An ancient tropical origin, dispersals via land bridges and Miocene diversification explain the subcosmopolitan disjunctions of the liverwort genus Lejeunea
1.
Sanmartín, I., Enghoff, H. & Ronquist, F. Patterns of animal dispersal, vicariance and diversification in the Holarctic. Biol. J. Linn. Soc. 73, 345–390 (2001).
Google Scholar
2.
Sanmartín, I. & Ronquist, F. Southern hemisphere biogeography inferred by event-based models: Plant versus animal patterns. Syst. Biol. 53, 216–243 (2004).
PubMed Google Scholar
3.
Shaw, A. J. Biogeographic patterns and cryptic speciation in bryophytes. J. Biogeogr. 28, 253–261 (2001).
Google Scholar
4.
Feldberg, K. et al. Phylogenetic biogeography of the leafy liverwort Herbertus (Jungermanniales, Herbertaceae) based on nuclear and chloroplast DNA sequence data: correlation between genetic variation and geographical distribution. J. Biogeogr. 34, 688–698 (2007).
Google Scholar
5.
Shaw, A. J. et al. Intercontinental genetic structure in the amphi-Pacific peatmoss Sphagnum miyabeanum (Bryophyta: Sphagnaceae). Biol. J. Linn. Soc. 111, 17–37 (2014).
Google Scholar
6.
Vanderpoorten, A., Devos, N., Goffinet, B., Hardy, O. J. & Shaw, A. J. The barriers to oceanic island radiation in bryophytes: Insights from the phylogeogaphy of the moss Grimmia montana. J. Biogeogr. 35, 654–663 (2008).
Google Scholar
7.
Ono, F. Moss spore can tolerate ultra-high pressure. In High pressure Bioscience (eds Akasaka, K. & Matsuki, H.) 443–466 (Springer, New York, 2015).
Google Scholar
8.
van Zanten, B. O. Experimental studies on trans-oceanic long-range dispersal of moss spores in the Southern Hemisphere. J. Hattori Bot. Lab. 44, 455–482 (1978).
Google Scholar
9.
Muñoz, J., Felicísimo, ÁM., Cabezas, F., Burgaz, A. R. & Martínez, I. Wind as a long-distance dispersal vehicle in the Southern Hemisphere. Science 304, 1144–1147 (2004).
ADS PubMed Google Scholar
10.
van Zanten, B. O. & Gradstein, S. R. Experimental dispersal geography of neotropical liverworts. Beih. Nova Hedwigia 90, 41–94 (1988).
Google Scholar
11.
Kyrkjeeide, M. O. et al. Long-distance dispersal and barriers shape genetic structure of peatmosses (Sphagnum) across the Northern Hemisphere. J. Biogeogr. 43, 1215–1226 (2016).
Google Scholar
12.
Patiño, J., Goffinet, B., Sim-Sim, M. & Vanderpoorten, A. Is the sword moss (Bryoxiphium) a preglacial Tertiary relict?. Mol. Phylogenet. Evol. 96, 200–206 (2016).
PubMed Google Scholar
13.
Bechteler, J. et al. Geographical structure, narrow species ranges, and Cenozoic diversification in a pantropical clade of epiphyllous leafy liverworts. Ecol. Evol. 7, 638–653 (2017).
PubMed Google Scholar
14.
Carter, B. E. et al. Species delimitation and biogeography of a southern hemisphere liverwort clade, Frullania subgenus Microfrullania (Frullaniaceae, Marchantiophyta). Mol. Phylogenet. Evol. 107, 16–26 (2017).
PubMed Google Scholar
15.
Scheben, A. et al. Multiple transoceanic dispersals and geographical structure in the pantropical leafy liverwort Ceratolejeunea (Lejeuneaceae, Porellales). J. Biogeogr. 43, 1739–1749 (2016).
Google Scholar
16.
Patiño, J. et al. The anagenetic world of spore-producing land plants. New Phytol. 201, 305–311 (2014).
