More stories

  • in

    Complex multiple introductions drive fall armyworm invasions into Asia and Australia

    Strain assessmentWe did not detect any C-strain individual following analysis of 138 fully assembled mitochondrial DNA genomes (mitogenomes) from Australian samples. Our results, particularly that from Northern Territory, are not dissimilar to the finding of Piggott et al.56 who detected only two (i.e., 4.2%) C-strain mtCOI haplotype individuals from a much larger (i.e., n = 48) Northern Territory sample size. Proportions of C-strain to R-strain also varied significantly across the different SEA populations (Table S1) in contrast to the patterns observed in China, India, and African nations (e.g.,22,33,34,39,57). All Australian populations analysed for their corn or rice mitochondrial haplotypes via mitogenome assemblies of whole genome sequencing data therefore contrasted with the invasive populations from SEA where in some countries (e.g., Myanmar, Vietnam) FAW with the C-strain mtCOI haplotypes made up approximately 50% of the populations examined (see Table S1 for C- and R-strains mitogenome proportions, see also Fig. 1 ‘C-strain’ and ‘R-strain’ Maximum Likelihood cladograms).Figure 1Maximum Likelihood cladograms of unique Spodoptera frugiperda C-strain and R-strain partial mitochondrial genomes based on concatenation of the 13 PCGs (11,393 bp) using IQ-Tree with 1000 UFBoot replications. Individuals in clades I, II, III, and IV (C-strain) and in Clades I, II, V (R-strain) that are in the same colour scheme (i.e., green, orange, blue, or pinks) shared 100% nucleotide identity. Mitogenome haplotypes from native individuals for both C- and R-strains are in khaki green colour. Red and dark grey dots at branch nodes represent bootstrap values of 87–100% and 74–86%, respectively. Bootstrap values  Hetexp; see60) could likewise indicate recent mixing of distinct populations from SEA that suggest multiple introductions (e.g.,33,39 cf.46,47,61,62; i.e., due to a recent bottleneck from a recent western Africa founder event).Table 1 Population genetic differentiation via pairwise FST estimates between Spodoptera frugiperda populations from the invasive ranges of Africa (Uganda, Malawi, Benin), South Asia (India), East Asia (China (Cangyuan (CY), Xinping (XP), YuanJiang (YJ)), South Korea), Southeast Asia (Malaysia (Johor, Kedah, Penang States), Laos, Vietnam, Myanmar), and Pacific/Australia (Papua New Guinea (PNG), Australia—Kununurra (Western Australia, WA), Northern Territory (NT), Strathmore, Walkamin, Burdekin, Mackay (Queensland, Qld), Wee Waa (New South Wales, NSW).Full size tableThe observed heterozygosity excess detected in all invasive range populations could be further explained as due to population sub-structure and isolation breaking through periodic migration. Significant numbers of loci (ca. 30%) were also shown to not be in Hardy–Weinberg equilibrium (HWE) especially for the Malaysian (i.e., Kedah), but also Australian (i.e., Wee Waa, NT, Kununurra), Chinese (e.g., XP), South Korean, and Malawian populations. Taken as a whole, genetic diversity results from this study therefore suggested that the invasive Asian (i.e., SA, SEA, EA) FAW populations exhibited signatures of recent mixing of previously separated populations. Simulated patterns of moth migration of various invasive FAW populations such as between Myanmar and China (e.g.,41,42,55) and to Australia54 are incompatible with the population genomic data, which suggests these were likely discrete and non-panmictic FAW populations with the most probable explanation being due to multiple origins of founding populations.Genetic differentiation analysisEstimates of pairwise genetic differentiation (FST) between populations varied significantly (Table 1) and extended to between populations within a country (e.g., Mackay vs. rest of Australia; Kedah vs. rest of Malaysia). Of interest are the pairwise estimates between different Australian FAW populations from Kununurra (Western Australia), Northern Territory, Queensland (Strathmore, Walkamin, Burdekin, Mackay) and New South Wales (Wee Waa) that represented the most recently reported invasive populations in this study, and predominantly showed significant differentiation amongst themselves (with the exception of the two Queensland populations of Mackay and partially for Walkamin) and with other SEA/SA/EA countries. The majority of non-significant population genetic differentiation estimates were in SEA where the presence of FAW was reported earlier, i.e., since 2018 (e.g.,63,64 or as early as 200865,66; see also33), while across Asia (e.g., China) since 2016 but also potentially pre-2014 (16,67; see also33).Interestingly, significant genetic differentiation was observed between populations from Yunnan province in China and populations from Myanmar, Laos, and Vietnam. Penang and Johor (Malaysia) populations were not significantly differentiated from other SE Asian populations, nor with Ugandan and Malawian populations from east Africa. Individuals from Benin and Mackay (Queensland, Australia) showed non-significant genetic differentiation with all populations except with Kedah, and for Mackay also surprisingly with the Wee Waa population from New South Wales. The South Korean population exhibited significant genetic differentiation with SE Asian population except with Mackay, India and the Yuanjiang (YJ) population in Yunnan Province. Finally, the Kedah population, being one of the earliest collected samples from Malaysia and having been maintained as a laboratory population, showed strong differentiation with all populations (and lowest nucleotide diversity, π = 0.237; Table 2) further supporting unique, non-African, introduction events in SEA. Strong genetic differentiation suggested there was limited gene flow to breakdown sub-structure between populations, and the FST estimates from these invasive populations therefore failed to support a west-to-east spread pathway for the FAW. This observation instead suggested the widespread presence of genetically distinct FAW populations, likely due to independent introductions and therefore also highlighting likely biosecurity weaknesses especially in East Asia (e.g., China, South Korea) and SEA (e.g., Malaysia).Table 2 Population statistics for Spodoptera frugiperda populations from Southeast Asia (i.e., Malaysia (MYS; Johor, Kedah, Penang), Laos, Vietnam, Myanmar), East Asia (i.e., South Korea), and Pacific/Australia (i.e., Papua New Guinea (PNG), Australia).Full size tableThe genetic diversity of Australian populations identified surprisingly complex sub-structure patterns given the short time frame of population detections across different northern Australian regions. Significant genetic differentiation between, e.g., Kununurra (WA), Northern Territory (NT), Queensland (e.g., Strathmore, Burdekin), and Wee Waa (NSW) populations suggests these populations likely derived from separate establishment events. The WA Kununurra population was not significantly differentiated from the Johor State (Malaysia), India and the Cangyuan (CY) China populations, suggesting a potential south-eastern route from SA/SEA into north-western Australia. Contrasting this, Walkamin and Mackay populations showed non-significant genetic differentiation with the Madang (PNG) population, suggesting a potential second pathway for SEA individuals to arrive at the north-eastern region of Australia. Significant genetic differentiation between WA, NT, and Qld populations suggested that at least during the early stage of pest establishment in northern Australia, there was limited gene flow to homogenise the unique genetic background carried by these distinct individuals, some of which exhibited also distinct insecticide resistance profiles48,49.PCAWe selected specific populations to compare using Principal Component Analysis (PCA) as examples to support evidence of independent introductions, as seen from Fig. 3a between China (CY, YJ, XP) populations vs. Myanmar, in Fig. 3b (within Malaysian populations between those collected from Penang and Johor States vs. Kedah State), in Fig. 3c for between China and East Africa (e.g., Uganda, Malawi), and where Benin and India individuals that grouped with either China or east Africa; and in Fig. 3d between China, Malaysia (Kedah State), and Australia (NT, NSW)). Genetic variability between Australian populations (e.g., Strathmore (QLD) vs. NT and NSW) was also evident (Fig. 3d).Figure 3Principal component analysis (PCA) showing variability between selected FAW populations from their invasive ranges. (a) China and Myanmar; (b) Kedah and Johor/Penang populations from Malaysia, (c) China and east African (Uganda/Malawi) populations, (d) Australia (Strathmore, Qld/Northern Territory + New South Wales), China, and Malaysia (Kedah) populations, (e) Australia (Strathmore, Qld) and PNG (Madang Province) populations, (f) Lao PDR/Vietnam and South Korea populations, (g) China and SE Asian (Lao PDR/Vietnam/Myanmar/Philippines/Malaysia) and Pacific/Australia (PNG) populations, and (h) Australia, China and Malaysia (Kedah) populations. Note the overall population genomic variability between countries (e.g., a, c–g) and within countries (e.g., Malaysia (b), Australia (d)). Populations with similar genomic variability are also evident, e.g., for Strathmore (e) and South Korea (f); and for Madang (e) and Lao PDR/Vietnam (f), further supporting potential different population origins of various FAW populations across the current invasive regions. The Southeast Asian and Chinese populations are overall different (g), Australia’s FAW populations showed similarity with both Southeast Asia and China (g, h).Full size imagePCA also showed that differences existed between FAW populations from the Madang Province in PNG and with the Strathmore population from Qld (Fig. 3e). The SEA FAW populations from Lao PDR/Vietnam also exhibited diversity from the South Korean population (Fig. 3f), with the South Korean and Strathmore populations largely exhibiting similar diversity patterns, while the Madang population shared similarity with Laos and Vietnam populations. Plotting all SEA populations against China clearly showed that populations from SEA were distinct from the Chinese FAW populations (Fig. 3g), while in Australia, individuals from various populations shared similarity with both Chinese and SEA FAW. Despite the connectedness of the landscape between SEA and China, SEA largely appeared to have their own FAW populations, with FAW in SEA and in China differing in their genome compositions overall as shown via PCA.PCA further enabled visualisation of genetic diversity amongst Australia FAW populations, suggesting that arrival and establishment of FAW likely involved separate introduction events that followed closely after each other and over a short timeframe. While it had been anticipated that the southward spread of FAW from SEA would necessarily lead to Australia FAW and PNG FAW to share similar genetic backgrounds, the Madang Province FAW population appeared to be different from the Strathmore (Qld) population, with the Madang population being more similar to Lao PDR/Vietnam populations, and the Strathmore population more similar to FAW from South Korea.DivMigrate analysisDirectionality of gene flow between African, South Asia (Indian), East Asia (China) and SE Asian populations were predominantly from China to east African and SE Asian populations (e.g., Figs. 4a, b, S-1; see also Table 3), while movements of FAW in Laos and Vietnam (i.e., the Indochina region) were predominantly with other SEA countries (e.g., with Myanmar and East Africa; Figs. 4c, d, S-2; see also Table 3) but with no directional movements to the three Yunnan populations (CY, XP, YJ). Migration directionality with other SE Asian populations (e.g., Johor (JB; Fig. S-3) and Penang (PN, Fig. S-4)) showed that these two populations (but especially the Johor population) were predominantly source populations for Uganda, Malawi, Philippines, Vietnam, and PNG (Fig. S-3). Bidirectional migration between Myanmar and Laos PDR populations were also detected with the Johor population from Malaysia (Fig. S-3). When India was selected as the source population, bidirectional migration events were detected with Myanmar and with the Cangyuan (CY) populations (Fig. S-5) while unidirectional migration events from India to Uganda and Malawi and to Laos were detected, and the China Yuanjian (YJ) population showed unidirectional migration to India. Unidirectional migration events from CY and YJ populations to the PNG Madang population were detected, while bidirectional migration events between PNG and Myanmar, Laos PDR, Philippines, Vietnam, and with Uganda and Malawi were also detected (Fig. S-6). No migration events were detected between the West African Benin population and with the South Korean population.Figure 4Source populations are CY (a) and XP (b). (c, d) DivMigrate analyses with edge weight setting at 0.453 showing unidirectional (yellow arrow lines) and bidirectional (blue arrow lines) migration between countries in Africa and South Asia/East Asia/SE Asia. Migration rates between populations are as provided in Table 3. (c) Vietnam (VNM) as the source population identified an incidence of unidirectional migration from Malaysia (MYS) Johor state (JB) to Vietnam, while bidirectional migration events were detected from Vietnam to other SE Asian (e.g., Philippines (PHL), Lao PDR (Lao), Myanmar (MMR)), to Pacific/Australia (i.e., Papua New Guinea (PNG)), as well as to east Africa (Uganda (UGA), Malawi (MWI)). (d) Lao PDR (LAO) as source population identified bidirectional migration events between various SEA populations and east African populations, while unidirectional migration events were identified from India (IND) and China (CHN) Yunnan populations (CY, YJ) to Laos PDR. No migration events were evident from SE Asian populations to China.(a, b) DivMigrate analyses with edge weight setting at 0.453 showing unidirectional (yellow arrow lines) and bidirectional (blue arrow lines) gene flow between countries in Africa and South Asia/East Asia/SE Asia. Significant migration rates (at alpha = 0.5) are in red and as provided in Table 3. Incidences of unidirectional migration were predominantly detected from China (CHN) Yunnan populations (CY, XP) to SE Asian populations (e.g., Myanmar (MMR), Laos PDR (Lao), Philippines (PHL)) and to east African populations (e.g., Uganda (UGA), Malawi (MWI)) (a, b).Full size imageTable 3 DivMigrate matrix showing effective migration rates calculated using GST from source to target invasive populations.Full size tableAdmixture analysisAdmixture analyses involving all Australian, Southeast Asian and South Korean populations from this study; and native populations from the Americas and Caribbean Islands, and invasive populations from Africa (Benin, Uganda, Malawi), India, and China33, provided an overall complex picture of population structure that reflected the species’ likely introduction histories across its invasive ranges.Admixture analysis that excluded New World, African and Indian populations identified four genetic clusters (i.e., K = 4) to best describe these invasive populations from SEA, and EA (i.e., China, South Korea), and Pacific/Australia (Fig. 5a). At K = 4, Australian populations from NT and NSW, YJ population from China, South Korean, and Malaysia’s Kedah population, each showed unique admixture patterns (i.e., some individuals from NT and NSW populations lacked cluster 3; most of YJ (but also some CY and XP) individuals lacked clusters 1 and 2; South Korean (e.g., MF individuals) lacked cluster 2; Malaysia’s Kedah population lacked evidence of admixture (i.e., reflecting its laboratory culture history) and was made up predominantly by individuals that belonged to cluster 4. Populations from China also differed from most populations from SEA due to the overall absence of genetic cluster 4. Taken as a whole, establishment of the FAW populations in China, Malaysia, vs. other SE Asian populations, and between Australian populations (e.g., NT/NSW cf. WA/Qld), likely involved individuals from diverse genetic background (i.e., multiple introductions). At K = 4, the majority of Australian populations appeared to contain genetic clusters similar to China (i.e., cluster 3) and to SEA (i.e., cluster 2).Figure 5Admixture and corresponding CV plots for FAW populations from: (a) Australia, China, South Korea, Lao PDR, Myanmar, Malaysia, Philippines, PNG, and Vietnam, and (b) Benin, China, India, South Korea, Lao PDR, Myanmar, Malaysia, Philippines, PNG, Tanzania, and Vietnam. Optimal ancestral genetic clusters are K = 4 for both admixture plots. Boxed individuals have unique admixture patterns at K = 4 when compared with other populations. China FAW lacked Cluster 2 (navy blue colour; present in almost all SEA and Australian FAW), while in NSW and NT some individuals lacked cluster 3. South Korea ‘MF’ population generally lacked cluster 2, while Kedah (Malaysia) showed distinct (cluster 4) pattern for all individuals. The overall same observations are evident in the admixture plot in (b), with African FAW generally exhibiting admixture patterns similar to SEA populations than to Chinese FAW. With the exception of Kedah (Malaysia) and some Chinese FAW individuals, all FAW in the invasive range showed evidence of genomic admixture (i.e., hybrid signature). The figures were generated using the POPHELPER program  and further manipulated in Microsoft PowerPoint for Mac v16.54.Full size imageOverall admixture patterns at best K = 4 in China and SEA remained unchanged when analysed together with African and Indian individuals (Fig. 5b; excluded Australia). Benin individuals were either similar to China or to SEA, while eastern African populations (e.g., Uganda, Malawi) were similar to Southeast Asian populations from e.g., Vietnam, Laos, and is in agreement with the phylogenetic inference (Fig. 3) that identified these African individuals as having loci that were derived from Southeast Asian populations.Genome-wide SNP loci demonstrated that invasive FAW populations from SEA and Australia exhibited admixed genomic signatures similar to that observed in other invasive populations33,34. While the current invasive populations in Africa and Asia likely arrived already as hybrids as suggested by Yainna et al.68, the Malaysia Kedah State population was potentially established by offspring of a non-admixed female. Distinct admixture patterns in Malaysian FAW populations between Kedah and Johor/Penang states therefore suggested that establishment of these populations was likely as separate introduction events. As reported also in Tay et al.33, the Chinese YJ population appeared to have admixed signature that differed from XP and CY populations, and suggested that the YJ population could have a different introduction history than the XP and CY populations. Similar multiple genetic signatures based on lesser nuclear markers by Jiang et al.39 also supported likely multiple introductions of China Yunnan populations. More

