More stories

  • in

    Bidirectional C and N transfer and a potential role for sulfur in an epiphytic diazotrophic mutualism

    1.
    Goodale CL, Apps MJ, Birdsey RA, Field CB, Heath LS, Houghton RA, et al. Forest carbon sinks in the Northern Hemisphere. Ecol Appl. 2002;12:891–9.
    Google Scholar 
    2.
    Anderson J. The effects of climate change on decomposition processes in grassland and coniferous forests. Ecol Appl. 1991;1:326–47.
    CAS  PubMed  Google Scholar 

    3.
    Turetsky MR, Bond‐Lamberty B, Euskirchen E, Talbot J, Frolking S, McGuire AD, et al. The resilience and functional role of moss in boreal and arctic ecosystems. N Phytol. 2012;196:49–67.
    CAS  Google Scholar 

    4.
    DeLuca TH, Zackrisson O, Gundale MJ, Nilsson M-C. Ecosystem feedbacks and nitrogen fixation in boreal forests. Science. 2008;320:1181.
    CAS  PubMed  Google Scholar 

    5.
    Nilsson M-C, Wardle DA. Understory vegetation as a forest ecosystem driver: evidence from the northern Swedish boreal forest. Front Ecol Environ. 2005;3:421–8.
    Google Scholar 

    6.
    Rousk K, Jones D, DeLuca T. Moss-cyanobacteria associations as biogenic sources of nitrogen in boreal forest ecosystems. Front Microbiol. 2013;4:150.
    CAS  PubMed  PubMed Central  Google Scholar 

    7.
    Carleton T, Read D. Ectomycorrhizas and nutrient transfer in conifer–feather moss ecosystems. Can J Bot. 1991;69:778–85.
    Google Scholar 

    8.
    Gundale MJ, Nilsson M, Bansal S, Jäderlund A. The interactive effects of temperature and light on biological nitrogen fixation in boreal forests. N Phytol. 2012;194:453–63.
    CAS  Google Scholar 

    9.
    Gundale MJ, Wardle DA, Nilsson M-C. The effect of altered macroclimate on N-fixation by boreal feather mosses. Biol Lett. 2012;8:805–8.
    PubMed  PubMed Central  Google Scholar 

    10.
    Jackson BG, Martin P, Nilsson M-C, Wardle DA. Response of feather moss associated N2 fixation and litter decomposition to variations in simulated rainfall intensity and frequency. Oikos. 2011;120:570–81.
    Google Scholar 

    11.
    Jean M-E, Cassar N, Setzer C, Bellenger J-P. Short-term N2 fixation kinetics in a moss-associated cyanobacteria. Environ Sci Technol. 2012;46:8667–71.
    CAS  PubMed  Google Scholar 

    12.
    Sorensen PL, Lett S, Michelsen A. Moss-specific changes in nitrogen fixation following two decades of warming, shading, and fertilizer addition. Plant Ecol. 2012;213:695–706.
    Google Scholar 

    13.
    Warshan D, Bay G, Nahar N, Wardle DA, Nilsson MC, Rasmussen U. Seasonal variation in nifH abundance and expression of cyanobacterial communities associated with boreal feather mosses. ISME J. 2016;10:2198–208.
    CAS  PubMed  PubMed Central  Google Scholar 

    14.
    Rai AN, Soderback E, Bergman B. Tansley review No. 116 cyanobacterium–plant symbioses. N Phytol. 2000;147:449–81.
    CAS  Google Scholar 

    15.
    Meeks JC. Physiological adaptations in nitrogen-fixing Nostoc–plant symbiotic associations. In: Pawlowski K, editor. Prokaryotic symbionts in plants. Berlin, Heidelberg: Springer Berlin Heidelberg; 2009. p. 181–205.
    Google Scholar 

    16.
    Steinberg NA, Meeks JC. Physiological sources of reductant for nitrogen fixation activity in Nostoc sp. strain UCD 7801 in symbiotic association with Anthoceros punctatus. J Bacteriol. 1991;173:7324–9.
    CAS  PubMed  PubMed Central  Google Scholar 

    17.
    Khamar HJ, Breathwaite EK, Prasse CE, Fraley ER, Secor CR, Chibane FL, et al. Multiple roles of soluble sugars in the establishment of Gunnera-Nostoc endosymbiosis. Plant Physiol. 2010;154:1381–9.
    CAS  PubMed  PubMed Central  Google Scholar 

    18.
    Bay G, Nahar N, Oubre M, Whitehouse MJ, Wardle DA, Zackrisson O, et al. Boreal feather mosses secrete chemical signals to gain nitrogen. N Phytol. 2013;200:54–60.
    CAS  Google Scholar 

    19.
    Warshan D, Liaimer A, Pederson E, Kim S-Y, Shapiro N, Woyke T, et al. Genomic changes associated with the evolutionary transitions of Nostoc to a plant symbiont. Mol Biol Evol. 2018;35:1160–75.
    CAS  PubMed  PubMed Central  Google Scholar 

    20.
    Warshan D, Espinoza JL, Stuart RK, Richter RA, Kim S-Y, Shapiro N, et al. Feathermoss and epiphytic Nostoc cooperate differently: expanding the spectrum of plant-cyanobacteria symbiosis. ISME J. 2017;11:2821–33.
    PubMed  PubMed Central  Google Scholar 

    21.
    Douglas AE. The symbiotic habit. Princeton, NJ: Princeton University Press; 2010.

    22.
    Bronstein JL. Mutualism. USA: Oxford, UK: Oxford University Press; 2015.
    Google Scholar 

    23.
    Holland JN, Ness JH, Boyle A, Bronstein JL. Mutualisms as consumer-resource interactions. Ecology of predator–prey interactions. Oxford, UK: Oxford University Press; 2005. p. 17–33.

    24.
    van der Ploeg JR, Eichhorn E, Leisinger T. Sulfonate-sulfur metabolism and its regulation in Escherichia coli. Arch Microbiol. 2001;176:1–8.
    PubMed  Google Scholar 

    25.
    Sugawara M, Shah GR, Sadowsky MJ, Paliy O, Speck J, Vail AW, et al. Expression and functional roles of Bradyrhizobium japonicum genes involved in the utilization of inorganic and organic sulfur compounds in free-living and symbiotic conditions. Mol Plant Microbe Interact. 2011;24:451–7.
    CAS  PubMed  Google Scholar 

    26.
    Musat N, Foster R, Vagner T, Adam B, Kuypers MMM. Detecting metabolic activities in single cells, with emphasis on nanoSIMS. FEMS Microbiol Rev. 2012;36:486–511.
    CAS  PubMed  Google Scholar 

    27.
    Pederson ERA, Warshan D, Rasmussen U. Genome sequencing of Pleurozium schreberi: the assembled and annotated draft genome of a pleurocarpous feather moss. G3: Genes, Genomes, Genetics. 2019;9:2791–7.
    CAS  Google Scholar 

    28.
    Hardy RW, Holsten R, Jackson E, Burns R. The acetylene-ethylene assay for N2 fixation: laboratory and field evaluation. Plant Physiol. 1968;43:1185–207.
    CAS  PubMed  PubMed Central  Google Scholar 

    29.
    Khayatan B, Bains DK, Cheng MH, Cho YW, Huynh J, Kim R, et al. A putative O-linked β-N-acetylglucosamine transferase is essential for hormogonium development and motility in the filamentous cyanobacterium Nostoc punctiforme. J Bacteriol. 2017;199:e00075-17.
    PubMed  PubMed Central  Google Scholar 

    30.
    Falkowski PG, Raven JA. Aquatic photosynthesis. Princeton, NJ: Princeton University Press; 2013.

    31.
    Dabundo R, Lehmann MF, Treibergs L, Tobias CR, Altabet MA, Moisander PH, et al. The contamination of commercial 15N2 gas stocks with 15N–labeled nitrate and ammonium and consequences for nitrogen fixation measurements. PloS ONE. 2014;9:e110335.
    PubMed  PubMed Central  Google Scholar 

    32.
    Ndegwa PM, Vaddella VK, Hristov AN, Joo HS. Measuring concentrations of ammonia in ambient air or exhaust air stream using acid traps. J Environ Qual. 2009;38:647–53.
    CAS  PubMed  Google Scholar 

    33.
    Pett-Ridge J, Weber PK. NanoSIP: NanoSIMS applications for microbial biology. Microbial systems biology. Totowa, NJ: Humana Press; 2012. p. 375–408.

    34.
    Popa R, Weber PK, Pett-Ridge J, Finzi JA, Fallon SJ, Hutcheon ID, et al. Carbon and nitrogen fixation and metabolite exchange in and between individual cells of Anabaena oscillarioides. ISME J. 2007;1:354–60.
    CAS  PubMed  Google Scholar 

    35.
    Liaimer A, Helfrich EJN, Hinrichs K, Guljamow A, Ishida K, Hertweck C, et al. Nostopeptolide plays a governing role during cellular differentiation of the symbiotic cyanobacterium Nostoc punctiforme. Proc Natl Acad Sci USA. 2015;112:1862–7.
    CAS  PubMed  Google Scholar 

    36.
    Koch M, Delmotte N, Rehrauer H, Vorholt JA, Pessi G, Hennecke H. Rhizobial adaptation to hosts, a new facet in the legume root-nodule symbiosis. Mol Plant Microbe Interact. 2010;23:784–90.
    CAS  PubMed  Google Scholar 

    37.
    Meeks JC, Elhai J. Regulation of cellular differentiation in filamentous cyanobacteria in free-living and plant-associated symbiotic growth states. Microbiol Mol Biol Rev. 2002;66:94–121.
    CAS  PubMed  PubMed Central  Google Scholar 

    38.
    Wong FC, Meeks JC. Establishment of a functional symbiosis between the cyanobacterium Nostoc punctiforme and the bryophyte Anthoceros punctatus requires genes involved in nitrogen control and initiation of heterocyst differentiation. Microbiology. 2002;148:315–23.
    CAS  PubMed  Google Scholar 

    39.
    Hill DJ. The control of the cell cycle in microbial symbionts. N Phytol. 1989;112:175–84.
    Google Scholar 

    40.
    Adams DG, Duggan PS. Signalling in cyanobacteria–plant symbioses. Signaling and communication in plant symbiosis. New York City, NY: Springer; 2012. p. 93–121.

    41.
    Hashidoko Y, Nishizuka H, Tanaka M, Murata K, Murai Y, Hashimoto M. Isolation and characterization of 1-palmitoyl-2-linoleoyl-sn-glycerol as a hormogonium-inducing factor (HIF) from the coralloid roots of Cycas revoluta (Cycadaceae). Sci Rep. 2019;9:4751.
    PubMed  PubMed Central  Google Scholar 

    42.
    Calderwood A, Kopriva S. Hydrogen sulfide in plants: from dissipation of excess sulfur to signaling molecule. Nitric Oxide. 2014;41:72–8.
    CAS  PubMed  Google Scholar 

    43.
    Koppenol WH, Bounds PL. Signaling by sulfur-containing molecules. Quantitative aspects. Arch Biochem Biophys. 2017;617:3–8.
    CAS  PubMed  Google Scholar 

    44.
    Miller JB, Oldroyd GE. The role of diffusible signals in the establishment of rhizobial and mycorrhizal symbioses. Signaling and communication in plant symbiosis. New York City, NY: Springer; 2012. p. 1–30.

    45.
    Duhamel S, Van Wambeke F, Lefevre D, Benavides M, Bonnet S. Mixotrophic metabolism by natural communities of unicellular cyanobacteria in the western tropical South Pacific Ocean. Environ Microbiol. 2018;20:2743–56.
    CAS  PubMed  Google Scholar 

    46.
    Stuart RK, Mayali X, Lee JZ, Everroad RC, Hwang M, Bebout BM, et al. Cyanobacterial reuse of extracellular organic carbon in microbial mats. ISME J. 2016;10:1240–51.
    CAS  PubMed  Google Scholar 

    47.
    Kaplan D, Peters GA. Interaction of carbon metabolism in the Azolla-Anabaena symbiosis. Symbiosis. 1988;6:53–68.
    CAS  Google Scholar 

    48.
    Ray TB, Mayne BC, Toia RE, Peters GA. Azolla-Anabaena relationship: VIII. Photosynthetic characterization of the association and individual partners. Plant Physiol. 1979;64:791–5.
    CAS  PubMed  PubMed Central  Google Scholar 

    49.
    Kiers ET, Duhamel M, Beesetty Y, Mensah JA, Franken O, Verbruggen E, et al. Reciprocal rewards stabilize cooperation in the mycorrhizal symbiosis. Science. 2011;333:880–82.
    CAS  PubMed  Google Scholar 

    50.
    Nürnberg DJ, Mariscal V, Bornikoel J, Nieves-Morión M, Krauß N, Herrero A, et al. Intercellular diffusion of a fluorescent sucrose analog via the septal junctions in a filamentous cyanobacterium. mBio. 2015;6:e02109-14.
    PubMed  PubMed Central  Google Scholar 

    51.
    Mullineaux CW, Mariscal V, Nenninger A, Khanum H, Herrero A, Flores E, et al. Mechanism of intercellular molecular exchange in heterocyst-forming cyanobacteria. EMBO J. 2008;27:1299–308.
    CAS  PubMed  PubMed Central  Google Scholar 

    52.
    Rousk K, Degboe J, Michelsen A, Bradley R, Bellenger JP. Molybdenum and phosphorus limitation of moss‐associated nitrogen fixation in boreal ecosystems. N Phytol. 2017;214:97–107.
    CAS  Google Scholar 

    53.
    Solheim B, Zielke M. Associations between cyanobacteria and mosses. In: Rai AN, Bergman B, Rasmussen U, editors. Cyanobacteria in symbiosis. Dordrecht: Springer Netherlands; 2002. p. 137–52.
    Google Scholar  More

  • in

    Evidence of genetic isolation between two Mediterranean morphotypes of Parazoanthus axinellae

    1.
    Ingrosso, G. et al. Mediterranean bioconstructions along the Italian coast. Adv. Mar. Biol. 79, 61–136 (2018).
    PubMed  Google Scholar 
    2.
    Giakoumi, S. et al. Ecoregion-based conservation planning in the mediterranean: dealing with large-scale heterogeneity. PLoS ONE 8, e76449 (2013).
    ADS  CAS  PubMed  PubMed Central  Google Scholar 

    3.
    Coll, M. et al. The biodiversity of the Mediterranean Sea: estimates, patterns, and threats. PLoS ONE 5, e11842 (2010).
    ADS  PubMed  PubMed Central  Google Scholar 

    4.
    Airoldi, L. & Beck, M. W. Loss, status and trends for coastal marine habitats of Europe. Oceanogr. Mar. Biol. 45, 345–405 (2007).
    Google Scholar 

