More stories

  • in

    Next generation sequencing-aided comprehensive geographic coverage sheds light on the status of rare and extinct populations of Aporia butterflies (Lepidoptera: Pieridae)

    1.
    Hughes, A. R. & Stachowicz, J. J. Genetic diversity enhances the resistance of a seagrass ecosystem to disturbance. Proc. Natl. Acad. Sci. U.S.A. 101, 8998–9002 (2004).
    ADS  CAS  PubMed  PubMed Central  Google Scholar 
    2.
    Frankham, R. Genetics and extinction. Biol. Conserv. 126, 131–140 (2005).
    Google Scholar 

    3.
    Koizumi, I., Usio, N., Kawai, T., Azuma, N. & Masuda, R. Loss of genetic diversity means loss of geological information: The endangered japanese crayfish exhibits remarkable historical footprints. PLoS ONE 7(3), e33986. https://doi.org/10.1371/journal.pone.0033986 (2012).
    ADS  CAS  Article  PubMed  PubMed Central  Google Scholar 

    4.
    Nazari, V., Schmidt, B. C., Prosser, S. & Hebert, P. D. N. Century-old DNA barcodes reveal phylogenetic placement of the extinct Jamaican Sunset Moth, Urania sloanus Cramer (Lepidoptera: Uraniidae). PLoS ONE 11(10), e0164405. https://doi.org/10.1371/journal.pone.0164405 (2016).
    CAS  Article  PubMed  PubMed Central  Google Scholar 

    5.
    Nazari, V., Tarmann, G. & Efetov, K. A. Phylogenetic position of the ‘extinct’ Fijian coconut moth, Levuana iridescens (Lepidoptera: Zygaenidae). PLoS ONE 14(12), e0225590. https://doi.org/10.1371/journal.pone.0225590 (2019).
    CAS  Article  PubMed  PubMed Central  Google Scholar 

    6.
    Kim, Y. S. Illustrated Book of Korean Butterflies in Color (Kyo-Hak Publishing, Seoul, 2002).
    Google Scholar 

    7.
    Park, J. S., Cho, Y., Kim, M. J., Nam, S. H. & Kim, I. Description of complete mitochondrial genome of the black-veined white, Aporia crataegi (Lepidoptera: Papilionoidea), and comparison to papilionoid species. J. Asia-Pac. Entomol. 15, 331–341 (2012).
    CAS  Google Scholar 

    8.
    Park, H. C. et al. DNA barcode analysis for conservation of an endangered species, Aporia crataegi (Lepidoptera, Pieridae) in Korea. J. Seric. Entomol. Sci. 51, 201–206 (2013).
    Google Scholar 

    9.
    Della Bruna, C., Gallo, E. & Sbordoni, V. Pieridae, part I (2nd edition). Guide to the Butterflies of the Palearctic Region (ed. Bozano, G. C.) (Omnes Artes, 2013).

    10.
    Savela, M. Lepidoptera and some other life forms https://www.nic.funet.fi/pub/sci/bio/life/insecta/lepidoptera/ (2018). Accessed 10 November 2019.

    11.
    Braby, M. F., Vila, R. & Pierce, N. E. Molecular phylogeny and systematics of the Pieridae (Lepidoptera: Papilionoidea): Higher classification and biogeography. Zool. J. Linn. Soc. 147, 239–275 (2006).
    Google Scholar 

    12.
    Wahlberg, N., Rota, J., Braby, M. F., Pierce, N. E. & Wheat, C. W. Revised systematics and higher classification of pierid butterflies (Lepidoptera: Pieridae) based on molecular data. Zool. Scr. 43, 641–650 (2014).
    Google Scholar 

    13.
    Ding, C. & Zhang, Y. Phylogenetic relationships of Pieridae (Lepidoptera: Papilionoidea) in China based on seven gene fragments. Entomol. Sci. 20, 15–23 (2017).
    Google Scholar 

    14.
    Klots, A. B. A generic classification of the Pieridae (Lepidoptera) together with a study of the male genitalia. Entomol. Am. 12, 13–242 (1933).
    Google Scholar 

    15.
    Braby, M. F. Provisional checklist of genera of the Pieridae (Lepidoptera: Papilionidae). Zootaxa 832, 1–16 (2005).
    Google Scholar 

    16.
    Chou, I. Monograph of Chinese Butterflies, First Volume (Henan Scientific and Technological Publishing House, Zhengzhou, 1999).
    Google Scholar 