  • in

    Altered gut microbiota in individuals with episodic and chronic migraine

    ParticipantsIn total, 80, 63, and 56 participants in the EM, CM, and control groups, respectively, initially agreed to participate in this study. Nevertheless, 28, 12, and 13 individuals in the EM, CM, and control groups, respectively, withdrew their participation and did not bring any fecal samples to the study site. After providing fecal samples, 10 and 6 individuals with EM and CM, respectively, reported intake of probiotics and were excluded from the analysis. No participant in the control group consumed probiotics during the study period. Eventually, 42, 45, and 43 participants in the EM, CM, and control groups, respectively, were enrolled (Fig. 1). The demographic and clinical characteristics of participants are summarized in Table 1. All participants with EM and CM used acute treatments for migraine. Moreover, 25 (59.5%) and 27 (60.0%) participants with EM and CM, respectively, received prophylactic treatment for migraine. Of the 42 participants with EM, 20 used anti-epileptic medications, 11 used beta blockers, 2 used an anti-depressant, and 1 used a calcium-channel blocker for prophylactic treatment. Of the 45 participants with CM, 23 used anti-epileptic medications, 8 used beta blockers, 1 used an anti-depressant, and no participant used calcium-channel blockers for prophylactic treatment. No participant in the EM, CM, and control groups was infected with SARS-CoV-2 before or during participation in the study.Figure 1Flow of participants in a study on the composition of gut microbiota in participants with episodic or chronic migraine.Full size imageTable 1 Demographic and clinical characteristics of participants with episodic and chronic migraine and the control.Full size tableCollection of 16 s RNA sequencing dataWe obtained 7,802,425 read sequences, accounting for 99.8% of the valid sequences from the fecal samples of 130 participants. According to barcode and primer sequence filtering, an average of 59,305 (range, 3716–90,832) observed sequences per sample was recovered for downstream analysis. Thus, 2,242,325 sequences were obtained from the controls for phylogenetic analysis, whereas 2,747,952 and 2,812,148 sequences were obtained from the EM and CM groups, respectively.Microbial diversityAlpha diversity was defined as microbial community richness and evenness. Alpha diversities in the genus richness, as evaluated by Chao1 (Fig. 2A), Shannon (Fig. 2B), and Simpson (Fig. 2C) indices, did not differ significantly among the EM, CM, and control groups. Beta diversity represented the community composition dissimilarity between samples. PCoA with the weighted UniFrac distance (Fig. 3A and Supplementary Fig. S1A, p = 0.176, permutational multivariate analysis of variance [PERMANOVA]), the unweighted UniFrac distance (Fig. 3B and Supplementary Fig. S1B, p = 0.132, PERMANOVA), and the Bray–Curtis dissimilarity index (Fig. 3C and Supplementary Fig. S1C, p = 0.220, PERMANOVA) for beta diversity at the genus level among the EM, CM, and control groups revealed that these three groups could not be separated.Figure 2Alpha diversity at the genus level using Chao1 (A), Shannon (B), and Simpson (C) indices*,†. *Controls (green) and participants with episodic migraine (blue) and chronic migraine (yellow). †In the box plots, the lower boundary of the box indicates the 25th percentile; a blue line within the box marks the median, and the upper boundary of the box indicates the 75th percentile. Whiskers above (red) and below the box (green) indicate the highest and the lowest values, respectively.Full size imageFigure 3Beta diversity of microbiota in principal coordinate analysis plot with the weighted UniFrac distance (A), the unweighted UniFrac distance (B) and the Bray–Curtis dissimilarity index (C)*. *Controls (green) and participants with episodic migraine (blue) and chronic migraine (yellow).Full size imageRelative abundance of fecal microbes between participants with EM and the controlRelative abundance of fecal microbes at the phylum level did not differ significantly among participants in the control, EM, and CM groups (Supplementary Fig. S2). Moreover, Tissierellales (p = 0.001) and Tissierellia (p = 0.001) were more abundant in the EM group than that in the control group at the order and class levels, respectively (Fig. 4A). At the family level, Peptoniphilaceae (p = 0.001) and Eubacteriaceae (p = 0.045) occurred at a significantly higher proportion in the EM group than that in the control group. Furthermore, at the genus level, the abundance of 11 genera differed significantly between the two groups, including one more abundant and 10 less abundant genera in the EM group. Catenibacterium (p = 0.031) and Olsenella (p = 0.038) had the highest relative abundance in the control and EM groups, respectively.Figure 4Taxonomic differences in fecal microbiota among participants. The fold change (log2) denotes the difference in relative abundance between participants with episodic migraine and the control (A), between those with chronic migraine and the control (B), and between those with episodic and chronic migraine (C). CM chronic migraine; EM episodic migraine.Full size imageRelative abundance of fecal microbes between participants with CM and the controlThe analysis results at the class, order, family, genus, and species levels between CM and control groups are illustrated in Fig. 4B. Tissierellia (p = 0.001), Tissierellales (p = 0.001), and Peptoniphilaceae (p = 0.001) were more abundant in the CM group than that in the control group at the class, order, and family levels, respectively; however, at the genus level, the abundances of 18 genera differed significantly, including four more abundant and 14 less abundant genera in the CM group than in the control group.Relative abundance of fecal microbes between participants with EM and CMThe analysis results at the class, order, family, and genus levels between CM and EM groups are summarized in Fig. 4C. At the class level, Bacilli (p = 0.033) were less abundant in the CM group than that in the EM group; however, at the order level, Selenomonadales (p = 0.016) and Lactobacillales (p = 0.034) were less abundant in the CM group than that in the EM group. Moreover, at the class level, Selenomonadaceae (p = 0.016) and Prevotellaceae (p = 0.012) were less abundant in the CM group than that in the EM group. Furthermore, at the genus level, PAC001212_g (p = 0.019) revealed relative positive predominancy in the CM groups, whereas Prevotella (p = 0.019), Holdemanella (p = 0.009), Olsenella (p = 0.033), Adlercreutzia (p = 0.018), and Coprococcus (p = 0.040) revealed relative positive predominancy in the EM group.Association among fecal microbiota and clinical characteristics and comorbidities of migraineAmong the five genera (Roseburia, Eubacterium_g4, Agathobacter, PAC000195_g, and Catenibacterium) depicting predominance or less-predominance both in EM and CM groups, we conducted additional analyses for clinical characteristics and migraine comorbidities.Combining the results of the 42 and 45 participants with EM and CM, respectively, the Poisson regression analysis for relative abundance of microbiota revealed that a higher composition of PAC000195_g (p = 0.040) was significantly associated with lower headache frequency (Table 2). Furthermore, Agathobacter (p = 0.009) had a negative association with severe headache intensity (Table 3). Anxiety was associated with Catenibacterium (p = 0.027); however, depression did not reveal any association with the five genera (Table 3).Table 2 The association between headache frequency and the relative abundance of microbiota.*Full size tableTable 3 The association of severe headache intensity and comorbidities with the relative abundance of microbiota*.Full size tableRelative abundance of fecal microbes in participants with EM based on prophylactic treatmentAlpha and beta diversities in participants with EM did not differ significantly based on their prophylactic treatment (Supplementary Figs S3A–C, S4A–C, and S5A–C). At the genus level, Klebsiella (p = 0.009), Enterobacteriaceae_g (p = 0.006), and Faecalibacterium (p = 0.046) were more abundant in the prophylactic group than the non-prophylactic group (Supplementary Fig. S6A).Relative abundance of fecal microbes in participants with CM based on prophylactic treatmentAlpha and beta diversities in participants with CM did not differ significantly based on prophylactic treatment (Supplementary Figs S7A–C, S8A–C, and S9A–C). Emergencia (p = 0.043), Ruthenibacterium (p = 0.005), Eggerthella (p = 0.003), PAC000743_g (p = 0.034), and Anaerostipes (p = 0.039) were more abundant in the prophylactic group, whereas PAC000196_g (p = 0.049), Fusicatenibacter (p = 0.028), and Faecalibacterium (p = 0.021) were more abundant in the non-prophylactic group at the genus level (Supplementary Fig. S6B). More

