Ecology
Subterms
More stories
113 Shares159 Views
in EcologyNon-linear changes in modelled terrestrial ecosystems subjected to perturbations
200 Shares139 Views
in EcologyBidirectional C and N transfer and a potential role for sulfur in an epiphytic diazotrophic mutualism
1.
Goodale CL, Apps MJ, Birdsey RA, Field CB, Heath LS, Houghton RA, et al. Forest carbon sinks in the Northern Hemisphere. Ecol Appl. 2002;12:891–9.
Google Scholar
2.
Anderson J. The effects of climate change on decomposition processes in grassland and coniferous forests. Ecol Appl. 1991;1:326–47.
CAS PubMed Google Scholar3.
Turetsky MR, Bond‐Lamberty B, Euskirchen E, Talbot J, Frolking S, McGuire AD, et al. The resilience and functional role of moss in boreal and arctic ecosystems. N Phytol. 2012;196:49–67.
CAS Google Scholar4.
DeLuca TH, Zackrisson O, Gundale MJ, Nilsson M-C. Ecosystem feedbacks and nitrogen fixation in boreal forests. Science. 2008;320:1181.
CAS PubMed Google Scholar5.
Nilsson M-C, Wardle DA. Understory vegetation as a forest ecosystem driver: evidence from the northern Swedish boreal forest. Front Ecol Environ. 2005;3:421–8.
Google Scholar6.
Rousk K, Jones D, DeLuca T. Moss-cyanobacteria associations as biogenic sources of nitrogen in boreal forest ecosystems. Front Microbiol. 2013;4:150.
CAS PubMed PubMed Central Google Scholar7.
Carleton T, Read D. Ectomycorrhizas and nutrient transfer in conifer–feather moss ecosystems. Can J Bot. 1991;69:778–85.
Google Scholar8.
Gundale MJ, Nilsson M, Bansal S, Jäderlund A. The interactive effects of temperature and light on biological nitrogen fixation in boreal forests. N Phytol. 2012;194:453–63.
CAS Google Scholar9.
Gundale MJ, Wardle DA, Nilsson M-C. The effect of altered macroclimate on N-fixation by boreal feather mosses. Biol Lett. 2012;8:805–8.
PubMed PubMed Central Google Scholar10.
Jackson BG, Martin P, Nilsson M-C, Wardle DA. Response of feather moss associated N2 fixation and litter decomposition to variations in simulated rainfall intensity and frequency. Oikos. 2011;120:570–81.
Google Scholar11.
Jean M-E, Cassar N, Setzer C, Bellenger J-P. Short-term N2 fixation kinetics in a moss-associated cyanobacteria. Environ Sci Technol. 2012;46:8667–71.
CAS PubMed Google Scholar12.
Sorensen PL, Lett S, Michelsen A. Moss-specific changes in nitrogen fixation following two decades of warming, shading, and fertilizer addition. Plant Ecol. 2012;213:695–706.
Google Scholar13.
Warshan D, Bay G, Nahar N, Wardle DA, Nilsson MC, Rasmussen U. Seasonal variation in nifH abundance and expression of cyanobacterial communities associated with boreal feather mosses. ISME J. 2016;10:2198–208.
CAS PubMed PubMed Central Google Scholar14.
Rai AN, Soderback E, Bergman B. Tansley review No. 116 cyanobacterium–plant symbioses. N Phytol. 2000;147:449–81.
CAS Google Scholar15.
Meeks JC. Physiological adaptations in nitrogen-fixing Nostoc–plant symbiotic associations. In: Pawlowski K, editor. Prokaryotic symbionts in plants. Berlin, Heidelberg: Springer Berlin Heidelberg; 2009. p. 181–205.
Google Scholar16.
Steinberg NA, Meeks JC. Physiological sources of reductant for nitrogen fixation activity in Nostoc sp. strain UCD 7801 in symbiotic association with Anthoceros punctatus. J Bacteriol. 1991;173:7324–9.
CAS PubMed PubMed Central Google Scholar17.
Khamar HJ, Breathwaite EK, Prasse CE, Fraley ER, Secor CR, Chibane FL, et al. Multiple roles of soluble sugars in the establishment of Gunnera-Nostoc endosymbiosis. Plant Physiol. 2010;154:1381–9.
CAS PubMed PubMed Central Google Scholar18.
Bay G, Nahar N, Oubre M, Whitehouse MJ, Wardle DA, Zackrisson O, et al. Boreal feather mosses secrete chemical signals to gain nitrogen. N Phytol. 2013;200:54–60.
