1.
Scott, A. C., Bowman, D. M., Bond, W. J., Pyne, S. J. & Alexander, M. E. Fire on Earth: An Introduction (Wiley, 2013).
2.
Ward, D. et al. The changing radiative forcing of fires: global model estimates for past, present and future. Atmos. Chem. Phys. 12, 10857–10886 (2012).
Google Scholar
3.
Bowman, D. M. et al. Fire in the Earth system. Science 324, 481–484 (2009).
Google Scholar
4.
Carslaw, K. et al. A review of natural aerosol interactions and feedbacks within the Earth system. Atmos. Chem. Phys. 10, 1701–1737 (2010).
Google Scholar
5.
Peterson, D. A. et al. Wildfire-driven thunderstorms cause a volcano-like stratospheric injection of smoke. NPJ Clim. Atmos. Sci. 1, 30 (2018).
Google Scholar
6.
McRae, R. H., Sharples, J. J. & Fromm, M. Linking local wildfire dynamics to pyroCb development. Nat. Hazards Earth Syst. Sci. 15, 417–428 (2015).
Google Scholar
7.
Rosenfeld, D. TRMM observed first direct evidence of smoke from forest fires inhibiting rainfall. Geophys. Res. Lett. 26, 3105–3108 (1999).
Google Scholar
8.
Thomas, J. L. et al. Quantifying black carbon deposition over the Greenland ice sheet from forest fires in Canada. Geophys. Res. Lett. 44, 7965–7974 (2017).
Google Scholar
9.
Skiles, S. M., Flanner, M., Cook, J. M., Dumont, M. & Painter, T. H. Radiative forcing by light-absorbing particles in snow. Nat. Clim. Change 8, 964–971 (2018).
Google Scholar
10.
Krebs, P., Pezzatti, G. B., Mazzoleni, S., Talbot, L. M. & Conedera, M. Fire regime: history and definition of a key concept in disturbance ecology. Theory Biosci. 129, 53–69 (2010).
Google Scholar
11.
Keeley, J. E. & Fotheringham, C. Role of fire in regeneration from seed. Seeds 2, 311–330 (2000).
Google Scholar
12.
Noble, I. R. & Slatyer, R. O. The use of vital attributes to predict successional changes in plant communities subject to recurrent disturbances. Vegetatio 43, 5–21 (1980).
Google Scholar
13.
Enright, N. J., Fontaine, J. B., Bowman, D. M., Bradstock, R. A. & Williams, R. J. Interval squeeze: altered fire regimes and demographic responses interact to threaten woody species persistence as climate changes. Front. Ecol. Environ. 13, 265–272 (2015).
Google Scholar
14.
Glikson, A. Fire and human evolution: the deep-time blueprints of the Anthropocene. Anthropocene 3, 89–92 (2013).
Google Scholar
15.
Huffman, M. R. The many elements of traditional fire knowledge: synthesis, classification, and aids to cross-cultural problem solving in fire-dependent systems around the world. Ecol. Soc. 18, 3 (2013).
Google Scholar
16.
Trauernicht, C., Brook, B. W., Murphy, B. P., Williamson, G. J. & Bowman, D. M. Local and global pyrogeographic evidence that indigenous fire management creates pyrodiversity. Ecol. Evol. 5, 1908–1918 (2015).
Google Scholar
17.
Scherjon, F. et al. Burning the land: an ethnographic study of off-site fire use by current and historically documented foragers and implications for the interpretation of past fire practices in the landscape. Curr. Anthropol. 56, 314–315 (2015).
Google Scholar
18.
Mertz, O. et al. Swidden change in Southeast Asia: understanding causes and consequences. Hum. Ecol. 37, 259–264 (2009).
Google Scholar
19.
Bowman, D. M. et al. The human dimension of fire regimes on Earth. J. Biogeogr. 38, 2223–2236 (2011).
Google Scholar
20.
Calkin, D. E., Stonesifer, C. S., Thompson, M. P. & McHugh, C. W. Large airtanker use and outcomes in suppressing wildland fires in the United States. Int. J. Wildland Fire 23, 259–271 (2014).
Google Scholar
21.
Le Page, Y., Oom, D., Silva, J. M., Jönsson, P. & Pereira, J. M. Seasonality of vegetation fires as modified by human action: observing the deviation from eco‐climatic fire regimes. Glob. Ecol. Biogeogr. 19, 575–588 (2010).
Google Scholar
22.
Abatzoglou, J. T., Williams, A. P., Boschetti, L., Zubkova, M. & Kolden, C. A. Global patterns of interannual climate–fire relationships. Glob. Change Biol. 24, 5164–5175 (2018).
Google Scholar
23.
Bowman, D. M. et al. Human exposure and sensitivity to globally extreme wildfire events. Nat. Ecol. Evol. 1, 0058 (2017).
Google Scholar
24.
Sharples, J. J. et al. Natural hazards in Australia: extreme bushfire. Clim. Change 139, 85–99 (2016).
Google Scholar
25.
Tedim, F. et al. Defining extreme wildfire events: difficulties, challenges, and impacts. Fire 1, 9 (2018).
Google Scholar
26.
Ladds, M., Keating, A., Handmer, J. & Magee, L. How much do disasters cost? A comparison of disaster cost estimates in Australia. Int. J. Disaster Risk Reduct. 21, 419–429 (2017).
Google Scholar
27.
Kramer, H. A., Mockrin, M. H., Alexandre, P. M. & Radeloff, V. C. High wildfire damage in interface communities in California. Int. J. Wildland Fire 28, 641–650 (2019).
Google Scholar
28.
Thomas, D., Butry, D., Gilbert, S., Webb, D. & Fung, J. The Costs and Losses of Wildfires. NIST Special Publication 1215 (NIST, 2017).
29.
Fann, N. et al. The health impacts and economic value of wildland fire episodes in the US: 2008–2012. Sci. Total Environ. 610, 802–809 (2018).