  • in

    Warmth shifts symbionts

    Abigail Meyer from the University of Minnesota, USA, and colleagues from the USA, investigated the physiological and morphological responses to experimental warming and CO2 additions in the widespread forest lichen Evernia mesomorpha. While impacts of CO2 were largely negligible, warming and associated drying was linked to decreases in biomass, carbon assimilation and respiration rates. As well as bleaching of the lichen, indicative of death of the photobiont, the authors found evidence of shifts in internal algal communities, including increased proportions of certain algal clades under warming. While the study reveals the sensitivity of lichen algae to warming, further work is needed to reveal whether photobiont turnover may assist in lichen acclimation and recovery. More

  • in

    Differential carbon utilization enables co-existence of recently speciated Campylobacteraceae in the cow rumen epithelial microbiome

    Humpenöder, F. et al. Projected environmental benefits of replacing beef with microbial protein. Nature 605, 90–96 (2022).Article 

    Google Scholar 
    Tilman, D. & Clark, M. Global diets link environmental sustainability and human health. Nature 515, 518–522 (2014).Article 
    CAS 

    Google Scholar 
    Clark, M. A. et al. Global food system emissions could preclude achieving the 1.5° and 2°C climate change targets. Science 370, 705–708 (2020).Article 
    CAS 

    Google Scholar 
    Eisler, M. C. et al. Agriculture: steps to sustainable livestock. Nature 507, 32–34 (2014).Article 

    Google Scholar 
    Kamke, J. et al. Rumen metagenome and metatranscriptome analyses of low methane yield sheep reveals a Sharpea-enriched microbiome characterised by lactic acid formation and utilisation. Microbiome 4, 56 (2016).Article 

    Google Scholar 
    Kruger Ben Shabat, S. et al. Specific microbiome-dependent mechanisms underlie the energy harvest efficiency of ruminants. ISME J. 10, 2958–2972 (2016).Article 

    Google Scholar 
    Janssen, P. H. Influence of hydrogen on rumen methane formation and fermentation balances through microbial growth kinetics and fermentation thermodynamics. Anim. Feed Sci. Technol. 160, 1–22 (2010).Article 
    CAS 

    Google Scholar 
    Wallace, R. J. et al. A heritable subset of the core rumen microbiome dictates dairy cow productivity and emissions. Sci. Adv. 5, eaav8391 (2019).Article 
    CAS 

    Google Scholar 
    Urrutia, N. L. & Harvatine, K. J. Acetate dose-dependently stimulates milk fat synthesis in lactating dairy cows. J. Nutr. 147, 763–769 (2017).Article 
    CAS 

    Google Scholar 
    Seshadri, R. et al. Cultivation and sequencing of rumen microbiome members from the Hungate1000 Collection. Nat. Biotechnol. 36, 359–367 (2018).Article 
    CAS 

    Google Scholar 
    Anderson, C. J., Koester, L. R. & Schmitz-Esser, S. Rumen epithelial communities share a core bacterial microbiota: a meta-analysis of 16S rRNA Gene Illumina MiSeq sequencing datasets. Front. Microbiol. 12, 625400 (2021).Wallace, R. J., Cheng, K.-J., Dinsdale, D. & Ørskov, E. R. An independent microbial flora of the epithelium and its role in the ecomicrobiology of the rumen. Nature 279, 424–426 (1979).Article 
    CAS 

    Google Scholar 
    Mann, E., Wetzels, S. U., Wagner, M., Zebeli, Q. & Schmitz-Esser, S. Metatranscriptome sequencing reveals insights into the gene expression and functional potential of rumen wall bacteria. Front. Microbiol. 9, 43 (2018).Pacífico, C. et al. Unveiling the bovine epimural microbiota composition and putative function. Microorganisms 9, 342 (2021).Article 

    Google Scholar 
    VanInsberghe, D., Arevalo, P., Chien, D. & Polz, M. F. How can microbial population genomics inform community ecology?. Phil. Trans. R. Soc. B 375, 20190253 (2020).Article 

    Google Scholar 
    Hunt, D. E. et al. Resource partitioning and sympatric differentiation among closely related bacterioplankton. Science 320, 1081–1085 (2008).Article 
    CAS 

    Google Scholar 
    Fraser, C., Hanage, W. P. & Spratt, B. G. Recombination and the nature of bacterial speciation. Science 315, 476–480 (2007).Article 
    CAS 

    Google Scholar 
    Shapiro, B. J. et al. Population genomics of early events in the ecological differentiation of bacteria. Science 335, 48–51 (2012).Article 

    Google Scholar 
    Cadillo-Quiroz, H. et al. Patterns of gene flow define species of thermophilic Archaea. PLoS Biol. 10, e1001265 (2012).Article 
    CAS 

    Google Scholar 
    Koeppel, A. et al. Identifying the fundamental units of bacterial diversity: a paradigm shift to incorporate ecology into bacterial systematics. Proc. Natl Acad. Sci. USA 105, 2504–2509 (2008).Article 
    CAS 

    Google Scholar 
    Arevalo, P., VanInsberghe, D., Elsherbini, J., Gore, J. & Polz, M. F. A reverse ecology approach based on a biological definition of microbial populations. Cell 178, 820–834.e14 (2019).Article 
    CAS 

    Google Scholar 
    Wetzels, S. U. et al. Epimural bacterial community structure in the rumen of Holstein cows with different responses to a long-term subacute ruminal acidosis diet challenge. J. Dairy Sci. 100, 1829–1844 (2017).Article 
    CAS 

    Google Scholar 
    Neubauer, V. et al. Effects of clay mineral supplementation on particle-associated and epimural microbiota, and gene expression in the rumen of cows fed high-concentrate diet. Anaerobe 59, 38–48 (2019).Article 
    CAS 

    Google Scholar 
    Stewart, R. D. et al. Compendium of 4,941 rumen metagenome-assembled genomes for rumen microbiome biology and enzyme discovery. Nat. Biotechnol. 37, 953–961 (2019).Article 
    CAS 

    Google Scholar 
    Waite, D. W. et al. Comparative genomic analysis of the class Epsilonproteobacteria and proposed reclassification to Epsilonbacteraeota (phyl. nov.). Front. Microbiol. 8, 682 (2017).Article 

    Google Scholar 
    Rodriguez-R, L. M. & Konstantinidis, K. T. Bypassing cultivation to identify bacterial species. Microbe Mag. 9, 111–118 (2014).Article 

    Google Scholar 
    Bendall, M. L. et al. Genome-wide selective sweeps and gene-specific sweeps in natural bacterial populations. ISME J. 10, 1589–1601 (2016).Article 

    Google Scholar 
    Birky, C. W., Adams, J., Gemmel, M. & Perry, J. Using population genetic theory and DNA sequences for species detection and identification in asexual organisms. PLoS ONE 5, e10609 (2010).Article 

    Google Scholar 
    Li, W.-H. Unbiased estimation of the rates of synonymous and nonsynonymous substitution. J. Mol. Evol. 36, 96–99 (1993).Article 
    CAS 

    Google Scholar 
    Novichkov, P. S., Wolf, Y. I., Dubchak, I. & Koonin, E. V. Trends in prokaryotic evolution revealed by comparison of closely related bacterial and archaeal genomes. J. Bacteriol. 191, 65–73 (2009).Article 
    CAS 

    Google Scholar 
    Tilman, D. Resource competition between plankton algae: an experimental and theoretical approach. Ecology 58, 338–348 (1977).Article 
    CAS 

    Google Scholar 
    Yawata, Y. et al. Competition–dispersal tradeoff ecologically differentiates recently speciated marine bacterioplankton populations. Proc. Natl Acad. Sci. USA 111, 5622–5627 (2014).Article 
    CAS 

    Google Scholar 
    Basan, M. et al. A universal trade-off between growth and lag in fluctuating environments. Nature 584, 470–474 (2020).Article 
    CAS 

    Google Scholar 
    Flamholz, A., Noor, E., Bar-Even, A., Liebermeister, W. & Milo, R. Glycolytic strategy as a tradeoff between energy yield and protein cost. Proc. Natl Acad. Sci. USA 110, 10039–10044 (2013).Article 
    CAS 

    Google Scholar 
    Szymanski, C. M., Yao, R., Ewing, C. P., Trust, T. J. & Guerry, P. Evidence for a system of general protein glycosylation in Campylobacter jejuni. Mol. Microbiol. 32, 1022–1030 (1999).Article 
    CAS 

