    Brigham, C. et al. Sialic acid (N-acetyl neuraminic acid) utilization by Bacteroides fragilis requires a novel N-acetyl mannosamine epimerase. J. Bacteriol. 191, 3629–3638. https://doi.org/10.1128/JB.00811-08 (2009).
    CAS  Article  PubMed  PubMed Central  Google Scholar 

    50.
    Chia, L. W. et al. Deciphering the trophic interaction between Akkermansia muciniphila and the butyrogenic gut commensal Anaerostipes caccae using a metatranscriptomic approach. Antonie Van Leeuwenhoek 111, 859–873. https://doi.org/10.1007/s10482-018-1040-x (2018).
    CAS  Article  PubMed  PubMed Central  Google Scholar 

    51.
    Kosciow, K. & Deppenmeier, U. Characterization of three novel β-galactosidases from Akkermansia muciniphila involved in mucin degradation. Int. J. Biol. Macromol. https://doi.org/10.1016/j.ijbiomac.2020.01.246 (2020).
    Article  PubMed  Google Scholar 

    52.
    Guo, B.-S. et al. Cloning, purification and biochemical characterisation of a GH35 beta-1,3/beta-1,6-galactosidase from the mucin-degrading gut bacterium Akkermansia muciniphila. Glycoconj. J. 35, 255–263. https://doi.org/10.1007/s10719-018-9824-9 (2018).
    CAS  Article  PubMed  Google Scholar 

    53.
    Kosciow, K. & Deppenmeier, U. Characterization of a phospholipid-regulated β-galactosidase from Akkermansia muciniphila involved in mucin degradation. Microbiologyopen https://doi.org/10.1002/mbo3.796 (2019).
    Article  PubMed  PubMed Central  Google Scholar 

    54.
    van der Ark, K. C. H. et al. Model-driven design of a minimal medium for Akkermansia muciniphila confirms mucus adaptation. Microb. Biotechnol. 11, 476–485. https://doi.org/10.1111/1751-7915.13033 (2018).
    CAS  Article  PubMed  PubMed Central  Google Scholar 

    55.
    Wang, M. et al. Cloning, purification and biochemical characterization of two β-N-acetylhexosaminidases from the mucin-degrading gut bacterium Akkermansia muciniphila. Carbohydr. Res. 457, 1–7. https://doi.org/10.1016/j.carres.2017.12.007 (2018).
    CAS  Article  PubMed  Google Scholar 

    56.
    Reichardt, N. et al. Phylogenetic distribution of three pathways for propionate production within the human gut microbiota. ISME J. 8, 1323–1335. https://doi.org/10.1038/ismej.2014.14 (2014).
    CAS  Article  PubMed  PubMed Central  Google Scholar 

    57.
    Belzer, C. et al. Microbial metabolic networks at the mucus layer lead to diet-independent butyrate and vitamin B 12 production by intestinal symbionts. MBio 8, 1–14. https://doi.org/10.1128/mBio.00770-17 (2017).
    Article  Google Scholar 

    58.
    Allen, L. H. B vitamins in breast milk: Relative importance of maternal status and intake, and effects on infant status and function. Adv. Nutr. 3, 362–369. https://doi.org/10.3945/an.111.001172 (2012).
    CAS  Article  PubMed  PubMed Central  Google Scholar 

    59.
    Ottman, N. et al. Pili-like proteins of Akkermansia muciniphila modulate host immune responses and gut barrier function. PLoS ONE 12, e0173004. https://doi.org/10.1371/journal.pone.0173004 (2017).
    CAS  Article  PubMed  PubMed Central  Google Scholar 

    60.
    Plovier, H. et al. A purified membrane protein from Akkermansia muciniphila or the pasteurized bacterium improves metabolism in obese and diabetic mice. Nat. Med. 23, 107–113. https://doi.org/10.1038/nm.4236 (2017).
    CAS  Article  PubMed  Google Scholar 

    61.
    McPhee, M. D., Atkinson, S. A. & Cole, D. E. C. Quantitation of free sulfate and total sulfoesters in human breast milk by ion chromatography. J. Chromatogr. B Biomed. Sci. Appl. 527, 41–50. https://doi.org/10.1016/S0378-4347(00)82081-2 (1990).
    CAS  Article  Google Scholar 

    62.
    Coppa, G. V. et al. Composition and structure elucidation of human milk glycosaminoglycans. Glycobiology 21, 295–303. https://doi.org/10.1093/glycob/cwq164 (2011).
    CAS  Article  PubMed  Google Scholar 

    63.
    Tseng, T.-T., Tyler, B. M. & Setubal, J. C. Protein secretion systems in bacterial-host associations, and their description in the gene ontology. BMC Microbiol. 9, S2. https://doi.org/10.1186/1471-2180-9-S1-S2 (2009).
    CAS  Article  PubMed  PubMed Central  Google Scholar 

    64.
    Galdiero, S. et al. Microbe–host interactions: Structure and role of gram-negative bacterial porins. Curr. Protein Pept. Sci. 13, 843–854. https://doi.org/10.2174/138920312804871120 (2012).
    CAS  Article  PubMed  PubMed Central  Google Scholar 

    65.
    Brugman, S., Perdijk, O., van Neerven, R. J. J. & Savelkoul, H. F. J. Mucosal immune development in early life: Setting the stage. Arch. Immunol. Ther. Exp. (Warsz) 63, 251–268. https://doi.org/10.1007/s00005-015-0329-y (2015).
    CAS  Article  Google Scholar 

    66.
    Duerr, C. U. & Hornef, M. W. The mammalian intestinal epithelium as integral player in the establishment and maintenance of host–microbial homeostasis. Semin. Immunol. 24, 25–35. https://doi.org/10.1016/j.smim.2011.11.002 (2012).
    CAS  Article  PubMed  Google Scholar 

    67.
    Hoskins, L. C. et al. Mucin degradation in human colon ecosystems isolation and properties of fecal strains that degrade ABH blood group antigens and oligosaccharides from mucin glycoproteins. J. Clin. Invest 75, 944–953 (1985).
    CAS  Article  Google Scholar 

    68.
    Stams, A. J., Van Dijk, J. B., Dijkema, C. & Plugge, C. M. Growth of syntrophic propionate-oxidizing bacteria with fumarate in the absence of methanogenic bacteria. Appl. Environ. Microbiol. 59, 1114–1119 (1993).
    CAS  Article  Google Scholar 

    69.
    Mank, M., Welsch, P., Heck, A. J. R. & Stahl, B. Label-free targeted LC-ESI-MS2 analysis of human milk oligosaccharides (HMOS) and related human milk groups with enhanced structural selectivity. Anal. Bioanal. Chem. 411, 231–250. https://doi.org/10.1007/s00216-018-1434-7 (2019).
    CAS  Article  PubMed  Google Scholar 

    70.
    Rupakula, A. et al. The restricted metabolism of the obligate organohalide respiring bacterium Dehalobacter restrictus: Lessons from tiered functional genomics. Philos. Trans. R. Soc. B Biol. Sci. 368, 20120325. https://doi.org/10.1098/rstb.2012.0325 (2013).
    CAS  Article  Google Scholar 

    71.
    Lu, J. et al. Filter-aided sample preparation with dimethyl labeling to identify and quantify milk fat globule membrane proteins. J. Proteomics 75, 34–43. https://doi.org/10.1016/j.jprot.2011.07.031 (2011).
    CAS  Article  PubMed  Google Scholar 

    72.
    Wendrich, J. R., Boeren, S., Möller, B. K., Weijers, D. & De Rybel, B. In vivo identification of plant protein complexes using IP-MS/MS. in Methods in Molecular Biology vol. 1497 147–158 (Humana Press, New York, NY, 2017). https://doi.org/10.1007/978-1-4939-6469-7_14.