    17.
    Wu, C. Fauna Sinica, Insecta vol. 52, Lepidoptera, Pieridae (Science Press, Beijing, 2010).
    Google Scholar 

    18.
    Ding, C. & Zhang, Y. Phylogenetic relationships of the genera Aporia and Mesapia (Lepidoptera: Pieridae) based on COI and EF1α gene sequences. Acta Entomol. Sin. 59(8), 880–887 (2016).
    Google Scholar 

    19.
    Della Bruna, C., Gallo, E., Sbordoni, V. & Bozano, G. C. Addenda to the genus Aporia Hübner, [1819] (Lepidoptera: Pieridae). Nachrichten des Entomologischen Vereins Apollo N. F. 29(4), 205–209 (2009).
    Google Scholar 

    20.
    Deodati, T. Filogenesi molecolare, barcoding e stima dei tempi evolutivi in tre gruppi di farfalle diurne (Insecta: Lepidoptera) a distribuzione Sino-Himalayana (PhD thesis) (University of Rome Tor Vergata, 2010).

    21.
    Allan, P. B. M. Moths and Memories 1st edn. (Watkins & Doncaster, Pudleston, 1948).
    Google Scholar 

    22.
    Jugovic, J., Črne, M. & Lužnik, M. Movement, demography and behaviour of a highly mobile species: A case study of the black-veined white, Aporia crataegi (Lepidoptera: Pieridae). Eur. J. Entomol. 114, 113–122 (2017).
    Google Scholar 

    23.
    Kim, T. G., Han, Y. G., Kwon, O. & Cho, Y. Changes in Aporia crataegi’s potential habitats in accordance with climate changes in the northeast Asia. J. Ecol. Environ. 38(1), 15–23 (2015).
    Google Scholar 

    24.
    van Swaay, C. et al. Aporia crataegi. The IUCN Red List of Threatened Species; https://www.iucnredlist.org (2014). Accessed 10 November 2019.

    25.
    van Swaay, C. et al. Aporia crataegi. The IUCN Red List of Threatened Species; https://www.iucnredlist.org (2010). Accessed 10 November 2019.

    26.
    Ivanova, N. V., deWaard, J. R. & Hebert, P. D. N. An inexpensive, automation friendly protocol for recovering high-quality DNA. Mol. Ecol. Notes 6, 998–1002 (2006).
    CAS  Google Scholar 

    27.
    Prosser, S. W. J., de Waard, J. R., Miller, S. E. & Hebert, P. D. N. DNA barcodes from century-old type specimens using next-generation sequencing. Mol. Ecol. Resour. 16(2), 487–497 (2016).
    CAS  PubMed  Google Scholar 

    28.
    Hajibabaei, M. et al. Critical factors for assembling a high volume of DNA barcodes. Philos. Trans. R. Soc. Lond. B 360, 1959–1967 (2005).
    CAS  Google Scholar 

    29.
    deWaard, J. R., Ivanova, N. V., Hajibabaei, M. & Hebert, P. D. N. Assembling DNA barcodes: Analytical protocols. Method Mol. Biol. Environ. Genet. 410, 275–293 (2008).
    CAS  Google Scholar 

    30.
    Librado, P. & Rozas, J. DnaSP v5: A software for comprehensive analysis of DNA polymorphism data. Bioinformatics 25, 1451–1452 (2009).
    CAS  PubMed  PubMed Central  Google Scholar 

    31.
    Kumar, S., Stecher, G., Li, M., Knyaz, C. & Tamura, K. MEGA X: Molecular evolutionary genetics analysis across computing platforms. Mol. Biol. Evol. 35(6), 1547–1549 (2018).
    CAS  PubMed  PubMed Central  Google Scholar 

    32.
    Bandelt, H. J., Forster, P. & Röhl, A. Median-joining networks for inferring intraspecific phylogenies. Mol. Biol. Evol. 16, 37–48 (1999).
    CAS  PubMed  Google Scholar 

    33.
    Kalyaanamoorthy, S., Minh, B. Q., Wong, T. K. F., von Haeseler, A. & Jermiin, L. S. ModelFinder: Fast model selection for accurate phylogenetic estimates. Nat. Methods 14, 587–589 (2017).
    CAS  PubMed  PubMed Central  Google Scholar 

    34.
    Nguyen, L. T., Schmidt, H. A., von Haeseler, A. & Minh, B. Q. IQ-TREE: A fast and effective stochastic algorithm for estimating maximum likelihood phylogenies. Mol. Biol. Evol. 32, 268–274 (2015).
    CAS  PubMed  Google Scholar 