    Google Scholar 
    Roux, D. et al. Identification of poly-N-acetylglucosamine as a major polysaccharide component of the Bacillus subtilis biofilm matrix. J. Biol. Chem. 290, 19261–19272 (2015).Article 
    CAS 

    Google Scholar 
    Troutman, J. M. & Imperiali, B. Campylobacter jejuni PglH is a single active site processive polymerase that utilizes product inhibition to limit sequential glycosyl transfer reactions. Biochemistry 48, 2807–2816 (2009).Article 
    CAS 

    Google Scholar 
    Hehemann, J. H. et al. Adaptive radiation by waves of gene transfer leads to fine-scale resource partitioning in marine microbes. Nat. Commun. 7, 12860 (2016).Article 
    CAS 

    Google Scholar 
    Treangen, T. J. & Rocha, E. P. C. Horizontal transfer, not duplication, drives the expansion of protein families in prokaryotes. PLoS Genet. 7, e1001284 (2011).Article 
    CAS 

    Google Scholar 
    Castric, P. pilO, a gene required for glycosylation of Pseudomonas aeruginosa 1244 pilin. Microbiology 141, 1247–1254 (1995).Article 
    CAS 

    Google Scholar 
    Mourkas, E. et al. Host ecology regulates interspecies recombination in bacteria of the genus Campylobacter. eLife 11, e73552 (2022).Article 
    CAS 

    Google Scholar 
    Sheppard, S. K. et al. Genome-wide association study identifies vitamin B 5 biosynthesis as a host specificity factor in Campylobacter. Proc. Natl Acad. Sci. USA 110, 11923–11927 (2013).Article 
    CAS 

    Google Scholar 
    Bobay, L.-M. & Ochman, H. Biological species are universal across life’s domains. Genome Biol. Evol. https://doi.org/10.1093/gbe/evx026 (2017).Dieho, K. et al. Morphological adaptation of rumen papillae during the dry period and early lactation as affected by rate of increase of concentrate allowance. J. Dairy Sci. 99, 2339–2352 (2016).Article 
    CAS 

    Google Scholar 
    Lawson, C. E. et al. Autotrophic and mixotrophic metabolism of an anammox bacterium revealed by in vivo 13C and 2H metabolic network mapping. ISME J. 15, 673–687 (2021).Article 
    CAS 

    Google Scholar 
    Kwong, W. K., Zheng, H. & Moran, N. A. Convergent evolution of a modified, acetate-driven TCA cycle in bacteria. Nat. Microbiol. 2, 17067 (2017).Article 
    CAS 

    Google Scholar 
    Kather, B., Stingl, K., van der Rest, M. E., Altendorf, K. & Molenaar, D. Another unusual type of citric acid cycle enzyme in Helicobacter pylori: the malate:quinone oxidoreductase. J. Bacteriol. 182, 3204–3209 (2000).Article 
    CAS 

    Google Scholar 
    Mullins, E. A. & Kappock, T. J. Crystal structures of Acetobacter aceti succinyl-coenzyme A (CoA):acetate CoA-transferase reveal specificity determinants and illustrate the mechanism used by class I CoA-transferases. Biochemistry 51, 8422–8434 (2012).Article 
    CAS 

    Google Scholar 
    Letten, A. D., Hall, A. R. & Levine, J. M. Using ecological coexistence theory to understand antibiotic resistance and microbial competition. Nat. Ecol. Evol. 5, 431–441 (2021).Article 

    Google Scholar 
    Park, S. Y. et al. Strain-level fitness in the gut microbiome is an emergent property of glycans and a single metabolite. Cell 185, 513–529.e21 (2022).Article 
    CAS 

    Google Scholar 
    Kim, C. H. Control of lymphocyte functions by gut microbiota-derived short-chain fatty acids. Cell Mol. Immunol. 18, 1161–1171 (2021).Article 
    CAS 

    Google Scholar 
    Morrison, D. J. & Preston, T. Formation of short chain fatty acids by the gut microbiota and their impact on human metabolism. Gut Microbes 7, 189–200 (2016).Article 

    Google Scholar 
    Frampton, J., Murphy, K. G., Frost, G. & Chambers, E. S. Short-chain fatty acids as potential regulators of skeletal muscle metabolism and function. Nat. Metab. 2, 840–848 (2020).Article 
    CAS 

    Google Scholar 
    Good, B. H., McDonald, M. J., Barrick, J. E., Lenski, R. E. & Desai, M. M. The dynamics of molecular evolution over 60,000 generations. Nature 551, 45–50 (2017).Article 

    Google Scholar 
    Lang, G. I. et al. Pervasive genetic hitchhiking and clonal interference in forty evolving yeast populations. Nature 500, 571–574 (2013).Article 
    CAS 

    Google Scholar 
    Shapiro, B. J. & Polz, M. F. Microbial speciation. Cold Spring Harb. Perspect. Biol. 7, a018143 (2015).Article 

    Google Scholar 
    Sheppard, S. K. et al. Evolution of an agriculture-associated disease causing Campylobacter coli clade: evidence from national surveillance data in Scotland. PLoS ONE 5, e15708 (2010).Article 
    CAS 

    Google Scholar 
    Callahan, B. J. et al. DADA2: high-resolution sample inference from Illumina amplicon data. Nat. Methods 13, 581–583 (2016).Article 
    CAS 

    Google Scholar 
    Wang, Q., Garrity, G. M., Tiedje, J. M. & Cole, J. R. Naive Bayesian classifier for rapid assignment of rRNA sequences into the new bacterial taxonomy. Appl. Environ. Microbiol. 73, 5261–5267 (2007).Article 
    CAS 

    Google Scholar 
    Pacífico, C. et al. Bovine rumen epithelial miRNA–mRNA dynamics reveals post-transcriptional regulation of gene expression upon transition to high-grain feeding and phytogenic supplementation. Genomics 114, 110333 (2022).Article 

    Google Scholar 
    Rivera-Chacon, R. et al. Supplementing a phytogenic feed additive modulates the risk of subacute rumen acidosis, rumen fermentation and systemic inflammation in cattle fed acidogenic diets. Animals 12, 1201 (2022).Article 

    Google Scholar 
    Bolger, A. M., Lohse, M. & Usadel, B. Trimmomatic: a flexible trimmer for Illumina sequence data. Bioinformatics 30, 2114–2120 (2014).Article 
    CAS 

    Google Scholar 
    Bankevich, A. et al. SPAdes: a new genome assembly algorithm and its applications to single-cell sequencing. J. Comput. Biol. 19, 455–477 (2012).Article 
    CAS 

    Google Scholar 
    Li, H. Aligning sequence reads, clone sequences and assembly contigs with BWA-MEM. Preprint at https://arxiv.org/abs/1303.3997 (2013).Parks, D. H., Imelfort, M., Skennerton, C. T., Hugenholtz, P. & Tyson, G. W. CheckM: assessing the quality of microbial genomes recovered from isolates, single cells, and metagenomes. Genome Res. 25, 1043–1055 (2015).Article 
    CAS 

    Google Scholar 
    Seemann, T. Prokka: rapid prokaryotic genome annotation. Bioinformatics 30, 2068–2069 (2014).Article 
    CAS 

    Google Scholar 
    Putri, G. H., Anders, S., Pyl, P. T., Pimanda, J. E. & Zanini, F. Analysing high-throughput sequencing data in Python with HTSeq 2.0. Bioinformatics 38, 2943–2945 (2022).Article 
    CAS 

    Google Scholar 
    O’doherty, A. et al. Development of nalidixic acid amphotericin B vancomycin (NAV) medium for the isolation of Campylobacter ureolyticus from the stools of patients presenting with acute gastroenteritis. Br. J. Biomed. Sci. 71, 6–12 (2014).Article 

    Google Scholar 
    Schmieder, R. & Edwards, R. Quality control and preprocessing of metagenomic datasets. Bioinformatics 27, 863–864 (2011).Article 
    CAS 

    Google Scholar 
    Karst, S. M., Kirkegaard, R. H. & Albertsen, M. mmgenome: a toolbox for reproducible genome extraction from metagenomes. Preprint at bioRxiv https://doi.org/10.1101/059121 (2014).Edgar, R. C. MUSCLE: multiple sequence alignment with high accuracy and high throughput. Nucleic Acids Res. 32, 1792–1797 (2004).Article 
    CAS 

    Google Scholar 
    Jain, C., Rodriguez-R, L. M., Phillippy, A. M., Konstantinidis, K. T. & Aluru, S. High throughput ANI analysis of 90K prokaryotic genomes reveals clear species boundaries. Nat. Commun. 9, 5114 (2018).Article 

    Google Scholar 
    Jukes, T. H. & Cantor, C. R. in Mammalian Protein Metabolism (ed. Munro, H. N.) 21–132 (Elsevier, 1969).Guindon, S. et al. New algorithms and methods to estimate maximum-likelihood phylogenies: assessing the performance of PhyML 3.0. Syst. Biol. 59, 307–321 (2010).Article 
    CAS 

    Google Scholar 
    Nguyen, L.-T., Schmidt, H. A., von Haeseler, A. & Minh, B. Q. IQ-TREE: a fast and effective stochastic algorithm for estimating maximum-likelihood phylogenies. Mol. Biol. Evol. 32, 268–274 (2015).Article 
    CAS 

    Google Scholar 
    Kalyaanamoorthy, S., Minh, B. Q., Wong, T. K. F., von Haeseler, A. & Jermiin, L. S. ModelFinder: fast model selection for accurate phylogenetic estimates. Nat. Methods 14, 587–589 (2017).Article 
    CAS 

    Google Scholar 
    Hoang, D. T., Chernomor, O., von Haeseler, A., Minh, B. Q. & Vinh, L. S. UFBoot2: improving the ultrafast bootstrap approximation. Mol. Biol. Evol. 35, 518–522 (2018).Article 
    CAS 

    Google Scholar 
    Altschul, S. F., Gish, W., Miller, W., Myers, E. W. & Lipman, D. J. Basic local alignment search tool. J. Mol. Biol. 215, 403–410 (1990).Article 
    CAS 

    Google Scholar 
    Le, S. Q. & Gascuel, O. An improved general amino acid replacement matrix. Mol. Biol. Evol. 25, 1307–1320 (2008).Article 
    CAS 

    Google Scholar 
    Danecek, P. et al. Twelve years of SAMtools and BCFtools. Gigascience 10, giab008 (2021).Article 

    Google Scholar 
    Danecek, P. et al. The variant call format and VCFtools. Bioinformatics 27, 2156–2158 (2011).Article 
    CAS 

    Google Scholar 
    Love, M. I., Huber, W. & Anders, S. Moderated estimation of fold change and dispersion for RNA-seq data with DESeq2. Genome Biol. 15, 550 (2014).Article 

    Google Scholar 
    Tan, R. S. G., Zhou, M., Li, F. & Guan, L. L. Identifying active rumen epithelial associated bacteria and archaea in beef cattle divergent in feed efficiency using total RNA-seq. Curr. Res. Microbial Sci. 2, 100064 (2021).Article 
    CAS 