    73.
    Hubner, N. C. et al. Quantitative proteomics combined with BAC TransgeneOmics reveals in vivo protein interactions. J. Cell Biol. 189, 739–754. https://doi.org/10.1083/jcb.200911091 (2010).
    CAS  Article  PubMed  PubMed Central  Google Scholar 

    74.
    Smaczniak, C. et al. Proteomics-based identification of low-abundance signaling and regulatory protein complexes in native plant tissues. Nat. Protocols https://doi.org/10.1038/nprot.2012.129 (2012).
    Article  PubMed  Google Scholar 

    75.
    Cox, J. et al. Accurate proteome-wide label-free quantification by delayed normalization and maximal peptide ratio extraction. Termed MaxLFQ. Mol. Cell. Proteomics 13, 2513–2526. https://doi.org/10.1074/mcp.M113.031591 (2014).
    CAS  Article  PubMed  Google Scholar 

    76.
    Tyanova, S. et al. The Perseus computational platform for comprehensive analysis of (prote)omics data. Nat. Methods 13, 731–740. https://doi.org/10.1038/nmeth.3901 (2016).
    CAS  Article  PubMed  Google Scholar 

    77.
    Bielow, C., Mastrobuoni, G. & Kempa, S. Proteomics quality control: Quality control software for MaxQuant results. J. Proteome Res. 15, 777–787. https://doi.org/10.1021/acs.jproteome.5b00780 (2016).
    CAS  Article  PubMed  Google Scholar 

    78.
    Vizcaíno, J. A. et al. 2016 update of the PRIDE database and its related tools. Nucleic Acids Res. 44, D447–D456. https://doi.org/10.1093/nar/gkv1145 (2016).
    CAS  Article  PubMed  Google Scholar 

    79.
    Morris, J. B. Enzymatic assay for subnanomole amounts of l-fucose. Anal. Biochem. 121, 129–134. https://doi.org/10.1016/0003-2697(82)90565-6 (1982).
    CAS  Article  PubMed  Google Scholar 

    80.
    Rosendale, D. I. et al. Characterizing kiwifruit carbohydrate utilization in vitro and its consequences for human faecal microbiota. J. Proteome Res. 11, 5863–5875. https://doi.org/10.1021/pr300646m (2012).
    CAS  Article  PubMed  Google Scholar 

    81.
    van Gelder, A. H., Aydin, R., Alves, M. M. & Stams, A. J. M. 1,3-Propanediol production from glycerol by a newly isolated Trichococcus strain. Microb. Biotechnol. 5, 573–578. https://doi.org/10.1111/j.1751-7915.2011.00318.x (2012).
    CAS  Article  PubMed  PubMed Central  Google Scholar  More

  • in

    Habitat preference and diverse migration in threespine sticklebacks, Gasterosteus aculeatus and G. nipponicus

    Effects of salinity on otolith Sr:Ca ratios
    The mean total lengths (TLs) in the four experimental salinities of 0, 10, 20 and 30 psu were 17.3 ± 0.5 (± SD) mm, 18.2 ± 1.3 mm, 18.6 ± 0.7 mm and 17.5 ± 0.8 mm, respectively. There were significant differences in TL among the four salinities (Kruskal–Wallis test, n = 40, H = 13.577, p  More

  • in

    New insights into the food web of an Australian tropical river to inform water resource management

    1.
    Albert, J. S. et al. Scientists’ warning to humanity on the freshwater biodiversity crisis. Ambio https://doi.org/10.1007/s13280-020-01318-8 (2020).
    Article  PubMed  Google Scholar 
    2.
    Poff, N. L. et al. The natural flow regime. Bioscience 47, 769–784. https://doi.org/10.2307/1313099 (1997).
    Article  Google Scholar 

    3.
    Dudgeon, D. et al. Freshwater biodiversity: importance, threats, status and conservation challenges. Biol. Rev. 81, 163–182. https://doi.org/10.1017/S1464793105006950 (2006).
    Article  PubMed  Google Scholar 

    4.
    Sparks, R. E. Need for ecosystem management of large rivers and their floodplains. Bioscience 45, 168–182. https://doi.org/10.2307/1312556 (1995).
    Article  Google Scholar 

    5.
    Hancock, P. J. Human impacts on the stream-groundwater exchange zone. Environ. Manage. 29, 763–781. https://doi.org/10.1007/s00267-001-0064-5 (2002).
    Article  PubMed  Google Scholar 

    6.
    Pringle, C. What is hydrologic connectivity and why is it ecologically important?. Hydrol. Process. 17, 2685–2689. https://doi.org/10.1002/hyp.5145 (2003).
    ADS  Article  Google Scholar 

    7.
    Reid, M. A., Delong, M. D. & Thoms, M. C. The influence of hydrological connectivity on food web structure in floodplain lakes. River Res. Appl. 28, 827–844. https://doi.org/10.1002/rra.1491 (2012).
    Article  Google Scholar 

    8.
    Tickner, D. et al. Bending the curve of global freshwater biodiversity loss: an emergency recovery plan. Bioscience 70, 330–342. https://doi.org/10.1093/biosci/biaa002 (2020).
    Article  PubMed  PubMed Central  Google Scholar 

    9.
    Australian Government. Our North, Our Future: White Paper on Developing Northern Australia. https://industry.gov.au/ONA/WhitePaper/Documents/northern_australia_white_paper.pdf (2015).

    10.
    Petheram, C., Bruce, C., Chilcott, C. & Watson, I. Water resource assessment for the Fitzroy catchment. A report to the Australian Government from the CSIRO Northern Australia Water Resource Assessment, part of the National Water Infrastructure Development Fund: Water Resource Assessments (CSIRO, Australia, 2018).
    Google Scholar 

    11.
    Pusey, B. Aquatic Biodiversity in Northern Australia: Patterns Threats and Future (Charles Darwin University Press, Darwin, 2011).
    Google Scholar 

    12.
    Jackson, S., Finn, M. & Featherston, P. Aquatic resource use by Indigenous Australians in two tropical river catchments: the Fitzroy River and Daly River. Hum. Ecol. 40, 893–908. https://doi.org/10.1007/s10745-012-9518-z (2012).
    Article  Google Scholar 

    13.
    Douglas, M. M. et al. Conceptualizing hydro-socio-ecological relationships to enable more integrated and inclusive water allocation planning. One Earth 1, 361–373. https://doi.org/10.1016/j.oneear.2019.10.021 (2019).
    Article  Google Scholar 

    14.
    Lear, K. O. et al. Recruitment of a critically endangered sawfish into a riverine nursery depends on natural flow regimes. Sci. Rep. 9, 17071. https://doi.org/10.1038/s41598-019-53511-9 (2019).
    ADS  CAS  Article  PubMed  PubMed Central  Google Scholar 

    15.
    Fry, B. & Sherr, E. B. in Stable Isotopes in Ecological Research Vol. 68 (eds P.W. Rundel, J. R. Ehleringer, & K. A. Nagy) (Springer, New York, 1989).