Google Scholar
30.
Read, P. & Denniss, R. With costs approaching $100 billion, the fires are Australia’s costliest natural disaster. The Conversation https://theconversation.com/with-costs-approaching-100-billion-the-fires-are-australias-costliest-natural-disaster-129433 (2020).
31.
Steffen, W. et al. Trajectories of the Earth System in the Anthropocene. Proc. Natl Acad. Sci.USA 115, 8252–8259 (2018).
Google Scholar
32.
Steffen, W. et al. The emergence and evolution of Earth system science. Nat. Rev. Earth Environ. 1, 54–63 (2020).
Google Scholar
33.
Bowman, D. M., O’Brien, J. A. & Goldammer, J. G. Pyrogeography and the global quest for sustainable fire management. Annu. Rev. Environ. Resour. 38, 57–80 (2013).
Google Scholar
34.
Giglio, L., Boschetti, L., Roy, D. P., Humber, M. L. & Justice, C. O. The Collection 6 MODIS burned area mapping algorithm and product. Remote Sens. Environ. 217, 72–85 (2018).
Google Scholar
35.
Randerson, J. T., Chen, Y., Van Der Werf, G. R., Rogers, B. M. & Morton, D. C. Global burned area and biomass burning emissions from small fires. J. Geophys. Res. 117, G04012 (2012).
Google Scholar
36.
Archibald, S., Lehmann, C. E., Gómez-Dans, J. L. & Bradstock, R. A. Defining pyromes and global syndromes of fire regimes. Proc. Natl Acad. Sci. USA 110, 6442–6447 (2013).
Google Scholar
37.
Kelley, D. I. et al. How contemporary bioclimatic and human controls change global fire regimes. Nat. Clim. Change 9, 690–696 (2019).
Google Scholar
38.
Lavorel, S., Flannigan, M. D., Lambin, E. F. & Scholes, M. C. Vulnerability of land systems to fire: Interactions among humans, climate, the atmosphere, and ecosystems. Mitig. Adapt. Strateg. Global Change 12, 33–53 (2007).
Google Scholar
39.
Van Der Werf, G. R., Randerson, J. T., Giglio, L., Gobron, N. & Dolman, A. Climate controls on the variability of fires in the tropics and subtropics. Global Biogeochem. Cycles 22 (2008).
40.
Krawchuk, M. A., Moritz, M. A., Parisien, M.-A., Van Dorn, J. & Hayhoe, K. Global pyrogeography: the current and future distribution of wildfire. PLoS ONE 4, e5102 (2009).
Google Scholar
41.
Pausas, J. G. & Ribeiro, E. The global fire–productivity relationship. Global Ecol. Biogeogr. 22, 728–736 (2013).
Google Scholar
42.
McKenzie, D. & Littell, J. S. Climate change and the eco-hydrology of fire: Will area burned increase in a warming western USA? Ecol. Appl. 27, 26–36 (2017).
Google Scholar
43.
Bowman, D. M., Murphy, B. P., Williamson, G. J. & Cochrane, M. A. Pyrogeographic models, feedbacks and the future of global fire regimes. Global Ecol. Biogeogr. 23, 821–824 (2014).
Google Scholar
44.
Haberle, S. G., Hope, G. S. & van der Kaars, S. Biomass burning in Indonesia and Papua New Guinea: natural and human induced fire events in the fossil record. Palaeogeogr. Palaeoclimatol. Palaeoecol. 171, 259–268 (2001).
Google Scholar
45.
Cochrane, M. A. Fire science for rainforests. Nature 421, 913–919 (2003).
Google Scholar
46.
Flannigan, M. D., Logan, K. A., Amiro, B. D., Skinner, W. R. & Stocks, B. Future area burned in Canada. Clim. Change 72, 1–16 (2005).
Google Scholar
47.
Abatzoglou, J. T. & Kolden, C. A. Climate change in western US deserts: potential for increased wildfire and invasive annual grasses. Rangel. Ecol. Manag. 64, 471–478 (2011).
Google Scholar
48.
Balch, J. K., Bradley, B. A., D’Antonio, C. M. & Gómez‐Dans, J. Introduced annual grass increases regional fire activity across the arid western USA (1980–2009). Glob. Change Biol. 19, 173–183 (2013).
Google Scholar
49.
Andreae, M. O. & Merlet, P. Emission of trace gases and aerosols from biomass burning. Global Biogeochem. Cycles 15, 955–966 (2001).
Google Scholar
50.
Van Der Werf, G. R. et al. Global fire emissions estimates during 1997-2016. Earth Syst. Sci. Data 9, 697–720 (2017).
Google Scholar
51.
Walker, X. J. et al. Increasing wildfires threaten historic carbon sink of boreal forest soils. Nature 572, 520–523 (2019).
Google Scholar
52.
Cramer, W. et al. Tropical forests and the global carbon cycle: impacts of atmospheric carbon dioxide, climate change and rate of deforestation. Philos. Trans. R. Soc. B Biol. Sci. 359, 331–343 (2004).
Google Scholar
53.
Kurz, W. et al. Quantifying the impacts of human activities on reported greenhouse gas emissions and removals in Canada’s managed forest: conceptual framework and implementation. Can. J. For. Res. 48, 1227–1240 (2018).
Google Scholar
54.
Doerr, S. H. & Santín, C. Global trends in wildfire and its impacts: perceptions versus realities in a changing world. Philos. Trans. R. Soc. B Biol. Sci. 371, 20150345 (2016).
Google Scholar
55.
Bowman, D. Wildfire science is at a loss for comprehensive data. Nature 560, 7–8 (2018).
Google Scholar
56.
Foreman, P. W. A framework for testing the influence of Aboriginal burning on grassy ecosystems in lowland, mesic south–eastern Australia. Australian J. Botany 64, 626–642 (2016).
Google Scholar
57.