    Google Scholar 
    Chaumeil, P.-A., Mussig, A. J., Hugenholtz, P. & Parks, D. H. GTDB-Tk: a toolkit to classify genomes with the Genome Taxonomy Database. Bioinformatics https://doi.org/10.1093/bioinformatics/btz848 (2019).Brewer, M. T., Anderson, K. L., Yoon, I., Scott, M. F. & Carlson, S. A. Amelioration of salmonellosis in pre-weaned dairy calves fed Saccharomyces cerevisiae fermentation products in feed and milk replacer. Vet. Microbiol. 172, 248–255 (2014).Article 

    Google Scholar  More

  • in

    Anthropogenic edge effects and aging errors by hunters can affect the sustainability of lion trophy hunting

    Tilman, D. et al. Future threats to biodiversity and pathways to their prevention. Nature 546, 73. https://doi.org/10.1038/nature22900 (2017).Article 
    ADS 
    CAS 

    Google Scholar 
    Laurance, W. F., Sayer, J. & Cassman, K. G. Agricultural expansion and its impacts on tropical nature. Trends Ecol. Evol. 29, 107–116. https://doi.org/10.1016/j.tree.2013.12.001 (2014).Article 

    Google Scholar 
    Ceballos, G. et al. Accelerated modern human–induced species losses: Entering the sixth mass extinction. J. Sci. Adv. 1, e1400253. https://doi.org/10.1126/sciadv.1400253 (2015).Article 
    ADS 

    Google Scholar 
    Cardillo, M. et al. Human population density and extinction risk in the world’s carnivores. PLoS Biol. 2, e197. https://doi.org/10.1371/journal.pbio.0020197 (2004).Article 

    Google Scholar 
    Estes, J. A. et al. Trophic downgrading of planet earth. Science 333, 301–306 (2011).Article 
    ADS 
    CAS 

    Google Scholar 
    Ripple, W. J. et al. Status and ecological effects of the world’s largest carnivores. Science 343, 124–148 (2014).Article 

    Google Scholar 
    Bauer, H. et al. Lion (Panthera leo) populations are declining rapidly across Africa, except in intensively managed areas. Proc. Natl. Acad. Sci. 112, 14895–14899 (2015).Article 
    ADS 

    Google Scholar 
    Bauer, H., Page-Nicholson, S., Hinks, A. & Dickman, A. Guidelines for the Conservation of lion in Africa 17–24 (IUCN SSC Cat Specialist Group, 2018).
    Google Scholar 
    Lindsey, P. A., Roulet, P. A. & Romanach, S. S. Economic and conservation significance of the trophy hunting industry in sub-Saharan Africa. Biol. Conserv. 134, 455–469. https://doi.org/10.1016/j.biocon.2006.09.005 (2007).Article 

    Google Scholar 
    Vucetich, J. A. et al. The value of argument analysis for understanding ethical considerations pertaining to trophy hunting and lion conservation. Biol. Conserv. 235, 260–272. https://doi.org/10.1016/j.biocon.2019.04.012 (2019).Article 

    Google Scholar 
    Dube, N. Voices from the village on trophy hunting in Hwange district, Zimbabwe. Ecol. Econ. 159, 335–343. https://doi.org/10.1016/j.ecolecon.2019.02.006 (2019).Article 

    Google Scholar 
    Murombedzi, J. African wildlife and livelihoods. In The Promise and Performance of Community Conservation (eds Hulme, D. & Murphree, M.) 244–255 (James Currey, 2001).
    Google Scholar 
    Leader-Williams, N., Baldus, R. D. & Smith, R. J. Recreational hunting. In Conservation and Rural Livelihoods (eds Dickson, B. et al.) 296–316 (Blackwell Publishing Ltd., 2009).Chapter 

    Google Scholar 
    DiMinin, E., Leader-Williams, N. & Bradshaw, C. J. A. Banning trophy hunting will exacerbate biodiversity loss. Trends Ecol. Evol. 31, 99–102 (2016).Article 

    Google Scholar 
    Whitman, K., Starfield, A. M., Quadling, H. S. & Packer, C. Sustainable trophy hunting of African lions. Nature 428, 175–178 (2004).Article 
    ADS 
    CAS 

    Google Scholar 
    Packer, C. et al. Sport hunting, predator control and conservation of large carnivores. PLoS ONE 4, e5941. https://doi.org/10.1371/journal.pone.0005941 (2009).Article 
    ADS 
    CAS 

    Google Scholar 
    Mweetwa, T. et al. Quantifying lion (Panthera leo) demographic response following a three-year moratorium on trophy hunting. PLoS ONE 13, e0197030. https://doi.org/10.1371/journal.pone.0197030 (2018).Article 
    CAS 

    Google Scholar 
    Loveridge, A. J. et al. Conservation of large predator populations: Demographic and spatial responses of African lions to the intensity of trophy hunting. Biol. Conserv. 204, 247–254. https://doi.org/10.1016/j.biocon.2016.10.024 (2016).Article 

    Google Scholar 
    Starfield, A. M., Shiell, J. D. & Smuts, G. L. Simulation of lion control strategies in a large game reserve. Ecol. Model. 13, 17–28 (1981).Article 

    Google Scholar 
    Venter, J. & Hopkins, M. E. Use of a simulation model in the management of a lion population. S. Afr. J. Wildl. Res. 18, 126–130 (1988).
    Google Scholar 
    Starfield, A. M. & Bleloch, A. L. Modelling the effect of contraception on part of the lion population in Etosha National Park. Applied Mathematic Dept. Report R3/82, Witwaterstrand University, South Africa. 7 (1982).Dickman, A., Becker, M., Begg, C., Loveridge, A. J. & Macdonald, D. W. Guidelines for the Conservation of Lions in Africa, Ch. 6 69–75 (IUCN SSC Cat Specialist Group, 2018).
    Google Scholar 
    Creel, S. et al. Assessing the sustainability of lion trophy hunting with recomendations for policy. Ecol. Appl. 26, 2347–2357. https://doi.org/10.1002/eap.1377 (2016).Article 

    Google Scholar 
    Barthold, J., Loveridge, A. J., Macdonald, D. W., Packer, C. & Colchero, F. Bayesian estimates of male and female African lion mortality for future use in population management. J. Appl. Ecol. 53, 295–304 (2016).Article 

    Google Scholar 
    Loveridge, A. J., Valeix, M., Elliot, N. B. & Macdonald, D. W. The landscape of anthropogenic mortality: How African lions respond to spatial variation in risk. J. Appl. Ecol. 54, 815–825. https://doi.org/10.1111/1365-2664.12794 (2017).Article 

    Google Scholar 
    Loveridge, A. J. et al. Evaluating the spatial intensity and demographic impacts of wire-snare bush-meat poaching on large carnivores. Biol. Conserv. 244, 108504 (2020).Article 

    Google Scholar 
    Becker, M. S. et al. Estimating past and future male loss in three Zambian lion populations. J. Wildl. Manag. 77, 128–142 (2013).Article 

    Google Scholar 
    Kiffner, C., Meyer, B., Muhlenberg, M. & Waltert, M. Plenty of prey, few predators: What limits lions Panthera leo in Katavi National park, western Tanzania?. Oryx 43, 52–59 (2009).Article 

    Google Scholar 
    Loveridge, A. J., Searle, A. W., Murindagomo, F. & Macdonald, D. W. The impact of sport hunting on the population dynamics of an African lion population in a protected area. Biol. Conserv. 134, 548–558 (2007).Article 

    Google Scholar 
    Miller, J. R. B. et al. Aging traits and sustainable trophy hunting of African lions. Biol. Conserv. 201, 160–168 (2016).Article 

    Google Scholar 
    Woodroffe, R. & Ginsberg, J. R. Edge effects and the extinction of populations inside protected areas. Science 280, 2126–2128 (1998).Article 
    ADS 
    CAS 

    Google Scholar 
    Gervasi, V., Linnell, J. D. C., Brøseth, H. & Gimenez, O. Failure to coordinate management in transboundary populations hinders the achievement of national management goals: The case of wolverines in Scandinavia. J. Appl. Ecol. 56, 1905–1915. https://doi.org/10.1111/1365-2664.13379 (2019).Article 

    Google Scholar 
    Breitenmoser, U. & Nobbe, C. Guidelines for the Conservation of Lions in Africa (ed IUCN CSG/SSC) 29–30 (IUCN, 2018).du Preez, B. & Lopez-Bao, J. V. Guidelines for the Conservation of the Lion in Africa (ed IUCN CSG/SSC) 76–78 (IUCN, 2018).Loveridge, A. J., Hemson, G., Davidson, Z. & Macdonald, D. W. African lions on the edge: reserve boundaries as ‘attractive sinks’ In Biology and Conservation of Wild Felids, Ch. 11 (eds Macdonald, D. W. & Loveridge, A. J.) 283–304 (Oxford University Press, London, 2010).

    Google Scholar 
    Borrego, N., Ozgul, A., Slotow, R. & Packer, C. Lion population dynamics: Do nomadic males matter?. Behav. Ecol. 29, 660–666. https://doi.org/10.1093/beheco/ary018%JBehavioralEcology (2018).Article 

    Google Scholar 
    Packer, C. et al. The case for fencing remains intact. Ecol. Lett. https://doi.org/10.1111/ele.12171 (2013).Balme, G. et al. Big cats at large: Density, structure, and spatio-temporal patterns of a leopard population free of anthropogenic mortality. Popul. Ecol. 61, 256–267. https://doi.org/10.1002/1438-390x.1023 (2019).Article 

    Google Scholar 
    Grünewald, C., Schleuning, M. & Böhning-Gaese, K. Biodiversity, scenery and infrastructure: Factors driving wildlife tourism in an African savannah national park. Biol. Conserv. 201, 60–68. https://doi.org/10.1016/j.biocon.2016.05.036 (2016).Article 

    Google Scholar 
    Pulliam, H. R. Sources, sinks, and population. Regulation 132, 652–661. https://doi.org/10.1086/284880 (1988).Article 

    Google Scholar 
    Lamb, C. T. et al. The ecology of human–carnivore coexistence. Proc. Natl. Acad. Sci. 117, 17876–17883. https://doi.org/10.1073/pnas.1922097117 (2020).Article 
    ADS 
    CAS 

    Google Scholar 
    Robinson, H. S., Weilgus, R. B., Cooley, H. & Cooley, S. Source—sink populations in carnivore management: cougar demography and immigration in a hunted population. Ecol. Appl. 18, 1028–1037 (2008).Article 

    Google Scholar 
    Creel, S. et al. Questionable policy for large carnivore hunting. Science 350, 1473–1475 (2015).Article 
    ADS 
    CAS 

    Google Scholar 
    Cushman, S. A. et al. Prioritizing core areas, corridors and conflict hotspots for lion conservation in southern Africa. PLoS ONE 13, e0196213. https://doi.org/10.1371/journal.pone.0196213 (2018).Article 
    CAS 

    Google Scholar 
    Kelly, M. J. & Durant, S. M. Viability of the Serengeti cheetah population. Conserv. Biol. 14, 786–797 (2000).Article 