    35.
    Stamatakis, A. RAxML-VI-HPC: Maximum likelihood-based phylogenetic analyses with thousands of taxa and mixed models. Bioinformatics 22(21), 2688–2690 (2006).
    CAS  Google Scholar 

    36.
    Boc, A., Diallo, A. B. & Makarenkov, V. T-REX: A web server for inferring, validating and visualizing phylogenetic trees and networks. Nucleic Acids Res. 40(W1), W573–W579 (2012).
    PubMed  PubMed Central  Google Scholar 

    37.
    Rambaut, A. Figtree v1.4. https://tree.bio.ed.ac.uk/software/figtree (2012). Accessed 23 November 2019.

    38.
    Kimura, M. Genetic variability maintained in a finite population due to mutational production of neutral and nearly neutral isoalleles. Genet. Res. 11, 247–269 (1968).
    CAS  PubMed  Google Scholar 

    39.
    Ramos-Onsins, S. & Rozas, J. Statistical properties of new neutrality tests against population growth. Mol. Biol. Evol. 19, 2092–2100 (2002).
    CAS  PubMed  Google Scholar 

    40.
    Fu, Y. X. Statistical tests of neutrality of mutations against population growth, hitchhiking and background selection. Genetics 147, 915–925 (1997).
    CAS  PubMed  PubMed Central  Google Scholar 

    41.
    Ramirez-Soriano, A., Ramos-Onsins, S. E., Rozas, J., Calafell, F. & Navarro, A. Statistical power analysis of neutrality tests under demographic expansions, contractions and bottlenecks with recombination. Genetics 179, 555–567 (2008).
    PubMed  PubMed Central  Google Scholar 

    42.
    Holsinger K. E. Tajima’s D, Fu’s F S, Fay and Wu’s H, and Zeng et al.’s E. in Lecture Notes in Population Genetics (ed. Holsinger, K. E. 2001-2019) 291–296 (University of Connecticut, 2017).

    43.
    Excoffier, L. & Lischer, H. E. L. Arlequin suite ver 3.5: A new series of programs to perform population genetics analyses under Linux and Windows. Mol. Ecol. Resour. 10, 564–567 (2010).
    PubMed  PubMed Central  Google Scholar 

    44.
    Hudson, R. R. Gene genealogies and the coalescent process. In Oxford Surveys in Evolutionary Biology (eds Futuyma, D. J. & Antonovics, J. D.) 1–44 (Oxford University Press, Oxford, 1990).
    Google Scholar 

    45.
    Schneider, S. & Excoffier, L. Estimation of past demographic parameters from the distribution of pairwise differences when the mutation rates vary among sites: Application to human mitochondrial DNA. Genetics 152, 1079–1089 (1999).
    CAS  PubMed  PubMed Central  Google Scholar 

    46.
    Ray, N., Currat, M. & Excoffier, L. Intra-deme molecular diversity in spatially expanding populations. Mol. Biol. Evol. 20, 76–86 (2003).
    CAS  PubMed  Google Scholar 

    47.
    Excoffier, L. Patterns of DNA sequence diversity and genetic structure after a range expansion: Lessons from the infinite-island model. Mol. Ecol. 13, 853–864 (2004).
    CAS  PubMed  Google Scholar 

    48.
    Brower, A. V. Z. Rapid morphological radiation and convergence among races of the butterfly Heliconius erato, inferred from patterns of mitochondrial DNA evolution. Proc. Natl. Acad. Sci. U.S.A. 91, 6491–6495 (1994).
    ADS  CAS  PubMed  PubMed Central  Google Scholar 

    49.
    Tadokoro, T., Koide, Y. & Hori, K. Description of a new subspecies of Mesapia peloria from central Nepal, and taxonomic notes for other subspecies (Lepidoptera, Pieridae). Lepidoptera Sci. 65(2), 51–59 (2014).
    Google Scholar 

    50.
    Schmitt, T. Molecular biogeography of Europe: Pleistocene cycles and postglacial trends. Front. Zool. 4(1), 11 (2007).
    PubMed  PubMed Central  Google Scholar 

    51.
    Dapporto, L. et al. Integrating three comprehensive data sets shows that mitochondrial DNA variation is linked to species traits and paleogeographic events in European butterflies. Mol. Ecol. Resour. 00, 1–14 (2019).
    Google Scholar 

