Comparing avian species richness estimates from structured and semi-structured citizen science data
Cardinale, B. J. et al. Biodiversity loss and its impact on humanity. Nature 486, 59–67 (2012).Article
ADS
CAS
Google Scholar
Schumaker, N. H. Using landscape indices to predict habitat connectivity. Ecology 77, 1210–1225 (1996).Article
Google Scholar
Pacifici, M. et al. Assessing species vulnerability to climate change. Nat. Clim. Chang. 5, 215–224 (2015).Article
ADS
Google Scholar
Fahrig, L. Effects of habitat fragmentation on biodiversity. Annu. Rev. Ecol. Evol. Syst. 34, 487–515 (2003).Article
Google Scholar
Clavero, M., Brotons, L., Pons, P. & Sol, D. Prominent role of invasive species in avian biodiversity loss. Biol. Conserv. 142, 2043–2049 (2009).Article
Google Scholar
Soroye, P., Ahmed, N. & Kerr, J. T. Opportunistic citizen science data transform understanding of species distributions, phenology, and diversity gradients for global change research. Glob. Change Biol. 24, 5281–5291 (2018).Article
ADS
Google Scholar
Gotelli, N. J. & Colwell, R. K. Quantifying biodiversity: Procedures and pitfalls in the measurement and comparison of species richness. Ecol. Lett. 4, 379–391 (2001).Article
Google Scholar
Dickinson, J. L., Zuckerberg, B. & Bonter, D. N. Citizen science as an ecological research tool: Challenges and benefits. Annu. Rev. Ecol. Evol. Syst. 41, 149–172 (2010).Article
Google Scholar
Kelling, S. et al. Using semistructured surveys to improve citizen science data for monitoring biodiversity. Bioscience 69, 170–179 (2019).Article
Google Scholar
Steen, V. A., Elphick, C. S. & Tingley, M. W. An evaluation of stringent filtering to improve species distribution models from citizen science data. Divers. Distrib. 25, 1857–1869 (2019).Article
Google Scholar
Crall, A. W. et al. Assessing citizen science data quality: An invasive species case study. Conserv. Lett. 4, 433–442 (2011).Article
Google Scholar
Bird, T. J. et al. Statistical solutions for error and bias in global citizen science datasets. Biol. Conserv. 173, 144–154 (2014).Article
Google Scholar
MacKenzie, D. I. et al. Estimating site occupancy rates when detection probabilities are less than one. Ecology 83, 2248–2255 (2002).Article
Google Scholar
Kellner, K. F. & Swihart, R. K. Accounting for imperfect detection in ecology: A quantitative review. PLoS ONE 9(10), E111436 (2014).Article
ADS
Google Scholar
Weisshaupt, N., Lehikoinen, A., Mäkinen, T. & Koistinen, J. Challenges and benefits of using unstructured citizen science data to estimate seasonal timing of bird migration across large scales. PLoS ONE 16, e0246572 (2021).Article
CAS
Google Scholar
Kéry, M. & Schmid, H. Estimating species richness: Calibrating a large avian monitoring programme. J. Appl. Ecol. 43, 101–110 (2006).Article
Google Scholar
Chao, A. & Chiu, C. H. Species richness: Estimation and comparison 1–26 (Wiley StatsRef: Statistics Reference Online, 2014).