    5.
    Knowlton, N. Molecular genetic analyses of species boundaries in the sea. Hydrobiologia 420, 73–90 (2000).
    CAS  Google Scholar 

    6.
    Todd, P. A. Morphological plasticity in scleractinian corals. Biol. Rev. 83, 315–337 (2008).
    PubMed  Google Scholar 

    7.
    Stefani, F. et al. Comparison of morphological and genetic analyses reveals cryptic divergence and morphological plasticity in Stylophora (Cnidaria, Scleractinia). Coral Reefs 30, 1033–1049. https://doi.org/10.1007/s00338-011-0797-4 (2011).
    ADS  Article  Google Scholar 

    8.
    Pinzon, J. H. et al. Blind to morphology: genetics identifies several widespread ecologically common species and few endemics among Indo-Pacific cauliflower corals (Pocillopora, Scleractinia). J. Biogeogr. 40, 1595–1608 (2013).
    Google Scholar 

    9.
    Costantini, F., Gori, A., Lopez-gonzález, P. & Bramanti, L. Limited genetic connectivity between gorgonian morphotypes along a depth Gradient. PLoS ONE 11, 50–55. https://doi.org/10.1371/journal.pone.0160678 (2016).
    CAS  Article  Google Scholar 

    10.
    Boissin, E., Egea, E., Féral, J. P. & Chenuil, A. Contrasting population genetic structures in Amphipholis squamata, a complex of brooding, self-reproducing sister species sharing life history traits. Mar. Ecol. Prog. Ser. 539, 165–177 (2015).
    ADS  CAS  Google Scholar 

    11.
    Fukami, H. et al. Geographic differences in species boundaries among members of the Montastraea annularis complex based on molecular and morphological markers. Evolution 58, 324–337 (2004).
    CAS  PubMed  Google Scholar 

    12.
    Costantini, F., Ferrario, F. & Abbiati, M. Chasing genetic structure in coralligenous reef invertebrates: patterns, criticalities and conservation issues. Sci. Rep. 8, 1–12 (2018).
    Google Scholar 

    13.
    Pante, E. et al. Species are hypotheses: avoid connectivity assessments based on pillars of sand. Mol. Ecol. 24, 525–544 (2015).
    PubMed  Google Scholar 

    14.
    Chenuil, A., Cahill, A. E., Délémontey, N., Du Salliant du Luc, E. & Fanton, H. Problems and questions posed by cryptic species. a framework to guide future studies. In From Assessing to Conserving Biodiversity. History. Philosophy and Theory of the Life Sciences (eds Casetta, E. et al.) 77–106 (Springer, New York, 2019).
    Google Scholar 

    15.
    Cowen, R. K. Population connectivity in marine systems. Oceanography 20, 14–21 (2007).
    Google Scholar 

    16.
    Ocaña, O. & Brito, A. Zoanthids parasitizing Anthozoa: taxonomy, ecology and morphological evolution by genomes acquisition. Rev. Acad. Canar. Cienc. 30, 103–134 (2018).
    Google Scholar 

    17.
    Ocaña, O. et al. Parazoanthus axinellae: a species complex showing different ecological requierements. Rev. Acad. Canar. Cienc. XXXI, 1–24 (2019).
    Google Scholar 

    18.
    Lwowsky, F. F. Revision der Gattung Sidisia Gray (Epizoanthus auct.). Ein Beitrag zur Kenntnis der Zoanthiden. Zool. Jahrbücher, Abteilung für Syst. Ökologie und Geogr. der Tiere 34, 557–614 (1913).
    Google Scholar 

    19.
    Herberts, C. Contribution a l’etude biologique de quelques zoantharies tempérés et tropicaux II. Relations entre la reproduction sexue ´e, la corissance somatique et le bourgeonnement. Tethys 4, 961–968 (1972).
    Google Scholar 

    20.
    Ryland, J. S. & Lancaster, J. E. A review of zoanthid nematocyst types and their population structure. Hydrobiologia 530, 179 (2004).
    Google Scholar 

    21.
    Cariello, L., Crescenzi, S., Prota, G. & Zanetti, L. Methylation of zoanthoxanthins. Tetrahedon 30, 3611–3614 (1974).
    CAS  Google Scholar 

    22.
    Cariello, L., Crescenzi, S., Prota, G. & Zanetti, L. Zoanthoxanthins of a new structural type from Epizoanthus arenaceus (Zoantharia). Tetrahedon 30, 9191–4196 (1974).
    Google Scholar 

    23.
    Cariello, L. et al. Zoanthoxanthin, a natural 1,2,5,7-tetrazacyclopent[f]-azulene from Parazoanthus axinellae. Tetrahedon 30, 3281–3287 (1974).
    CAS  Google Scholar 

    24.
    Carreiro-Silva, M. et al. Zoantharians (Hexacorallia: Zoantharia) associated with cold-water corals in the azores region: New species and associations in the deep sea. Front. Mar. Sci. 4, 88 (2017).
    Google Scholar 

    25.
    Montenegro, J., Low, M. E. Y. & Reimer, J. D. The resurrection of the genus Bergia (Anthozoa, Zoantharia, Parazoanthidae). Syst. Biodivers. 14, 63–73 (2016).
    Google Scholar 

    26.
    Sinniger, F., Montoya-Burgos, J., Chevaldonné, P. & Pawlowski, J. Phylogeny of the order Zoantharia (Anthozoa, Hexacorallia) based on the mitochondrial ribosomal genes. Mar. Biol. 147, 1121–1128 (2005).
    CAS  Google Scholar 

    27.
    Sinniger, F., Reimer, J. D. & Pawlowski, J. Potential of DNA Sequences to Identify Zoanthids (Cnidaria: Zoantharia). Zoolog. Sci. 25, 1253–1260 (2008).
    CAS  PubMed  Google Scholar 

    28.
    Pax, F. Die Zoanthanen des Golfes von Neapel. Pubbl. della Stn. Zool. di Napoli 30, 309–329 (1957).
    Google Scholar 

    29.
    Gili, J. M., Pages, F. & Barange, M. Zoantharios (Cnidaria, Anthozoa) de la costa y de la plataforma continental catalanas (Mediterraneo Occidental). Misc. Zool. 11, 13–24 (1987).
    Google Scholar 

    30.
    Abel, E. F. Zur Kenntnis der mannen Höhlenfauna unter besonderer Berücksichtigung der Anthozoen. Pubbl. della Stn. Zool. di Napoli 30, 1–94 (1959).
    Google Scholar 

    31.
    Cachet, N. et al. Metabolomic profiling reveals deep chemical divergence between two morphotypes of the zoanthid Parazoanthus axinellae. Sci. Rep. 5, 8282 (2015).
    CAS  PubMed  PubMed Central  Google Scholar 

    32.
    Cerrano, C., Totti, C., Sponga, F. & Bavestrello, G. Summer disease in Parazoanthus axinellae (Schmidt, 1862) (Cnidaria, Zoanthidea). Ital. J. Zool. 73, 355–361 (2006).
    Google Scholar 

    33.
    Fu, Y.-X. & Li, W.-H. Statistical tests of neutrality of mutations. Genetics 133, 693–770 (1993).
    CAS  PubMed  PubMed Central  Google Scholar 

    34.
    Rogers, A. R. & Harpending, H. Population growth makes waves in the distribution of pairwise genetic differences. Mol. Biol. Evol. 9, 552–569 (1992).
    CAS  PubMed  Google Scholar 

    35.
    Paradis, E. Pegas: An R package for population genetics with an integrated-modular approach. Bioinformatics 26, 419–420 (2010).
    CAS  PubMed  Google Scholar 

    36.
    Costantini, F., Fauvelot, C. & Abbiati, M. Fine-scale genetic structuring in Corallium rubrum: evidence of inbreeding and limited effective larval dispersal. Mar. Ecol. Prog. Ser. 340, 109–119 (2007).
    ADS  CAS  Google Scholar 

    37.
    Mokhtar-Jamaï, K. et al. From global to local genetic structuring in the red gorgonian Paramuricea clavata: the interplay between oceanographic conditions and limited larval dispersal. Mol. Ecol. 20, 3291–3305 (2011).
    PubMed  Google Scholar 

    38.
    Villamor, A., Costantini, F. & Abbiati, M. Multilocus phylogeography of Patella caerulea (Linnaeus, 1758) reveals contrasting connectivity patterns across the Eastern-Western Mediterranean transition. J. Biogeogr. 45, 1301–1312 (2018).
    Google Scholar 

    39.
    Rossi, V., Ser-Giacomi, E., Lõpez, C. & Hernández-García, E. Hydrodynamic provinces and oceanic connectivity from a transport network help designing marine reserves. Geophys. Res. Lett. 41, 2883–2891 (2014).
    ADS  Google Scholar 

    40.
    Pax, F. & Muller, I. Die Anthozoenfauna der Adria. Fauna Flora Adriat. 3, 1–343 (1962).
    Google Scholar 

    41.
    Ryland, J. S. Reproduction in Zoanthidea (Anthozoa: Hexacorallia). Invertebr. Reprod. Dev. 31, 177–188 (1997).
    Google Scholar 

    42.
    Previati, M., Palma, M., Bavestrello, G., Falugi, C. & Cerrano, C. Reproductive biology of Parazoanthus axinellae (Schmidt, 1862) and Savalia savaglia (Bertoloni, 1819) (Cnidaria, Zoantharia) from the NW Mediterranean coast. Mar. Ecol. 31, 555–565 (2010).
    ADS  Google Scholar 

    43.
    Sinniger, F., Reimer, J. D. & Pawlowski, J. The Parazoanthidae (Hexacorallia: Zoantharia) DNA taxonomy: description of two new genera. Mar. Biodivers. 40, 57–70 (2010).
    Google Scholar 

    44.
    Aurelle, D. et al. Fuzzy species limits in Mediterranean gorgonians (Cnidaria, Octocorallia): inferences on speciation processes. Zool. Scr. 46, 767–778 (2017).
    Google Scholar 

    45.
    Swain, T. D. Revisiting the phylogeny of Zoanthidea (Cnidaria: Anthozoa): staggered alignment of hypervariable sequences improves species tree inference. Mol. Phylogenet. Evol. 118, 1–12 (2018).
    PubMed  Google Scholar 

    46.
    Sinniger, F. & Häussermann, V. Zoanthids (Cnidaria: Hexacorallia: Zoantharia) from shallow waters of the southern Chilean fjord region, with descriptions of a new genus and two new species. Org. Divers. Evol. 9, 23–36 (2009).
    Google Scholar 

    47.
    Jaramillo, K. B. et al. Assessing the zoantharian diversity of the Tropical Eastern Pacific through an integrative approach. Sci. Rep. 8, 1–15 (2018).
    CAS  Google Scholar 

    48.
    Swain, T. D. Evolutionary transitions in symbioses: dramatic reductions in bathymetric and geographic ranges of Zoanthidea coincide with loss of symbioses with invertebrates. Mol. Ecol. 19, 2587–2598 (2010).
    CAS  PubMed  Google Scholar 

    49.
    Samorì, C., Costantini, F., Galletti, P., Tagliavini, E. & Abbiati, M. Inter- and intraspecific variability of nitrogenated compounds in gorgonian corals via application of a fast one-step analytical protocol. Chem. Biodivers. 15, e1700449 (2018).
    Google Scholar 

    50.
    Pante, E. et al. Use of RAD sequencing for delimiting species. Heredity 14, 450–459. https://doi.org/10.1038/hdy.2014.105 (2014).
    CAS  Article  Google Scholar 

    51.
    Poliseno, A. et al. Evolutionary implications of analyses of complete mitochondrial genomes across order Zoantharia (Cnidaria: Hexacorallia). J. Zool. Syst. Evol. Res. 10, 1–11. https://doi.org/10.1111/jzs.12380 (2020).
    Article  Google Scholar 

    52.
    Taboada, S. & Pérez-Portela, R. Contrasted phylogeographic patterns on mitochondrial DNA of shallow and deep brittle stars across the Atlantic-Mediterranean area. Sci. Rep. 6, 32425 (2016).
    ADS  CAS  PubMed  PubMed Central  Google Scholar 

    53.
    Cerrano, C., Milanese, M. & Ponti, M. Diving for science-science for diving: volunteer scuba divers support science and conservation in the Mediterranean Sea. Aquat. Conserv. Mar. Freshw. Ecosyst. 27, 303–323 (2017).
    Google Scholar 

    54.
    Swain, T. D. Phylogeny-based species delimitations and the evolution of host associations in symbiotic zoanthids (Anthozoa, Zoanthidea) of the wider Caribbean region. Zool. J. Linn. Soc. 156, 223–238 (2009).
    Google Scholar 

    55.
    Katoh, K., Rozewicki, J. & Yamada, K. MAFFT online service: multiple sequence alignment, interactive sequence choice and visualization. Brief. Bioinform. 20, 1160–1166 (2017).
    PubMed Central  Google Scholar 

    56.
    Heibl, C. PHYLOCH: R language tree plotting tools and interfaces to diverse phylogenetic software packages. http://www.christophheibl.de/Rpackages.html (2008).

    57.
    Librado, P. & Rozas, J. DnaSP v5: a software for comprehensive analysis of DNA polymorphism data. Bioinformatics 25, 1451–1452 (2009).
    CAS  PubMed  PubMed Central  Google Scholar 

    58.
    Team, R. C. R: a language and environment for statistical computing (2018).

    59.
    Mauri, M., Elli, T., Caviglia, G., Uboldi, G. & Azzi, M. RAWGraphs: a visualisation platform to create open outputs. ACM Int. Conf. Proceeding Ser. Part F1313 (2017).