    52.
    Ehlers, J., Astakhov, V., Gibbard, P. L., Mangerud, J. & Svendsen, J. I. Late pleistocene glaciations in Europe. In Encyclopedia of Quaternary Science (ed. Elias, S. A.) 1085–1095 (Elsevier, Hoboken, 2006).
    Google Scholar 

    53.
    King, R. A. & Ferris, C. Chloroplast DNA phylogeography of Alnus glutinosa (L.) Gaertn. Mol. Ecol. 7, 1151–1161 (1998).
    CAS  Google Scholar 

    54.
    Wallis, G. P. & Arntzen, J. W. Mitochondrial-DNA variation in the crested newt superspecies: Limited cytoplasmic gene flow among species. Evolution 43, 88–104 (1989).
    CAS  PubMed  Google Scholar 

    55.
    Dapporto, L. Speciation in Mediterranean refugia and post-glacial expansion of Zerynthia polyxena (Lepidoptera, Papilionidae). J. Zool. Syst. Evol. Res. 48(3), 229–237 (2010).
    Google Scholar 

    56.
    Galtier, N., Nabholz, B., Glémin, S. & Hurst, G. D. D. Mitochondrial DNA as a marker of molecular diversity: A reappraisal. Mol. Ecol. 18(22), 4541–4550 (2009).
    CAS  PubMed  Google Scholar 

    57.
    Stein, E. D., Martinez, M. C., Stiles, S., Miller, P. E. & Zakharov, E. V. Is DNA barcoding actually cheaper and faster than traditional morphological methods: Results from a survey of freshwater bioassessment efforts in the United States?. PLoS ONE 9(4), e95525. https://doi.org/10.1371/journal.pone.0095525 (2014).
    ADS  CAS  Article  PubMed  PubMed Central  Google Scholar 

    58.
    Sanmartin, I. Dispersal vs. vicariance in the Mediterranean: historical biogeography of the Palearctic Pachydeminae (Coleoptera, Scarabaeoidea). J. Biogeogr. 30, 1883–1897 (2003).
    Google Scholar 

    59.
    Krijgsman, W. The Mediterranean: Mare nostrum of earth sciences. Earth Planet. Sci. Lett. 205, 1–12 (2002).
    ADS  CAS  Google Scholar 

    60.
    Steininger, F. F. & Rogl, F. Paleogeography and palinspastic reconstruction of the Neogene of the Mediterranean and Paratethys. In The Geological Evolution of the Eastern Mediterranean (eds Dixon, J. E. & Robertson, A. H. F.) 659–668 (Geological Society Special Publication. Blackwell Scientific Publications, Hoboken, 1996).
    Google Scholar 

    61.
    De Jong, H. In search of historical biogeographic patterns in the western Mediterranean terrestrial fauna. Biol. J. Linnean Soc. 65, 99–164 (1998).
    Google Scholar 

    62.
    Nazari, V., Ten Hagen, W. & Bozano, G. C. Molecular systematics and phylogeny of the ‘Marbled Whites’ (Lepidoptera: Nymphalidae, Satyrinae, Melanargia Meigen). Syst. Entomol. 35, 132–147 (2010).
    Google Scholar 

    63.
    Todisco, V. et al. Molecular phylogeny of the Palaearctic butterfly genus Pseudophilotes (Lepidoptera: Lycaenidae) with focus on the Sardinian endemic P. barbagiae. BMC Zool. 3, 4 (2018).
    Google Scholar 

    64.
    Dinca, V., Dapporto, L. & Vila, R. A combined genetic-morphometric analysis unravels the complex biogeographical history of Polyommatus icarus and Polyommatus celina common blue butterflies. Mol. Ecol. 20, 3921–3935 (2011).
    CAS  PubMed  Google Scholar 

    65.
    Sañudo-Restrepo, C. P., Dinca, V., Talavera, G. & Vila, R. Biogeography and systematics of Aricia butterflies (Lepidoptera, Lycaenidae). Mol. Phylogenet. Evol. 66, 369–379 (2013).
    PubMed  Google Scholar  More

  • in

    Comparing methods for estimating leaf area index by multi-angular remote sensing in winter wheat

    1.
    Delegido, J. et al. A red-edge spectral index for remote sensing estimation of green LAI over agroecosystems. Eur. J. Agron. 46, 42–52 (2013).
    Google Scholar 
    2.
    Liang, L. et al. Estimation of crop LAI using hyperspectral vegetation indices and a hybrid inversion method. Remote Sens. Environ. 165, 123–134 (2015).
    ADS  Google Scholar 