    16.
    Jardine, T. D. et al. Consumer-resource coupling in wet-dry tropical rivers. J. Anim. Ecol. 81, 310–322. https://doi.org/10.1111/j.1365-2656.2011.01925.x (2012).
    Article  PubMed  Google Scholar 

    17.
    Fellman, J. B., Pettit, N. E., Kalic, J. & Grierson, P. F. Influence of stream–floodplain biogeochemical linkages on aquatic foodweb structure along a gradient of stream size in a tropical catchment. Freshw. Sci. 32, 217–229. https://doi.org/10.1899/11-117.1 (2013).
    Article  Google Scholar 

    18.
    Burford, M. A., Cook, A. J., Fellows, C. S., Balcombe, S. R. & Bunn, S. E. Sources of carbon fuelling production in an arid floodplain river. Mar. Freshw. Res. 59, 224–234 (2008).
    CAS  Article  Google Scholar 

    19.
    Hunt, R. J. et al. Temporal and spatial variation in ecosystem metabolism and food web carbon transfer in a wet-dry tropical river. Freshw. Biol. 57, 435–450. https://doi.org/10.1111/j.1365-2427.2011.02708.x (2012).
    CAS  Article  Google Scholar 

    20.
    Jardine, T. D. et al. Carbon from periphyton supports fish biomass in waterholes of a wet-dry tropcical river. River Res. Appl. 29, 560–573. https://doi.org/10.1002/rra.2554 (2013).
    Article  Google Scholar 

    21.
    Junk, W. J., Bayley, P. B. & Sparks, R. E. The Flood Pulse Concept In River-Floodplain Systems (Canadian Special Publication of Fisheries and Aquatic Sciences, Toronto, 1989).
    Google Scholar 

    22.
    Zeug, S. C. & Winemiller, K. O. Evidence supporting the importance of terrestrial carbon in a large-river food web. Ecology 89, 1733–1743. https://doi.org/10.1890/07-1064.1 (2008).
    Article  PubMed  Google Scholar 

    23.
    Karim, F. et al. Floodplain Inundation Mapping and Modelling for the Fitzroy, Darwin and Mitchell Catchments (CSIRO, Australia, 2018).
    Google Scholar 

    24.
    Burrows, R., Beesley, L., Douglas, M., Pusey, B. & Kennard, M. Water velocity and groundwater upwelling control benthic algae biomass in a sandy tropical river during base flow: implications for water resource development. Hydrobiologia 847, 1207–1219 (2020).
    Article  Google Scholar 

    25.
    Bunn, S. E. & Arthington, A. H. Basic principles and ecological consequences of altered flow regimes for aquatic biodiversity. Environ. Manage. 30, 492–507. https://doi.org/10.1007/s00267-002-2737-0 (2002).
    Article  PubMed  Google Scholar 

    26.
    Staunton-Smith, J., Robins, J. B., Mayer, D. G., Sellin, M. J. & Halliday, I. A. Does the quantity and timing of fresh water flowing into a dry tropical estuary affect year-class strength of barramundi (Lates calcarifer)?. Mar. Freshw. Res. 55, 787–797. https://doi.org/10.1071/MF03198 (2004).
    Article  Google Scholar 

    27.
    Morgan, D. L., Allen, M. G., Bedford, P. & Horstman, M. Fish fauna of the Fitzroy River in the Kimberley region of Western Australia: including the Bunuba, Gooniyandi, Ngarinyin, Nyikina and Walmajarri Aboriginal names. Rec. West. Austral. Museum 22, 147–161 (2004).
    Article  Google Scholar 

    28.
    Jardine, T. D. et al. Fish mediate high food web connectivity in the lower reaches of a tropical floodplain river. Oecologia 168, 829–838. https://doi.org/10.1007/s00442-011-2148-0 (2012).
    ADS  Article  PubMed  Google Scholar 

    29.
    Burnham, K. P. & Anderson, D. R. A practical information-theoretic approach. in Model Selection and Multimodel Inference 2nd edn (Springer, New York, 2002).
    Google Scholar 

    30.
    Stock, B. C. et al. Analyzing mixing systems using a new generation of Bayesian tracer mixing models. PeerJ 6, e5096. https://doi.org/10.7717/peerj.5096 (2018).
    Article  PubMed  PubMed Central  Google Scholar 

    31.
    MacAvoy, S. E., Macko, S. A. & Garman, G. C. Tracing marine biomass into tidal freshwater ecosystems using stable sulfur isotopes. Sci. Nat. 85, 544–546. https://doi.org/10.1007/s001140050546 (1998).
    CAS  Article  Google Scholar 

    32.
    Douglas, M. M., Bunn, S. E. & Davies, P. M. River and wetland food webs in Australias wet-dry tropics: general principles and implications for management. Mar. Freshw. Res. 56, 329–342. https://doi.org/10.1071/MF04084 (2005).
    Article  Google Scholar 

    33.
    Hill, W. R., Rinchard, J. & Czesny, S. Light, nutrients and the fatty acid composition of stream periphyton. Freshw. Biol. 56, 1825–1836. https://doi.org/10.1111/j.1365-2427.2011.02622.x (2011).
    CAS  Article  Google Scholar 

    34.
    Guo, F., Kainz, M. J., Sheldon, F. & Bunn, S. E. The importance of high-quality algal food sources in stream food webs: current status and future perspectives. Freshw. Biol. 61, 815–831. https://doi.org/10.1111/fwb.12755 (2016).
    CAS  Article  Google Scholar 

    35.
    Pettit, N. E. et al. Productivity and connectivity in tropical riverscapes of northern Australia: ecological insights for management. Ecosystems 20, 492–514. https://doi.org/10.1007/s10021-016-0037-4 (2017).
    Article  Google Scholar 

    36.
    Medeiros, E. S. F. & Arthington, A. H. The importance of zooplankton in the diets of three native fish species in floodplain waterholes of a dryland river, the Macintyre River, Australia. Hydrobiologia 614, 19–31. https://doi.org/10.1007/s10750-008-9533-7 (2008).
    Article  Google Scholar 

    37.
    Hladyz, S., Nielsen, D. L., Suter, P. J. & Krull, E. S. Temporal variations in organic carbon utilization by consumers in a lowland river. River Res. Appl. 28, 513–528. https://doi.org/10.1002/rra.1467 (2012).
    Article  Google Scholar 

    38.
    Thorburn, D. C., Gill, H. & Morgan, D. L. Predator and prey interactions of fishes of a tropical Western Australia river revealed by dietary and stable isotope analyses. J. R. Soc. West. Austral. 97, 363–387 (2014).
    Google Scholar 