    60.
    Paradis, E. Analysis of haplotype networks: The randomized minimum spanning tree method. Methods Ecol. Evol. 9, 1308–1317 (2018).
    Google Scholar 

    61.
    Excoffier, L. & Lischer, H. Arlequin suite ver 3.5: a new series of programs to perform population genetics analyses under Linux and Windows. Mol. Ecol. Resour. 10, 564–567 (2010).
    PubMed  Google Scholar 

    62.
    Narum, S. R. Beyond Bonferroni: less conservative analyses for conservation genetics. Conserv. Genet. 7, 783–787 (2006).
    CAS  Google Scholar 

    63.
    Tajima, F. Statistical methods for testing the neutral mutation hypothesis by DNA polymorphisms. Genetics 123, 585–595 (1989).
    CAS  PubMed  PubMed Central  Google Scholar 

    64.
    Montenegro, J., Sinniger, F. & Reimer, J. D. Unexpected diversity and new species in the sponge-Parazoanthidae association in southern Japan. Mol. Phylogenet. Evol. 89, 73–90 (2015).
    CAS  PubMed  Google Scholar 

    65.
    Castresana, J. Selection of conserved blocks from multiple alignments for their use in phylogenetic analysis. Mol. Biol. Evol. 17, 540–552 (2000).
    CAS  PubMed  Google Scholar 

    66.
    Schliep, K. Phangorn: phylogenetic analysis in R. Bioinformatics 27, 592–593 (2011).
    CAS  PubMed  PubMed Central  Google Scholar 

    67.
    Schliep, K., Potts, A., Morrison, D. & Grimm, G. Intertwining phylogenetic trees and networks. Methods Ecol. Evol. 8, 212–1220 (2017).
    Google Scholar 

    68.
    Ronquist, F. et al. MrBayes 3.2: efficient Bayesian phylogenetic inference and model choice across a large model space. Syst. Biol. 61, 539–542 (2012).
    PubMed  PubMed Central  Google Scholar  More

  • in

    Vegetation fires in the Anthropocene

    1.
    Scott, A. C., Bowman, D. M., Bond, W. J., Pyne, S. J. & Alexander, M. E. Fire on Earth: An Introduction (Wiley, 2013).
    2.
    Ward, D. et al. The changing radiative forcing of fires: global model estimates for past, present and future. Atmos. Chem. Phys. 12, 10857–10886 (2012).
    Google Scholar 

    3.
    Bowman, D. M. et al. Fire in the Earth system. Science 324, 481–484 (2009).
    Google Scholar 

    4.
    Carslaw, K. et al. A review of natural aerosol interactions and feedbacks within the Earth system. Atmos. Chem. Phys. 10, 1701–1737 (2010).
    Google Scholar 

    5.
    Peterson, D. A. et al. Wildfire-driven thunderstorms cause a volcano-like stratospheric injection of smoke. NPJ Clim. Atmos. Sci. 1, 30 (2018).
    Google Scholar 

    6.
    McRae, R. H., Sharples, J. J. & Fromm, M. Linking local wildfire dynamics to pyroCb development. Nat. Hazards Earth Syst. Sci. 15, 417–428 (2015).
    Google Scholar 

    7.
    Rosenfeld, D. TRMM observed first direct evidence of smoke from forest fires inhibiting rainfall. Geophys. Res. Lett. 26, 3105–3108 (1999).
    Google Scholar 

    8.
    Thomas, J. L. et al. Quantifying black carbon deposition over the Greenland ice sheet from forest fires in Canada. Geophys. Res. Lett. 44, 7965–7974 (2017).
    Google Scholar 

    9.
    Skiles, S. M., Flanner, M., Cook, J. M., Dumont, M. & Painter, T. H. Radiative forcing by light-absorbing particles in snow. Nat. Clim. Change 8, 964–971 (2018).
    Google Scholar 

    10.
    Krebs, P., Pezzatti, G. B., Mazzoleni, S., Talbot, L. M. & Conedera, M. Fire regime: history and definition of a key concept in disturbance ecology. Theory Biosci. 129, 53–69 (2010).
    Google Scholar 

    11.
    Keeley, J. E. & Fotheringham, C. Role of fire in regeneration from seed. Seeds 2, 311–330 (2000).
    Google Scholar 

    12.
    Noble, I. R. & Slatyer, R. O. The use of vital attributes to predict successional changes in plant communities subject to recurrent disturbances. Vegetatio 43, 5–21 (1980).
    Google Scholar 

    13.
    Enright, N. J., Fontaine, J. B., Bowman, D. M., Bradstock, R. A. & Williams, R. J. Interval squeeze: altered fire regimes and demographic responses interact to threaten woody species persistence as climate changes. Front. Ecol. Environ. 13, 265–272 (2015).
    Google Scholar 

    14.
    Glikson, A. Fire and human evolution: the deep-time blueprints of the Anthropocene. Anthropocene 3, 89–92 (2013).
    Google Scholar 

    15.
    Huffman, M. R. The many elements of traditional fire knowledge: synthesis, classification, and aids to cross-cultural problem solving in fire-dependent systems around the world. Ecol. Soc. 18, 3 (2013).
    Google Scholar 

    16.
    Trauernicht, C., Brook, B. W., Murphy, B. P., Williamson, G. J. & Bowman, D. M. Local and global pyrogeographic evidence that indigenous fire management creates pyrodiversity. Ecol. Evol. 5, 1908–1918 (2015).
    Google Scholar 

    17.
    Scherjon, F. et al. Burning the land: an ethnographic study of off-site fire use by current and historically documented foragers and implications for the interpretation of past fire practices in the landscape. Curr. Anthropol. 56, 314–315 (2015).
    Google Scholar 

    18.
    Mertz, O. et al. Swidden change in Southeast Asia: understanding causes and consequences. Hum. Ecol. 37, 259–264 (2009).
    Google Scholar 

    19.
    Bowman, D. M. et al. The human dimension of fire regimes on Earth. J. Biogeogr. 38, 2223–2236 (2011).
    Google Scholar 

    20.
    Calkin, D. E., Stonesifer, C. S., Thompson, M. P. & McHugh, C. W. Large airtanker use and outcomes in suppressing wildland fires in the United States. Int. J. Wildland Fire 23, 259–271 (2014).
    Google Scholar 

    21.
    Le Page, Y., Oom, D., Silva, J. M., Jönsson, P. & Pereira, J. M. Seasonality of vegetation fires as modified by human action: observing the deviation from eco‐climatic fire regimes. Glob. Ecol. Biogeogr. 19, 575–588 (2010).
    Google Scholar 

    22.
    Abatzoglou, J. T., Williams, A. P., Boschetti, L., Zubkova, M. & Kolden, C. A. Global patterns of interannual climate–fire relationships. Glob. Change Biol. 24, 5164–5175 (2018).
    Google Scholar 

    23.
    Bowman, D. M. et al. Human exposure and sensitivity to globally extreme wildfire events. Nat. Ecol. Evol. 1, 0058 (2017).
    Google Scholar 

    24.
    Sharples, J. J. et al. Natural hazards in Australia: extreme bushfire. Clim. Change 139, 85–99 (2016).
    Google Scholar 

    25.
    Tedim, F. et al. Defining extreme wildfire events: difficulties, challenges, and impacts. Fire 1, 9 (2018).
    Google Scholar 

    26.
    Ladds, M., Keating, A., Handmer, J. & Magee, L. How much do disasters cost? A comparison of disaster cost estimates in Australia. Int. J. Disaster Risk Reduct. 21, 419–429 (2017).
    Google Scholar 

    27.
    Kramer, H. A., Mockrin, M. H., Alexandre, P. M. & Radeloff, V. C. High wildfire damage in interface communities in California. Int. J. Wildland Fire 28, 641–650 (2019).
    Google Scholar 

    28.
    Thomas, D., Butry, D., Gilbert, S., Webb, D. & Fung, J. The Costs and Losses of Wildfires. NIST Special Publication 1215 (NIST, 2017).

    29.
    Fann, N. et al. The health impacts and economic value of wildland fire episodes in the US: 2008–2012. Sci. Total Environ. 610, 802–809 (2018).
    Google Scholar 

    30.
    Read, P. & Denniss, R. With costs approaching $100 billion, the fires are Australia’s costliest natural disaster. The Conversation https://theconversation.com/with-costs-approaching-100-billion-the-fires-are-australias-costliest-natural-disaster-129433 (2020).

    31.
    Steffen, W. et al. Trajectories of the Earth System in the Anthropocene. Proc. Natl Acad. Sci.USA 115, 8252–8259 (2018).
    Google Scholar 

    32.
    Steffen, W. et al. The emergence and evolution of Earth system science. Nat. Rev. Earth Environ. 1, 54–63 (2020).
    Google Scholar 

    33.
    Bowman, D. M., O’Brien, J. A. & Goldammer, J. G. Pyrogeography and the global quest for sustainable fire management. Annu. Rev. Environ. Resour. 38, 57–80 (2013).
    Google Scholar 

    34.
    Giglio, L., Boschetti, L., Roy, D. P., Humber, M. L. & Justice, C. O. The Collection 6 MODIS burned area mapping algorithm and product. Remote Sens. Environ. 217, 72–85 (2018).
    Google Scholar 

    35.
    Randerson, J. T., Chen, Y., Van Der Werf, G. R., Rogers, B. M. & Morton, D. C. Global burned area and biomass burning emissions from small fires. J. Geophys. Res. 117, G04012 (2012).
    Google Scholar 

    36.
    Archibald, S., Lehmann, C. E., Gómez-Dans, J. L. & Bradstock, R. A. Defining pyromes and global syndromes of fire regimes. Proc. Natl Acad. Sci. USA 110, 6442–6447 (2013).
    Google Scholar 

    37.
    Kelley, D. I. et al. How contemporary bioclimatic and human controls change global fire regimes. Nat. Clim. Change 9, 690–696 (2019).
    Google Scholar 

    38.
    Lavorel, S., Flannigan, M. D., Lambin, E. F. & Scholes, M. C. Vulnerability of land systems to fire: Interactions among humans, climate, the atmosphere, and ecosystems. Mitig. Adapt. Strateg. Global Change 12, 33–53 (2007).
    Google Scholar 

    39.
    Van Der Werf, G. R., Randerson, J. T., Giglio, L., Gobron, N. & Dolman, A. Climate controls on the variability of fires in the tropics and subtropics. Global Biogeochem. Cycles 22 (2008).

    40.
    Krawchuk, M. A., Moritz, M. A., Parisien, M.-A., Van Dorn, J. & Hayhoe, K. Global pyrogeography: the current and future distribution of wildfire. PLoS ONE 4, e5102 (2009).
    Google Scholar 

    41.
    Pausas, J. G. & Ribeiro, E. The global fire–productivity relationship. Global Ecol. Biogeogr. 22, 728–736 (2013).
    Google Scholar 

    42.
    McKenzie, D. & Littell, J. S. Climate change and the eco-hydrology of fire: Will area burned increase in a warming western USA? Ecol. Appl. 27, 26–36 (2017).
    Google Scholar 

    43.
    Bowman, D. M., Murphy, B. P., Williamson, G. J. & Cochrane, M. A. Pyrogeographic models, feedbacks and the future of global fire regimes. Global Ecol. Biogeogr. 23, 821–824 (2014).
    Google Scholar 

    44.
    Haberle, S. G., Hope, G. S. & van der Kaars, S. Biomass burning in Indonesia and Papua New Guinea: natural and human induced fire events in the fossil record. Palaeogeogr. Palaeoclimatol. Palaeoecol. 171, 259–268 (2001).
    Google Scholar 

    45.
    Cochrane, M. A. Fire science for rainforests. Nature 421, 913–919 (2003).
    Google Scholar 

    46.
    Flannigan, M. D., Logan, K. A., Amiro, B. D., Skinner, W. R. & Stocks, B. Future area burned in Canada. Clim. Change 72, 1–16 (2005).
    Google Scholar 

    47.
    Abatzoglou, J. T. & Kolden, C. A. Climate change in western US deserts: potential for increased wildfire and invasive annual grasses. Rangel. Ecol. Manag. 64, 471–478 (2011).
    Google Scholar 

    48.
    Balch, J. K., Bradley, B. A., D’Antonio, C. M. & Gómez‐Dans, J. Introduced annual grass increases regional fire activity across the arid western USA (1980–2009). Glob. Change Biol. 19, 173–183 (2013).
    Google Scholar 

    49.
    Andreae, M. O. & Merlet, P. Emission of trace gases and aerosols from biomass burning. Global Biogeochem. Cycles 15, 955–966 (2001).
    Google Scholar 

    50.
    Van Der Werf, G. R. et al. Global fire emissions estimates during 1997-2016. Earth Syst. Sci. Data 9, 697–720 (2017).
    Google Scholar 

    51.
    Walker, X. J. et al. Increasing wildfires threaten historic carbon sink of boreal forest soils. Nature 572, 520–523 (2019).
    Google Scholar 

    52.
    Cramer, W. et al. Tropical forests and the global carbon cycle: impacts of atmospheric carbon dioxide, climate change and rate of deforestation. Philos. Trans. R. Soc. B Biol. Sci. 359, 331–343 (2004).
    Google Scholar 

    53.
    Kurz, W. et al. Quantifying the impacts of human activities on reported greenhouse gas emissions and removals in Canada’s managed forest: conceptual framework and implementation. Can. J. For. Res. 48, 1227–1240 (2018).
    Google Scholar 

    54.
    Doerr, S. H. & Santín, C. Global trends in wildfire and its impacts: perceptions versus realities in a changing world. Philos. Trans. R. Soc. B Biol. Sci. 371, 20150345 (2016).
    Google Scholar 

    55.
    Bowman, D. Wildfire science is at a loss for comprehensive data. Nature 560, 7–8 (2018).
    Google Scholar 

    56.
    Foreman, P. W. A framework for testing the influence of Aboriginal burning on grassy ecosystems in lowland, mesic south–eastern Australia. Australian J. Botany 64, 626–642 (2016).
    Google Scholar 

    57.
    Van Wagner, C. Age-class distribution and the forest fire cycle. Can. J. For. Res. 8, 220–227 (1978).
    Google Scholar 

    58.
    Larsen, C. P. S. Fire and climate dynamics in the boreal forest of northern Alberta, Canada, from AD 1850 to 1989. Holocene 6, 449–456 (1996).
    Google Scholar 

    59.
    Bergeron, Y., Flannigan, M., Gauthier, S., Leduc, A. & Lefort, P. Past, current and future fire frequency in the Canadian boreal forest: implications for sustainable forest management. AMBIO 33, 356–360 (2004).
    Google Scholar 

    60.
    Marlon, J. R. et al. Long-term perspective on wildfires in the western USA. Proc. Natl Acad. Sci. USA 109, E535–E543 (2012).
    Google Scholar 

    61.
    Marlon, J. R. et al. Climate and human influences on global biomass burning over the past two millennia. Nat. Geosci. 1, 697–702 (2008).
    Google Scholar 

    62.
    Chuvieco, E. et al. Historical background and current developments for mapping burned area from satellite Earth observation. Remote Sens. Environ. 225, 45–64 (2019).
    Google Scholar 

    63.
    Forkel, M. et al. Recent global and regional trends in burned area and their compensating environmental controls. Environ. Res. Commun. 1, 051005 (2019).
    Google Scholar 

    64.
    Schultz, M. G. et al. Global wildland fire emissions from 1960 to 2000. Global Biogeochem. Cycles 22, GB2002 (2008).
    Google Scholar 

    65.
    Clode, D. & Elgar, M. A. Fighting fire with fire: does a policy of broad-scale prescribed burning improve community safety? Soc. Nat. Resour. 27, 1192–1199 (2014).
    Google Scholar 

    66.
    Keeley, J. E. Fire intensity, fire severity and burn severity: a brief review and suggested usage. Int. J. Wildland Fire 18, 116–126 (2009).
    Google Scholar 

    67.
    Jolly, W. M. et al. Climate-induced variations in global wildfire danger from 1979 to 2013. Nat. Commun. 6, 7537 (2015).
    Google Scholar 