    3.
    Meng, Q. Y. et al. Hot dark spot index method based on multi-angular remote sensing for leaf area index retrieval. Environ Earth Sci. 75, 732. https://doi.org/10.1007/s12665-016-5549-x (2016).
    Article  Google Scholar 

    4.
    Zhu, Y. H. et al. Exploring the potential of WorldView-2 red-edge band-based vegetation indices for estimation of mangrove leaf area index with machine learning algorithms. Remote Sens. 9, 1060. https://doi.org/10.3390/rs9101060 (2017).
    ADS  Article  Google Scholar 

    5.
    Guyot, G., Baret, F. & Jacquemoud, S. Imaging spectroscopy for vegetation studies. In Imaging Spectroscopy: Fundamentals and Prospective Applications (eds Toselli, F. & Bodechtel, J.) 145–165 (Kluwer Academic Publications, Dordrecht, 1992).
    Google Scholar 

    6.
    Mutanga, O., Adam, E. & Cho, M. A. High density biomass estimation for wetland vegetation using worldview-2 imagery and random forest regression algorithm. Int. J. Appl. Earth Obs. Geo. Inf. 18, 399–406 (2012).
    ADS  Google Scholar 

    7.
    Broge, N. H. & Leblanc, E. Comparing prediction power and stability of broadband and hyperspectral vegetation indices for estimation of green leaf area index and canopy chlorophyll density. Remote Sens. Environ. 76, 156–172 (2001).
    ADS  Google Scholar 

    8.
    Haboudane, D., Miller, J. R., Pattey, E., Zarco-Tejada, P. J. & Strachan, I. B. Hyperspectral vegetation indices and novel algorithms for predicting green LAI of crop canopies: Modeling and validation in the context of precision agriculture. Remote Sens. Environ. 90, 337–352 (2004).
    ADS  Google Scholar 

    9.
    LeMaire, G. et al. Calibration and validation of hyperspectral indices for the estimation of broadleaved forest leaf chlorophyll content, leaf mass per area, leaf area index and leaf canopy biomass. Remote Sens. Environ. 112, 3846–3864 (2008).
    ADS  Google Scholar 

    10.
    Yang, X. H. et al. Comparison between radial basis function neural network and regression model for estimation of rice biophysical parameters using remote sensing. Pedosphere 19, 176–188 (2009).
    Google Scholar 

    11.
    Noh, H., Zhang, Q., Han, S. & Feng, L. A Neural network model of maize crop nitrogen stress assessment for multi-spectral imaging sensor. Biosyst. Eng. 94, 477–485 (2006).
    Google Scholar 

    12.
    Liu, M. L., Liu, X. N., Li, M., Fang, M. H. & Chi, W. X. Neural-network model for estimating leaf chlorophyll concentration in rice under stress from heavy metals using four spectral indices. Biosyst. Eng. 106, 223–233 (2010).
    Google Scholar 

    13.
    Ye, X., Sakai, K., Garciano, L. Q., Asada, S.-I. & Sasao, A. Estimation of citrus yield from airborne hyperspectral images using a neural network model. Ecol. Model. 198, 426–432 (2006).
    Google Scholar 

    14.
    Walthall, C. et al. A comparison of empirical and neural network approaches for estimating corn and soybean leaf area index from Landsat ETM+ imagery. Remote Sens. Environ. 92, 465–474 (2004).
    ADS  Google Scholar 

    15.
    Huang, Z., Turner, B. J., Dury, S. J., Wallis, I. R. & Foley, W. J. Estimating foliage nitrogen concentration from HYMAP data using continuum removal analysis. Remote Sens. Environ. 93, 18–29 (2004).
    ADS  Google Scholar 

    16.
    Hansen, P. M. & Schjoerring, J. K. Reflectance measurement of canopy biomass and nitrogen status in wheat crops using normalized difference vegetation indices and partial least squares regression. Remote Sens. Environ. 86, 542–553 (2003).
    ADS  Google Scholar 

    17.
    Darvishzadeh, R. et al. LAI and chlorophyll estimation for a heterogeneous grassland using hyperspectral measurements. ISPRS J. Photogramm. Remote Sens. 63, 409–426 (2008).
    ADS  Google Scholar 

    18.
    Nguyen, H. T. & Lee, B. W. Assessment of rice leaf growth and nitrogen status by hyperspectral canopy reflectance and partial least square regression. Eur. J. Agron. 24, 349–356 (2006).
    Google Scholar 

    19.
    Jin, X. L. et al. Estimation of leaf water content in winter wheat using grey relational analysis-partial least squares modeling with hyperspectral data. Agron. J. 105, 1385–1392 (2013).
    Google Scholar 