Van Wagner, C. Age-class distribution and the forest fire cycle. Can. J. For. Res. 8, 220–227 (1978).
Google Scholar
58.
Larsen, C. P. S. Fire and climate dynamics in the boreal forest of northern Alberta, Canada, from AD 1850 to 1989. Holocene 6, 449–456 (1996).
Google Scholar
59.
Bergeron, Y., Flannigan, M., Gauthier, S., Leduc, A. & Lefort, P. Past, current and future fire frequency in the Canadian boreal forest: implications for sustainable forest management. AMBIO 33, 356–360 (2004).
Google Scholar
60.
Marlon, J. R. et al. Long-term perspective on wildfires in the western USA. Proc. Natl Acad. Sci. USA 109, E535–E543 (2012).
Google Scholar
61.
Marlon, J. R. et al. Climate and human influences on global biomass burning over the past two millennia. Nat. Geosci. 1, 697–702 (2008).
Google Scholar
62.
Chuvieco, E. et al. Historical background and current developments for mapping burned area from satellite Earth observation. Remote Sens. Environ. 225, 45–64 (2019).
Google Scholar
63.
Forkel, M. et al. Recent global and regional trends in burned area and their compensating environmental controls. Environ. Res. Commun. 1, 051005 (2019).
Google Scholar
64.
Schultz, M. G. et al. Global wildland fire emissions from 1960 to 2000. Global Biogeochem. Cycles 22, GB2002 (2008).
Google Scholar
65.
Clode, D. & Elgar, M. A. Fighting fire with fire: does a policy of broad-scale prescribed burning improve community safety? Soc. Nat. Resour. 27, 1192–1199 (2014).
Google Scholar
66.
Keeley, J. E. Fire intensity, fire severity and burn severity: a brief review and suggested usage. Int. J. Wildland Fire 18, 116–126 (2009).
Google Scholar
67.
Jolly, W. M. et al. Climate-induced variations in global wildfire danger from 1979 to 2013. Nat. Commun. 6, 7537 (2015).
Google Scholar
68.
Justice, C. et al. The MODIS fire products. Remote Sens. Environ. 83, 244–262 (2002).
Google Scholar
69.
Andela, N. et al. A human-driven decline in global burned area. Science 356, 1356–1362 (2017).
Google Scholar
70.
Burrows, N., Ward, B. & Robinson, A. Fuel dynamics and fire spread in spinifex grasslands of the Western Desert. Proc. R. Soc. Queensland 115, 69–76 (2009).
Google Scholar
71.
Bird, R. B., Codding, B. F., Kauhanen, P. G. & Bird, D. W. Aboriginal hunting buffers climate-driven fire-size variability in Australia’s spinifex grasslands. Proc. Natl Acad. Sci. USA 109, 10287–10292 (2012).
Google Scholar
72.
Taylor, A. H., Trouet, V., Skinner, C. N. & Stephens, S. Socioecological transitions trigger fire regime shifts and modulate fire–climate interactions in the Sierra Nevada, USA, 1600–2015 CE. Proc. Natl Acad. Sci. USA 113, 13684–13689 (2016).
Google Scholar
73.
Westerling, A. L., Hidalgo, H. G., Cayan, D. R. & Swetnam, T. W. Warming and earlier spring increase western US forest wildfire activity. Science 313, 940–943 (2006).
Google Scholar
74.
Abatzoglou, J. T. & Williams, A. P. Impact of anthropogenic climate change on wildfire across western US forests. Proc. Natl Acad. Sci. USA 113, 11770–11775 (2016).
Google Scholar
75.
Balch, J. K. et al. Switching on the Big Burn of 2017. Fire 1, 17 (2018).
Google Scholar
76.
Williams, A. P. et al. Observed impacts of anthropogenic climate change on wildfire in California. Earths Future 7, 892–910 (2019).
Google Scholar
77.
Westerling, A. L. Increasing western US forest wildfire activity: sensitivity to changes in the timing of spring. Philos. Trans. R. Soc. B Biol. Sci. 371, 20150178 (2016).
Google Scholar
78.
Balshi, M. S. et al. Assessing the response of area burned to changing climate in western boreal North America using a Multivariate Adaptive Regression Splines (MARS) approach. Glob. Change Biol. 15, 578–600 (2009).
Google Scholar
79.
Jain, P., Wang, X. & Flannigan, M. D. Trend analysis of fire season length and extreme fire weather in North America between 1979 and 2015. Int. J. Wildland Fire 26, 1009–1020 (2018).
Google Scholar
80.
Flannigan, M. et al. Fuel moisture sensitivity to temperature and precipitation: climate change implications. Clim. Change 134, 59–71 (2016).
Google Scholar
81.
Hanes, C. C. et al. Fire-regime changes in Canada over the last half century. Can. J. For. Res. 49, 256–269 (2018).
Google Scholar
82.
Veraverbeke, S. et al. Lightning as a major driver of recent large fire years in North American boreal forests. Nat. Clim. Change 7, 529–534 (2017).
Google Scholar
83.
Turetsky, M. R. et al. Global vulnerability of peatlands to fire and carbon loss. Nat. Geosci. 8, 11–14 (2015).
Google Scholar
84.
O’Connor, F. M. et al. Possible role of wetlands, permafrost, and methane hydrates in the methane cycle under future climate change: A review. Rev. Geophys. 48, RG4005 (2010).
Google Scholar
85.
Gibson, C. M. et al. Wildfire as a major driver of recent permafrost thaw in boreal peatlands. Nat. Commun. 9, 3041 (2018).
Google Scholar
86.
Bowman, D. M., Walsh, A. & Prior, L. D. Landscape analysis of Aboriginal fire management in Central Arnhem Land, north Australia. J. Biogeogr. 31, 207–223 (2004).
Google Scholar
87.