PubMed Google Scholar
17.
Norhazrina, N., Vanderpoorten, A., Hedenäs, L. & Patiño, J. What are the evolutionary mechanisms explaining the similar species richness patterns in tropical mosses? Insights from the phylogeny of the pantropical genus Pelekium. Mol. Phylogenet. Evol. 105, 139–145 (2016).
PubMed Google Scholar
18.
Puttik, M. N. et al. The interrelationships of land plants and the nature of the ancestral embryophyte. Curr. Biol. 28, 733–745 (2018).
Google Scholar
19.
Qiu, Y. L., Cho, Y. R., Cox, J. C. & Palmer, J. D. The gain of three mitochondrial introns identifies liverworts as the earliest land plants. Nature 394, 671–674 (1998).
ADS CAS PubMed Google Scholar
20.
Wickett, N. J. et al. Phylotranscriptomic analysis of the origin and early diversification of land plants. Proc. Natl. Acad. Sci. U.S.A. 111, E4859–E4868 (2014).
CAS PubMed PubMed Central Google Scholar
21.
Morris, J. L. et al. The timescale of early land plant evolution. Proc. Natl. Acad. Sci. USA 115, 2274–2283 (2018).
Google Scholar
22.
Heinrichs, J. et al. Lejeuneaceae (Marchantiophyta) from a species-rich taphocoenosis in Miocene Mexican amber, with a review of liverworts fossilised in amber. Rev. Palaeobot. Palynol. 221, 59–70 (2015).
Google Scholar
23.
Wilson, R., Heinrichs, J., Hentschel, J., Gradstein, S. R. & Schneider, H. Steady diversification of derived liverworts under tertiary climatic fluctuations. Biol. Lett. 3, 566–569 (2007).
PubMed PubMed Central Google Scholar
24.
Gradstein, S. R. The Liverworts and Hornworts of Colombia and Ecuador 1–880 (Springer, New York, 2020).
Google Scholar
25.
Lee, G. E. A systematic revision of the genus Lejeunea Lib. (Marchantiophyta: Lejeuneaceae) in Malaysia. Cryptogam. Bryol. 34, 381–484 (2013).
Google Scholar
26.
Lee, G. E., Bechteler, J. & Heinrichs, J. A revision of unrevised taxon names of Taxilejeunea (Marchantiophyta: Lejeuneaceae) from Asia. Phytotaxa 358, 226–248 (2018).
Google Scholar
27.
Heinrichs, J. et al. Molecular phylogeny of the leafy liverwort Lejeunea (Porellales): Evidence for a neotropical origin, uneven distribution of sexual systems and insufficient taxonomy. PLoS ONE 8, e82547 (2013).
ADS PubMed PubMed Central Google Scholar
28.
Heinrichs, J. et al. Crown group Lejeuneaceae and pleurocarpous mosses in early eocene (Ypresian) Indian amber. PLoS ONE 8, e82547 (2016).
Google Scholar
29.
Tiffney, B. H. The eocene north atlantic land bridge: Its importance in Tertiary and modern phytogeography of the Northern Hemisphere. J. Arnold Arbor. 66, 243–273 (1985).
Google Scholar
30.
Tiffney, B. H. & Manchester, S. R. The use of geological and paleontological evidence in evaluating plant phylogeographic hypotheses in the Northern Hemisphere tertiary. Int. J. Plant Sci. 162, 3–17 (2001).
Google Scholar
31.
Brikiatis, L. The De Geer, Thulean and Beringia routes: Key concepts for understanding early Cenozoic biogeography. J. Biogeogr. 41, 1036–1054 (2014).
Google Scholar
32.
Laenen, B. et al. Increased diversification rates follow shifts to bisexuality in liverworts. New Phytol. 210, 1121–1129 (2016).
PubMed Google Scholar
33.
Erwin, D. H. Climate as a driver of evolutionary change. Curr. Biol. 19, R575-583 (2009).
CAS PubMed Google Scholar
34.