    68.
    Justice, C. et al. The MODIS fire products. Remote Sens. Environ. 83, 244–262 (2002).
    Google Scholar 

    69.
    Andela, N. et al. A human-driven decline in global burned area. Science 356, 1356–1362 (2017).
    Google Scholar 

    70.
    Burrows, N., Ward, B. & Robinson, A. Fuel dynamics and fire spread in spinifex grasslands of the Western Desert. Proc. R. Soc. Queensland 115, 69–76 (2009).
    Google Scholar 

    71.
    Bird, R. B., Codding, B. F., Kauhanen, P. G. & Bird, D. W. Aboriginal hunting buffers climate-driven fire-size variability in Australia’s spinifex grasslands. Proc. Natl Acad. Sci. USA 109, 10287–10292 (2012).
    Google Scholar 

    72.
    Taylor, A. H., Trouet, V., Skinner, C. N. & Stephens, S. Socioecological transitions trigger fire regime shifts and modulate fire–climate interactions in the Sierra Nevada, USA, 1600–2015 CE. Proc. Natl Acad. Sci. USA 113, 13684–13689 (2016).
    Google Scholar 

    73.
    Westerling, A. L., Hidalgo, H. G., Cayan, D. R. & Swetnam, T. W. Warming and earlier spring increase western US forest wildfire activity. Science 313, 940–943 (2006).
    Google Scholar 

    74.
    Abatzoglou, J. T. & Williams, A. P. Impact of anthropogenic climate change on wildfire across western US forests. Proc. Natl Acad. Sci. USA 113, 11770–11775 (2016).
    Google Scholar 

    75.
    Balch, J. K. et al. Switching on the Big Burn of 2017. Fire 1, 17 (2018).
    Google Scholar 

    76.
    Williams, A. P. et al. Observed impacts of anthropogenic climate change on wildfire in California. Earths Future 7, 892–910 (2019).
    Google Scholar 

    77.
    Westerling, A. L. Increasing western US forest wildfire activity: sensitivity to changes in the timing of spring. Philos. Trans. R. Soc. B Biol. Sci. 371, 20150178 (2016).
    Google Scholar 

    78.
    Balshi, M. S. et al. Assessing the response of area burned to changing climate in western boreal North America using a Multivariate Adaptive Regression Splines (MARS) approach. Glob. Change Biol. 15, 578–600 (2009).
    Google Scholar 

    79.
    Jain, P., Wang, X. & Flannigan, M. D. Trend analysis of fire season length and extreme fire weather in North America between 1979 and 2015. Int. J. Wildland Fire 26, 1009–1020 (2018).
    Google Scholar 

    80.
    Flannigan, M. et al. Fuel moisture sensitivity to temperature and precipitation: climate change implications. Clim. Change 134, 59–71 (2016).
    Google Scholar 

    81.
    Hanes, C. C. et al. Fire-regime changes in Canada over the last half century. Can. J. For. Res. 49, 256–269 (2018).
    Google Scholar 

    82.
    Veraverbeke, S. et al. Lightning as a major driver of recent large fire years in North American boreal forests. Nat. Clim. Change 7, 529–534 (2017).
    Google Scholar 

    83.
    Turetsky, M. R. et al. Global vulnerability of peatlands to fire and carbon loss. Nat. Geosci. 8, 11–14 (2015).
    Google Scholar 

    84.
    O’Connor, F. M. et al. Possible role of wetlands, permafrost, and methane hydrates in the methane cycle under future climate change: A review. Rev. Geophys. 48, RG4005 (2010).
    Google Scholar 

    85.
    Gibson, C. M. et al. Wildfire as a major driver of recent permafrost thaw in boreal peatlands. Nat. Commun. 9, 3041 (2018).
    Google Scholar 

    86.
    Bowman, D. M., Walsh, A. & Prior, L. D. Landscape analysis of Aboriginal fire management in Central Arnhem Land, north Australia. J. Biogeogr. 31, 207–223 (2004).
    Google Scholar 

    87.
    Bird, R. B., Bird, D. W., Codding, B. F., Parker, C. H. & Jones, J. H. The “fire stick farming” hypothesis: Australian Aboriginal foraging strategies, biodiversity, and anthropogenic fire mosaics. Proc. Natl Acad. Sci. USA 105, 14796–14801 (2008).
    Google Scholar 

    88.
    Cruz, M. et al. Anatomy of a catastrophic wildfire: the Black Saturday Kilmore East fire in Victoria, Australia. For. Ecol. Manag. 284, 269–285 (2012).
    Google Scholar 

    89.
    Ndalila, M. N., Williamson, G. J. & Bowman, D. M. Geographic patterns of fire severity following an extreme Eucalyptus forest fire in southern Australia: 2013 Forcett-Dunalley fire. Fire 1, 40 (2018).
    Google Scholar 

    90.
    Di Virgilio, G. et al. Climate change increases the potential for extreme wildfires. Geophys. Res. Lett. 46, 8517–8526 (2019).
    Google Scholar 

    91.
    Styger, J., Marsden-Smedley, J. & Kirkpatrick, J. Changes in lightning fire incidence in the Tasmanian Wilderness World Heritage Area, 1980–2016. Fire 1, 38 (2018).
    Google Scholar 

    92.
    Bowman, D. M., Bliss, A., Bowman, C. J. & Prior, L. D. Fire caused demographic attrition of the Tasmanian palaeoendemic conifer Athrotaxis cupressoides. Austral Ecol. 44, 1322–1339 (2019).
    Google Scholar 

    93.
    Boer, M. M., de Dios, V. R. & Bradstock, R. A. Unprecedented burn area of Australian mega forest fires. Nat. Clim. Change 10, 171–172 (2020).
    Google Scholar 

    94.
    van Oldenborgh, G. J. et al. Attribution of the Australian bushfire risk to anthropogenic climate change. Nat. Hazards Earth Syst. Sci. Discuss. 2020, 1–46 (2020).
    Google Scholar 

    95.
    Bowman, D. M. et al. Human–environmental drivers and impacts of the globally extreme 2017 Chilean fires. AMBIO 48, 350–362 (2019).
    Google Scholar 

    96.
    Gómez-González, S., Ojeda, F. & Fernandes, P. M. Portugal and Chile: Longing for sustainable forestry while rising from the ashes. Environ. Sci. Policy 81, 104–107 (2018).
    Google Scholar 

    97.
    Fusco, E. J., Finn, J. T., Balch, J. K., Nagy, R. C. & Bradley, B. A. Invasive grasses increase fire occurrence and frequency across US ecoregions. Proc. Natl Acad. Sci. USA 116, 23594–23599 (2019).
    Google Scholar 

    98.
    Setterfield, S. A., Rossiter‐Rachor, N. A., Hutley, L. B., Douglas, M. M. & Williams, R. J. Biodiversity research: turning up the heat: the impacts of Andropogon gayanus (gamba grass) invasion on fire behaviour in northern Australian savannas. Divers. Distrib. 16, 854–861 (2010).
    Google Scholar 

    99.
    Van Marle, M. J. et al. Historic global biomass burning emissions based on merging satellite observations with proxies and fire models (1750–2015). Geosci. Model Dev. 10, 3329–3357 (2017).
    Google Scholar 

    100.
    Le Quéré, C. et al. Global carbon budget 2018. Earth Syst. Sci. Data 10, 2141–2194 (2018).
    Google Scholar 

    101.
    Wooster, M. J., Perry, G. L. W. & Zoumas, A. Fire, drought and El Niño relationships on Borneo (Southeast Asia) in the pre-MODIS era (1980–2000). Biogeosciences 9, 317–340 (2012).
    Google Scholar 

    102.
    Chen, Y. et al. A pan-tropical cascade of fire driven by El Niño/Southern Oscillation. Nat. Clim. Change 7, 906–911 (2017).
    Google Scholar 

    103.
    Stocker, T. F. et al. (eds) Climate Change 2013: the Physical Science Basis. Contribution of Working Group I to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change 1535 pp (Cambridge Univ. Press, 2013).

    104.
    Flannigan, M. et al. Global wildland fire season severity in the 21st century. For. Ecol. Manag. 294, 54–61 (2013).
    Google Scholar 

    105.
    Abatzoglou, J. T., Williams, A. P. & Barbero, R. Global emergence of anthropogenic climate change in fire weather indices. Geophys. Res. Lett. 46, 326–336 (2019).
    Google Scholar 

    106.
    Romps, D. M., Seeley, J. T., Vollaro, D. & Molinari, J. Projected increase in lightning strikes in the United States due to global warming. Science 346, 851–854 (2014).
    Google Scholar 

    107.
    Knorr, W., Arneth, A. & Jiang, L. Demographic controls of future global fire risk. Nat. Clim. Change 6, 781–785 (2016).
    Google Scholar 

    108.
    Kloster, S. & Lasslop, G. Historical and future fire occurrence (1850 to 2100) simulated in CMIP5 Earth System Models. Glob. Planet. Change 150, 58–69 (2017).
    Google Scholar 

    109.
    Moritz, M. A. et al. Climate change and disruptions to global fire activity. Ecosphere 3, 1–22 (2012).
    Google Scholar 

    110.
    Wotton, B. M. & Flannigan, M. D. Length of the fire season in a changing climate. Forestry Chron. 69, 187–192 (1993).
    Google Scholar 

    111.
    Wotton, B., Flannigan, M. & Marshall, G. Potential climate change impacts on fire intensity and key wildfire suppression thresholds in Canada. Environ. Res. Lett. 12, 095003 (2017).
    Google Scholar 

    112.
    Barbero, R., Abatzoglou, J. T., Larkin, N. K., Kolden, C. A. & Stocks, B. Climate change presents increased potential for very large fires in the contiguous United States. Int. J. Wildland Fire 24, 892–899 (2015).
    Google Scholar 

    113.
    Westerling, A. L., Turner, M. G., Smithwick, E. A., Romme, W. H. & Ryan, M. G. Continued warming could transform Greater Yellowstone fire regimes by mid-21st century. Proc. Natl Acad. Sci. USA 108, 13165–13170 (2011).
    Google Scholar 

    114.
    Buotte, P. C. et al. Near-future forest vulnerability to drought and fire varies across the western United States. Glob. Change Biol. 25, 290–303 (2019).
    Google Scholar 

    115.
    Kitzberger, T., Falk, D. A., Westerling, A. L. & Swetnam, T. W. Direct and indirect climate controls predict heterogeneous early-mid 21st century wildfire burned area across western and boreal North America. PLoS ONE 12, e0188486 (2017).
    Google Scholar 

    116.
    Turco, M. et al. Exacerbated fires in Mediterranean Europe due to anthropogenic warming projected with non-stationary climate-fire models. Nat. Commun. 9, 3821 (2018).
    Google Scholar 

    117.
    Turco, M. et al. Decreasing fires in mediterranean Europe. PLoS ONE 11, e0150663 (2016).
    Google Scholar 

    118.
    Batllori, E., Parisien, M. A., Krawchuk, M. A. & Moritz, M. A. Climate change-induced shifts in fire for mediterranean ecosystems. Global Ecol. Biogeogr. 22, 1118–1129 (2013).
    Google Scholar 

    119.
    Mekonnen, Z. A., Riley, W. J., Randerson, J. T., Grant, R. F. & Rogers, B. M. Expansion of high-latitude deciduous forests driven by interactions between climate warming and fire. Nat. Plants 5, 952–958 (2019).
    Google Scholar 

    120.
    Harris, R. M., Remenyi, T. A., Williamson, G. J., Bindoff, N. L. & Bowman, D. M. Climate–vegetation–fire interactions and feedbacks: trivial detail or major barrier to projecting the future of the Earth system? Wiley Interdiscip. Rev. Clim. Change 7, 910–931 (2016).
    Google Scholar 

    121.
    Hantson, S. et al. The status and challenge of global fire modelling. Biogeosciences 13, 3359–3375 (2016).
    Google Scholar 

    122.
    Pechony, O. & Shindell, D. T. Driving forces of global wildfires over the past millennium and the forthcoming century. Proc. Natl Acad. Sci. USA 107, 19167–19170 (2010).
    Google Scholar 

    123.
    Flannigan, M., Stocks, B., Turetsky, M. & Wotton, M. Impacts of climate change on fire activity and fire management in the circumboreal forest. Glob. Change Biol. 15, 549–560 (2009).
    Google Scholar 

    124.
    Podur, J. & Wotton, M. Will climate change overwhelm fire management capacity? Ecol. Model. 221, 1301–1309 (2010).
    Google Scholar 

    125.
    Teckentrup, L. et al. Response of simulated burned area to historical changes in environmental and anthropogenic factors: a comparison of seven fire models. Biogeosciences 16, 3883–3910 (2019).
    Google Scholar 

    126.
    Nepstad, D. C., Stickler, C. M., Filho, B. S. & Merry, F. Interactions among Amazon land use, forests and climate: prospects for a near-term forest tipping point. Philos. Trans. R. Soc. B Biol. Sci. 363, 1737–1746 (2008).
    Google Scholar 

    127.
    Swann, A. L., Hoffman, F. M., Koven, C. D. & Randerson, J. T. Plant responses to increasing CO2 reduce estimates of climate impacts on drought severity. Proc. Natl Acad. Sci. USA 113, 10019–10024 (2016).
    Google Scholar 

    128.
    Bond, W. J. & Midgley, G. F. Carbon dioxide and the uneasy interactions of trees and savannah grasses. Philos. Trans. R. Soc. B Biol. Sci. 367, 601–612 (2012).
    Google Scholar 

    129.
    Hurteau, M. D., Liang, S., Westerling, A. L. & Wiedinmyer, C. Vegetation-fire feedback reduces projected area burned under climate change. Sci. Rep. 9, 2838 (2019).
    Google Scholar 

    130.
    Liu, Z. & Wimberly, M. C. Direct and indirect effects of climate change on projected future fire regimes in the western United States. Sci. Total Environ. 542, 65–75 (2016).
    Google Scholar 

    131.
    Stevens-Rumann, C. S. et al. Evidence for declining forest resilience to wildfires under climate change. Ecol. Lett. 21, 243–252 (2018).
    Google Scholar 

    132.
    Wilkin, K., Ackerly, D. & Stephens, S. Climate change refugia, fire ecology and management. Forests 7, 77 (2016).
    Google Scholar 

    133.
    Kashian, D. M., Romme, W. H., Tinker, D. B., Turner, M. G. & Ryan, M. G. Carbon storage on landscapes with stand-replacing fires. Bioscience 56, 598–606 (2006).
    Google Scholar 

    134.
    Wiggins, E. B. et al. Smoke radiocarbon measurements from Indonesian fires provide evidence for burning of millennia-aged peat. Proc. Natl Acad. Sci. USA 115, 12419–12424 (2018).
    Google Scholar 

    135.
    Donovan, V. M., Wonkka, C. L. & Twidwell, D. Surging wildfire activity in a grassland biome. Geophys. Res. Lett. 44, 5986–5993 (2017).
    Google Scholar 

    136.
    Bladon, K. D. Rethinking wildfires and forest watersheds. Science 359, 1001–1002 (2018).
    Google Scholar 

    137.
    Cannon, S. H. & DeGraff, J. in Landslides–Disaster Risk Reduction (eds Sassa, K. & Canuti, P.) 177–190 (Springer, 2009).