Bird, R. B., Bird, D. W., Codding, B. F., Parker, C. H. & Jones, J. H. The “fire stick farming” hypothesis: Australian Aboriginal foraging strategies, biodiversity, and anthropogenic fire mosaics. Proc. Natl Acad. Sci. USA 105, 14796–14801 (2008).
Google Scholar
88.
Cruz, M. et al. Anatomy of a catastrophic wildfire: the Black Saturday Kilmore East fire in Victoria, Australia. For. Ecol. Manag. 284, 269–285 (2012).
Google Scholar
89.
Ndalila, M. N., Williamson, G. J. & Bowman, D. M. Geographic patterns of fire severity following an extreme Eucalyptus forest fire in southern Australia: 2013 Forcett-Dunalley fire. Fire 1, 40 (2018).
Google Scholar
90.
Di Virgilio, G. et al. Climate change increases the potential for extreme wildfires. Geophys. Res. Lett. 46, 8517–8526 (2019).
Google Scholar
91.
Styger, J., Marsden-Smedley, J. & Kirkpatrick, J. Changes in lightning fire incidence in the Tasmanian Wilderness World Heritage Area, 1980–2016. Fire 1, 38 (2018).
Google Scholar
92.
Bowman, D. M., Bliss, A., Bowman, C. J. & Prior, L. D. Fire caused demographic attrition of the Tasmanian palaeoendemic conifer Athrotaxis cupressoides. Austral Ecol. 44, 1322–1339 (2019).
Google Scholar
93.
Boer, M. M., de Dios, V. R. & Bradstock, R. A. Unprecedented burn area of Australian mega forest fires. Nat. Clim. Change 10, 171–172 (2020).
Google Scholar
94.
van Oldenborgh, G. J. et al. Attribution of the Australian bushfire risk to anthropogenic climate change. Nat. Hazards Earth Syst. Sci. Discuss. 2020, 1–46 (2020).
Google Scholar
95.
Bowman, D. M. et al. Human–environmental drivers and impacts of the globally extreme 2017 Chilean fires. AMBIO 48, 350–362 (2019).
Google Scholar
96.
Gómez-González, S., Ojeda, F. & Fernandes, P. M. Portugal and Chile: Longing for sustainable forestry while rising from the ashes. Environ. Sci. Policy 81, 104–107 (2018).
Google Scholar
97.
Fusco, E. J., Finn, J. T., Balch, J. K., Nagy, R. C. & Bradley, B. A. Invasive grasses increase fire occurrence and frequency across US ecoregions. Proc. Natl Acad. Sci. USA 116, 23594–23599 (2019).
Google Scholar
98.
Setterfield, S. A., Rossiter‐Rachor, N. A., Hutley, L. B., Douglas, M. M. & Williams, R. J. Biodiversity research: turning up the heat: the impacts of Andropogon gayanus (gamba grass) invasion on fire behaviour in northern Australian savannas. Divers. Distrib. 16, 854–861 (2010).
Google Scholar
99.
Van Marle, M. J. et al. Historic global biomass burning emissions based on merging satellite observations with proxies and fire models (1750–2015). Geosci. Model Dev. 10, 3329–3357 (2017).
Google Scholar
100.
Le Quéré, C. et al. Global carbon budget 2018. Earth Syst. Sci. Data 10, 2141–2194 (2018).
Google Scholar
101.
Wooster, M. J., Perry, G. L. W. & Zoumas, A. Fire, drought and El Niño relationships on Borneo (Southeast Asia) in the pre-MODIS era (1980–2000). Biogeosciences 9, 317–340 (2012).
Google Scholar
102.
Chen, Y. et al. A pan-tropical cascade of fire driven by El Niño/Southern Oscillation. Nat. Clim. Change 7, 906–911 (2017).
Google Scholar
103.
Stocker, T. F. et al. (eds) Climate Change 2013: the Physical Science Basis. Contribution of Working Group I to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change 1535 pp (Cambridge Univ. Press, 2013).
104.
Flannigan, M. et al. Global wildland fire season severity in the 21st century. For. Ecol. Manag. 294, 54–61 (2013).
Google Scholar
105.
Abatzoglou, J. T., Williams, A. P. & Barbero, R. Global emergence of anthropogenic climate change in fire weather indices. Geophys. Res. Lett. 46, 326–336 (2019).
Google Scholar
106.
Romps, D. M., Seeley, J. T., Vollaro, D. & Molinari, J. Projected increase in lightning strikes in the United States due to global warming. Science 346, 851–854 (2014).
Google Scholar
107.
Knorr, W., Arneth, A. & Jiang, L. Demographic controls of future global fire risk. Nat. Clim. Change 6, 781–785 (2016).
Google Scholar
108.
Kloster, S. & Lasslop, G. Historical and future fire occurrence (1850 to 2100) simulated in CMIP5 Earth System Models. Glob. Planet. Change 150, 58–69 (2017).
Google Scholar
109.
Moritz, M. A. et al. Climate change and disruptions to global fire activity. Ecosphere 3, 1–22 (2012).
Google Scholar
110.
Wotton, B. M. & Flannigan, M. D. Length of the fire season in a changing climate. Forestry Chron. 69, 187–192 (1993).
Google Scholar
111.
Wotton, B., Flannigan, M. & Marshall, G. Potential climate change impacts on fire intensity and key wildfire suppression thresholds in Canada. Environ. Res. Lett. 12, 095003 (2017).
Google Scholar
112.
Barbero, R., Abatzoglou, J. T., Larkin, N. K., Kolden, C. A. & Stocks, B. Climate change presents increased potential for very large fires in the contiguous United States. Int. J. Wildland Fire 24, 892–899 (2015).
Google Scholar
113.
Westerling, A. L., Turner, M. G., Smithwick, E. A., Romme, W. H. & Ryan, M. G. Continued warming could transform Greater Yellowstone fire regimes by mid-21st century. Proc. Natl Acad. Sci. USA 108, 13165–13170 (2011).
Google Scholar
114.