Condamine, F. L., Rolland, J. & Morlon, H. Assessing the causes of diversification slowdowns: Temperature-dependent and diversity-dependent models receive equivalent support. Ecol. Lett. 22, 1900–1912 (2019).
PubMed Google Scholar
35.
Reiner-Drehwald, M. E. Catalogue of the genus Lejeunea Lib. (Hepaticae) of Latin America. Bryophyt. Bibl. 54, 1–101 (1999).
Google Scholar
36.
Lee, G. E. et al. The leafy liverwort genus Lejeunea (Porellales, Jungermanniopsida) in Miocene Domican amber. Rev. Palaeobot. Palynol. 238, 144–150 (2017).
Google Scholar
37.
Lee, G. E., Schäfer-Verwimp, A., Schmidt, A. R. & Heinrichs, J. Transfer of the miocene Lejeunea palaeomexicana grolle to Ceratolejeunea. Cryptogam. Bryol. 36, 335–341 (2015).
Google Scholar
38.
Denk, T., Grimsson, F., Zetter, R. & Simonarson, L. The Biogeographic history of Iceland – The North Atlantic Land Bridge revisited. in Late Cainozoic floras of Iceland, 15 million years of vegetation and climate history in the northern North Atlantic, 647–666 (Springer, 2011).
39.
Graham, A. The role of land bridges, ancient environments, and migrations in the assembly of the North America flora. J. Syst. Evol. 56, 405–429 (2018).
Google Scholar
40.
Jiang, D. et al. Asymmetric biotic interchange across the Bering land bridge between Eurasia and North America. Natl. Sci. Rev. 6, 739–745 (2019).
Google Scholar
41.
Morley, R. J. Why are there so many primitive angiosperms in the rain forests of Asia-Australia? In Floral and Faunal Migrations and Evolution in SE Asia-Australia (eds Metcalfe, I. et al.) 185–200 (Swetz & Zeitliner, Lisse, 2001).
Google Scholar
42.
Couvreur, T. L. P. et al. Early evolutionary history of the flowering plant family Annonaceae: Steady diversification and boreotropical geodispersal. J. Biogeogr. 38, 664–680 (2011).
Google Scholar
43.
Davis, C. C., Bell, C. D., Mathews, S. & Donoghue, M. J. Laurasian migration explains Gondwanan disjunctions: Evidence from Malpighiaceae. Proc. Natl. Acad. Sci. U.S.A. 99, 6833–6837 (2002).
ADS CAS PubMed PubMed Central Google Scholar
44.
Muellner, A. N., Savolainen, V., Samuel, R. & Chase, M. W. The mahogamy family “out of Africa”: Divergence time estimation, global biogeographic patterns inferred from plastid rbcL DNA sequences, extant, and fossil distribution of diversity. Mol. Phylogenet. Evol. 40, 236–250 (2006).
CAS PubMed Google Scholar
45.
Schneider, H. et al. Chloroplast phylogeny of asplenioid ferns based on rbcL and trnL-F spacer sequences (Polypodiidae, Aspleniaceae) and its implications for biogeography. Syst. Bot. 29, 260–274 (2004).
Google Scholar
46.
Wei, R. et al. Eurasian origin, boreotropical migration and transoceanic dispersal in the pantropical fern genus Diplazium (Athyriaceae). J. Biogeogr. 42, 1809–1819 (2015).
Google Scholar
47.
Hennequin, S., Hovenkamp, P., Christenhusz, M. J. M. & Schneider, H. Phylogenetics and biogeography of Nephrolepis—A tale of old settlers and young tramps. Bot. J. Linn. Soc. 164, 113–127 (2010).
Google Scholar
48.
Wen, J., Nie, Z. L. & Ickert-Bond, S. M. Intercontinental disjunctions between eastern Asia and western North America in vascular plants highlight the biogeographic importance of the Bering land bridge from late Cretaceous to Neogene. J. Syst. Evol. 54, 469–490 (2016).
Google Scholar
49.