    Google Scholar 
    Skalski, J. R., Ryding, K. & Millspaug, J. J. Wildlife Demography: Analysis of Sex, Age, and Count Data (Elsevier Academic Press, 2005).
    Google Scholar 
    Hamlin, K. L., Pac, D. F., Sime, C. A., DeSimone, R. M. & Dusek, G. L. Evaluating the accuracy of ages obtained by two methods for montana ungulates. J. Wildl. Manag. 64, 441–449. https://doi.org/10.2307/3803242 (2000).Article 

    Google Scholar 
    Storm, D. J. et al. Estimating ages of white-tailed deer: Age and sex patterns of error using tooth wear-and-replacement and consistency of cementum annuli. Wildl Soc Bull 38, 849–856. https://doi.org/10.1002/wsb.457 (2014).Article 
    ADS 

    Google Scholar 
    Balme, G. A., Hunter, L. & Braczkowski, A. R. Applicability of age-based hunting regulations for African Leopards. PLoS ONE 7, e35209. https://doi.org/10.1371/journal.pone.0035209 (2012).Article 
    ADS 
    CAS 

    Google Scholar 
    Gipson, P. S., Ballard, W. B., Nowak, R. M. & Mech, L. D. Accuracy and precision of estimating age of gray wolves by tooth wear. J. Wildl. Manag. 64, 752–758. https://doi.org/10.2307/3802745 (2000).Article 

    Google Scholar 
    Hiller, T. L. Comparison of two age-estimation techniques for cougars. J. Northwest. Nat. 77–82, 76 (2014).
    Google Scholar 
    Begg, C. M., Miller, J. R. B. & Begg, K. S. Effective implementation of age restrictions increases selectivity of sport hunting of the African lion. J. Appl. Ecol. 55, 139–146. https://doi.org/10.1111/1365-2664.12951 (2018).Article 

    Google Scholar 
    Mandisodza-Chikerema, R., Jooste, D. & Funston, P. J. Lion aging and adaptive quota management report: Ages of lions hunted and recommended quotas for 2019 in Zimbabwe. 12 (Unpublished report, Zimbabwe Parks and Wildlife Management and Panthera, Harare, Zimbabwe, 2019).Smuts, G. L., Anderson, J. L. & Austin, J. C. Age determination of the African lion (Panthera leo). J. Zool. Lond. 185, 115–146 (1978).Article 

    Google Scholar 
    Lindsey, P. A. et al. The trophy hunting of African lions: Scale, current management practices and factors undermining sustainability. PLoS ONE 8, 1–11 (2013).Article 

    Google Scholar 
    R Core Team. R: A Language and Environment for Statistical Computing. R Foundation for Statistical Computing, Vienna, Austria. https://www.R-project.org/ (2022).Packer, C. et al. Effects of trophy hunting on lion and leopard populations in Tanzania. Conserv. Biol. 25, 142–153 (2011).Article 
    CAS 

    Google Scholar 
    Mace, G. M. & Reynolds, J. Exploitation as a conservation issue. In Conservation of Exploited Species, Ch. 1 (eds Reynolds, J. et al.) 3–15 (Cambridge University Press, Cambridge, 2001).
    Google Scholar 
    Struhsaker, T. T. A biologists perspective on the role of sustainable harvest in conservation. Conserv. Biol. 12, 930–932 (1998).Article 

    Google Scholar  More

  • in

    Temperature fluctuation promotes the thermal adaptation of soil microbial respiration

    Auffret, M. D. et al. The role of microbial community composition in controlling soil respiration responses to temperature. PLoS ONE 11, e0165448 (2016).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Yao, Y. et al. A data-driven global soil heterotrophic respiration dataset and the drivers of its inter‐annual variability. Glob. Biogeochem. Cycle 35, e2020GB006918 (2021).Article 
    CAS 

    Google Scholar 
    Davidson, E. A., Janssens, I. A. & Luo, Y. On the variability of respiration in terrestrial ecosystems: moving beyond Q10. Glob. Change Biol. 12, 154–164 (2006).Article 

    Google Scholar 
    Wang, Q. et al. Soil microbial respiration rate and temperature sensitivity along a north–south forest transect in eastern China: patterns and influencing factors. J. Geophys. Res. Biogeosci. 121, 399–410 (2016).Article 

    Google Scholar 
    Sihi, D. et al. Merging a mechanistic enzymatic model of soil heterotrophic respiration into an ecosystem model in two AmeriFlux sites of northeastern USA. Agric. Meteorol. 252, 155–166 (2018).Article 

    Google Scholar 
    Shao, P., Zeng, X., Moore, D. J. P. & Zeng, X. Soil microbial respiration from observations and Earth system models. Environ. Res. Lett. 8, 034034 (2013).Article 
    CAS 

    Google Scholar 
    Davidson, E. A., Samanta, S., Caramori, S. S. & Savage, K. The dual Arrhenius and Michaelis–Menten kinetics model for decomposition of soil organic matter at hourly to seasonal time scales. Glob. Change Biol. 18, 371–384 (2012).Article 

    Google Scholar 
    Oechel, W. C. et al. Acclimation of ecosystem CO2 exchange in the Alaskan Arctic in response to decadal climate warming. Nature 406, 978–981 (2000).Article 
    CAS 
    PubMed 

    Google Scholar 
    Alster, C. J., von Fischer, J. C., Allison, S. D. & Treseder, K. K. Embracing a new paradigm for temperature sensitivity of soil microbes. Glob. Change Biol. 26, 3221–3229 (2020).Article 

    Google Scholar 
    Nie, M. et al. Positive climate feedbacks of soil microbial communities in a semi-arid grassland. Ecol. Lett. 16, 234–241 (2013).Article 
    PubMed 

    Google Scholar 
    Ji, F., Wu, Z., Huang, J. & Chassignet, E. P. Evolution of land surface air temperature trend. Nat. Clim. Change 4, 462–466 (2014).Article 

    Google Scholar 
    Huntingford, C., Jones, P. D., Livina, V. N., Lenton, T. M. & Cox, P. M. No increase in global temperature variability despite changing regional patterns. Nature 500, 327–330 (2013).Article 
    CAS 
    PubMed 

    Google Scholar 
    Hansen, J., Sato, M. & Ruedy, R. Perception of climate change. Proc. Natl Acad. Sci. USA 109, E2415–E2423 (2012).Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Byrne, M. P. Amplified warming of extreme temperatures over tropical land. Nat. Geosci. 14, 837–841 (2021).Article 
    CAS 

    Google Scholar 
    IPCC Climate Change 2021: The Physical Science Basis (eds Masson-Delmotte, V. et al.) (Cambridge Univ. Press, 2021).Chan, W. P. et al. Seasonal and daily climate variation have opposite effects on species elevational range size. Science 351, 1437–1439 (2016).Article 
    CAS 
    PubMed 

    Google Scholar 
    Biederbeck, V. O. & Campbell, C. A. Soil microbial activity as influenced by temperature trends and fluctuations. Can. J. Soil Sci. 53, 363–375 (1973).Article 

    Google Scholar 
    Karhu, K. et al. Temperature sensitivity of soil respiration rates enhanced by microbial community response. Nature 513, 81–84 (2014).Article 
    CAS 
    PubMed 

    Google Scholar 
    Chen, H., Zhu, T., Li, B., Fang, C. & Nie, M. The thermal response of soil microbial methanogenesis decreases in magnitude with changing temperature. Nat. Commun. 11, 5733 (2020).Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Allison, S. D., Wallenstein, M. D. & Bradford, M. A. Soil-carbon response to warming dependent on microbial physiology. Nat. Geosci. 3, 336–340 (2010).Article 
    CAS 

    Google Scholar 
    Nottingham, A. T. et al. Microbial responses to warming enhance soil carbon loss following translocation across a tropical forest elevation gradient. Ecol. Lett. 22, 1889–1899 (2019).Article 
    PubMed 

    Google Scholar 
    Alster, C. J., Robinson, J. M., Arcus, V. L. & Schipper, L. A. Assessing thermal acclimation of soil microbial respiration using macromolecular rate theory. Biogeochemistry 158, 131–141 (2022).Article 
    CAS 

    Google Scholar 
    Moinet, G. Y. K. et al. Soil microbial sensitivity to temperature remains unchanged despite community compositional shifts along geothermal gradients. Glob. Change Biol. 27, 6217–6231 (2021).Article 

    Google Scholar 
    Feng, J. et al. Soil microbial trait-based strategies drive metabolic efficiency along an altitude gradient. ISME Commun. 1, 71 (2021).Article 

    Google Scholar 
    Li, J. et al. Key microorganisms mediate soil carbon-climate feedbacks in forest ecosystems. Sci. Bull. 66, 2036–2044 (2021).Article 
    CAS 

    Google Scholar 
    Trivedi, P. et al. Microbial regulation of the soil carbon cycle: evidence from gene–enzyme relationships. ISME J. 10, 2593–2604 (2016).Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Zhu, B. & Cheng, W. Constant and diurnally-varying temperature regimes lead to different temperature sensitivities of soil organic carbon decomposition. Soil Biol. Biochem. 43, 866–869 (2011).Article 
    CAS 

    Google Scholar 
    Bradford, M. A. et al. Thermal adaptation of soil microbial respiration to elevated temperature. Ecol. Lett. 11, 1316–1327 (2008).Article 
    PubMed 

    Google Scholar 
    Hartley, I. P., Hopkins, D. W., Garnett, M. H., Sommerkorn, M. & Wookey, P. A. Soil microbial respiration in Arctic soil does not acclimate to temperature. Ecol. Lett. 11, 1092–1100 (2008).Article 
    PubMed 

    Google Scholar 
    Bradford, M. A. et al. Cross-biome patterns in soil microbial respiration predictable from evolutionary theory on thermal adaptation. Nat. Ecol. Evol. 3, 223–231 (2019).Article 
    PubMed 

    Google Scholar 
    Tian, W. et al. Thermal adaptation occurs in the respiration and growth of widely distributed bacteria. Glob. Change Biol. 28, 2820–2829 (2022).Article 
    CAS 

    Google Scholar 
    Bradford, M. A., Watts, B. W. & Davies, C. A. Thermal adaptation of heterotrophic soil respiration in laboratory microcosms. Glob. Change Biol. 16, 1576–1588 (2010).Article 

    Google Scholar 
    Walker, T. W. N. et al. Microbial temperature sensitivity and biomass change explain soil carbon loss with warming. Nat. Clim. Change 8, 885–889 (2018).Article 
    CAS 

    Google Scholar 
    Chen, H. et al. Microbial respiratory thermal adaptation is regulated by r-/K-strategy dominance. Ecol. Lett. 25, 2489–2499 (2022).Article 
    PubMed 

    Google Scholar 
    Wang, C. et al. The temperature sensitivity of soil: microbial biodiversity, growth, and carbon mineralization. ISME J. 15, 2738–2747 (2021).Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Ramadhin, C., Yi, C. & Hendrey, G. Temperature variance portends and indicates the extent of abrupt climate shifts. IOP SciNotes 2, 014002 (2021).Article 