    39.
    Davis, A. M. et al. Trophic ecology of northern Australia’s terapontids: ontogenetic dietary shifts and feeding classification. J. Fish Biol. 78, 265–286. https://doi.org/10.1111/j.1095-8649.2010.02862.x (2011).
    CAS  Article  PubMed  Google Scholar 

    40.
    Jardine, T. D. et al. Body size drives allochthony in food webs of tropical rivers. Oecologia 183, 505–517. https://doi.org/10.1007/s00442-016-3786-z (2017).
    ADS  Article  PubMed  Google Scholar 

    41.
    Peterson, B. J. & Fry, B. Stable isotopes in ecosystem studies. Annu. Rev. Ecol. Syst. 18, 293–320 (1987).
    Article  Google Scholar 

    42.
    Roberts, B. H. et al. Migration to freshwater increases growth rates in a facultatively catadromous tropical fish. Oecologia 191, 253–260 (2019).
    ADS  Article  Google Scholar 

    43.
    Crook, D. A. et al. Tracking the resource pulse: movement responses of fish to dynamic floodplain habitat in a tropical river. J. Anim. Ecol. 89, 795–807. https://doi.org/10.1111/1365-2656.13146 (2020).
    Article  PubMed  Google Scholar 

    44.
    Kwak, T. J. Lateral movement and use of floodplain habitat by fishes of the Kankakee River, Illinois. Am. Midl. Nat. 120, 241–249. https://doi.org/10.2307/2425995 (1988).
    Article  Google Scholar 

    45.
    Jackson, S., Finn, M., Woodward, E. & Featherston, P. Indigenous Socio-Economic Values and River Flows (CSIRO Ecosystem Sciences, Australia, 2011).
    Google Scholar 

    46.
    Townsend, S. A. & Padovan, A. V. The seasonal accrual and loss of benthic algae (Spirogyra) in the Daly River, an oligotrophic river in tropical Australia. Mar. Freshw. Res. 56, 317–327. https://doi.org/10.1071/MF04079 (2005).
    CAS  Article  Google Scholar 

    47.
    Fellman, J. B. et al. Dissolved organic carbon biolability decreases along with its modernization in fluvial networks in an ancient landscape. Ecology 95, 2622–2632. https://doi.org/10.1890/13-1360.1 (2014).
    Article  Google Scholar 

    48.
    Pace, M. L. et al. Whole-lake carbon-13 additions reveal terrestrial support of aquatic food webs. Nature 427, 240–243. https://doi.org/10.1038/nature02227 (2004).
    ADS  CAS  Article  PubMed  Google Scholar 

    49.
    Baldwin, D. S., Colloff, M. J., Mitrovic, S. M., Bond, N. R. & Wolfenden, B. Restoring dissolved organic carbon subsidies from floodplains to lowland river food webs: a role for environmental flows?. Mar. Freshw. Res. 67, 1387–1399. https://doi.org/10.1071/MF15382 (2016).
    CAS  Article  Google Scholar 

    50.
    Kennard, M. J. et al. Classification of natural flow regimes in Australia to support environmental flow management. Freshw. Biol. 55, 171–193. https://doi.org/10.1111/j.1365-2427.2009.02307.x (2010).
    Article  Google Scholar 

    51.
    Taylor, C. F. H. in Limnology of the Fitzroy River, Western Australia: a technical workshop. (eds A Storey & L Beesley).

    52.
    Hesslein, R. H., Capel, M. J., Fox, D. E. & Hallard, K. A. Stable isotopes of sulfur, carbon, and nitrogen as indicators of trophic level and fish migration in the lower Mackenzie River Basin, Canada. Can. J. Fish. Aquat. Sci. 48, 2258–2265. https://doi.org/10.1139/f91-265 (1991).
    Article  Google Scholar 

    53.
    Herzka, S. Z. Assessing connectivity of estuarine fishes based on stable isotope ratio analysis. Estuar. Coast. Shelf Sci. 64, 58–69. https://doi.org/10.1016/j.ecss.2005.02.006 (2005).
    ADS  Article  Google Scholar 

    54.
    Pusey, B. J. et al. Carbon sources supporting Australia’s most widely distributed freshwater fish, Nematalosa erebi (Günther) (Clupeidae: Dorosomatinae). Mar. Freshw. Res. https://doi.org/10.1071/MF20014 (2020).
    Article  Google Scholar 

    55.
    Hecky, R. & Hesslein, R. Contributions of benthic algae to lake food webs as revealed by stable isotope analysis. J. N. Am. Benthol. Soc. 14, 631–653 (1995).
    Article  Google Scholar 

    56.
    Yoshii, K. et al. Stable isotope analyses of the pelagic food web in Lake Baikal. Limnol. Oceanogr. 44, 502–511 (1999).
    ADS  Article  Google Scholar 

    57.
    Pinnegar, J. K. & Polunin, N. V. C. Differential fractionation of δ13C and δ15N among fish tissues: implications for the study of trophic interactions. Funct. Ecol. 13, 225–231. https://doi.org/10.1046/j.1365-2435.1999.00301.x (1999).
    Article  Google Scholar 

    58.
    Skrzypek, G. Normalization procedures and reference material selection in stable HCNOS isotope analyses: an overview. Anal. Bioanal. Chem. 405, 2815–2823. https://doi.org/10.1007/s00216-012-6517-2 (2013).
    CAS  Article  PubMed  Google Scholar 

    59.
    Logan, J. M. et al. Lipid corrections in carbon and nitrogen stable isotope analyses: comparison of chemical extraction and modelling methods. J. Anim. Ecol. 77, 838–846. https://doi.org/10.1111/j.1365-2656.2008.01394.x (2008).
    Article  PubMed  Google Scholar 

    60.
    Skinner, M. M., Martin, A. A. & Moore, B. C. Is lipid correction necessary in the stable isotope analysis of fish tissues?. Rapid Commun. Mass Spectrom. 30, 881–889. https://doi.org/10.1002/rcm.7480 (2016).
    CAS  Article  PubMed  Google Scholar 

    61.
    Parnell, A. C., Inger, R., Bearhop, S. & Jackson, A. L. Source partitioning using stable isotopes: coping with too much variation. PLoS ONE 5, e9672. https://doi.org/10.1371/journal.pone.0009672 (2010).
    ADS  CAS  Article  PubMed  PubMed Central  Google Scholar 

    62.
    Sauer, J. R. & Link, W. A. Hierarchical modeling of population stability and species group attributes from survey data. Ecology 83, 1743–1751. https://doi.org/10.1890/0012-9658(2002)083[1743:Hmopsa]2.0.Co;2 (2002).
    Article  Google Scholar 

    63.
    McCutchan, J. H. Jr., Lewis, W. M. Jr., Kendall, C. & McGrath, C. C. Variation in trophic shift for stable isotope ratios of carbon, nitrogen, and sulfur. Oikos 102, 378–390. https://doi.org/10.1034/j.1600-0706.2003.12098.x (2003).
    CAS  Article  Google Scholar 