Buotte, P. C. et al. Near-future forest vulnerability to drought and fire varies across the western United States. Glob. Change Biol. 25, 290–303 (2019).
Google Scholar
115.
Kitzberger, T., Falk, D. A., Westerling, A. L. & Swetnam, T. W. Direct and indirect climate controls predict heterogeneous early-mid 21st century wildfire burned area across western and boreal North America. PLoS ONE 12, e0188486 (2017).
Google Scholar
116.
Turco, M. et al. Exacerbated fires in Mediterranean Europe due to anthropogenic warming projected with non-stationary climate-fire models. Nat. Commun. 9, 3821 (2018).
Google Scholar
117.
Turco, M. et al. Decreasing fires in mediterranean Europe. PLoS ONE 11, e0150663 (2016).
Google Scholar
118.
Batllori, E., Parisien, M. A., Krawchuk, M. A. & Moritz, M. A. Climate change-induced shifts in fire for mediterranean ecosystems. Global Ecol. Biogeogr. 22, 1118–1129 (2013).
Google Scholar
119.
Mekonnen, Z. A., Riley, W. J., Randerson, J. T., Grant, R. F. & Rogers, B. M. Expansion of high-latitude deciduous forests driven by interactions between climate warming and fire. Nat. Plants 5, 952–958 (2019).
Google Scholar
120.
Harris, R. M., Remenyi, T. A., Williamson, G. J., Bindoff, N. L. & Bowman, D. M. Climate–vegetation–fire interactions and feedbacks: trivial detail or major barrier to projecting the future of the Earth system? Wiley Interdiscip. Rev. Clim. Change 7, 910–931 (2016).
Google Scholar
121.
Hantson, S. et al. The status and challenge of global fire modelling. Biogeosciences 13, 3359–3375 (2016).
Google Scholar
122.
Pechony, O. & Shindell, D. T. Driving forces of global wildfires over the past millennium and the forthcoming century. Proc. Natl Acad. Sci. USA 107, 19167–19170 (2010).
Google Scholar
123.
Flannigan, M., Stocks, B., Turetsky, M. & Wotton, M. Impacts of climate change on fire activity and fire management in the circumboreal forest. Glob. Change Biol. 15, 549–560 (2009).
Google Scholar
124.
Podur, J. & Wotton, M. Will climate change overwhelm fire management capacity? Ecol. Model. 221, 1301–1309 (2010).
Google Scholar
125.
Teckentrup, L. et al. Response of simulated burned area to historical changes in environmental and anthropogenic factors: a comparison of seven fire models. Biogeosciences 16, 3883–3910 (2019).
Google Scholar
126.
Nepstad, D. C., Stickler, C. M., Filho, B. S. & Merry, F. Interactions among Amazon land use, forests and climate: prospects for a near-term forest tipping point. Philos. Trans. R. Soc. B Biol. Sci. 363, 1737–1746 (2008).
Google Scholar
127.
Swann, A. L., Hoffman, F. M., Koven, C. D. & Randerson, J. T. Plant responses to increasing CO2 reduce estimates of climate impacts on drought severity. Proc. Natl Acad. Sci. USA 113, 10019–10024 (2016).
Google Scholar
128.
Bond, W. J. & Midgley, G. F. Carbon dioxide and the uneasy interactions of trees and savannah grasses. Philos. Trans. R. Soc. B Biol. Sci. 367, 601–612 (2012).
Google Scholar
129.
Hurteau, M. D., Liang, S., Westerling, A. L. & Wiedinmyer, C. Vegetation-fire feedback reduces projected area burned under climate change. Sci. Rep. 9, 2838 (2019).
Google Scholar
130.
Liu, Z. & Wimberly, M. C. Direct and indirect effects of climate change on projected future fire regimes in the western United States. Sci. Total Environ. 542, 65–75 (2016).
Google Scholar
131.
Stevens-Rumann, C. S. et al. Evidence for declining forest resilience to wildfires under climate change. Ecol. Lett. 21, 243–252 (2018).
Google Scholar
132.
Wilkin, K., Ackerly, D. & Stephens, S. Climate change refugia, fire ecology and management. Forests 7, 77 (2016).
Google Scholar
133.
Kashian, D. M., Romme, W. H., Tinker, D. B., Turner, M. G. & Ryan, M. G. Carbon storage on landscapes with stand-replacing fires. Bioscience 56, 598–606 (2006).
Google Scholar
134.
Wiggins, E. B. et al. Smoke radiocarbon measurements from Indonesian fires provide evidence for burning of millennia-aged peat. Proc. Natl Acad. Sci. USA 115, 12419–12424 (2018).
Google Scholar
135.
Donovan, V. M., Wonkka, C. L. & Twidwell, D. Surging wildfire activity in a grassland biome. Geophys. Res. Lett. 44, 5986–5993 (2017).
Google Scholar
136.
Bladon, K. D. Rethinking wildfires and forest watersheds. Science 359, 1001–1002 (2018).
Google Scholar
137.
Cannon, S. H. & DeGraff, J. in Landslides–Disaster Risk Reduction (eds Sassa, K. & Canuti, P.) 177–190 (Springer, 2009).
138.
Garfin, G. et al. Managing for Future Risks of Fire, Extreme Precipitation, and Post-fire Flooding. Report to the U.S. Bureau of Reclamation, from the Project Enhancing Water Supply Reliability (Institute of the Environment, 2016).
139.
Sanderson, B. M. & Fisher, R. A. A fiery wake-up call for climate science. Nat. Clim. Change 515, 175–177 (2020).
Google Scholar
140.
King, A. D., Pitman, A. J., Henley, B. J., Ukkola, A. M. & Brown, J. R. The role of climate variability in Australian drought. Nat. Clim. Change 10, 177–179 (2020).
Google Scholar
141.
Moritz, M. A. et al. Learning to coexist with wildfire. Nature 515, 58–66 (2014).