Google Scholar
Walther, B. A. & Moore, J. L. The concepts of bias, precision and accuracy, and their use in testing the performance of species richness estimators, with a literature review of estimator performance. Ecography 28, 815–829 (2005).Article
Google Scholar
Chao, A. & Lee, S.-M. Estimating the number of classes via sample coverage. J. Am. Stat. Assoc. 87, 210–217 (1992).Article
MATH
Google Scholar
Walther, B. A. & Morand, S. Comparative performance of species richness estimation methods. Parasitology 116, 395–405 (1998).Article
Google Scholar
Walther, B. A. & Martin, J. L. Species richness estimation of bird communities: How to control for sampling effort?. Ibis 143, 413–419 (2001).Article
Google Scholar
Walther, B. A., Cotgreave, P., Price, R., Gregory, R. & Clayton, D. H. Sampling effort and parasite species richness. Parasitol. Today 11, 306–310 (1995).Article
CAS
Google Scholar
Colwell, R. K. & Coddington, J. A. Estimating terrestrial biodiversity through extrapolation. Philos. Trans. R. Soc. Lond. Ser. B Biol. Sci. 345, 101–118 (1994).Article
ADS
CAS
Google Scholar
Bean, W. T., Stafford, R. & Brashares, J. S. The effects of small sample size and sample bias on threshold selection and accuracy assessment of species distribution models. Ecography 35, 250–258 (2012).Article
Google Scholar
Flather, C. Fitting species–accumulation functions and assessing regional land use impacts on avian diversity. J. Biogeogr. 23, 155–168 (1996).Article
Google Scholar
White, P. E. et al. A comparison of the species–time relationship across ecosystems and taxonomic groups. Oikos 112, 185–195 (2006).Article
Google Scholar
McGlinn, D. J. & Palmer, M. W. Modeling the sampling effect in the species–time–area relationship. Ecology 90, 836–846 (2009).Article
Google Scholar
Isaac, N. J. et al. Statistics for citizen science: Extracting signals of change from noisy ecological data. Method Ecol. Evol. 5, 1052–1060 (2014).Article
Google Scholar
Ding, T. et al. The 2020 CWBF checklist of the birds of Taiwan (Chinese Wild Bird Federation, 2020).
Google Scholar
Lin, M.-M. et al. Bird records database of a Taiwanese non-governmental organization, the Chinese wild bird federation, from 1972 to 2017. TW. J. Biodivers. 21, 83–101 (2019).
Google Scholar
Dokter, A. M., Desmet, P., Van Hoey, S. (2022) bioRad: Biological analysis and visualization of weather radar data: v0. 6.0Strimas-Mackey, M. et al. (2020) Best practices for using eBird Data. Version 1.0. Cornell Laboratory of Ornithology, Ithaca, New York, 10.5281/zenodo.3620739Robinson, O. J. et al. Using citizen science data in integrated population models to inform conservation. Biol. Conserv. 227, 361–368 (2018).Article
Google Scholar
Callaghan, C. T., Martin, J. M., Major, R. E. & Kingsford, R. T. Avian monitoring–comparing structured and unstructured citizen science. Wildl. Res. 45, 176–184 (2018).Article
Google Scholar
Robinson, W. D., Hallman, T. A. & Hutchinson, R. A. Benchmark bird surveys help quantify counting accuracy in a citizen-science database. Front. Ecol. Evol. 9, 568278 (2021).Article
Google Scholar
Neate-Clegg, M. H., Horns, J. J., Adler, F. R., Aytekin, M. Ç. K. & Şekercioğlu, Ç. H. Monitoring the world’s bird populations with community science data. Biol. Conserv. 248, 108653 (2020).Article
Google Scholar
Chao, A. Nonparametric estimation of the number of classes in a population. Scand. J. Stat 1, 265–270 (1984).
Google Scholar
Hsieh, T., Ma, K. & Chao, A. iNEXT: An R package for rarefaction and extrapolation of species diversity (Hill numbers). Methods Ecol. Evol. 7, 1451–1456 (2016).Article
Google Scholar
Team, R. C. (2013).R: A language and environment for statistical computing.James, G., Witten, D., Hastie, T. & Tibshirani, R. An Introduction to Statistical Learning Vol. 112 (Springer, 2013).Book
MATH
Google Scholar
Magurran, A. E. & McGill, B. J. Biological diversity: Frontiers in measurement and assessment (OUP Oxford, 2010).
Google Scholar
Spiess, A.-N. (2018) Package ‘propagate’RC Team, C Worldwide. The R stats package (R Foundation for Statistical Computing, 2002).
Google Scholar
Guralnick, R. & Van Cleve, J. Strengths and weaknesses of museum and national survey data sets for predicting regional species richness: Comparative and combined approaches. Divers. Distrib. 11, 349–359 (2005).Article
Google Scholar
Dar, T. A. et al. Bird community structure in Phakot and Pathri Rao watershed areas in Uttarakhand. India. Int. J. Environ. Sci. 34, 193–205 (2008).