    64.
    Parnell, A. C. et al. Bayesian stable isotope mixing models. Environmetrics 24, 387–399. https://doi.org/10.1002/env.2221 (2013).
    MathSciNet  Article  Google Scholar 

    65.
    Blanchette, M. L., Davis, A. M., Jardine, T. D. & Pearson, R. G. Omnivory and opportunism characterize food webs in a large dry-tropics river system. Freshw. Sci. 33, 142–158. https://doi.org/10.1086/674632 (2014).
    Article  Google Scholar 

    66.
    Bunn, S. E., Leigh, C. & Jardine, T. D. Diet-tissue fractionation of δ15N by consumers from streams and rivers. Limnol. Oceanogr. 58, 765–773. https://doi.org/10.4319/lo.2013.58.3.0765 (2013).
    ADS  CAS  Article  Google Scholar 

    67.
    Pusey, B., Kennard, M. & Arthington, A. Freshwater Fishes of North-Eastern Australia (CSIRO publishing, Clayton, 2004).
    Google Scholar 

    68.
    Post, D. M. Using stable isotopes to estimate trophic position: models, methods and assumptions. Ecology 83, 703–718. https://doi.org/10.1890/0012-9658(2002)083[0703:Usitet]2.0.Co;2 (2002).
    Article  Google Scholar  More

  • in

    Ecological pest control fortifies agricultural growth in Asia–Pacific economies

    1.
    Griggs, D. et al. Policy: sustainable development goals for people and planet. Nature 495, 305–307 (2013).
    CAS  Article  Google Scholar 
    2.
    Bernhardt, E. S., Rosi, E. J. & Gessner, M. O. Synthetic chemicals as agents of global change. Front. Ecol. Environ. 15, 84–90 (2017).
    Google Scholar 

    3.
    Springmann, M. et al. Options for keeping the food system within environmental limits. Nature 562, 519–525 (2018).
    CAS  PubMed  Google Scholar 

    4.
    Pretty, J. et al. Global assessment of agricultural system redesign for sustainable intensification. Nat. Sustain. 1, 441–446 (2018).
    Google Scholar 

    5.
    Rockström, J. et al. A safe operating space for humanity. Nature 461, 472–475 (2009).
    PubMed  Google Scholar 

    6.
    Alston, J. M. & Pardey, P. G. Agriculture in the global economy. J. Econ. Perspect. 28, 121–146 (2014).
    Google Scholar 

    7.
    Johnston, B. F. & Mellor, J. W. The role of agriculture in economic development. Am. Econ. Rev. 51, 566–593 (1961).
    Google Scholar 

    8.
    de Janvry, A. Agriculture for development: new paradigm and options for success. Agric. Econ. 41, 17–36 (2010).
    Google Scholar 

    9.
    Pingali, P. L. Green revolution: impacts, limits, and the path ahead. Proc. Natl. Acad. Sci. USA 109, 12302–12308 (2012).
    CAS  PubMed  Google Scholar 

    10.
    Sayer, J. & Cassman, K. G. Agricultural innovation to protect the environment. Proc. Natl Acad. Sci. USA 110, 8345–8348 (2013).
    CAS  PubMed  Google Scholar 

    11.
    Bale, J. S., Van Lenteren, J. C. & Bigler, F. Biological control and sustainable food production. Phil. Trans. R. Soc. B 363, 761–776 (2008).
    CAS  PubMed  Google Scholar 

    12.
    Naranjo, S. E., Ellsworth, P. C. & Frisvold, G. B. Economic value of biological control in integrated pest management of managed plant systems. Annu. Rev. Entomol. 60, 621–645 (2015).
    CAS  PubMed  Google Scholar 

    13.
    Heimpel, G. E. & Cock, M. J. W. Shifting paradigms in the history of classical biological control. BioControl 63, 27–37 (2018).
    Google Scholar 

    14.
    Simmonds, F. J., Franz, J. M., & Sailer, R. I. in Theory and Practice of Biological Control (eds Huffaker, C. B. & Messenger, P. S.) 17–39 (Academic Press, 1976).

    15.
    Maredia, M. K. & Raitzer, D. A. Estimating overall returns to international agricultural research in Africa through benefit–cost analysis: a “best‐evidence” approach. Agric. Econ. 41, 81–100 (2010).
    Google Scholar 

    16.
    Nghiem, L. T. et al. Economic and environmental impacts of harmful non-indigenous species in Southeast Asia. PLoS ONE 8, e71255 (2013).
    CAS  PubMed Central  Google Scholar 

    17.
    Bradshaw, C. J. et al. Massive yet grossly underestimated global costs of invasive insects. Nat. Commun. 7, 12986 (2016).
    CAS  PubMed  PubMed Central  Google Scholar 

    18.
    Huffaker, C. B. & Caltagirone, L. E. The impact of biological control on the development of the Pacific. Agric. Ecosyst. Environ. 15, 95–107 (1986).
    Google Scholar 

    19.
    Waterhouse, D. F., Dillon, B. & Vincent, D. P. Economic Benefits to Papua New Guinea and Australia from the Biological Control of Banana Skipper (Erionota thrax) No. 434-2016-33658 (ACIAR, 1998).

    20.
    DeBach, P. & Rosen, D. Biological Control by Natural Enemies (Cambridge Univ. Press, 1991).

    21.
    Heimpel, G. E. & Mills, N. J. Biological Control (Cambridge Univ. Press, 2017).

    22.
    Spennemann, D. H. Introduction of coccinellid beetles to control the coconut scale insect Aspidiotus destructor Signoret in Micronesia 1901–1914. Oriental Insects 54, 197–215 (2019).

    23.
    Zalucki, M. P. et al. Estimating the economic cost of one of the world’s major insect pests, Plutella xylostella (Lepidoptera: Plutellidae): just how long is a piece of string? J. Econ. Entomol. 105, 1115–1129 (2012).
    PubMed  Google Scholar 

    24.
    Hoddle, M. S. Restoring balance: using exotic species to control invasive exotic species. Conserv. Biol. 18, 38–49 (2004).
    Google Scholar 

    25.
    Van Driesche, R. G. et al. Classical biological control for the protection of natural ecosystems. Biol. Control 54, S2–S33 (2010).
    Google Scholar 

    26.
    Ricciardi, A., Palmer, M. E. & Yan, N. D. Should biological invasions be managed as natural disasters? BioScience 61, 312–317 (2011).
    Google Scholar 

    27.
    Bellard, C. et al. A global picture of biological invasion threat on islands. Nat. Ecol. Evol. 1, 1862–1869 (2017).
    PubMed  Google Scholar 

    28.
    Naranjo, S. E., Frisvold, G. B. & Ellsworth, P. C. in The Economics of Integrated Pest Management of Insects (eds Onstad, D. W. & Crain, P. R.) 49–85 (CAB International, 2019).