    138.
    Garfin, G. et al. Managing for Future Risks of Fire, Extreme Precipitation, and Post-fire Flooding. Report to the U.S. Bureau of Reclamation, from the Project Enhancing Water Supply Reliability (Institute of the Environment, 2016).

    139.
    Sanderson, B. M. & Fisher, R. A. A fiery wake-up call for climate science. Nat. Clim. Change 515, 175–177 (2020).
    Google Scholar 

    140.
    King, A. D., Pitman, A. J., Henley, B. J., Ukkola, A. M. & Brown, J. R. The role of climate variability in Australian drought. Nat. Clim. Change 10, 177–179 (2020).
    Google Scholar 

    141.
    Moritz, M. A. et al. Learning to coexist with wildfire. Nature 515, 58–66 (2014).
    Google Scholar 

    142.
    Kolden, C. A. We’re not doing enough prescribed fire in the Western United States to mitigate wildfire risk. Fire 2, 30 (2019).
    Google Scholar 

    143.
    Fernandes, P. M. & Botelho, H. S. A review of prescribed burning effectiveness in fire hazard reduction. Int. J. Wildland Fire 12, 117–128 (2003).
    Google Scholar 

    144.
    Price, O. F., Penman, T. D., Bradstock, R. A., Boer, M. M. & Clarke, H. Biogeographical variation in the potential effectiveness of prescribed fire in south‐eastern Australia. J. Biogeogr. 42, 2234–2245 (2015).
    Google Scholar 

    145.
    Hurteau, M. D., Koch, G. W. & Hungate, B. A. Carbon protection and fire risk reduction: toward a full accounting of forest carbon offsets. Front. Ecol. Environ. 6, 493–498 (2008).
    Google Scholar 

    146.
    Stephens, S. L. Evaluation of the effects of silvicultural and fuels treatments on potential fire behaviour in Sierra Nevada mixed-conifer forests. For. Ecol. Manag. 105, 21–35 (1998).
    Google Scholar 

    147.
    Campbell, J. L., Harmon, M. E. & Mitchell, S. R. Can fuel‐reduction treatments really increase forest carbon storage in the western US by reducing future fire emissions? Front. Ecol. Environ. 10, 83–90 (2012).
    Google Scholar 

    148.
    Clarke, H. & Evans, J. P. Exploring the future change space for fire weather in southeast Australia. Theor. Appl. Climatol. 136, 513–527 (2019).
    Google Scholar 

    149.
    Price, O. F. & Bradstock, R. A. The efficacy of fuel treatment in mitigating property loss during wildfires: Insights from analysis of the severity of the catastrophic fires in 2009 in Victoria, Australia. J. Environ. Manag. 113, 146–157 (2012).
    Google Scholar 

    150.
    Williamson, G., Bowman, D. M. S., Price, O. F., Henderson, S. & Johnston, F. A transdisciplinary approach to understanding the health effects of wildfire and prescribed fire smoke regimes. Environ. Res. Lett. 11, 125009 (2016).
    Google Scholar 

    151.
    Broome, R. A., Johnston, F. H., Horsley, J. & Morgan, G. G. A rapid assessment of the impact of hazard reduction burning around Sydney, May 2016. Med. J. Aust. 205, 407–408 (2016).
    Google Scholar 

    152.
    U.S. Environmental Protection Agency, Office of Air and Radiation. The Benefits and Costs of the Clean Air Act from 1990 to 2020: Final Report — Rev. A (U.S. Environmental Protection Agency, Office of Air and Radiation, 2011).

    153.
    Bowman, D. et al. Can air quality management drive sustainable fuels management at the temperate wildland–urban interface? Fire 1, 27 (2018).
    Google Scholar 

    154.
    Mistry, J. & Berardi, A. Bridging indigenous and scientific knowledge. Science 352, 1274–1275 (2016).
    Google Scholar 

    155.
    Reyes-García, V. & Benyei, P. Indigenous knowledge for conservation. Nat. Sustain. 2, 657–658 (2019).
    Google Scholar 

    156.
    Bird, R. B., Tayor, N., Codding, B. F. & Bird, D. W. Niche construction and Dreaming logic: aboriginal patch mosaic burning and varanid lizards (Varanus gouldii) in Australia. Proc. R. Soc. B Biol. Sci. 280, 20132297 (2013).
    Google Scholar 

    157.
    Jackson, S. T. & Hobbs, R. J. Ecological restoration in the light of ecological history. Science 325, 567–569 (2009).
    Google Scholar 

    158.
    Bowman, D. M. & Legge, S. Pyrodiversity — why managing fire in food webs is relevant to restoration ecology. Restor. Ecol. 24, 848–853 (2016).
    Google Scholar 

    159.
    Schoennagel, T. et al. Adapt to more wildfire in western North American forests as climate changes. Proc. Natl Acad. Sci. USA 114, 4582–4590 (2017).
    Google Scholar 

    160.
    Strader, S. M. Spatiotemporal changes in conterminous US wildfire exposure from 1940 to 2010. Nat. Hazards 92, 543–565 (2018).
    Google Scholar 

    161.
    Balch, J. K. et al. Human-started wildfires expand the fire niche across the United States. Proc. Natl Acad. Sci. USA 114, 2946–2951 (2017).
    Google Scholar 

    162.
    Fischer, A. P. et al. Wildfire risk as a socioecological pathology. Front. Ecol. Environ. 14, 276–284 (2016).
    Google Scholar 

    163.
    Borchers Arriagada, N. et al. Unprecedented smoke‐related health burden associated with the 2019–20 bushfires in eastern Australia. Med. J. Aust. https://doi.org/10.5694/mja2.50545 (2020).
    Article  Google Scholar 

    164.
    Fischer, A. P. et al. Wildfire risk as a socioecological pathology. Front. Ecol. Environ. 14, 276–284 (2016).
    Google Scholar 

    165.
    Smith, A. M. et al. The science of firescapes: achieving fire-resilient communities. Bioscience 66, 130–146 (2016).
    Google Scholar 

    166.
    McWethy, D. B. et al. Rethinking resilience to wildfire. Nat. Sustain. 2, 797–804 (2019).
    Google Scholar 

    167.
    Curran, T., Perry, G., Wyse, S. & Alam, M. Managing fire and biodiversity in the wildland-urban interface: A role for green firebreaks. Fire 1, 3 (2018).
    Google Scholar 

    168.
    Bowman, D. M. J. S. & Stoof, C. Diversity helps fight wildfires. Nature 571, 478 (2019).
    Google Scholar 

    169.
    Cui, X. et al. Green firebreaks as a management tool for wildfires: Lessons from China. J. Environ. Manag. 233, 329–336 (2019).
    Google Scholar 

    170.
    Kolden, C. A. & Henson, C. A socio-ecological approach to mitigating wildfire vulnerability in the wildland urban interface: a case study from the 2017 Thomas fire. Fire 2, 9 (2019).
    Google Scholar 

    171.
    Eriksen, C. Gender and Wildfire: Landscapes of Uncertainty (Routledge, 2013).

    172.
    Huffman, M. R. Making a world of difference in fire and climate change. Fire Ecol. 10, 90–101 (2014).
    Google Scholar 

    173.
    Pratt, M. et al. The implications of megatrends in information and communication technology and transportation for changes in global physical activity. Lancet 380, 282–293 (2012).
    Google Scholar 

    174.
    Johnston, F. et al. Using smartphone technology to reduce health impacts from atmospheric environmental hazards. Environ. Res. Lett. 13, 044019 (2018).
    Google Scholar 

    175.
    Lovreglio, R., Kuligowski, E., Gwynne, S. & Strahan, K. A modelling framework for householder decision-making for wildfire emergencies. Int. J. Disaster Risk Reduct. 41, 101274 (2019).
    Google Scholar 

    176.
    Kulemeka, O. A review of wildland fire smartphone applications: a classification study from Australia, USA, Canada and South Africa. Int. J. Emerg. Serv. 4, 258–270 (2015).
    Google Scholar 

    177.
    Rappold, A. et al. Smoke Sense initiative leverages citizen science to address the growing wildfire‐related public health problem. GeoHealth 3, 443–457 (2019).
    Google Scholar 

    178.
    Maryam, H., Shah, M. A., Javaid, Q. & Kamran, M. A survey on smartphones systems for emergency management (SPSEM). Int. J. Adv. Comput. Sci. Appl. 7, 301–311 (2016).
    Google Scholar 

    179.
    Vardoulakis, S., Jalaludin, B. B., Morgan, G. G., Hanigan, I. C. & Johnston, F. H. Bushfire smoke: urgent need for a national health protection strategy. Med. J. Aust. 212, 349–353.e1 (2020).
    Google Scholar 

    180.
    Lipsett-Moore, G. J., Wolff, N. H. & Game, E. T. Emissions mitigation opportunities for savanna countries from early dry season fire management. Nat. Commun. 9, 2247 (2018).
    Google Scholar 

    181.
    Russell-Smith, J. et al. Deriving multiple benefits from carbon market-based savanna fire management: An Australian example. PLoS ONE 10, e0143426 (2015).
    Google Scholar 

    182.
    Russell-Smith, J. et al. Managing fire regimes in north Australian savannas: applying Aboriginal approaches to contemporary global problems. Front. Ecol. Environ. 11, e55–e63 (2013).
    Google Scholar 

    183.
    Andersen, A. N., Woinarski, J. C. Z. & Parr, C. L. Savanna burning for biodiversity: Fire management for faunal conservation in Australian tropical savannas. Austral Ecol. 37, 658–667 (2012).
    Google Scholar 

    184.
    Bowman, D. M., MacDermott, H. J., Nichols, S. C. & Murphy, B. P. A grass–fire cycle eliminates an obligate-seeding tree in a tropical savanna. Ecol. Evol. 4, 4185–4194 (2014).
    Google Scholar 

    185.
    Murphy, B. P., Russell‐Smith, J. & Prior, L. D. Frequent fires reduce tree growth in northern Australian savannas: implications for tree demography and carbon sequestration. Glob. Change Biol. 16, 331–343 (2010).
    Google Scholar 

    186.
    Petty, A. M., deKoninck, V. & Orlove, B. Cleaning, protecting, or abating? Making indigenous fire management “work” in northern Australia. J. Ethnobiol. 35, 140–163 (2015).
    Google Scholar 

    187.
    de Oliveira Andrade, R. Alarming surge in Amazon fires prompts global outcry. Nature https://doi.org/10.1038/d41586-019-02537-0 (23 Aug 2019).

    188.
    Kasischke, E. S., Christensen, N. Jr & Stocks, B. J. Fire, global warming, and the carbon balance of boreal forests. Ecol. Appl. 5, 437–451 (1995).
    Google Scholar 

    189.
    Bradshaw, C. J. & Warkentin, I. G. Global estimates of boreal forest carbon stocks and flux. Glob. Planet. Change 128, 24–30 (2015).
    Google Scholar 

    190.
    Dieleman, C. M. et al. Wildfire combustion and carbon stocks in the southern Canadian boreal forest: Implications for a warming world. Glob. Change Biol. https://doi.org/10.1111/gcb.15158 (2020).
    Article  Google Scholar 

    191.
    Bastin, J.-F. et al. The global tree restoration potential. Science 365, 76–79 (2019).
    Google Scholar 

    192.
    Bastin, J.-F. et al. Response to comments on “The global tree restoration potential”. Science 366, eaay8108 (2019).
    Google Scholar 

    193.
    Lewis, S. L., Wheeler, C. E., Mitchard, E. T. A. & Koch, A. Restoring natural forests is the best way to remove atmospheric carbon. Nature 568, 25–28 (2019).
    Google Scholar 

    194.
    Veldman, J. W. et al. Comment on “The global tree restoration potential”. Science 366, eaay7976 (2019).
    Google Scholar 

    195.
    Friedlingstein, P., Allen, M., Canadell, J. G., Peters, G. P. & Seneviratne, S. I. Comment on “The global tree restoration potential”. Science 366, eaay8060 (2019).
    Google Scholar 

    196.
    Lewis, S. L., Mitchard, E. T., Prentice, C., Maslin, M. & Poulter, B. Comment on “The global tree restoration potential”. Science 366, eaaz0388 (2019).
    Google Scholar 

    197.
    Grainger, A., Iverson, L. R., Marland, G. H. & Prasad, A. Comment on “The global tree restoration potential”. Science 366, eaay8334 (2019).
    Google Scholar 

    198.
    Luedeling, E. et al. Forest restoration: Overlooked constraints. Science 366, 315 (2019).
    Google Scholar 

    199.
    Lindenmayer, D. B., Hobbs, R. J., Likens, G. E., Krebs, C. J. & Banks, S. C. Newly discovered landscape traps produce regime shifts in wet forests. Proc. Natl Acad. Sci. USA 108, 15887–15891 (2011).
    Google Scholar 

    200.
    Anderegg, W. R. et al. Climate-driven risks to the climate mitigation potential of forests. Science 368, eaaz7005 (2020).
    Google Scholar 

    201.
    Nerini, F. F. et al. Connecting climate action with other sustainable development goals. Nat. Sustain. 2, 674–680 (2019).
    Google Scholar 

    202.
    Castree, N. Speaking for the ‘people disciplines’: Global change science and its human dimensions. Anthropocene Rev. 4, 160–182 (2017).
    Google Scholar 

    203.
    Stenzel, J. E. et al. Fixing a snag in carbon emissions estimates from wildfires. Glob. Change Biol. 25, 3985–3994 (2019).
    Google Scholar 

    204.
    Andela, N. et al. The global fire atlas of individual fire size, duration, speed and direction. Earth Syst. Sci. Data 11, 529–552 (2019).
    Google Scholar 

    205.
    Meng, R. et al. Using high spatial resolution satellite imagery to map forest burn severity across spatial scales in a Pine Barrens ecosystem. Remote Sens. Environ. 191, 95–109 (2017).
    Google Scholar 

    206.
    Filkov, A., Duff, T. & Penman, T. Improving fire behaviour data obtained from wildfires. Forests 9, 81 (2018).
    Google Scholar 

    207.
    White, I. et al. The vulnerability of water supply catchments to bushfires: impacts of the January 2003 wildfires on the Australian capital territory. Australas. J. Water Resour. 10, 179–194 (2006).
    Google Scholar 