    Google Scholar 
    Sun, Y. Q. & Ge, Y. Temporal changes in the function of bacterial assemblages associated with decomposing earthworms. Front. Microbiol. 12, 682224 (2021).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Shi, Z., Xu, J., Li, X., Li, R. & Li, Q. Links of extracellular enzyme activities, microbial metabolism, and community composition in the river-impacted coastal waters. J. Geophys. Res. Biogeosci. 124, 3507–3520 (2019).Article 

    Google Scholar 
    Razanamalala, K. et al. Soil microbial diversity drives the priming effect along climate gradients: a case study in Madagascar. ISME J. 12, 451–462 (2017).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Xu, M. et al. High microbial diversity stabilizes the responses of soil organic carbon decomposition to warming in the subsoil on the Tibetan Plateau. Glob. Change Biol. 27, 2061–2075 (2021).Article 
    CAS 

    Google Scholar 
    Clemmensen, K. E. et al. Roots and associated fungi drive long-term carbon sequestration in boreal forest. Science 339, 1615–1618 (2013).Article 
    CAS 
    PubMed 

    Google Scholar 
    Qiao, N. et al. Labile carbon retention compensates for CO2 released by priming in forest soils. Glob. Change Biol. 20, 1943–1954 (2014).Article 

    Google Scholar 
    Ning, Q. et al. Carbon limitation overrides acidification in mediating soil microbial activity to nitrogen enrichment in a temperate grassland. Glob. Change Biol. 27, 5976–5988 (2021).Article 
    CAS 

    Google Scholar 
    Wan, S. & Luo, Y. Substrate regulation of soil respiration in a tallgrass prairie: results of a clipping and shading experiment. Glob. Biogeochem. Cycle 17, 1054 (2003).Article 

    Google Scholar 
    Gillabel, J., Cebrian-Lopez, B., Six, J. & Merckx, R. Experimental evidence for the attenuating effect of SOM protection on temperature sensitivity of SOM decomposition. Glob. Change Biol. 16, 2789–2798 (2010).Article 

    Google Scholar 
    Xia, J. et al. Terrestrial carbon cycle affected by non-uniform climate warming. Nat. Geosci. 7, 173–180 (2014).Article 
    CAS 

    Google Scholar 
    Balesdent, J. et al. Atmosphere–soil carbon transfer as a function of soil depth. Nature 559, 599–602 (2018).Article 
    CAS 
    PubMed 

    Google Scholar 
    Howard, D. M. & Howard, P. J. A. Relationships between CO2 evolution, moisture-content and temperature for a range of soil types. Soil Biol. Biochem. 25, 1537–1546 (1993).Article 

    Google Scholar 
    Hoyle, F. C., Murphy, D. V. & Brookes, P. C. Microbial response to the addition of glucose in low-fertility soils. Biol. Fertil. Soils 44, 571–579 (2008).Article 
    CAS 

    Google Scholar 
    Mau, R. L. et al. Linking soil bacterial biodiversity and soil carbon stability. ISME J. 9, 1477–1480 (2015).Article 
    CAS 
    PubMed 

    Google Scholar 
    Tucker, C. L., Bell, J., Pendall, E. & Ogle, K. Does declining carbon-use efficiency explain thermal acclimation of soil respiration with warming? Glob. Change Biol. 19, 252–263 (2013).Article 

    Google Scholar 
    Billings, S. A. & Ballantyne, F. T. How interactions between microbial resource demands, soil organic matter stoichiometry, and substrate reactivity determine the direction and magnitude of soil respiratory responses to warming. Glob. Change Biol. 19, 90–102 (2013).Article 

    Google Scholar 
    Li, J. et al. Biogeographic variation in temperature sensitivity of decomposition in forest soils. Glob. Change Biol. 26, 1873–1885 (2020).Article 

    Google Scholar 
    Min, K. et al. Temperature sensitivity of biomass-specific microbial exo-enzyme activities and CO2 efflux is resistant to change across short- and long-term timescales. Glob. Change Biol. 5, 1793–1807 (2019).Article 

    Google Scholar 
    Dacal, M., Bradford, M. A., Plaza, C., Maestre, F. T. & Garcia-Palacios, P. Soil microbial respiration adapts to ambient temperature in global drylands. Nat. Ecol. Evol. 3, 232–238 (2019).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Field-Fote, E. E. Mediators and moderators, confounders and covariates: exploring the variables that illuminate or obscure the “active ingredients” in neurorehabilitation. J. Neurol. Phys. Ther. 43, 83–84 (2019).Article 
    PubMed 

    Google Scholar 
    Anderson, T. H. & Domsch, K. H. Soil microbial biomass: the eco-physiological approach. Soil Biol. Biochem. 12, 2039–2043 (2010).Article 

    Google Scholar 
    Vance, E. D., Brookes, P. C. & Jenkinson, D. S. Microbial biomass measurements in forest soils—the use of the chloroform fumigation incubation method in strongly acid soils. Soil Biol. Biochem. 19, 697–702 (1987).Article 
    CAS 

    Google Scholar 
    Bolger, A. M., Lohse, M. & Usadel, B. Trimmomatic: a flexible trimmer for Illumina sequence data. Bioinformatics 30, 2114–2120 (2014).Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Martin, M. Cutadapt removes adapter sequences from high-throughput sequencing reads. EMBnet J. 17, 10–12 (2011).Article 

    Google Scholar 
    Edgar, R. C., Haas, B. J., Clemente, J. C., Quince, C. & Knight, R. UCHIME improves sensitivity and speed of chimera detection. Bioinformatics 27, 2194–2200 (2011).Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Edgar, R. C. UPARSE: highly accurate OTU sequences from microbial amplicon reads. Nat. Methods 10, 996–998 (2013).Article 
    CAS 
    PubMed 

    Google Scholar 
    Bolyen, E. et al. Reproducible, interactive, scalable and extensible microbiome data science using QIIME 2. Nat. Biotechnol. 37, 852–857 (2019).Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Callahan, B. J. et al. DADA2: high-resolution sample inference from Illumina amplicon data. Nat. Methods 13, 581–583 (2016).Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Quast, C. et al. The SILVA ribosomal RNA gene database project: improved data processing and web-based tools. Nucleic Acids Res. 41, D590–D596 (2013).Article 
    CAS 
    PubMed 

    Google Scholar 
    Koljalg, U. et al. UNITE: a database providing web-based methods for the molecular identification of ectomycorrhizal fungi. N. Phytol. 166, 1063–1068 (2005).Article 
    CAS 

    Google Scholar 
    German, D. P. et al. Optimization of hydrolytic and oxidative enzyme methods for ecosystem studies. Soil Biol. Biochem. 43, 1387–1397 (2011).Article 
    CAS 

    Google Scholar 
    Mazerolle, M. Improving data analysis in herpetology: using Akaike’s information criterion (AIC) to assess the strength of biological hypotheses. Amphib. Reptil. 2, 169–180 (2006).Article 

    Google Scholar 
    Moinet, G. Y. K. et al. Temperature sensitivity of decomposition decreases with increasing soil organic matter stability. Sci. Total Environ. 704, 135460 (2020).Article 
    CAS 
    PubMed 

    Google Scholar 
    Moinet, G. Y. K. et al. The temperature sensitivity of soil organic matter decomposition is constrained by microbial access to substrates. Soil Biol. Biochem. 116, 333–339 (2018).Article 
    CAS 

    Google Scholar 
    Dixon, P. VEGAN, a package of R functions for community ecology. J. Veg. Sci. 14, 927–930 (2003).Article 

    Google Scholar  More

  • in

    The double life of Methanoperedens

    Galperin, M. Y. Environ. Microbiol. 6, 552–567 (2004).Article 
    CAS 

    Google Scholar 
    Higgins, D. & Dworkin, J. FEMS Microbiol. Rev. 36, 131–148 (2012).Article 
    CAS 

    Google Scholar 
    Maamar, H., Raj, A. & Dubnau, D. Science 317, 526–529 (2007).Article 
    CAS 

    Google Scholar 
    Ackermann, M. Nat. Rev. Microbiol. 13, 497–508 (2015).Article 
    CAS 

    Google Scholar 
    Robinson, R. W. Appl. Environ. Microbiol. 52, 17–27 (1986).Article 
    CAS 

    Google Scholar 
    McIlroy, S. J. et al. Nat. Microbiol. https://doi.org/10.1038/s41564-022-01292-9 (2023).Article 

    Google Scholar 
    Leu, A. O. et al. ISME J. 14, 1030–1041 (2020).Article 
    CAS 

    Google Scholar 
    Cui, M., Ma, A., Qi, H., Zhuang, X. & Zhuang, G. Microbiologyopen 4, 1–11 (2015).Article 

    Google Scholar 
    Haroon, M. F. et al. Nature 500, 567–570 (2013).Article 
    CAS 

    Google Scholar 
    Fritts, R. K., McCully, A. L. & McKinlay, J. B. Microbiol. Molec. Biol. Rev. 85, e00135-20 (2021).Article 

    Google Scholar  More

  • in

    Acclimation of phenology relieves leaf longevity constraints in deciduous forests

    Peaucelle, M. et al. Spatial variance of spring phenology in temperate deciduous forests is constrained by background climatic conditions. Nat. Commun. 10, 5388 (2019).Article 

    Google Scholar 
    Hopkins, A. D. The bioclimatic law. Mon. Weather Rev. 48, 355–355 (1920).Article 

    Google Scholar 
    Piao, S. et al. Plant phenology and global climate change: current progresses and challenges. Glob. Change Biol. 25, 1922–1940 (2019).Article 

    Google Scholar 
    Ge, Q., Wang, H., Rutishauser, T. & Dai, J. Phenological response to climate change in China: a meta-analysis. Glob. Change Biol. 21, 265–274 (2015).Article 

    Google Scholar 
    Templ, B. et al. Pan European Phenological database (PEP725): a single point of access for European data. Int. J. Biometeorol. 62, 1109–1113 (2018).Article 

    Google Scholar 
    Richardson, A. D. et al. Climate change, phenology, and phenological control of vegetation feedbacks to the climate system. Agric. For. Meteorol. 169, 156–173 (2013).Article 

    Google Scholar 
    Morisette, J. T. et al. Tracking the rhythm of the seasons in the face of global change: phenological research in the 21st century. Front. Ecol. Environ. 7, 253–260 (2009).Article 

    Google Scholar 
    Flynn, D. F. B. & Wolkovich, E. M. Temperature and photoperiod drive spring phenology across all species in a temperate forest community. New Phytol. 219, 1353–1362 (2018).Article 
    CAS 

    Google Scholar 
    Peñuelas, J., Rutishauser, T. & Filella, I. Phenology feedbacks on climate change. Science 324, 887–888 (2009).Article 

    Google Scholar 
    Körner, C. & Basler, D. Plant science. Phenol. Glob. Warm. Sci. 327, 1461–1462 (2010).
    Google Scholar 
    Delpierre, N. et al. Temperate and boreal forest tree phenology: from organ-scale processes to terrestrial ecosystem models. Ann. For. Sci. 73, 5–25 (2016).Article 

    Google Scholar 
    Klosterman, S. T. et al. Evaluating remote sensing of deciduous forest phenology at multiple spatial scales using PhenoCam imagery. Biogeosciences 11, 4305–4320 (2014).Article 