    29.
    Liu, J. et al. Systems integration for global sustainability. Science 347, 1258832 (2015).
    PubMed  Google Scholar 

    30.
    Gordon, L. J. et al. Rewiring food systems to enhance human health and biosphere stewardship. Environ. Res. Lett. 12, 100201 (2017).
    Google Scholar 

    31.
    Ruttan, V. W. Productivity growth in world agriculture: sources and constraints. J. Econ. Perspect. 16, 161–184 (2002).
    Google Scholar 

    32.
    Ruttan, V. W. & Hayami, Y. in International Agricultural Development (eds Eicher, C. K. & Staatz, J. M.) Ch. 10 (Johns Hopkins Univ. Press, 1998).

    33.
    Dainese, M. et al. A global synthesis reveals biodiversity-mediated benefits for crop production. Sci. Adv. 5, eaax012 (2019).
    Google Scholar 

    34.
    Keane, R. M. & Crawley, M. J. Exotic plant invasions and the enemy release hypothesis. Trends Ecol. Evol. 17, 164–170 (2002).
    Google Scholar 

    35.
    Thancharoen, A. et al. Effective biological control of an invasive mealybug pest enhances root yield in cassava. J. Pest Sci. 91, 1199–1211 (2018).
    Google Scholar 

    36.
    Raitzer, D. A. & Kelley, T. G. Benefit–cost meta-analysis of investment in the International Agricultural Research Centers of the CGIAR. Agric. Syst. 96, 108–123 (2008).
    Google Scholar 

    37.
    van der Ploeg, J. D. et al. The economic potential of agroecology: empirical evidence from Europe. J. Rural Stud. 71, 46–61 (2019).
    Google Scholar 

    38.
    Haggblade, S., Hazell, P. B. & Dorosh, P. A. in Transforming the Rural Nonfarm Economy: Opportunities and Threats in the Developing World (eds Haggblade, S. et al.) Ch. 7 (IFPRI, 2007).

    39.
    Wiggins, S., Kirsten, J. & Llambí, L. The future of small farms. World Dev. 38, 1341–1348 (2010).
    Google Scholar 

    40.
    Timmer, P. C. in International Agricultural Development (eds Eicher, C. K. & Staatz, J. M.) Ch. 32 (Johns Hopkins Univ. Press, 1998).

    41.
    Folke, C. et al. Transnational corporations and the challenge of biosphere stewardship. Nat. Ecol. Evol. 3, 1396–1403 (2019).
    PubMed  Google Scholar 

    42.
    Yletyinen, J. et al. Understanding and managing social-ecological tipping points in primary industries. BioScience 69, 335–347 (2019).
    Google Scholar 

    43.
    Bottrell, D. G. & Schoenly, K. G. Resurrecting the ghost of green revolutions past: the brown planthopper as a recurring threat to high-yielding rice production in tropical Asia. J. Asia-Pacific Entomol. 15, 122–140 (2012).
    Google Scholar 

    44.
    Cock, M. J. W. et al. Trends in the classical biological control of insect pests by insects: an update of the BIOCAT database. Biocontrol 61, 349–363 (2016).
    CAS  Google Scholar 

    45.
    Reardon, T. The hidden middle: the quiet revolution in the midstream of agrifood value chains in developing countries. Oxford Rev. Econ. Policy 31, 45–63 (2015).
    Google Scholar 

    46.
    Wyckhuys, K. A. G. Biological control of an invasive pest eases pressures on global commodity markets. Environ. Res. Lett. 13, 094005 (2018).
    Google Scholar 

    47.
    Martin, E. A. et al. Assessing the resilience of 2 biodiversity-driven functions in agroecosystems under environmental change. Adv. Ecol. Res. 60, 59–123 (2019).
    Google Scholar 

    48.
    Warner, K. D. et al. The decline of public interest agricultural science and the dubious future of crop biological control in California. Agric. Human Values 28, 483–496 (2011).
    Google Scholar 

    49.
    Benelli, G., Jeffries, C. L. & Walker, T. Biological control of mosquito vectors: past, present, and future. Insects 7, 52 (2016).
    PubMed Central  Google Scholar 

    50.
    Dangour, A. D., Mace, G. & Shankar, B. Food systems, nutrition, health and the environment. Lancet Planet. Health 1, e8–e9 (2017).
    PubMed  Google Scholar 

    51.
    Rasmussen, L. V. et al. Social-ecological outcomes of agricultural intensification. Nat. Sustain. 1, 275–282 (2018).
    Google Scholar 

    52.
    Henneman, M. L. & Memmott, J. Infiltration of a Hawaiian community by introduced biological control agents. Science 293, 1314–1316 (2001).
    CAS  PubMed  Google Scholar 

    53.
    Stiling, P. & Cornelissen, T. What makes a successful biocontrol agent? A meta-analysis of biological control agent performance. Biol. Control 34, 236–246 (2005).
    Google Scholar 

    54.
    Sparger, J. A. et al. Is the share of agricultural maintenance research rising in the United States? Food Policy 38, 126–135 (2013).
    Google Scholar 

    55.
    Trewavas, A. Malthus foiled again and again. Nature 418, 668–670 (2002).
    CAS  PubMed  Google Scholar 

    56.
    Greathead, D. J. & Greathead, A. H. Biological control of insect pests by insect parasitoids and predators: the BIOCAT database. Biocontrol News Inf. 13, 61N–68N (1992).
    Google Scholar 

    57.
    Wyckhuys, K. A. G. et al. Data from: Ecological pest control fortifies agricultural growth in Asia-Pacific economies (Dryad Digital Repository, 2020); https://doi.org/10.5061/dryad.547d7wm45

    58.
    Zeddies, J., Schaab, R. P., Neuenschwander, P. & Herren, H. R. Economics of biological control of cassava mealybug in Africa. Agric. Econ. 24, 209–219 (2001).
    Google Scholar 

    59.
    Hayami, Y. & Ruttan, V. W. Agricultural Development: An International Perspective (Johns Hopkins Univ. Press, 1971). More

  • in

    Incorporating hydrology into climate suitability models changes projections of malaria transmission in Africa

    1.
    World Health Organisation. World Malaria Report 2018 (World Health Organization, Geneva, 2018).
    2.
    Caminade, C. et al. Impact of climate change on global malaria distribution. Proc. Natl Acad. Sci. 111, 3286–3291 (2014).
    ADS  CAS  PubMed  Google Scholar 

    3.
    Shapiro, L. L., Whitehead, S. A. & Thomas, M. B. Quantifying the effects of temperature on mosquito and parasite traits that determine the transmission potential of human malaria. PLoS Biol. 15, 2003489 (2017).
    Google Scholar 

    4.
    Jepson, W. F., Moutia, A. & Courtois, C. The malaria problem in Mauritius: the binomics of Mauritian anophelines. Bull. Entomol. Res. 38, 177–208 (1947).
    CAS  PubMed  Google Scholar 

    5.
    Waite, J. L., Suh, E., Lynch, P. A. & Thomas, M. B. Exploring the lower thermal limits for development of the human malaria parasite, Plasmodium falciparum. Biol. Lett. 15, 20190275 (2019).
    PubMed  PubMed Central  Google Scholar 

    6.
    Bayoh, M. N. & Lindsay, S. W. Effect of temperature on the development of the aquatic stages of Anopheles gambiae sensu stricto (Diptera: Culicidae). Bull. Entomol. Res. 93, 375–381 (2003).
    CAS  PubMed  Google Scholar 