    208.
    Kliskey, A. et al. Planning for Idaho’s waterscapes: A review of historical drivers and outlook for the next 50 years. Environ. Sci. Policy 94, 191–201 (2019).
    Google Scholar 

    209.
    Stocks, B. & Martell, D. L. Forest fire management expenditures in Canada: 1970–2013. Forestry Chron. 92, 298–306 (2016).
    Google Scholar 

    210.
    Burton, C., Betts, R., Jones, C. & Williams, K. Will fire danger be reduced by using solar radiation management to limit global warming to 1.5 C compared to 2.0 C? Geophys. Res. Lett. 45, 3644–3652 (2018).
    Google Scholar 

    211.
    Bedia, J. et al. Global patterns in the sensitivity of burned area to fire-weather: Implications for climate change. Agric. For. Meteorol. 214, 369–379 (2015).
    Google Scholar 

    212.
    Liu, Y., Stanturf, J. & Goodrick, S. Trends in global wildfire potential in a changing climate. For. Ecol. Manag. 259, 685–697 (2010).
    Google Scholar 

    213.
    Huang, Y., Wu, S. & Kaplan, J. O. Sensitivity of global wildfire occurrences to various factors in the context of global change. Atmos. Environ. 121, 86–92 (2015).
    Google Scholar 

    214.
    de Groot, W. J., Flannigan, M. D. & Cantin, A. S. Climate change impacts on future boreal fire regimes. For. Ecol. Manag. 294, 35–44 (2013).
    Google Scholar 

    215.
    Fonseca, M. G. et al. Effects of climate and land‐use change scenarios on fire probability during the 21st century in the Brazilian Amazon. Glob. Change Biol. 25, 2931–2946 (2019).
    Google Scholar 

    216.
    Le Page, Y. et al. Synergy between land use and climate change increases future fire risk in Amazon forests. Earth Syst. Dynam. 8, 1237–1246 (2017).
    Google Scholar 

    217.
    Dowdy, A. J. et al. Future changes in extreme weather and pyroconvection risk factors for Australian wildfires. Sci. Rep. 9, 10073 (2019).
    Google Scholar 

    218.
    Fox-Hughes, P., Harris, R., Lee, G., Grose, M. & Bindoff, N. Future fire danger climatology for Tasmania, Australia, using a dynamically downscaled regional climate model. Int. J. Wildland Fire 23, 309–321 (2014).
    Google Scholar 

    219.
    Syphard, A. D. et al. The relative influence of climate and housing development on current and projected future fire patterns and structure loss across three California landscapes. Global Environ. Change 56, 41–55 (2019).
    Google Scholar 

    220.
    Yoon, J.-H. et al. Extreme fire season in California: a glimpse into the future? Bull. Am. Meteorol. Soc. 96, S5–S9 (2015).
    Google Scholar 

    221.
    Wang, X. et al. Projected changes in daily fire spread across Canada over the next century. Environ. Res. Lett. 12, 025005 (2017).
    Google Scholar 

    222.
    Young, A. M., Higuera, P. E., Duffy, P. A. & Hu, F. S. Climatic thresholds shape northern high‐latitude fire regimes and imply vulnerability to future climate change. Ecography 40, 606–617 (2017).
    Google Scholar 

    223.
    Jones, M. W. et al. Climate change increases the risk of wildfires. ScienceBrief https://sciencebrief.org/briefs/wildfires (2020).

    224.
    Vitolo, C., Di Giuseppe, F., Krzeminski, B. & San-Miguel-Ayanz, J. A 1980–2018 global fire danger re-analysis dataset for the Canadian Fire Weather Indices. Sci. Data 6, 190032 (2019).
    Google Scholar 

    225.
    DiMiceli, C. et al. MOD44B v006. MODIS/Terra Vegetation Continuous Fields Yearly L3 Global 250 m SIN Grid (NASA EOSDIS Land Processes DAAC, 2015).

    226.
    Littell, J. S., McKenzie, D., Peterson, D. L. & Westerling, A. L. Climate and wildfire area burned in western US ecoprovinces, 1916–2003. Ecol. Appl. 19, 1003–1021 (2009).
    Google Scholar 

    227.
    Eidenshink, J. et al. A project for monitoring trends in burn severity. Fire Ecol. 3, 3–21 (2007).
    Google Scholar 

    228.
    Turco, M. et al. Climate drivers of the 2017 devastating fires in Portugal. Sci. Rep. 9, 13886 (2019).
    Google Scholar 

    229.
    Bowman, D. M., Murphy, B. P., Neyland, D. L., Williamson, G. J. & Prior, L. D. Abrupt fire regime change may cause landscape‐wide loss of mature obligate seeder forests. Glob. Change Biol. 20, 1008–1015 (2014).
    Google Scholar  More

  • in

    Biodiversity scientists must fight the creeping rise of extinction denial

    These attempts to downplay the biodiversity crisis follow the ‘Scientific Certainty Argumentation Methods’ playbook, which includes all three categories of denial envisioned by Stanley Cohen in a framework first applied to the study of atrocities and other unwelcome truths4. These are: (1) ‘Literal denial’, an assertion that something is untrue, for example the evidence for greatly elevated rates of species threat and extinction; (2) ‘Interpretive denial’, in which raw facts are not disputed but given a different spin, for example using evidence from temperate ecosystems to make claims about reduced impacts in the tropics; (3) ‘Implicatory denial’, in which data are not denied, but implications are, for example arguing that transformative changes to socio–ecological systems are not required to avert species extinctions.
    We address each of these in detail, before exploring ways to counter erroneous claims and logical fallacies that we understand to be ‘extinction denialism’ or ‘biodiversity loss denialism’.
    Literal denial: ‘Species extinctions were predominantly a historical problem’
    Extinction deniers often downplay the extinction crisis by framing it as a historical problem and a trivial contemporary challenge (Supplementary Table 1). By focusing attention on the loss of megafauna in prehistory owing to overhunting and rapid loss of island biodiversity in historic times, it is suggested we have passed through these extinction filters and reached the ‘other side’ of the crisis. This ‘literal denial’ line of argument misses several key facets of the extinction crisis, notably that species, including island endemics, are still being lost5 and that the catastrophic loss, degradation and fragmentation of whole ecosystems, combined with climate change, is triggering a new episode of continental extinctions6. This is particularly acute in the highly biodiverse tropics and where extinctions are just the endpoint of a long process of extirpation and defaunation7 (Box 1, Supplementary Table 2). Moreover, biologists are typically conservative in declaring possible extinctions, and across the world there are 143 amphibians, 41 reptiles, 29 mammals and 22 bird species classed by the International Union for Conservation of Nature (IUCN) Red List of Threatened Species (https://www.iucnredlist.org) as ‘Critically Endangered (Possibly Extinct)’. Many of these species are likely already gone, while many more, including the 75 species listed as ‘Extinct in the Wild’, are only hanging on due to expensive, last resort, conservation interventions8.

    Box 1 Examples of species and systems misrepresented by extinction denialists

    Literal denial: for example, underestimating and overlooking recent extinctions.
    The Atlantic Rainforest has been long touted by deniers as an example of a biome that had lost 90% of its habitat without a single documented extinction. Yet the Alagoas foliage-gleaner (Philydor novaesi) (a) and the cryptic treehunter (Cichlocolaptes mazarbarnetti) were confirmed as extinct in 2019, each only ever known from two forest fragments, and seven other species have not been seen for a decade or are down to the last few individuals (Supplementary Table 2). Extinction deniers downplaying the relatively small number of documented extinctions are wrong for the same reasons as those who sought to downplay the impact of the SARS-CoV-2 pandemic in early 2020. Just as the true number of cases was underestimated because of the widespread lack of testing, the true number of extinctions is far higher than those observed, because the majority of the Earth’s species have not even been described — especially the rarer and more specialized species, which are most vulnerable. And, as with the initially unthinkable predictions of epidemiologists, conservation scientists are beginning to see their grim predictions of extinction debt borne out.
    Interpretive denial: for example, resurgent carnivores are not umbrella species for all taxa.
    The resurgence of the Eurasian brown bear (Ursus arctos arctos) (b), grey wolf (Canis lupus), Eurasian lynx (Lynx lynx) and their prey base in Europe reflects land abandonment and rural depopulation associated with globalization and mechanization of agricultural production systems but should not be interpreted as a recovery of biodiversity more widely. These population recoveries have come alongside losses in farm income and rural employment. Other factors include reduced human–wildlife conflict and better legislative protection. Large mammals are typically habitat generalists and their recolonization of managed habitats like European forests has not been accompanied by a resurgence of habitat specialists. Old growth forest dependent white-backed woodpeckers (Dendrocopos leucotos), for example, remain on the cusp of extinction even in heavily forested Scandinavia. The saproxylic beetles they rely upon are associated with ancient trees and natural large-scale fire regimes with long return times and are consequently extremely rare or extinct in Europe’s managed forests.
    Implicatory denial: for example, misrepresenting land sparing as a silver bullet for conservation.
    Vast soy bean (Glycine max) fields (c) at the ecotone of the Amazon and Cerrado biomes in Brazil. Land sparing — minimizing the land area of agriculture while protecting and restoring as large an area of native vegetation as possible — may well be a useful strategy to reduce extinctions associated with habitat loss. Various studies have confirmed that protection of large areas of native vegetation will be essential for the conservation of the many specialized and threatened species that inhabit the tropics17. However, agricultural intensification alone is no guarantee that land will be spared for nature, and if it increases profits, there is a risk that this will encourage further deforestation. Furthermore, not all methods for increasing yields are equal. There is a need to minimize negative environmental externalities, make sure that key ecosystem services are still provided at landscape scales, and ensure that intensification does not simply result in the increased demand that characterizes the great acceleration. Land uses that incorporate people, such as indigenous reserves, are among the most effective at conserving forest cover, and are an essential complement to strictly protected areas.

    Credit: Ciro Albano (a); Richard Moores (b); Alexander C. Lees (c).

    Interpretive denial: ‘Economic growth alone will fix the extinction crisis’
    Extinction denialists often invoke an Environmental Kuznets Curve (EKC)9 response of biodiversity to development (Supplementary Table 1), arguing that pressures on the environment eventually decrease with rising income levels. Yet the EKC hypothesis is misleading in this context. First, empirical evidence of the relationship between economic development and forest cover only supports the loss part of the curve10. Second, the EKC is typically a local rather than a global phenomenon, and global environmental indicators of indirect impacts such as CO2 emissions, waste production and energy consumption are still increasing monotonically. Country-specific assessments of EKC often ignore the outsourcing of environmental degradation to poorer countries. Denialists also highlight the resurgence of certain large charismatic species such as wolves and bears in Europe and North America as evidence that we are through the worst of the extinction crisis. However, this is only a partial success story (Box 1). Similar successes in the tropics are highly unlikely: species richness, species packing and habitat and niche specialization are all far higher at tropical latitudes, while geographic range sizes are much smaller. These factors mean that tropical biodiversity is far more extinction-prone then temperate biodiversity11. The unfortunate truth is that there are many imminent or actual extinctions in highly deforested tropical regions (Supplementary Table 2). Finally, the so-called ‘Forest Transition’ model9, which envisages an EKC-style relationship between forest cover and development, fails to differentiate between native forests and monoculture plantations of oil palm, conifers and eucalyptus, despite the expansion of plantations being an important cause of biodiversity loss. Many global forest models are not sensitive to the difference12 and conflating plantations with natural forests has long been a key feature of the denialist playbook.
    Implicatory denial: ‘Technological fixes and targeted conservation interventions will overcome extinction’
    Extinction denialists are often selective, choosing to highlight only a subset of factors causing contemporary extinctions, such as overharvesting and predation by non-native species, while choosing not to mention habitat loss that affects the majority of species on the Red List. They then suggest that solutions are simple, requiring no change or business-as-usual actions, even though it is increasing resource demands and current socio–ecological and economic modes of organization that imperil biodiversity globally7. Invasive species, overharvesting and pathogens are undoubtedly major conservation issues responsible for global extinctions of many — particularly insular — species, and technological fixes form part of the portfolio of conservation interventions. However, these threats are often exacerbated by habitat loss and climate change, and all must be addressed together. A disproportionate focus on a subset of drivers is a form of implicatory denial that is contrary to scientific consensus: recognizing the importance of one set of threats does not obviate the need to address others8. Another form of implicatory denial involves the misrepresentation of the land sharing/sparing concept (Box 1). More

  • in

    Microbial munchies

    Marine sediments comprise Earth’s largest organic carbon (OC) pool and a vast number of microorganism species (in the order of 1,029 species) that feed on it. However, the inaccessibility of the seafloor and the long timescales over which many sediment processes occur, has resulted in a limited and extremely patchy understanding of subseafloor biogeochemistry. Moreover, outside of data from specific sediment cores and laboratory experiments, how much energy microbes in marine sediments need to survive is not well known.

    James Bradley of Queen Mary University of London, UK, and colleagues, modelled the global degradation of OC in marine sediments deposited during the Quaternary and calculated the amount of energy subseafloor microbes use. Three different microbial metabolisms were considered — aerobic respiration, sulfate reduction and methanogenesis. 0.171 Pg C yr-1 of OC degradation was linked to sulfate reduction (64.5% of global Quaternary OC degraded), with another 0.076 C yr-1 (28.6%) associated with methanogenesis. Although aerobic respiration degraded only 0.018 Pg C yr-1 (6.9% of OC), it provided 54.5% (20.3 GW) of the power (energy flux) to the subseafloor. Sulfate reduction and methanogensis provided 39.1% (14.6 GW) and 6.4% (2.4 GW) of global subseafloor power, respectively. When these values were scaled on an individual cell basis, the average amount of power used per microbe was two orders of magnitude less than the lowest experimentally-based estimates of the minimum power required to sustain life. This result suggests that in situ microbial power requirements are much lower than previously thought. More

  • in

    Next generation sequencing-aided comprehensive geographic coverage sheds light on the status of rare and extinct populations of Aporia butterflies (Lepidoptera: Pieridae)

    1.
    Hughes, A. R. & Stachowicz, J. J. Genetic diversity enhances the resistance of a seagrass ecosystem to disturbance. Proc. Natl. Acad. Sci. U.S.A. 101, 8998–9002 (2004).
    ADS  CAS  PubMed  PubMed Central  Google Scholar 
    2.
    Frankham, R. Genetics and extinction. Biol. Conserv. 126, 131–140 (2005).
    Google Scholar 

    3.
    Koizumi, I., Usio, N., Kawai, T., Azuma, N. & Masuda, R. Loss of genetic diversity means loss of geological information: The endangered japanese crayfish exhibits remarkable historical footprints. PLoS ONE 7(3), e33986. https://doi.org/10.1371/journal.pone.0033986 (2012).
    ADS  CAS  Article  PubMed  PubMed Central  Google Scholar 

    4.
    Nazari, V., Schmidt, B. C., Prosser, S. & Hebert, P. D. N. Century-old DNA barcodes reveal phylogenetic placement of the extinct Jamaican Sunset Moth, Urania sloanus Cramer (Lepidoptera: Uraniidae). PLoS ONE 11(10), e0164405. https://doi.org/10.1371/journal.pone.0164405 (2016).
    CAS  Article  PubMed  PubMed Central  Google Scholar 

    5.
    Nazari, V., Tarmann, G. & Efetov, K. A. Phylogenetic position of the ‘extinct’ Fijian coconut moth, Levuana iridescens (Lepidoptera: Zygaenidae). PLoS ONE 14(12), e0225590. https://doi.org/10.1371/journal.pone.0225590 (2019).
    CAS  Article  PubMed  PubMed Central  Google Scholar 

    6.
    Kim, Y. S. Illustrated Book of Korean Butterflies in Color (Kyo-Hak Publishing, Seoul, 2002).
    Google Scholar 

    7.
    Park, J. S., Cho, Y., Kim, M. J., Nam, S. H. & Kim, I. Description of complete mitochondrial genome of the black-veined white, Aporia crataegi (Lepidoptera: Papilionoidea), and comparison to papilionoid species. J. Asia-Pac. Entomol. 15, 331–341 (2012).
    CAS  Google Scholar 

    8.
    Park, H. C. et al. DNA barcode analysis for conservation of an endangered species, Aporia crataegi (Lepidoptera, Pieridae) in Korea. J. Seric. Entomol. Sci. 51, 201–206 (2013).
    Google Scholar 

    9.
    Della Bruna, C., Gallo, E. & Sbordoni, V. Pieridae, part I (2nd edition). Guide to the Butterflies of the Palearctic Region (ed. Bozano, G. C.) (Omnes Artes, 2013).