Google Scholar
142.
Kolden, C. A. We’re not doing enough prescribed fire in the Western United States to mitigate wildfire risk. Fire 2, 30 (2019).
Google Scholar
143.
Fernandes, P. M. & Botelho, H. S. A review of prescribed burning effectiveness in fire hazard reduction. Int. J. Wildland Fire 12, 117–128 (2003).
Google Scholar
144.
Price, O. F., Penman, T. D., Bradstock, R. A., Boer, M. M. & Clarke, H. Biogeographical variation in the potential effectiveness of prescribed fire in south‐eastern Australia. J. Biogeogr. 42, 2234–2245 (2015).
Google Scholar
145.
Hurteau, M. D., Koch, G. W. & Hungate, B. A. Carbon protection and fire risk reduction: toward a full accounting of forest carbon offsets. Front. Ecol. Environ. 6, 493–498 (2008).
Google Scholar
146.
Stephens, S. L. Evaluation of the effects of silvicultural and fuels treatments on potential fire behaviour in Sierra Nevada mixed-conifer forests. For. Ecol. Manag. 105, 21–35 (1998).
Google Scholar
147.
Campbell, J. L., Harmon, M. E. & Mitchell, S. R. Can fuel‐reduction treatments really increase forest carbon storage in the western US by reducing future fire emissions? Front. Ecol. Environ. 10, 83–90 (2012).
Google Scholar
148.
Clarke, H. & Evans, J. P. Exploring the future change space for fire weather in southeast Australia. Theor. Appl. Climatol. 136, 513–527 (2019).
Google Scholar
149.
Price, O. F. & Bradstock, R. A. The efficacy of fuel treatment in mitigating property loss during wildfires: Insights from analysis of the severity of the catastrophic fires in 2009 in Victoria, Australia. J. Environ. Manag. 113, 146–157 (2012).
Google Scholar
150.
Williamson, G., Bowman, D. M. S., Price, O. F., Henderson, S. & Johnston, F. A transdisciplinary approach to understanding the health effects of wildfire and prescribed fire smoke regimes. Environ. Res. Lett. 11, 125009 (2016).
Google Scholar
151.
Broome, R. A., Johnston, F. H., Horsley, J. & Morgan, G. G. A rapid assessment of the impact of hazard reduction burning around Sydney, May 2016. Med. J. Aust. 205, 407–408 (2016).
Google Scholar
152.
U.S. Environmental Protection Agency, Office of Air and Radiation. The Benefits and Costs of the Clean Air Act from 1990 to 2020: Final Report — Rev. A (U.S. Environmental Protection Agency, Office of Air and Radiation, 2011).
153.
Bowman, D. et al. Can air quality management drive sustainable fuels management at the temperate wildland–urban interface? Fire 1, 27 (2018).
Google Scholar
154.
Mistry, J. & Berardi, A. Bridging indigenous and scientific knowledge. Science 352, 1274–1275 (2016).
Google Scholar
155.
Reyes-García, V. & Benyei, P. Indigenous knowledge for conservation. Nat. Sustain. 2, 657–658 (2019).
Google Scholar
156.
Bird, R. B., Tayor, N., Codding, B. F. & Bird, D. W. Niche construction and Dreaming logic: aboriginal patch mosaic burning and varanid lizards (Varanus gouldii) in Australia. Proc. R. Soc. B Biol. Sci. 280, 20132297 (2013).
Google Scholar
157.
Jackson, S. T. & Hobbs, R. J. Ecological restoration in the light of ecological history. Science 325, 567–569 (2009).
Google Scholar
158.
Bowman, D. M. & Legge, S. Pyrodiversity — why managing fire in food webs is relevant to restoration ecology. Restor. Ecol. 24, 848–853 (2016).
Google Scholar
159.
Schoennagel, T. et al. Adapt to more wildfire in western North American forests as climate changes. Proc. Natl Acad. Sci. USA 114, 4582–4590 (2017).
Google Scholar
160.
Strader, S. M. Spatiotemporal changes in conterminous US wildfire exposure from 1940 to 2010. Nat. Hazards 92, 543–565 (2018).
Google Scholar
161.
Balch, J. K. et al. Human-started wildfires expand the fire niche across the United States. Proc. Natl Acad. Sci. USA 114, 2946–2951 (2017).
Google Scholar
162.
Fischer, A. P. et al. Wildfire risk as a socioecological pathology. Front. Ecol. Environ. 14, 276–284 (2016).
Google Scholar
163.
Borchers Arriagada, N. et al. Unprecedented smoke‐related health burden associated with the 2019–20 bushfires in eastern Australia. Med. J. Aust. https://doi.org/10.5694/mja2.50545 (2020).
Article Google Scholar
164.
Fischer, A. P. et al. Wildfire risk as a socioecological pathology. Front. Ecol. Environ. 14, 276–284 (2016).
Google Scholar
165.
Smith, A. M. et al. The science of firescapes: achieving fire-resilient communities. Bioscience 66, 130–146 (2016).
Google Scholar
166.
McWethy, D. B. et al. Rethinking resilience to wildfire. Nat. Sustain. 2, 797–804 (2019).
Google Scholar
167.
Curran, T., Perry, G., Wyse, S. & Alam, M. Managing fire and biodiversity in the wildland-urban interface: A role for green firebreaks. Fire 1, 3 (2018).
Google Scholar
168.
Bowman, D. M. J. S. & Stoof, C. Diversity helps fight wildfires. Nature 571, 478 (2019).
Google Scholar
169.
Cui, X. et al. Green firebreaks as a management tool for wildfires: Lessons from China. J. Environ. Manag. 233, 329–336 (2019).
Google Scholar
170.
Kolden, C. A. & Henson, C. A socio-ecological approach to mitigating wildfire vulnerability in the wildland urban interface: a case study from the 2017 Thomas fire. Fire 2, 9 (2019).