CAS Google Scholar19.
Warshan D, Liaimer A, Pederson E, Kim S-Y, Shapiro N, Woyke T, et al. Genomic changes associated with the evolutionary transitions of Nostoc to a plant symbiont. Mol Biol Evol. 2018;35:1160–75.
CAS PubMed PubMed Central Google Scholar20.
Warshan D, Espinoza JL, Stuart RK, Richter RA, Kim S-Y, Shapiro N, et al. Feathermoss and epiphytic Nostoc cooperate differently: expanding the spectrum of plant-cyanobacteria symbiosis. ISME J. 2017;11:2821–33.
PubMed PubMed Central Google Scholar21.
Douglas AE. The symbiotic habit. Princeton, NJ: Princeton University Press; 2010.22.
Bronstein JL. Mutualism. USA: Oxford, UK: Oxford University Press; 2015.
Google Scholar23.
Holland JN, Ness JH, Boyle A, Bronstein JL. Mutualisms as consumer-resource interactions. Ecology of predator–prey interactions. Oxford, UK: Oxford University Press; 2005. p. 17–33.24.
van der Ploeg JR, Eichhorn E, Leisinger T. Sulfonate-sulfur metabolism and its regulation in Escherichia coli. Arch Microbiol. 2001;176:1–8.
PubMed Google Scholar25.
Sugawara M, Shah GR, Sadowsky MJ, Paliy O, Speck J, Vail AW, et al. Expression and functional roles of Bradyrhizobium japonicum genes involved in the utilization of inorganic and organic sulfur compounds in free-living and symbiotic conditions. Mol Plant Microbe Interact. 2011;24:451–7.
CAS PubMed Google Scholar26.
Musat N, Foster R, Vagner T, Adam B, Kuypers MMM. Detecting metabolic activities in single cells, with emphasis on nanoSIMS. FEMS Microbiol Rev. 2012;36:486–511.
CAS PubMed Google Scholar27.
Pederson ERA, Warshan D, Rasmussen U. Genome sequencing of Pleurozium schreberi: the assembled and annotated draft genome of a pleurocarpous feather moss. G3: Genes, Genomes, Genetics. 2019;9:2791–7.
CAS Google Scholar28.
Hardy RW, Holsten R, Jackson E, Burns R. The acetylene-ethylene assay for N2 fixation: laboratory and field evaluation. Plant Physiol. 1968;43:1185–207.
CAS PubMed PubMed Central Google Scholar29.
Khayatan B, Bains DK, Cheng MH, Cho YW, Huynh J, Kim R, et al. A putative O-linked β-N-acetylglucosamine transferase is essential for hormogonium development and motility in the filamentous cyanobacterium Nostoc punctiforme. J Bacteriol. 2017;199:e00075-17.
PubMed PubMed Central Google Scholar30.
Falkowski PG, Raven JA. Aquatic photosynthesis. Princeton, NJ: Princeton University Press; 2013.31.
Dabundo R, Lehmann MF, Treibergs L, Tobias CR, Altabet MA, Moisander PH, et al. The contamination of commercial 15N2 gas stocks with 15N–labeled nitrate and ammonium and consequences for nitrogen fixation measurements. PloS ONE. 2014;9:e110335.
PubMed PubMed Central Google Scholar32.
Ndegwa PM, Vaddella VK, Hristov AN, Joo HS. Measuring concentrations of ammonia in ambient air or exhaust air stream using acid traps. J Environ Qual. 2009;38:647–53.
CAS PubMed Google Scholar33.
Pett-Ridge J, Weber PK. NanoSIP: NanoSIMS applications for microbial biology. Microbial systems biology. Totowa, NJ: Humana Press; 2012. p. 375–408.34.
Popa R, Weber PK, Pett-Ridge J, Finzi JA, Fallon SJ, Hutcheon ID, et al. Carbon and nitrogen fixation and metabolite exchange in and between individual cells of Anabaena oscillarioides. ISME J. 2007;1:354–60.
CAS PubMed Google Scholar35.
Liaimer A, Helfrich EJN, Hinrichs K, Guljamow A, Ishida K, Hertweck C, et al. Nostopeptolide plays a governing role during cellular differentiation of the symbiotic cyanobacterium Nostoc punctiforme. Proc Natl Acad Sci USA. 2015;112:1862–7.
CAS PubMed Google Scholar36.