    10.
    Savela, M. Lepidoptera and some other life forms https://www.nic.funet.fi/pub/sci/bio/life/insecta/lepidoptera/ (2018). Accessed 10 November 2019.

    11.
    Braby, M. F., Vila, R. & Pierce, N. E. Molecular phylogeny and systematics of the Pieridae (Lepidoptera: Papilionoidea): Higher classification and biogeography. Zool. J. Linn. Soc. 147, 239–275 (2006).
    Google Scholar 

    12.
    Wahlberg, N., Rota, J., Braby, M. F., Pierce, N. E. & Wheat, C. W. Revised systematics and higher classification of pierid butterflies (Lepidoptera: Pieridae) based on molecular data. Zool. Scr. 43, 641–650 (2014).
    Google Scholar 

    13.
    Ding, C. & Zhang, Y. Phylogenetic relationships of Pieridae (Lepidoptera: Papilionoidea) in China based on seven gene fragments. Entomol. Sci. 20, 15–23 (2017).
    Google Scholar 

    14.
    Klots, A. B. A generic classification of the Pieridae (Lepidoptera) together with a study of the male genitalia. Entomol. Am. 12, 13–242 (1933).
    Google Scholar 

    15.
    Braby, M. F. Provisional checklist of genera of the Pieridae (Lepidoptera: Papilionidae). Zootaxa 832, 1–16 (2005).
    Google Scholar 

    16.
    Chou, I. Monograph of Chinese Butterflies, First Volume (Henan Scientific and Technological Publishing House, Zhengzhou, 1999).
    Google Scholar 

    17.
    Wu, C. Fauna Sinica, Insecta vol. 52, Lepidoptera, Pieridae (Science Press, Beijing, 2010).
    Google Scholar 

    18.
    Ding, C. & Zhang, Y. Phylogenetic relationships of the genera Aporia and Mesapia (Lepidoptera: Pieridae) based on COI and EF1α gene sequences. Acta Entomol. Sin. 59(8), 880–887 (2016).
    Google Scholar 

    19.
    Della Bruna, C., Gallo, E., Sbordoni, V. & Bozano, G. C. Addenda to the genus Aporia Hübner, [1819] (Lepidoptera: Pieridae). Nachrichten des Entomologischen Vereins Apollo N. F. 29(4), 205–209 (2009).
    Google Scholar 

    20.
    Deodati, T. Filogenesi molecolare, barcoding e stima dei tempi evolutivi in tre gruppi di farfalle diurne (Insecta: Lepidoptera) a distribuzione Sino-Himalayana (PhD thesis) (University of Rome Tor Vergata, 2010).

    21.
    Allan, P. B. M. Moths and Memories 1st edn. (Watkins & Doncaster, Pudleston, 1948).
    Google Scholar 

    22.
    Jugovic, J., Črne, M. & Lužnik, M. Movement, demography and behaviour of a highly mobile species: A case study of the black-veined white, Aporia crataegi (Lepidoptera: Pieridae). Eur. J. Entomol. 114, 113–122 (2017).
    Google Scholar 

    23.
    Kim, T. G., Han, Y. G., Kwon, O. & Cho, Y. Changes in Aporia crataegi’s potential habitats in accordance with climate changes in the northeast Asia. J. Ecol. Environ. 38(1), 15–23 (2015).
    Google Scholar 

    24.
    van Swaay, C. et al. Aporia crataegi. The IUCN Red List of Threatened Species; https://www.iucnredlist.org (2014). Accessed 10 November 2019.

    25.
    van Swaay, C. et al. Aporia crataegi. The IUCN Red List of Threatened Species; https://www.iucnredlist.org (2010). Accessed 10 November 2019.

    26.
    Ivanova, N. V., deWaard, J. R. & Hebert, P. D. N. An inexpensive, automation friendly protocol for recovering high-quality DNA. Mol. Ecol. Notes 6, 998–1002 (2006).
    CAS  Google Scholar 

    27.
    Prosser, S. W. J., de Waard, J. R., Miller, S. E. & Hebert, P. D. N. DNA barcodes from century-old type specimens using next-generation sequencing. Mol. Ecol. Resour. 16(2), 487–497 (2016).
    CAS  PubMed  Google Scholar 

    28.
    Hajibabaei, M. et al. Critical factors for assembling a high volume of DNA barcodes. Philos. Trans. R. Soc. Lond. B 360, 1959–1967 (2005).
    CAS  Google Scholar 

    29.
    deWaard, J. R., Ivanova, N. V., Hajibabaei, M. & Hebert, P. D. N. Assembling DNA barcodes: Analytical protocols. Method Mol. Biol. Environ. Genet. 410, 275–293 (2008).
    CAS  Google Scholar 

    30.
    Librado, P. & Rozas, J. DnaSP v5: A software for comprehensive analysis of DNA polymorphism data. Bioinformatics 25, 1451–1452 (2009).
    CAS  PubMed  PubMed Central  Google Scholar 

    31.
    Kumar, S., Stecher, G., Li, M., Knyaz, C. & Tamura, K. MEGA X: Molecular evolutionary genetics analysis across computing platforms. Mol. Biol. Evol. 35(6), 1547–1549 (2018).
    CAS  PubMed  PubMed Central  Google Scholar 

    32.
    Bandelt, H. J., Forster, P. & Röhl, A. Median-joining networks for inferring intraspecific phylogenies. Mol. Biol. Evol. 16, 37–48 (1999).
    CAS  PubMed  Google Scholar 

    33.
    Kalyaanamoorthy, S., Minh, B. Q., Wong, T. K. F., von Haeseler, A. & Jermiin, L. S. ModelFinder: Fast model selection for accurate phylogenetic estimates. Nat. Methods 14, 587–589 (2017).
    CAS  PubMed  PubMed Central  Google Scholar 

    34.
    Nguyen, L. T., Schmidt, H. A., von Haeseler, A. & Minh, B. Q. IQ-TREE: A fast and effective stochastic algorithm for estimating maximum likelihood phylogenies. Mol. Biol. Evol. 32, 268–274 (2015).
    CAS  PubMed  Google Scholar 

    35.
    Stamatakis, A. RAxML-VI-HPC: Maximum likelihood-based phylogenetic analyses with thousands of taxa and mixed models. Bioinformatics 22(21), 2688–2690 (2006).
    CAS  Google Scholar 

    36.
    Boc, A., Diallo, A. B. & Makarenkov, V. T-REX: A web server for inferring, validating and visualizing phylogenetic trees and networks. Nucleic Acids Res. 40(W1), W573–W579 (2012).
    PubMed  PubMed Central  Google Scholar 

    37.
    Rambaut, A. Figtree v1.4. https://tree.bio.ed.ac.uk/software/figtree (2012). Accessed 23 November 2019.

    38.
    Kimura, M. Genetic variability maintained in a finite population due to mutational production of neutral and nearly neutral isoalleles. Genet. Res. 11, 247–269 (1968).
    CAS  PubMed  Google Scholar 

    39.
    Ramos-Onsins, S. & Rozas, J. Statistical properties of new neutrality tests against population growth. Mol. Biol. Evol. 19, 2092–2100 (2002).
    CAS  PubMed  Google Scholar 

    40.
    Fu, Y. X. Statistical tests of neutrality of mutations against population growth, hitchhiking and background selection. Genetics 147, 915–925 (1997).
    CAS  PubMed  PubMed Central  Google Scholar 

    41.
    Ramirez-Soriano, A., Ramos-Onsins, S. E., Rozas, J., Calafell, F. & Navarro, A. Statistical power analysis of neutrality tests under demographic expansions, contractions and bottlenecks with recombination. Genetics 179, 555–567 (2008).
    PubMed  PubMed Central  Google Scholar 

    42.
    Holsinger K. E. Tajima’s D, Fu’s F S, Fay and Wu’s H, and Zeng et al.’s E. in Lecture Notes in Population Genetics (ed. Holsinger, K. E. 2001-2019) 291–296 (University of Connecticut, 2017).

    43.
    Excoffier, L. & Lischer, H. E. L. Arlequin suite ver 3.5: A new series of programs to perform population genetics analyses under Linux and Windows. Mol. Ecol. Resour. 10, 564–567 (2010).
    PubMed  PubMed Central  Google Scholar 

    44.
    Hudson, R. R. Gene genealogies and the coalescent process. In Oxford Surveys in Evolutionary Biology (eds Futuyma, D. J. & Antonovics, J. D.) 1–44 (Oxford University Press, Oxford, 1990).
    Google Scholar 

    45.
    Schneider, S. & Excoffier, L. Estimation of past demographic parameters from the distribution of pairwise differences when the mutation rates vary among sites: Application to human mitochondrial DNA. Genetics 152, 1079–1089 (1999).
    CAS  PubMed  PubMed Central  Google Scholar 

    46.
    Ray, N., Currat, M. & Excoffier, L. Intra-deme molecular diversity in spatially expanding populations. Mol. Biol. Evol. 20, 76–86 (2003).
    CAS  PubMed  Google Scholar 

    47.
    Excoffier, L. Patterns of DNA sequence diversity and genetic structure after a range expansion: Lessons from the infinite-island model. Mol. Ecol. 13, 853–864 (2004).
    CAS  PubMed  Google Scholar 

    48.
    Brower, A. V. Z. Rapid morphological radiation and convergence among races of the butterfly Heliconius erato, inferred from patterns of mitochondrial DNA evolution. Proc. Natl. Acad. Sci. U.S.A. 91, 6491–6495 (1994).
    ADS  CAS  PubMed  PubMed Central  Google Scholar 

    49.
    Tadokoro, T., Koide, Y. & Hori, K. Description of a new subspecies of Mesapia peloria from central Nepal, and taxonomic notes for other subspecies (Lepidoptera, Pieridae). Lepidoptera Sci. 65(2), 51–59 (2014).
    Google Scholar 

    50.
    Schmitt, T. Molecular biogeography of Europe: Pleistocene cycles and postglacial trends. Front. Zool. 4(1), 11 (2007).
    PubMed  PubMed Central  Google Scholar 

    51.
    Dapporto, L. et al. Integrating three comprehensive data sets shows that mitochondrial DNA variation is linked to species traits and paleogeographic events in European butterflies. Mol. Ecol. Resour. 00, 1–14 (2019).
    Google Scholar 

    52.
    Ehlers, J., Astakhov, V., Gibbard, P. L., Mangerud, J. & Svendsen, J. I. Late pleistocene glaciations in Europe. In Encyclopedia of Quaternary Science (ed. Elias, S. A.) 1085–1095 (Elsevier, Hoboken, 2006).
    Google Scholar 

    53.
    King, R. A. & Ferris, C. Chloroplast DNA phylogeography of Alnus glutinosa (L.) Gaertn. Mol. Ecol. 7, 1151–1161 (1998).
    CAS  Google Scholar 

    54.
    Wallis, G. P. & Arntzen, J. W. Mitochondrial-DNA variation in the crested newt superspecies: Limited cytoplasmic gene flow among species. Evolution 43, 88–104 (1989).
    CAS  PubMed  Google Scholar 

    55.
    Dapporto, L. Speciation in Mediterranean refugia and post-glacial expansion of Zerynthia polyxena (Lepidoptera, Papilionidae). J. Zool. Syst. Evol. Res. 48(3), 229–237 (2010).
    Google Scholar 

    56.
    Galtier, N., Nabholz, B., Glémin, S. & Hurst, G. D. D. Mitochondrial DNA as a marker of molecular diversity: A reappraisal. Mol. Ecol. 18(22), 4541–4550 (2009).
    CAS  PubMed  Google Scholar 

    57.
    Stein, E. D., Martinez, M. C., Stiles, S., Miller, P. E. & Zakharov, E. V. Is DNA barcoding actually cheaper and faster than traditional morphological methods: Results from a survey of freshwater bioassessment efforts in the United States?. PLoS ONE 9(4), e95525. https://doi.org/10.1371/journal.pone.0095525 (2014).
    ADS  CAS  Article  PubMed  PubMed Central  Google Scholar 

    58.
    Sanmartin, I. Dispersal vs. vicariance in the Mediterranean: historical biogeography of the Palearctic Pachydeminae (Coleoptera, Scarabaeoidea). J. Biogeogr. 30, 1883–1897 (2003).
    Google Scholar 

    59.
    Krijgsman, W. The Mediterranean: Mare nostrum of earth sciences. Earth Planet. Sci. Lett. 205, 1–12 (2002).
    ADS  CAS  Google Scholar 

    60.
    Steininger, F. F. & Rogl, F. Paleogeography and palinspastic reconstruction of the Neogene of the Mediterranean and Paratethys. In The Geological Evolution of the Eastern Mediterranean (eds Dixon, J. E. & Robertson, A. H. F.) 659–668 (Geological Society Special Publication. Blackwell Scientific Publications, Hoboken, 1996).
    Google Scholar 

    61.
    De Jong, H. In search of historical biogeographic patterns in the western Mediterranean terrestrial fauna. Biol. J. Linnean Soc. 65, 99–164 (1998).
    Google Scholar 