Shaw, A. J. et al. Pleistocene survival, regional genetic structure and interspecific gene flow among three northern peat-mosses: Sphagnum inexspectatum, S. orientale and S. miyabeanum. J. Biogeogr. 42, 364–376 (2014).
Google Scholar
50.
Bosboom, R. E. et al. Late Eocene sea retreat from the Tarim Basin (west China) and concomitant Asian paleoenvironmental change. Palaeogeogr. Palaeoclimatol. Palaeoecol. 299, 385–398 (2011).
Google Scholar
51.
Chmielewski, M. W. & Eppley, S. M. Forest passerines as a novel dispersal vector of viable bryophyte propagules. Proc. R. Soc. B 286, 20182253 (2019).
CAS PubMed Google Scholar
52.
Heinken, T., Lees, R., Raudnitschka, D. & Rung, S. Epizoochorous dispersal of bryophytes stem fragments by roe deer (Capreoluscapreolus) and wild boar (Susscrofa). J. Bryol. 23, 293–300 (2001).
Google Scholar
53.
Pérez-Escobar, O. A. et al. Recent origin and rapid speciation of neotropical orchids in the world’s richest plant biodiversity hotspot. New Phytol. 215, 891–905 (2017).
PubMed PubMed Central Google Scholar
54.
Nie, Z. L. et al. Recent assembly of the global herbaceous flora: Evidence from the paper daisies (Asteraceae: Gnaphalieae). New Phytol. 209, 1795–1806 (2016).
CAS PubMed Google Scholar
55.
Morley, R. J. Cretaceous and Tertiary climate change and the past distribution of megathermal rainforests. In Tropical Rainforest Responses to Climate Change (eds Bush, M. B. et al.) 1–34 (Springer, New York, 2011).
Google Scholar
56.
Jaramillo, C., Rueda, M. J. & Mora, G. Cenozoic plant diversity in the Neotropics. Science 311, 1893–1896 (2006).
ADS CAS PubMed Google Scholar
57.
Kong, H. et al. Both temperature fluctuations and East Asian monsoons have driven plant diversification in the karst ecosystems from southern China. Mol. Ecol. 26, 6414–6429 (2017).
PubMed Google Scholar
58.
Tada, R., Zheng, H. & Clift, D. Evolution and variability of the Asian monsoon and its potential linkage with uplift of the Himalaya and Tibetan Plateau. Prog. Earth Planet Sci. 3, 4–26 (2016).
ADS Google Scholar
59.
Proctor, M. C. F. et al. Desiccation-tolerance in bryophytes. Bryologist 110, 595–621 (2007).
CAS Google Scholar
60.
McDaniel, S. F., Atwood, J. & Burleigh, J. G. Recurrent evolution of dioecy in bryophytes. Evolution 67, 567–572 (2012).
PubMed Google Scholar
61.
van Zanten, B. O. & Pócs, T. Distribution and dispersal of bryophytes. Adv. Bryol. 1, 479–562 (1981).
Google Scholar
62.
Laenen, B. et al. Geographical range in liverworts: Does sex really matter?. J. Biogeogr. 43, 627–635 (2016).
Google Scholar
63.
Lee, G. E., Bechteler, J., Pócs, T., Schäfer-Verwimp, A. & Heinrichs, J. Molecular and morphological evidence for an intercontinental range of the liverwort Lejeunea pulchriflora (Marchantiophyta: Lejeuneaceae). Org. Divers. Evol. 16, 13–21 (2016).
Google Scholar
64.
Hall, T. A. BioEdit: a user-friendly biological sequence alignment editor and analysis program for Windows 95/98/NT. Nucleic Acids Symp. Ser. 41, 95–98 (1999).
CAS Google Scholar
65.
Janssen, T. et al. Neoendemism in Madagascan scaly tree ferns results from recent, coincident diversification bursts. Evolution 62, 1876–1889 (2008).
PubMed Google Scholar
66.