Koch M, Delmotte N, Rehrauer H, Vorholt JA, Pessi G, Hennecke H. Rhizobial adaptation to hosts, a new facet in the legume root-nodule symbiosis. Mol Plant Microbe Interact. 2010;23:784–90.
CAS PubMed Google Scholar37.
Meeks JC, Elhai J. Regulation of cellular differentiation in filamentous cyanobacteria in free-living and plant-associated symbiotic growth states. Microbiol Mol Biol Rev. 2002;66:94–121.
CAS PubMed PubMed Central Google Scholar38.
Wong FC, Meeks JC. Establishment of a functional symbiosis between the cyanobacterium Nostoc punctiforme and the bryophyte Anthoceros punctatus requires genes involved in nitrogen control and initiation of heterocyst differentiation. Microbiology. 2002;148:315–23.
CAS PubMed Google Scholar39.
Hill DJ. The control of the cell cycle in microbial symbionts. N Phytol. 1989;112:175–84.
Google Scholar40.
Adams DG, Duggan PS. Signalling in cyanobacteria–plant symbioses. Signaling and communication in plant symbiosis. New York City, NY: Springer; 2012. p. 93–121.41.
Hashidoko Y, Nishizuka H, Tanaka M, Murata K, Murai Y, Hashimoto M. Isolation and characterization of 1-palmitoyl-2-linoleoyl-sn-glycerol as a hormogonium-inducing factor (HIF) from the coralloid roots of Cycas revoluta (Cycadaceae). Sci Rep. 2019;9:4751.
PubMed PubMed Central Google Scholar42.
Calderwood A, Kopriva S. Hydrogen sulfide in plants: from dissipation of excess sulfur to signaling molecule. Nitric Oxide. 2014;41:72–8.
CAS PubMed Google Scholar43.
Koppenol WH, Bounds PL. Signaling by sulfur-containing molecules. Quantitative aspects. Arch Biochem Biophys. 2017;617:3–8.
CAS PubMed Google Scholar44.
Miller JB, Oldroyd GE. The role of diffusible signals in the establishment of rhizobial and mycorrhizal symbioses. Signaling and communication in plant symbiosis. New York City, NY: Springer; 2012. p. 1–30.45.
Duhamel S, Van Wambeke F, Lefevre D, Benavides M, Bonnet S. Mixotrophic metabolism by natural communities of unicellular cyanobacteria in the western tropical South Pacific Ocean. Environ Microbiol. 2018;20:2743–56.
CAS PubMed Google Scholar46.
Stuart RK, Mayali X, Lee JZ, Everroad RC, Hwang M, Bebout BM, et al. Cyanobacterial reuse of extracellular organic carbon in microbial mats. ISME J. 2016;10:1240–51.
CAS PubMed Google Scholar47.
Kaplan D, Peters GA. Interaction of carbon metabolism in the Azolla-Anabaena symbiosis. Symbiosis. 1988;6:53–68.
CAS Google Scholar48.
Ray TB, Mayne BC, Toia RE, Peters GA. Azolla-Anabaena relationship: VIII. Photosynthetic characterization of the association and individual partners. Plant Physiol. 1979;64:791–5.
CAS PubMed PubMed Central Google Scholar49.
Kiers ET, Duhamel M, Beesetty Y, Mensah JA, Franken O, Verbruggen E, et al. Reciprocal rewards stabilize cooperation in the mycorrhizal symbiosis. Science. 2011;333:880–82.
CAS PubMed Google Scholar50.
Nürnberg DJ, Mariscal V, Bornikoel J, Nieves-Morión M, Krauß N, Herrero A, et al. Intercellular diffusion of a fluorescent sucrose analog via the septal junctions in a filamentous cyanobacterium. mBio. 2015;6:e02109-14.
PubMed PubMed Central Google Scholar51.
Mullineaux CW, Mariscal V, Nenninger A, Khanum H, Herrero A, Flores E, et al. Mechanism of intercellular molecular exchange in heterocyst-forming cyanobacteria. EMBO J. 2008;27:1299–308.
CAS PubMed PubMed Central Google Scholar52.
Rousk K, Degboe J, Michelsen A, Bradley R, Bellenger JP. Molybdenum and phosphorus limitation of moss‐associated nitrogen fixation in boreal ecosystems. N Phytol. 2017;214:97–107.
CAS Google Scholar53.
Solheim B, Zielke M. Associations between cyanobacteria and mosses. In: Rai AN, Bergman B, Rasmussen U, editors. Cyanobacteria in symbiosis. Dordrecht: Springer Netherlands; 2002. p. 137–52.
Google Scholar More