Google Scholar
Azevedo, G. H. et al. Effectiveness of sampling methods and further sampling for accessing spider diversity: A case study in a Brazilian Atlantic rainforest fragment. Insect. Conserv. Divers. 7, 381–391 (2014).Article
Google Scholar
Bonter, D. N. & Cooper, C. B. Data validation in citizen science: A case study from project feederwatch. Front. Ecol. Environ. 10, 305–307 (2012).Article
Google Scholar
Gómez-Martínez, C. et al. Forest fragmentation modifies the composition of bumblebee communities and modulates their trophic and competitive interactions for pollination. Sci. Rep. 10, 1–15 (2020).Article
Google Scholar
Sullivan, B. L. et al. eBird: A citizen-based bird observation network in the biological sciences. Biol. Conserv. 142, 2282–2292 (2009).Article
Google Scholar
Newson, S. E., Woodburn, R. J., Noble, D. G., Baillie, S. R. & Gregory, R. D. Evaluating the breeding bird survey for producing national population size and density estimates. Bird Study 52, 42–54 (2005).Article
Google Scholar
Robbins, C. S. Effect of time of day on bird activity. Stud. Avian Biol. 6, 275–286 (1981).
Google Scholar
Farmer, R. G., Leonard, M. L. & Horn, A. G. Observer effects and avian-call-count survey quality: Rare-species biases and overconfidence. Auk 129, 76–86 (2012).Article
Google Scholar
Gardiner, M. M. et al. Lessons from lady beetles: Accuracy of monitoring data from US and UK citizen-science programs. Front. Ecol. Environ. 10, 471–476 (2012).Article
Google Scholar
Swanson, A., Kosmala, M., Lintott, C. & Packer, C. A generalized approach for producing, quantifying, and validating citizen science data from wildlife images. Conserv. Biol. 30, 520–531 (2016).Article
Google Scholar
Ratnieks, F. L. et al. Data reliability in citizen science: Learning curve and the effects of training method, volunteer background and experience on identification accuracy of insects visiting ivy flowers. Methods Ecol. Evol. 7, 1226–1235 (2016).Article
Google Scholar
Lopez, L. C. S., de Aguiar Fracasso, M. P., Mesquita, D. O., Palma, A. R. T. & Riul, P. The relationship between percentage of singletons and sampling effort: A new approach to reduce the bias of richness estimates. Ecol. Indicators 14, 164–169 (2012).Article
Google Scholar
Bunge, J. & Fitzpatrick, M. Estimating the number of species: A review. J. Am. Stat. Assoc. 88, 364–373 (1993).
Google Scholar
SoberónM, J. & LlorenteB, J. The use of species accumulation functions for the prediction of species richness. Conserv. Biol. 7, 480–488 (1993).Article
Google Scholar
Magurran, A. E. Species abundance distributions over time. Ecol. Lett. 10, 347–354 (2007).Article
Google Scholar
de Caprariis, P., Lindemann, R. & Haimes, R. A relationship between sample size and accuracy of species richness predictions. J. Int. Assoc. Math. Geol. 13, 351–355 (1981).Article
Google Scholar
Klemann-Junior, L., Villegas Vallejos, M. A., Scherer-Neto, P. & Vitule, J. R. S. Traditional scientific data vs. uncoordinated citizen science effort: A review of the current status and comparison of data on avifauna in Southern Brazil. PLoS ONE 12, e0188819. https://doi.org/10.1371/journal.pone.0188819 (2017).Article
CAS
Google Scholar
Tulloch, A. I. & Szabo, J. K. A behavioural ecology approach to understand volunteer surveying for citizen science datasets. Emu 112, 313–325 (2012).Article
Google Scholar
Boakes, E. H. et al. Distorted views of biodiversity: Spatial and temporal bias in species occurrence data. PLoS Biol. 8, e1000385 (2010).Article
Google Scholar
Kamp, J. et al. Unstructured citizen science data fail to detect long-term population declines of common birds in Denmark. Divers. Distrib. 22, 1024–1035. https://doi.org/10.1111/ddi.12463 (2016).Article
Google Scholar
Lin, Y.-P. et al. Uncertainty analysis of crowd-sourced and professionally collected field data used in species distribution models of Taiwanese moths. Biol. Conserv. 181, 102–110 (2015).Article
Google Scholar
Fletcher, R. J. Jr. et al. A practical guide for combining data to model species distributions. Ecology 100, e02710 (2019).Article
Google Scholar More