Katoh, K. & Standley, D. M. MAFFT multiple sequence alignment software version 7: Improvements in performance and usability. Mol. Biol. Evol. 30, 772–780 (2013).
CAS PubMed PubMed Central Google Scholar
67.
Lanfear, R., Calcott, B., Ho, S. Y. W. & Guindon, S. PartitionFinder: Combined selection of partitioning schemes and substitution models for phylogenetic analyses. Mol. Biol. Evol. 29, 1695–1701 (2012).
CAS PubMed Google Scholar
68.
Stamatakis, A. RAxML Version 8: A tool for phylogenetic analysis and post-analysis of large phylogenies. Bioinformatics 30, 1312–1313 (2014).
CAS PubMed PubMed Central Google Scholar
69.
Mason-Gamer, R. J. & Kellogg, E. A. Testing for phylogenetic conflict among molecular data sets in the tribe Triticeae (Gramineae). Syst. Biol. 45, 524–545 (1996).
Google Scholar
70.
Ronquist, F. et al. MrBayes 3.2: Efficient Bayesian phylogenetic inference and model choice across a large model space. Syst. Biol. 61, 539–542 (2012).
PubMed PubMed Central Google Scholar
71.
Rambaut, A., Drummond, A. J., Xie, D., Baele, G. & Suchard, M. A. Posterior summarization in Bayesian phylogenetics using tracer 1.7. Syst. Biol. 67, 901–904 (2018).
CAS PubMed PubMed Central Google Scholar
72.
Larget, B. & Simon, D. L. Markov chain Monte Carlo algorithms for the Bayesian analysis of phylogenetic trees. Mol. Biol. Evol. 16, 750–759 (1999).
CAS Google Scholar
73.
Drummond, A. J., Suchard, M. A., Xie, D. & Rambaut, A. Bayesian phylogenetics with BEAUti and the BEAST 1.7. Mol. Biol. Evol. 29, 1969–1973 (2012).
CAS PubMed PubMed Central Google Scholar
74.
Nagori, M. L., Khosla, S. C. & Jakhar, S. R. middle eocene ostracoda from the tadkeshwar lignite mine, Camba Basin, Gujarat. J. Geol. Soc. India 81, 514–520 (2013).
Google Scholar
75.
Benton, M. J. & Donoghue, P. C. J. Paleontological evidence to date the tree of life. Mol. Biol. Evol. 24, 26–53 (2007).
CAS PubMed Google Scholar
76.
Donoghue, P. C. J. & Benton, M. J. Rocks and clocks: Calibrating the tree of life using fossils and molecules. Trends Ecol. Evol. 22, 424–431 (2007).
PubMed Google Scholar
77.
Ho, S. Y. W. & Phillips, M. J. Accounting for calibration uncertainty in phylogenetic estimation of evolutionary divergence times. Syst. Biol. 58, 367–380 (2009).
PubMed Google Scholar
78.
Graur, D. & Martin, W. Reading the entails of chickens: Molecular timescales of evolution and the illusion of precision. Trends Genet. 20, 80–86 (2004).
CAS PubMed Google Scholar
79.
Reisz, R. R. & Müller, J. Molecular timescales and the fossil record: A paleontological perspective. Trends Genet. 20, 237–241 (2004).
CAS PubMed Google Scholar
80.
Palmer, J. D. Plastid chromosome, structure and evolution. In The Molecular Biology of Plastids (eds Bogorad, L. & Vasil, I. K.) 5–53 (Academic Press, Cambridge, 1991).
Google Scholar
81.
Villarreal, J. C. & Renner, S. S. Hornwort pyrenoids, a carbon-concentrating mechanism, evolved and were lost at least five times during the last 100 million years. Proc. Natl. Acad. Sci. U.S.A. 109, 18873–18878 (2012).
ADS CAS PubMed PubMed Central Google Scholar
82.
Les, D. H., Crawford, D. J., Kimball, R. T., Moody, M. L. & Landolt, E. Biogeography of discontinuously distributed hydrophytes, a molecular appraisal of intercontinental disjunctions. Int. J. Plant Sci. 164, 917–932 (2003).