    7.
    Depinay, J. M. et al. A simulation model of African Anopheles ecology and population dynamics for the analysis of malaria transmission. Malar. J. 3, 29 (2004).
    PubMed  PubMed Central  Google Scholar 

    8.
    Mordecai, E. A. et al. Optimal temperature for malaria transmission is dramatically lower than previously predicted. Ecol. Lett. 16, 22–30 (2012).
    PubMed  Google Scholar 

    9.
    Craig, M. H., Snow, R. W. & Le Sueur, D. Climate-based distribution model of malaria transmission in sub-Saharan Africa. Parasitol. Today 15, 105–111 (1999).
    CAS  PubMed  Google Scholar 

    10.
    Parham, P. E. & Michael, E. Modeling the effects of weather and climate change on malaria transmission. Environ. Health Perspect. 118, 620–626 (2010).
    PubMed  Google Scholar 

    11.
    Ryan, S. J. et al. Mapping physiological suitability limits for malaria in Africa under climate change. Vector-Borne Zoonotic Dis. 15, 718–725 (2015).
    PubMed  PubMed Central  Google Scholar 

    12.
    Smith, M. W., Macklin, M. G. & Thomas, C. J. Hydrological and geomorphological controls of malaria transmission. Earth Sci. Rev. 116, 109–127 (2013).
    ADS  Google Scholar 

    13.
    Bomblies, A., Duchemin, J. B. & Eltahir, E. A. Hydrology of malaria: model development and application to a Sahelian village. Water Resour. Res. 44, W12445 (2008).
    ADS  Google Scholar 

    14.
    Yamana, T. K., Bomblies, A. & Eltahir, E. A. Climate change unlikely to increase malaria burden in West Africa. Nat. Clim. Change 6, 1009–1013 (2016).
    ADS  Google Scholar 

    15.
    Small, J., Goetz, S. J. & Hay, S. I. Climatic suitability for malaria transmission in Africa, 1911–1995. Proc. Natl Acad. Sci. USA 100, 15341–15345 (2003).
    ADS  CAS  PubMed  Google Scholar 

    16.
    Thomas, C. J., Davies, G. & Dunn, C. E. Mixed picture for changes in stable malaria distribution with future climate in Africa. Trends Parasitol. 20, 216–220 (2004).
    PubMed  Google Scholar 

    17.
    Ebi, K. L. et al. Climate suitability for stable malaria transmission in Zimbabwe under different climate change scenarios. Clim. Change 73, 375–393 (2005).
    ADS  Google Scholar 

    18.
    Van Lieshout, M., Kovats, R. S., Livermore, M. T. J. & Martens, P. Climate change and malaria: analysis of the SRES climate and socio-economic scenarios. Glob. Environ. Change 14, 87–99 (2004).
    Google Scholar 

    19.
    Kiszewski, A. et al. A global index representing the stability of malaria transmission. Am. J. Trop. Med. Hyg. 70, 486–498 (2004).
    PubMed  Google Scholar 

    20.
    Ermert, V., Fink, A. H., Jones, A. E. & Morse, A. P. Development of a new version of the Liverpool Malaria Model. II. Calibration and validation for West Africa. Malar. J. 10, 62 (2011).
    PubMed  PubMed Central  Google Scholar 

    21.
    Martens, W. J. M., Niessen, L. W., Rotmans, J. & McMichael, A. J. Potential impacts of global climate change on malaria risk. Environ. Health Perspect. 103, 458–464 (1995).
    CAS  PubMed  PubMed Central  Google Scholar 

    22.
    Tanser, F., Sharp, B. L. & Le Sueur, D. Potential effect of climate change on malaria transmission in Africa. Lancet 362, 1792–9178 (2003).
    PubMed  Google Scholar 

    23.
    Garnham, P. C. C. The incidence of malaria at high altitudes. J. Malar. Soc. 7, 275–284 (1948).
    CAS  Google Scholar 

    24.
    Lindsay, S. W., Parson, L. & Thomas, C. J. Mapping the ranges and relative abundance of the two principal African malaria vectors, Anopheles gambiae sensu stricto and An. arabiensis, using climate data. Proc. R. Soc. B Biol. Sci. 265, 847–854 (1998).
    CAS  Google Scholar 

    25.
    Mabaso, M. L., Craig, M., Ross, A. & Smith, T. Environmental predictors of the seasonality of malaria transmission in Africa: the challenge. Am. J. Trop. Med. Hyg. 76, 33–38 (2007).
    PubMed  Google Scholar 

    26.
    Kibret, S. et al. Malaria impact of large dams in sub-Saharan Africa: maps, estimates and predictions. Malar. J. 14, 339 (2015).
    PubMed  PubMed Central  Google Scholar 

    27.
    Lysenko, A. J. & Semashko, I. N. in Itogi Nauki: Medicinskaja Geografija (ed. Lebedew, A. W.) 25–146 (Academy of Sciences, Moscow, 1968) (in Russian).

    28.
    Ageep, T. B. et al. Spatial and temporal distribution of the malaria mosquito Anopheles arabiensis in northern Sudan: influence of environmental factors and implications for vector control. Malar. J. 8, 123 (2009).
    PubMed  PubMed Central  Google Scholar 

    29.
    Fuller, D. O., Parenti, M. S., Hassan, A. N. & Beier, J. C. Linking land cover and species distribution models to project potential ranges of malaria vectors: an example using Anopheles arabiensis in Sudan and Upper Egypt. Malar. J. 11, 264 (2012).
    PubMed  PubMed Central  Google Scholar 

    30.
    Gemperli, A., Vounatsou, P., Sogoba, N. & Smith, T. Malaria mapping using transmission models: application to survey data from Mali. Am. J. Epidemiol. 163, 289–297 (2005).
    PubMed  Google Scholar 

    31.
    Snow, R. W., Noor, A. M. & Hay, S. I. Malaria in Somalia: Assembling the Evidence and Modeling Risks (University of Oxford, UK, 2006).

    32.
    Hulme, M., Doherty, R., Ngara, T., New, M. & Lister, D. African climate change: 1900–2100. Clim. Res. 17, 145–168 (2001).
    Google Scholar 

    33.
    Tierney, J. E., Ummenhofer, C. C. & de Menocal, P. B. Past and future rainfall in the Horn of Africa. Sci. Adv. 1, e1500682 (2015).
    ADS  PubMed  PubMed Central  Google Scholar 

    34.
    Reiter, P. Global warming and malaria: knowing the horse before hitching the cart. Malar. J. 7, S3 (2008).
    PubMed  PubMed Central  Google Scholar 

    35.
    Gething, P. et al. Climate change and the global malaria recession. Nature 465, 342–345 (2010).
    ADS  CAS  PubMed  PubMed Central  Google Scholar 

    36.
    Yamazaki, D., Kanae, S., Kim, H. & Oki, T. A physically based description of floodplain inundation dynamics in a global river routing model. Water Resour. Res. 47, W04501 (2011).
    ADS  Google Scholar 