Google Scholar
171.
Eriksen, C. Gender and Wildfire: Landscapes of Uncertainty (Routledge, 2013).
172.
Huffman, M. R. Making a world of difference in fire and climate change. Fire Ecol. 10, 90–101 (2014).
Google Scholar
173.
Pratt, M. et al. The implications of megatrends in information and communication technology and transportation for changes in global physical activity. Lancet 380, 282–293 (2012).
Google Scholar
174.
Johnston, F. et al. Using smartphone technology to reduce health impacts from atmospheric environmental hazards. Environ. Res. Lett. 13, 044019 (2018).
Google Scholar
175.
Lovreglio, R., Kuligowski, E., Gwynne, S. & Strahan, K. A modelling framework for householder decision-making for wildfire emergencies. Int. J. Disaster Risk Reduct. 41, 101274 (2019).
Google Scholar
176.
Kulemeka, O. A review of wildland fire smartphone applications: a classification study from Australia, USA, Canada and South Africa. Int. J. Emerg. Serv. 4, 258–270 (2015).
Google Scholar
177.
Rappold, A. et al. Smoke Sense initiative leverages citizen science to address the growing wildfire‐related public health problem. GeoHealth 3, 443–457 (2019).
Google Scholar
178.
Maryam, H., Shah, M. A., Javaid, Q. & Kamran, M. A survey on smartphones systems for emergency management (SPSEM). Int. J. Adv. Comput. Sci. Appl. 7, 301–311 (2016).
Google Scholar
179.
Vardoulakis, S., Jalaludin, B. B., Morgan, G. G., Hanigan, I. C. & Johnston, F. H. Bushfire smoke: urgent need for a national health protection strategy. Med. J. Aust. 212, 349–353.e1 (2020).
Google Scholar
180.
Lipsett-Moore, G. J., Wolff, N. H. & Game, E. T. Emissions mitigation opportunities for savanna countries from early dry season fire management. Nat. Commun. 9, 2247 (2018).
Google Scholar
181.
Russell-Smith, J. et al. Deriving multiple benefits from carbon market-based savanna fire management: An Australian example. PLoS ONE 10, e0143426 (2015).
Google Scholar
182.
Russell-Smith, J. et al. Managing fire regimes in north Australian savannas: applying Aboriginal approaches to contemporary global problems. Front. Ecol. Environ. 11, e55–e63 (2013).
Google Scholar
183.
Andersen, A. N., Woinarski, J. C. Z. & Parr, C. L. Savanna burning for biodiversity: Fire management for faunal conservation in Australian tropical savannas. Austral Ecol. 37, 658–667 (2012).
Google Scholar
184.
Bowman, D. M., MacDermott, H. J., Nichols, S. C. & Murphy, B. P. A grass–fire cycle eliminates an obligate-seeding tree in a tropical savanna. Ecol. Evol. 4, 4185–4194 (2014).
Google Scholar
185.
Murphy, B. P., Russell‐Smith, J. & Prior, L. D. Frequent fires reduce tree growth in northern Australian savannas: implications for tree demography and carbon sequestration. Glob. Change Biol. 16, 331–343 (2010).
Google Scholar
186.
Petty, A. M., deKoninck, V. & Orlove, B. Cleaning, protecting, or abating? Making indigenous fire management “work” in northern Australia. J. Ethnobiol. 35, 140–163 (2015).
Google Scholar
187.
de Oliveira Andrade, R. Alarming surge in Amazon fires prompts global outcry. Nature https://doi.org/10.1038/d41586-019-02537-0 (23 Aug 2019).
188.
Kasischke, E. S., Christensen, N. Jr & Stocks, B. J. Fire, global warming, and the carbon balance of boreal forests. Ecol. Appl. 5, 437–451 (1995).
Google Scholar
189.
Bradshaw, C. J. & Warkentin, I. G. Global estimates of boreal forest carbon stocks and flux. Glob. Planet. Change 128, 24–30 (2015).
Google Scholar
190.
Dieleman, C. M. et al. Wildfire combustion and carbon stocks in the southern Canadian boreal forest: Implications for a warming world. Glob. Change Biol. https://doi.org/10.1111/gcb.15158 (2020).
Article Google Scholar
191.
Bastin, J.-F. et al. The global tree restoration potential. Science 365, 76–79 (2019).
Google Scholar
192.
Bastin, J.-F. et al. Response to comments on “The global tree restoration potential”. Science 366, eaay8108 (2019).
Google Scholar
193.
Lewis, S. L., Wheeler, C. E., Mitchard, E. T. A. & Koch, A. Restoring natural forests is the best way to remove atmospheric carbon. Nature 568, 25–28 (2019).
Google Scholar
194.
Veldman, J. W. et al. Comment on “The global tree restoration potential”. Science 366, eaay7976 (2019).
Google Scholar
195.
Friedlingstein, P., Allen, M., Canadell, J. G., Peters, G. P. & Seneviratne, S. I. Comment on “The global tree restoration potential”. Science 366, eaay8060 (2019).
Google Scholar
196.
Lewis, S. L., Mitchard, E. T., Prentice, C., Maslin, M. & Poulter, B. Comment on “The global tree restoration potential”. Science 366, eaaz0388 (2019).
Google Scholar
197.
Grainger, A., Iverson, L. R., Marland, G. H. & Prasad, A. Comment on “The global tree restoration potential”. Science 366, eaay8334 (2019).
Google Scholar
198.
Luedeling, E. et al. Forest restoration: Overlooked constraints. Science 366, 315 (2019).
Google Scholar
199.
Lindenmayer, D. B., Hobbs, R. J., Likens, G. E., Krebs, C. J. & Banks, S. C. Newly discovered landscape traps produce regime shifts in wet forests. Proc. Natl Acad. Sci. USA 108, 15887–15891 (2011).
Google Scholar
200.