Google Scholar
83.
Villarreal, J. C. & Renner, S. S. A review of molecular-clock calibrations and substitution rates in liverworts, mosses, and hornworts, and a timeframe for a taxonomically cleaned-up genus Nothoceros. Mol. Phylogenet. Evol. 78, 25–35 (2014).
PubMed Google Scholar
84.
Drummond, A. J., Ho, S. Y. M., Phillips, M. J. & Rambaut, A. Relaxed phylogenetics and dating with confidence. PLoS Biol. 4, e88 (2006).
PubMed PubMed Central Google Scholar
85.
Stadler, T. On incomplete sampling under birth-death models and connections to the sampling-based coalescent. J. Theor. Biol. 261, 58–66 (2009).
MathSciNet PubMed MATH Google Scholar
86.
Lartillot, N. & Philippe, H. Computing Bayes factor using thermodynamic integration. Syst. Biol. 55, 195–207 (2006).
PubMed Google Scholar
87.
Xie, W., Lewis, P. O., Fan, Y., Kuo, L. & Chen, M. H. Improving marginal likelihood estimation for Bayesian phylogenetic model selection. Syst. Biol. 60, 150–160 (2011).
PubMed Google Scholar
88.
Baele, G. et al. Improving the accuracy of demographic and molecular clock model comparison while accommodating phylogenetic uncertainty. Mol. Biol. Evol. 29, 2157–2167 (2012).
CAS PubMed PubMed Central Google Scholar
89.
Baele, G., Lemey, P. & Vansteelandt, S. Make the most of your samples: Bayes factor estimators for high-dimensional models of sequence evolution. BMC Bioinform. 14, 85 (2013).
Google Scholar
90.
Matzke, N. J. Model selection in historical biogeography reveals that founder-event speciation in a crucial process in island clades. Syst. Biol. 63, 951–970 (2014).
PubMed Google Scholar
91.
Ree, R. H. & Smith, S. A. Maximum likelihood inference of geographic range evolution by dispersal, local extinction, and cladogenesis. Syst. Biol. 57, 4–14 (2008).
PubMed Google Scholar
92.
Ree, R. H. & Sanmartín, I. Conceptual and statistical problems with the DEC+J model of founder-event speciation and its comparison with DEC via model selection. J. Biogeogr. 45, 741–749 (2018).
Google Scholar
93.
Condamine, F. L., Rolland, J. & Morlon, H. Macroevolutionary perspectives to environmental change. Ecol. Lett. 16, 72–85 (2013).
PubMed Google Scholar
94.
Zachos, J. C., Dickens, G. R. & Zeebe, R. E. An early cenozoic perspective on greenhouse warming and carbon-cycle dynamics. Nature 451, 279–283 (2008).
ADS CAS PubMed Google Scholar
95.
Maddison, W. P., Midford, P. E. & Otto, S. P. Estimation a binary character’s effect on speciation and extinction. Syst. Biol. 56, 701–710 (2007).
PubMed Google Scholar
96.
FitzJohn, R. G. Diversitree: Comparative phylogenetic analyses of diversification in R. Methods Ecol. Evol. 3, 1084–1092 (2012).
Google Scholar
97.
Rabosky, D. L. & Goldberg, E. E. Model inadequacy and mistaken inferences of trait-dependent speciation. Syst. Biol. 64, 340–355 (2015).
CAS PubMed Google Scholar
98.
Beaulieu, J. M. & O’Meara, B. C. Detecting hidden diversification shifts in models of trait-dependent speciation and extinction. Syst. Biol. 65, 583–601 (2016).
PubMed Google Scholar
99.
Caetano, D. S., O’Meara, B. C. & Beaulieu, J. M. Hidden state models improve state-dependent diversification approaches, including biogeographical models. Evolution 72, 2308–2324 (2018).
PubMed Google Scholar More