    37.
    Hazeleger, W. et al. EC-Earth V2.2: description and validation of a new seamless earth system prediction model. Clim. Dyn. 39, 2611–2629 (2012).
    Google Scholar 

    38.
    Alfieri, L. et al. Global projections of river flood risk in a warmer world. Earth’s Future 5, 171–182 (2017).
    ADS  Google Scholar 

    39.
    Muerth, M. J. et al. On the need for bias correction in regional climate scenarios to assess climate change impacts on river runoff. Hydrol. Earth Syst. Sci. 17, 1189–1204 (2013).
    ADS  Google Scholar 

    40.
    Hirpa, F. A. et al. Streamflow response to climate change in the Greater Horn of Africa. Clim. Change 156, 341–363 (2019).
    ADS  Google Scholar 

    41.
    van der Knijff, J. M., Younis, J. & de Roo, A. P. J. LISFLOOD: a GIS-based distributed model for river basin scale water balance and flood simulation. Int. J. Geograph. Inf. Sci. 24, 189–212 (2010).
    Google Scholar 

    42.
    Burek, P., van der Knijff, J. & de Roo, A. P. J. LISFLOOD, Distributed Water Balance and Flood Simulation Model Revised User Manual (Publ. Off., Luxembourg, 2013).

    43.
    Lehner, B., Verdin, K. & Jarvis, A. New global hydrography derived from spaceborne elevation data. Eos, Trans. Am. Geophys. Union 89, 93–94 (2008).
    ADS  Google Scholar 

    44.
    Wu, H. et al. A new global river network database for macroscale hydrologic modeling. Water Resour. Res. 48, W09701 (2012).
    ADS  Google Scholar 

    45.
    Hengl, T. et al. SoilGrids1km—global soil information based on automated mapping. PLoS ONE 9, e105992 (2014).
    ADS  PubMed  PubMed Central  Google Scholar 

    46.
    Paaijmans, K. P., Takken, W., Githeko, A. K. & Jacobs, A. F. G. The effect of water turbidity on the near-surface water temperature of larval habitats of the malaria mosquito Anopheles gambiae. Int. J. Biometeorol. 52, 747–753 (2008).
    ADS  CAS  PubMed  Google Scholar 

    47.
    Thomas, C. J., Cross, D. E. & Bøgh, C. Landscape movements of Anopheles gambiae malaria vector mosquitoes in rural Gambia. PLoS ONE 8, e68679 (2013).
    ADS  CAS  PubMed  PubMed Central  Google Scholar 

    48.
    Worldpop. Africa Continental Population Datasets (2000–2020) v2.0. https://doi.org/10.5258/SOTON/WP00004 (2016).

    49.
    Worldpop. Africa Continental age/sex structure Population Datasets 2000/05/10/15/20 V5.0. https://www.worldpop.org/geodata/summary?id=1276 (2016).

    50.
    James, W. H. et al. Gridded birth and pregnancy datasets for Africa, Latin America and the Caribbean. Sci. Data 5, 180090 (2018).
    CAS  PubMed  PubMed Central  Google Scholar 

    51.
    United Nations, Department of Economic and Social Affairs, Population Division. World Population Prospects 2019 Online ed (United Nations, 2019).

    52.
    Smith, M. W. et al. LIS-MAL Estimates of Hydro-Climatic Suitability for Malaria Transmission in Africa (1971–2100). [Dataset]. https://doi.org/10.5518/786 (University of Leeds, 2020). More

  • in

    The archives are half-empty: an assessment of the availability of microbial community sequencing data

    According to an initial keyword search, we selected the 17 most popular microbial ecology-related journals, as these were more likely to have sequence-specific data deposition instructions or requirements. We surveyed all the articles published in these journals between January 2015 and March 2019 (n = 26,927 articles, Supplementary Table S1), as concerns over data deposition practices began to grow in 201514 and were soon followed by stricter standards for data availability12. A custom-built pattern-based text extraction algorithm followed by manual curation, we selected those studies which performed 16S rRNA gene amplicon sequencing and listed INSDC-compliant accession numbers (n = 2015, Supplementary Table S1; 145,203 samples).
    To confirm that our parsing algorithm did not miss accession numbers in articles containing 16S rRNA gene amplicon sequencing, we randomly selected 150 articles which mentioned 16S rRNA, but for which no accession numbers were detected, for manual inspection. Of these, one contained a misspelled accession number, two had archived their sequences in unconventional repositories (Google Drive and GEO, a gene expression database, Supplementary Data 2), and 19 were identified as having performed 16S rRNA gene amplicon sequencing, but had not included any reference to the data. We found no cases in which accession numbers or sequence data were stored in supplementary materials. From this group, we estimate that 18% of the studies in our database (n = 469) performed 16S rRNA gene amplicon sequencing but did not provide access to the data (Fig. 1a). Four studies mentioned deposition data in dbGaP18, and we could verify the existence of three of these studies. We found that an additional 6.5% of the studies had deposited their data in the Qiita19, MG-RAST20, and figshare databases (n = 14, n = 134, and n = 24 studies, respectively). Of the estimated 2,656 studies employing 16S rRNA gene amplicon sequencing, 75.9% deposited their data to an INSDC database in the period studied (Fig. 1a).
    Fig. 1: Popular locations for data storage.

    Data for all studies which contained 16S rRNA amplicon sequencing (a), and the V3–V4 subset (b); n = 2656 and n = 635 studies, respectively. For the entirety of the study, studies which contained amplicon sequences but did not deposit them were inferred by manually checking 150 randomly-selected articles which did not contain INSDC accession numbers or refer to alternative databases, indicated in lighter yellow. For the V3–V4 subset, studies which contained the keywords “16S rRNA”, “515”, and “806” were selected. Studies for which INSDC-compliant accession numbers were reported but which did not exist on any INSDC database are shown in lighter blue.

    Full size image

    To obtain more precise estimates of the percentage of articles which deposited their data in each database, we focused on the subset of 635 studies which sequenced the V3–V4 region of the 16S rRNA gene between base pairs 515 and 806 (heretofore V3–V4 subset), a target region which has gained popularity since its development and use by the Earth Microbiome Project21,22. Of these, 74.5% (n = 474) studies listed INSDC-compliant accession numbers within the article, but of these, accession numbers from 5% of the studies (n = 33) were not findable on any INSDC database. Additionally, 19% (n = 121) did not provide an identifiable link to the data, and 6.8% of the studies deposited their data in the Qiita, MG-RAST, and figshare databases (n = 9, n = 24, n = 7, respectively, Fig. 1b). Two studies provided SRA submission IDs rather than accession numbers, and were also inaccessible.
    The increasing popularity of microbial community sequencing was evident in our data. Over the period studied, the number of studies in the V3–V4 subset rose from 56 in 2015 to 214 in 2018 (Supplementary Fig. 1a). The proportion of publications which claimed to deposit data to INSDC databases increased slightly over time, from 33/56 in 2015 to 172/214 in 2018 (χ2 = 6.6, p = 0.01, Supplementary Fig. 1b), suggesting an increasing tendency towards deposition in INSDC databases. Deposition to alternative databases decreased (χ2 = 14.04, p  More