Anderegg, W. R. et al. Climate-driven risks to the climate mitigation potential of forests. Science 368, eaaz7005 (2020).
Google Scholar
201.
Nerini, F. F. et al. Connecting climate action with other sustainable development goals. Nat. Sustain. 2, 674–680 (2019).
Google Scholar
202.
Castree, N. Speaking for the ‘people disciplines’: Global change science and its human dimensions. Anthropocene Rev. 4, 160–182 (2017).
Google Scholar
203.
Stenzel, J. E. et al. Fixing a snag in carbon emissions estimates from wildfires. Glob. Change Biol. 25, 3985–3994 (2019).
Google Scholar
204.
Andela, N. et al. The global fire atlas of individual fire size, duration, speed and direction. Earth Syst. Sci. Data 11, 529–552 (2019).
Google Scholar
205.
Meng, R. et al. Using high spatial resolution satellite imagery to map forest burn severity across spatial scales in a Pine Barrens ecosystem. Remote Sens. Environ. 191, 95–109 (2017).
Google Scholar
206.
Filkov, A., Duff, T. & Penman, T. Improving fire behaviour data obtained from wildfires. Forests 9, 81 (2018).
Google Scholar
207.
White, I. et al. The vulnerability of water supply catchments to bushfires: impacts of the January 2003 wildfires on the Australian capital territory. Australas. J. Water Resour. 10, 179–194 (2006).
Google Scholar
208.
Kliskey, A. et al. Planning for Idaho’s waterscapes: A review of historical drivers and outlook for the next 50 years. Environ. Sci. Policy 94, 191–201 (2019).
Google Scholar
209.
Stocks, B. & Martell, D. L. Forest fire management expenditures in Canada: 1970–2013. Forestry Chron. 92, 298–306 (2016).
Google Scholar
210.
Burton, C., Betts, R., Jones, C. & Williams, K. Will fire danger be reduced by using solar radiation management to limit global warming to 1.5 C compared to 2.0 C? Geophys. Res. Lett. 45, 3644–3652 (2018).
Google Scholar
211.
Bedia, J. et al. Global patterns in the sensitivity of burned area to fire-weather: Implications for climate change. Agric. For. Meteorol. 214, 369–379 (2015).
Google Scholar
212.
Liu, Y., Stanturf, J. & Goodrick, S. Trends in global wildfire potential in a changing climate. For. Ecol. Manag. 259, 685–697 (2010).
Google Scholar
213.
Huang, Y., Wu, S. & Kaplan, J. O. Sensitivity of global wildfire occurrences to various factors in the context of global change. Atmos. Environ. 121, 86–92 (2015).
Google Scholar
214.
de Groot, W. J., Flannigan, M. D. & Cantin, A. S. Climate change impacts on future boreal fire regimes. For. Ecol. Manag. 294, 35–44 (2013).
Google Scholar
215.
Fonseca, M. G. et al. Effects of climate and land‐use change scenarios on fire probability during the 21st century in the Brazilian Amazon. Glob. Change Biol. 25, 2931–2946 (2019).
Google Scholar
216.
Le Page, Y. et al. Synergy between land use and climate change increases future fire risk in Amazon forests. Earth Syst. Dynam. 8, 1237–1246 (2017).
Google Scholar
217.
Dowdy, A. J. et al. Future changes in extreme weather and pyroconvection risk factors for Australian wildfires. Sci. Rep. 9, 10073 (2019).
Google Scholar
218.
Fox-Hughes, P., Harris, R., Lee, G., Grose, M. & Bindoff, N. Future fire danger climatology for Tasmania, Australia, using a dynamically downscaled regional climate model. Int. J. Wildland Fire 23, 309–321 (2014).
Google Scholar
219.
Syphard, A. D. et al. The relative influence of climate and housing development on current and projected future fire patterns and structure loss across three California landscapes. Global Environ. Change 56, 41–55 (2019).
Google Scholar
220.
Yoon, J.-H. et al. Extreme fire season in California: a glimpse into the future? Bull. Am. Meteorol. Soc. 96, S5–S9 (2015).
Google Scholar
221.
Wang, X. et al. Projected changes in daily fire spread across Canada over the next century. Environ. Res. Lett. 12, 025005 (2017).
Google Scholar
222.
Young, A. M., Higuera, P. E., Duffy, P. A. & Hu, F. S. Climatic thresholds shape northern high‐latitude fire regimes and imply vulnerability to future climate change. Ecography 40, 606–617 (2017).
Google Scholar
223.
Jones, M. W. et al. Climate change increases the risk of wildfires. ScienceBrief https://sciencebrief.org/briefs/wildfires (2020).
224.
Vitolo, C., Di Giuseppe, F., Krzeminski, B. & San-Miguel-Ayanz, J. A 1980–2018 global fire danger re-analysis dataset for the Canadian Fire Weather Indices. Sci. Data 6, 190032 (2019).
Google Scholar
225.
DiMiceli, C. et al. MOD44B v006. MODIS/Terra Vegetation Continuous Fields Yearly L3 Global 250 m SIN Grid (NASA EOSDIS Land Processes DAAC, 2015).
226.
Littell, J. S., McKenzie, D., Peterson, D. L. & Westerling, A. L. Climate and wildfire area burned in western US ecoprovinces, 1916–2003. Ecol. Appl. 19, 1003–1021 (2009).
Google Scholar
227.
Eidenshink, J. et al. A project for monitoring trends in burn severity. Fire Ecol. 3, 3–21 (2007).
Google Scholar
228.
Turco, M. et al. Climate drivers of the 2017 devastating fires in Portugal. Sci. Rep. 9, 13886 (2019).
Google Scholar
229.
Bowman, D. M., Murphy, B. P., Neyland, D. L., Williamson, G. J. & Prior, L. D. Abrupt fire regime change may cause landscape‐wide loss of mature obligate seeder forests. Glob. Change Biol. 20, 1008–1015 (2014).
Google Scholar More