    62.
    Nazari, V., Ten Hagen, W. & Bozano, G. C. Molecular systematics and phylogeny of the ‘Marbled Whites’ (Lepidoptera: Nymphalidae, Satyrinae, Melanargia Meigen). Syst. Entomol. 35, 132–147 (2010).
    Google Scholar 

    63.
    Todisco, V. et al. Molecular phylogeny of the Palaearctic butterfly genus Pseudophilotes (Lepidoptera: Lycaenidae) with focus on the Sardinian endemic P. barbagiae. BMC Zool. 3, 4 (2018).
    Google Scholar 

    64.
    Dinca, V., Dapporto, L. & Vila, R. A combined genetic-morphometric analysis unravels the complex biogeographical history of Polyommatus icarus and Polyommatus celina common blue butterflies. Mol. Ecol. 20, 3921–3935 (2011).
    CAS  PubMed  Google Scholar 

    65.
    Sañudo-Restrepo, C. P., Dinca, V., Talavera, G. & Vila, R. Biogeography and systematics of Aricia butterflies (Lepidoptera, Lycaenidae). Mol. Phylogenet. Evol. 66, 369–379 (2013).
    PubMed  Google Scholar  More

  • in

    Comparing methods for estimating leaf area index by multi-angular remote sensing in winter wheat

    1.
    Delegido, J. et al. A red-edge spectral index for remote sensing estimation of green LAI over agroecosystems. Eur. J. Agron. 46, 42–52 (2013).
    Google Scholar 
    2.
    Liang, L. et al. Estimation of crop LAI using hyperspectral vegetation indices and a hybrid inversion method. Remote Sens. Environ. 165, 123–134 (2015).
    ADS  Google Scholar 

    3.
    Meng, Q. Y. et al. Hot dark spot index method based on multi-angular remote sensing for leaf area index retrieval. Environ Earth Sci. 75, 732. https://doi.org/10.1007/s12665-016-5549-x (2016).
    Article  Google Scholar 

    4.
    Zhu, Y. H. et al. Exploring the potential of WorldView-2 red-edge band-based vegetation indices for estimation of mangrove leaf area index with machine learning algorithms. Remote Sens. 9, 1060. https://doi.org/10.3390/rs9101060 (2017).
    ADS  Article  Google Scholar 

    5.
    Guyot, G., Baret, F. & Jacquemoud, S. Imaging spectroscopy for vegetation studies. In Imaging Spectroscopy: Fundamentals and Prospective Applications (eds Toselli, F. & Bodechtel, J.) 145–165 (Kluwer Academic Publications, Dordrecht, 1992).
    Google Scholar 

    6.
    Mutanga, O., Adam, E. & Cho, M. A. High density biomass estimation for wetland vegetation using worldview-2 imagery and random forest regression algorithm. Int. J. Appl. Earth Obs. Geo. Inf. 18, 399–406 (2012).
    ADS  Google Scholar 

    7.
    Broge, N. H. & Leblanc, E. Comparing prediction power and stability of broadband and hyperspectral vegetation indices for estimation of green leaf area index and canopy chlorophyll density. Remote Sens. Environ. 76, 156–172 (2001).
    ADS  Google Scholar 

    8.
    Haboudane, D., Miller, J. R., Pattey, E., Zarco-Tejada, P. J. & Strachan, I. B. Hyperspectral vegetation indices and novel algorithms for predicting green LAI of crop canopies: Modeling and validation in the context of precision agriculture. Remote Sens. Environ. 90, 337–352 (2004).
    ADS  Google Scholar 

    9.
    LeMaire, G. et al. Calibration and validation of hyperspectral indices for the estimation of broadleaved forest leaf chlorophyll content, leaf mass per area, leaf area index and leaf canopy biomass. Remote Sens. Environ. 112, 3846–3864 (2008).
    ADS  Google Scholar 

    10.
    Yang, X. H. et al. Comparison between radial basis function neural network and regression model for estimation of rice biophysical parameters using remote sensing. Pedosphere 19, 176–188 (2009).
    Google Scholar 

    11.
    Noh, H., Zhang, Q., Han, S. & Feng, L. A Neural network model of maize crop nitrogen stress assessment for multi-spectral imaging sensor. Biosyst. Eng. 94, 477–485 (2006).
    Google Scholar 

    12.
    Liu, M. L., Liu, X. N., Li, M., Fang, M. H. & Chi, W. X. Neural-network model for estimating leaf chlorophyll concentration in rice under stress from heavy metals using four spectral indices. Biosyst. Eng. 106, 223–233 (2010).
    Google Scholar 

    13.
    Ye, X., Sakai, K., Garciano, L. Q., Asada, S.-I. & Sasao, A. Estimation of citrus yield from airborne hyperspectral images using a neural network model. Ecol. Model. 198, 426–432 (2006).
    Google Scholar 

    14.
    Walthall, C. et al. A comparison of empirical and neural network approaches for estimating corn and soybean leaf area index from Landsat ETM+ imagery. Remote Sens. Environ. 92, 465–474 (2004).
    ADS  Google Scholar 

    15.
    Huang, Z., Turner, B. J., Dury, S. J., Wallis, I. R. & Foley, W. J. Estimating foliage nitrogen concentration from HYMAP data using continuum removal analysis. Remote Sens. Environ. 93, 18–29 (2004).
    ADS  Google Scholar 

    16.
    Hansen, P. M. & Schjoerring, J. K. Reflectance measurement of canopy biomass and nitrogen status in wheat crops using normalized difference vegetation indices and partial least squares regression. Remote Sens. Environ. 86, 542–553 (2003).
    ADS  Google Scholar 

    17.
    Darvishzadeh, R. et al. LAI and chlorophyll estimation for a heterogeneous grassland using hyperspectral measurements. ISPRS J. Photogramm. Remote Sens. 63, 409–426 (2008).
    ADS  Google Scholar 

    18.
    Nguyen, H. T. & Lee, B. W. Assessment of rice leaf growth and nitrogen status by hyperspectral canopy reflectance and partial least square regression. Eur. J. Agron. 24, 349–356 (2006).
    Google Scholar 

    19.
    Jin, X. L. et al. Estimation of leaf water content in winter wheat using grey relational analysis-partial least squares modeling with hyperspectral data. Agron. J. 105, 1385–1392 (2013).
    Google Scholar 

    20.
    Atzberger, C., Guérif, M., Baret, F. & Werner, W. Comparative analysis of three chemometric techniques for the spectroradiometric assessment of canopy chlorophyll content in winter wheat. Comput. Electro. Agric. 73, 165–173 (2010).
    Google Scholar 

    21.
    Mirzaie, M. et al. Comparative analysis of different uni- and multi-variate methods for estimation of vegetation water content using hyper-spectral measurements. Int. J. Appl. Earth Obs. Geo. Inf. 26, 1–11 (2014).
    ADS  Google Scholar 

    22.
    Durbha, S. S., King, R. L. & Younan, N. H. Support vector machines regression for retrieval of leaf area index from multiangle imaging spectroradiometer. Remote Sens. Environ. 107, 348–361 (2007).
    ADS  Google Scholar 

    23.
    Yang, G. J., Zhao, C. J., Xing, Z. R., Huang, W. J. & Wang, J. H. LAI inversion of spring wheat based on PROBA/CHRIS hyperspectral multi-angular data and PROSAIL model. Trans CSAE. 27, 88–94 (2011) (In Chinese with English abstract).
    CAS  Google Scholar 

    24.
    Chen, J. M., Menges, C. H. & Leblanc, S. G. Global mapping of foliage clumping index using multi-angular satellite data. Remote Sens. Environ. 97, 447–457 (2005).
    ADS  Google Scholar 

    25.
    Wang, Q. et al. The potential of forest biomass inversion based on vegetation indices using multi-angel CHRIS-PROBA data. Remote Sens. 8, 891. https://doi.org/10.3390/rs8110891 (2016).
    ADS  Article  Google Scholar 

    26.
    Rougean, J. L. & Breon, F. M. Estimating PAR absorbed by vegetation from bidrectional reflectance measurements. Remote Sens. Environ. 51, 375–384 (1995).
    ADS  Google Scholar 

    27.
    Gemmell, F. & McDonald, A. J. View zenith angle effects on the forest information content of three spectral indices. Remote Sens. Environ. 72, 139–158 (2000).
    ADS  Google Scholar 

    28.
    Pocewicz, A., Vierling, L. A., Lentile, L. B. & Smith, R. View angle effects on relationships between MISR vegetation indices and leaf index in a recently burned ponderosa pine forest. Remote Sens. Environ. 107, 322–333 (2007).
    ADS  Google Scholar 

    29.
    Stagakis, S., Markos, N., Sykioti, O. & Kyparissis, A. Monitoring canopy biophysical and biochemical parameters in ecosystem scale using satellite hyperspectral imagery: An application on a Phlomis fruticosa Mediterranean ecosystem using multi-angular CHRIS/PROBA observations. Remote Sens. Environ. 114, 977–994 (2010).
    ADS  Google Scholar 

    30.
    Hasegawa, K., Matsuyama, H., Tsuzuki, H. & Sweda, T. Improving the estimation of leaf area index by using remotely sensed NDVI with BRDF signatures. Remote Sens. Environ. 114, 514–519 (2010).
    ADS  Google Scholar 

    31.
    Wu, C., Han, X., Niu, Z. & Dong, J. An evaluation of EO-1 hyperspectral Hyperion data for chlorophyll content and leaf area index estimation. Int. J. Remote Sens. 31, 1079–1086 (2010).
    ADS  Google Scholar 

    32.
    Herrmann, I. et al. LAI assessment of wheat and potato crops by VENS and Sentinel-2 bands. Remote Sens. Environ. 115, 2141–2151 (2011).
    ADS  Google Scholar 

    33.
    Peñuelas, J. & Filella, I. Reflectance assessment of mite effects on apple trees. Int. J. Remote Sens. 16, 2727–2733 (1995).
    ADS  Google Scholar 

    34.
    Vogelmann, J. E., Rock, B. N. & Moss, D. M. Red-edge spectral measurements from Sugar Maple leaves. Int. J. Remote Sens. 14, 1563–1575 (1993).
    ADS  Google Scholar 

    35.
    He, L. et al. Estimating canopy leaf nitrogen concentration in winter wheat based on multi-angular hyperspectral remote sensing. Eur. J. Agron. 73, 170–185 (2016).
    CAS  Google Scholar 

    36.
    Shen, W. Y. et al. Inversion model for severity of powdery mildew in wheat leaves based on factor analysis-BP neural network. Trans CSAE. 31, 183–190 (2015) (in Chinese with English abstract).
    Google Scholar 

    37.
    Asner, G. P. Biophysical and biochemical sources of variability in canopy reflectance. Remote Sens. Environ. 64, 234–253 (1998).
    ADS  Google Scholar 

    38.
    Verrelst, J., Schaepman, M. E., Koetz, B. & Kneubühler, M. Angular sensitivity analysis of vegetation indices derived from CHRIS/PROBA data. Remote Sens. Environ. 11, 2341–2353 (2008).
    ADS  Google Scholar 

    39.
    He, L. et al. Improved remote sensing of leaf nitrogen concentration in winter wheat using multi-angular hyperspectral data. Remote Sens. Environ. 174, 122–133 (2016).
    ADS  Google Scholar 

    40.
    Rouse, J. W., Haas, R. H., Schell, J. A., Deering, D. W., Harlan, J. C. Monitoring the vernal advancements and retrogradation of natural vegetation. In: NASA/GSFC, Final Report, Greenbelt, MD, USA (pp. 1–137) (1974).

    41.
    Jordan, C. F. Derivation of leaf area index from quality of light on the forest floor. Ecology 50, 663–666 (1969).
    Google Scholar 

    42.
    Rondeaux, G., Steven, M. & Baret, F. Optimization of soil-adjusted vegetation indices. Remote Sens. Environ. 55, 95–107 (1996).
    ADS  Google Scholar 

    43.
    Gamon, J. A., Penuelas, J. & Field, C. B. A narrow-waveband spectral index that tracks diurnal changes in photosynthetic efficiency. Remote Sens. Environ. 41, 35–44 (1992).
    ADS  Google Scholar 

    44.
    Peng, Y. & Gitelson, A. A. Application of chlorophyll-related vegetation indices for remote estimation of maize productivity. Agric. Forest Meteorol. 151, 1267–1276 (2011).
    ADS  Google Scholar 

    45.
    Gitelson, A. A., Gritz, Y. & Merzlyak, M. N. Relationships between leaf chlorophyll content and spectral reflectance and algorithms for non-destructive chlorophyll assessment in higher plant leaves. J. Plant Physiol. 160, 271–282 (2003).
    CAS  PubMed  Google Scholar 

    46.
    Sims, D. A. & Gamon, J. A. Relationships between leaf pigment content and spectral reflectance across a wide range of species, leaf structures and developmental stages. Remote Sens. Environ. 81, 331–354 (2002).
    ADS  Google Scholar 

    47.
    Huete, A. et al. Overview of the radiometric and biophysical performance of the MODIS vegetation indices. Remote Sens. Environ. 83, 195–213 (2002).
    ADS  Google Scholar 

    48.
    Dash, J. & Curran, P. J. The MERIS terrestrial chlorophyll index. Int. J. Remote Sens. 25, 5403–5413 (2004).
    ADS  Google Scholar 

    49.
    Haboudane, D., Miller, J. R., Tremblay, N., Zarco-Tejada, P. J. & Dextraze, L. Integrated narrowband vegetation indices for prediction of crop chlorophyll content for application to precision agriculture. Remote Sens. Environ. 81, 416–426 (2002).
    ADS  Google Scholar 

    50.
    Qi, J., Chehbouni, A., Huete, A. R., Keer, Y. H. & Sorooshian, S. A modified soil vegetation adjusted index. Remote Sens. Environ. 48, 119–126 (1994).
    ADS  Google Scholar 

    51.
    Guyot, G., Baret, F. & Major, D. J. High spectral resolution: determination of spectral shifts between the red and the near infrared. Int. Arch. Photogramm. Remote Sens. 11, 750–760 (1988).
    Google Scholar 

    52.
    LeMaire, G., François, C. & Dufrêne, E. Towards universal broad leaf chlorophyll indices using PROSPECT simulated database and hyperspectral reflectance measurements. Remote Sens. Environ. 89, 1–28 (2004).
    ADS  Google Scholar 

    53.
    Wang, X. L. & Li, Z. B. Identifying the parameters of the Kernel Function in Support Vector Machines based on the Grid-Search method. Periodical of Ocean University of China 35, 859–862 (2005) (in Chinese with English abstract).
    MathSciNet  Google Scholar 

    54.
    Feng, C. X., Yu, Z. G., King, U., Baig, M. P. Threefold vs. Fivefold cross validation in one-hidden-layer and two-hidden-layer predictive neural network modeling of machining surface roughness data. J. Manuf. Syst. 24, 93–107 (2005). More