    Google Scholar 
    Hufkens, K. et al. Linking near-surface and satellite remote sensing measurements of deciduous broadleaf forest phenology. Remote Sens. Environ. 117, 307–321 (2012).Article 

    Google Scholar 
    Garrity, S. R. et al. A comparison of multiple phenology data sources for estimating seasonal transitions in deciduous forest carbon exchange. Agric. For. Meteorol. 151, 1741–1752 (2011).Article 

    Google Scholar 
    Fracheboud, Y. et al. The control of autumn senescence in European aspen. Plant Physiol. 149, 1982–1991 (2009).Article 
    CAS 

    Google Scholar 
    Mariën, B. et al. Does drought advance the onset of autumn leaf senescence in temperate deciduous forest trees? Biogeosciences 18, 3309–3330 (2021).Article 

    Google Scholar 
    Fu, Y. H. et al. Larger temperature response of autumn leaf senescence than spring leaf-out phenology. Glob. Change Biol. 24, 2159–2168 (2018).Article 

    Google Scholar 
    Menzel, A., Sparks, T. H., Estrella, N. & Roy, D. B. Altered geographic and temporal variability in phenology in response to climate change. Glob. Ecol. Biogeogr. 15, 498–504 (2006).Article 

    Google Scholar 
    Gordo, O. & Sanz, J. J. Long-term temporal changes of plant phenology in the Western Mediterranean. Glob. Change Biol. 15, 1930–1948 (2009).Article 

    Google Scholar 
    Meier, M., Vitasse, Y., Bugmann, H. & Bigler, C. Phenological shifts induced by climate change amplify drought for broad-leaved trees at low elevations in Switzerland. Agric. For. Meteorol. 307, 108485 (2021).Basler, D. Evaluating phenological models for the prediction of leaf-out dates in six temperate tree species across central Europe. Agric. For. Meteorol. 217, 10–21 (2016).Article 

    Google Scholar 
    Keenan, T. F. et al. Terrestrial biosphere model performance for inter-annual variability of land–atmosphere CO2 exchange. Glob. Change Biol. 18, 1971–1987 (2012).Article 

    Google Scholar 
    Liu, G., Chen, X., Fu, Y. & Delpierre, N. Modelling leaf coloration dates over temperate China by considering effects of leafy season climate. Ecol. Modell. 394, 34–43 (2019).Article 

    Google Scholar 
    Keenan, T. F. & Richardson, A. D. The timing of autumn senescence is affected by the timing of spring phenology: implications for predictive models. Glob. Change Biol. 21, 2634–2641 (2015).Article 

    Google Scholar 
    Wu, C., Hou, X., Peng, D., Gonsamo, A. & Xu, S. Land surface phenology of China’s temperate ecosystems over 1999–2013: spatial–temporal patterns, interaction effects, covariation with climate and implications for productivity. Agric. For. Meteorol. 216, 177–187 (2016).Article 

    Google Scholar 
    Fu, Y. S. H. et al. Variation in leaf flushing date influences autumnal senescence and next year’s flushing date in two temperate tree species. Proc. Natl Acad. Sci. USA 111, 7355–7360 (2014).Article 
    CAS 

    Google Scholar 
    Zani, D., Crowther, T. W., Mo, L., Renner, S. S. & Zohner, C. M. Increased growing-season productivity drives earlier autumn leaf senescence in temperate trees. Science 370, 1066–1071 (2020).Article 
    CAS 

    Google Scholar 
    Paul, M. J. & Foyer, C. H. Sink regulation of photosynthesis. J. Exp. Bot. 52, 1383–1400 (2001).Article 
    CAS 

    Google Scholar 
    Herold, A. Regulation of photosynthesis by sink activity—the missing link. New Phytol. 86, 131–144 (1980).Article 
    CAS 

    Google Scholar 
    Keenan, T. F. et al. Recent pause in the growth rate of atmospheric CO2 due to enhanced terrestrial carbon uptake. Nat. Commun. 7, 13428 (2016).Campbell, J. E. et al. Large historical growth in global terrestrial gross primary production. Nature 544, 84–87 (2017).Article 
    CAS 

    Google Scholar 
    Schimel, D., Stephens, B. B. & Fisher, J. B. Effect of increasing CO2 on the terrestrial carbon cycle. Proc. Natl Acad. Sci.USA 112, 436–441 (2015).Article 
    CAS 

    Google Scholar 
    Walker, A. P. et al. Integrating the evidence for a terrestrial carbon sink caused by increasing atmospheric CO. New Phytol. 229, 2413–2445 (2021).Article 
    CAS 

    Google Scholar 
    Liu, Q. et al. Modeling leaf senescence of deciduous tree species in Europe. Glob. Change Biol. 26, 4104–4118 (2020).Article 

    Google Scholar 
    Friedl, M., Gray, J. & Sulla-Menashe, D. MCD12Q2 MODIS/Terra+Aqua Land Cover Dynamics Yearly L3 Global 500m SIN Grid V006 (NASA, 2019).Zhang, X. et al. Monitoring vegetation phenology using MODIS. Remote Sens. Environ. 84, 471–475 (2003).Article 

    Google Scholar 
    Stocker, B. D. et al. P-model v1.0: an optimality-based light use efficiency model for simulating ecosystem gross primary production. Geosci. Model Dev. 13, 1545–1581 (2020).Article 

    Google Scholar 
    Pastorello, G. et al. The FLUXNET2015 dataset and the ONEFlux processing pipeline for eddy covariance data. Sci. Data 7, 225 (2020).Article 

    Google Scholar 
    Sitch, S. et al. Evaluation of ecosystem dynamics, plant geography and terrestrial carbon cycling in the LPJ dynamic global vegetation model. Glob. Change Biol. 9, 161–185 (2003).Article 

    Google Scholar 
    Hänninen, H. & Tanino, K. Tree seasonality in a warming climate. Trends Plant Sci. 16, 412–416 (2011).Article 

    Google Scholar 
    Kikuzawa, K. & Lechowicz, M. J. Ecology of Leaf Longevity (Springer, 2011).Fu, Y. H. et al. Nutrient availability alters the correlation between spring leaf-out and autumn leaf senescence dates. Tree Physiol. 39, 1277–1284 (2019).Article 
    CAS 

    Google Scholar 
    Lim, P. O., Kim, H. J. & Nam, H. G. Leaf senescence. Annu. Rev. Plant Biol. 58, 115–136 (2007).Article 
    CAS 

    Google Scholar 
    Piao, S., Friedlingstein, P., Ciais, P., Viovy, N. & Demarty, J. Growing season extension and its impact on terrestrial carbon cycle in the Northern Hemisphere over the past 2 decades. Glob. Biogeochem. Cycles 21, GB3018 (2007).Jeong, S.-J., Ho, C.-H., Gim, H.-J. & Brown, M. E. Phenology shifts at start vs. end of growing season in temperate vegetation over the Northern Hemisphere for the period 1982–2008. Glob. Change Biol. 17, 2385–2399 (2011).Article 

    Google Scholar 
    Cong, N. et al. Changes in satellite-derived spring vegetation green-up date and its linkage to climate in China from 1982 to 2010: a multimethod analysis. Glob. Change Biol. 19, 881–891 (2013).Article 

    Google Scholar 
    Keenan, T. F. et al. Net carbon uptake has increased through warming-induced changes in temperate forest phenology. Nat. Clim. Change 4, 598–604 (2014).Article 
    CAS 

    Google Scholar 
    Garonna, I., de Jong, R. & Schaepman, M. E. Variability and evolution of global land surface phenology over the past three decades (1982–2012). Glob. Change Biol. 22, 1456–1468 (2016).Article 

    Google Scholar 
    Smith, N. G. & Dukes, J. S. Plant respiration and photosynthesis in global-scale models: incorporating acclimation to temperature and CO2. Glob. Change Biol. 19, 45–63 (2013).Article 

    Google Scholar 
    Estiarte, M. & Peñuelas, J. Alteration of the phenology of leaf senescence and fall in winter deciduous species by climate change: effects on nutrient proficiency. Glob. Change Biol. 21, 1005–1017 (2015).Article 

    Google Scholar 
    Delpierre, N. et al. Modelling interannual and spatial variability of leaf senescence for three deciduous tree species in France. Agric. For. Meteorol. 149, 938–948 (2009).Article 

    Google Scholar 
    Chung, H. et al. Experimental warming studies on tree species and forest ecosystems: a literature review. J. Plant Res. 126, 447–460 (2013).Article 

    Google Scholar 
    Schaaf, C. B. et al. First operational BRDF, albedo nadir reflectance products from MODIS. Remote Sens. Environ. 83, 135–148 (2002).Article 

    Google Scholar 
    Tuck, S. L. et al. MODISTools—downloading and processing MODIS remotely sensed data in R. Ecol. Evol. 4, 4658–4668 (2014).Article 

    Google Scholar 
    Farquhar, G. D., von Caemmerer, S. & Berry, J. A. A biochemical model of photosynthetic CO2 assimilation in leaves of C3 species. Planta 149, 78–90 (1980).Article 
    CAS 

    Google Scholar 
    Medlyn, B. E. et al. Reconciling the optimal and empirical approaches to modelling stomatal conductance. Glob. Change Biol. 17, 2134–2144 (2011).Article 

    Google Scholar 
    Stocker, B. rsofun: A modelling framework that implements the P-model for leaf-level acclimation of photosynthesis. R package version 4.3 https://github.com/computationales/rsofun (2020).Weedon, G. P. et al. The WFDEI meteorological forcing data set: WATCH Forcing Data methodology applied to ERA-Interim reanalysis data. Water Resour. Res. 50, 7505–7514 (2014).Article 

    Google Scholar 
    Meek, D. W., Hatfield, J. L., Howell, T. A., Idso, S. B. & Reginato, R. J. A generalized relationship between photosynthetically active radiation and solar radiation 1. Agron. J. 76, 939–945 (1984).Article 

    Google Scholar 
    Fick, S. E. & Hijmans, R. J. WorldClim 2: new 1‐km spatial resolution climate surfaces for global land areas. Int. J. Climatol. 37, 4302–4315 (2017).Article 

    Google Scholar 
    Stocker, B. ingestr: A tool to extract environmental point data from large global files or remote data servers. R package version 1.4 https://github.com/computationales/ingestr (2020).Wang, H. et al. Towards a universal model for carbon dioxide uptake by plants. Nat. Plants 3, 734–741 (2017).Article 
    CAS 

    Google Scholar 
    Bates, D., Mächler, M., Bolker, B. & Walker, S. Fitting linear mixed-effects models using lme4. J. Stat. Softw. 67, 1–48 (2015).Article 

    Google Scholar 
    R Core Team. R: A Language and Environment for Statistical Computing (R Foundation for Statistical Computing, 2021).Myneni, R., Knyazikhin, Y. & Park, T. MCD15A3H MODIS/Terra+Aqua Leaf Area Index/FPAR 4-day L4 Global 500m SIN Grid V006 (NASA EOSDIS Land Processes DAAC, 2015). More