    20.
    Atzberger, C., Guérif, M., Baret, F. & Werner, W. Comparative analysis of three chemometric techniques for the spectroradiometric assessment of canopy chlorophyll content in winter wheat. Comput. Electro. Agric. 73, 165–173 (2010).
    Google Scholar 

    21.
    Mirzaie, M. et al. Comparative analysis of different uni- and multi-variate methods for estimation of vegetation water content using hyper-spectral measurements. Int. J. Appl. Earth Obs. Geo. Inf. 26, 1–11 (2014).
    ADS  Google Scholar 

    22.
    Durbha, S. S., King, R. L. & Younan, N. H. Support vector machines regression for retrieval of leaf area index from multiangle imaging spectroradiometer. Remote Sens. Environ. 107, 348–361 (2007).
    ADS  Google Scholar 

    23.
    Yang, G. J., Zhao, C. J., Xing, Z. R., Huang, W. J. & Wang, J. H. LAI inversion of spring wheat based on PROBA/CHRIS hyperspectral multi-angular data and PROSAIL model. Trans CSAE. 27, 88–94 (2011) (In Chinese with English abstract).
    CAS  Google Scholar 

    24.
    Chen, J. M., Menges, C. H. & Leblanc, S. G. Global mapping of foliage clumping index using multi-angular satellite data. Remote Sens. Environ. 97, 447–457 (2005).
    ADS  Google Scholar 

    25.
    Wang, Q. et al. The potential of forest biomass inversion based on vegetation indices using multi-angel CHRIS-PROBA data. Remote Sens. 8, 891. https://doi.org/10.3390/rs8110891 (2016).
    ADS  Article  Google Scholar 

    26.
    Rougean, J. L. & Breon, F. M. Estimating PAR absorbed by vegetation from bidrectional reflectance measurements. Remote Sens. Environ. 51, 375–384 (1995).
    ADS  Google Scholar 

    27.
    Gemmell, F. & McDonald, A. J. View zenith angle effects on the forest information content of three spectral indices. Remote Sens. Environ. 72, 139–158 (2000).
    ADS  Google Scholar 

    28.
    Pocewicz, A., Vierling, L. A., Lentile, L. B. & Smith, R. View angle effects on relationships between MISR vegetation indices and leaf index in a recently burned ponderosa pine forest. Remote Sens. Environ. 107, 322–333 (2007).
    ADS  Google Scholar 

    29.
    Stagakis, S., Markos, N., Sykioti, O. & Kyparissis, A. Monitoring canopy biophysical and biochemical parameters in ecosystem scale using satellite hyperspectral imagery: An application on a Phlomis fruticosa Mediterranean ecosystem using multi-angular CHRIS/PROBA observations. Remote Sens. Environ. 114, 977–994 (2010).
    ADS  Google Scholar 

    30.
    Hasegawa, K., Matsuyama, H., Tsuzuki, H. & Sweda, T. Improving the estimation of leaf area index by using remotely sensed NDVI with BRDF signatures. Remote Sens. Environ. 114, 514–519 (2010).
    ADS  Google Scholar 

    31.
    Wu, C., Han, X., Niu, Z. & Dong, J. An evaluation of EO-1 hyperspectral Hyperion data for chlorophyll content and leaf area index estimation. Int. J. Remote Sens. 31, 1079–1086 (2010).
    ADS  Google Scholar 

    32.
    Herrmann, I. et al. LAI assessment of wheat and potato crops by VENS and Sentinel-2 bands. Remote Sens. Environ. 115, 2141–2151 (2011).
    ADS  Google Scholar 

    33.
    Peñuelas, J. & Filella, I. Reflectance assessment of mite effects on apple trees. Int. J. Remote Sens. 16, 2727–2733 (1995).
    ADS  Google Scholar 

    34.
    Vogelmann, J. E., Rock, B. N. & Moss, D. M. Red-edge spectral measurements from Sugar Maple leaves. Int. J. Remote Sens. 14, 1563–1575 (1993).
    ADS  Google Scholar 

    35.
    He, L. et al. Estimating canopy leaf nitrogen concentration in winter wheat based on multi-angular hyperspectral remote sensing. Eur. J. Agron. 73, 170–185 (2016).
    CAS  Google Scholar 

    36.
    Shen, W. Y. et al. Inversion model for severity of powdery mildew in wheat leaves based on factor analysis-BP neural network. Trans CSAE. 31, 183–190 (2015) (in Chinese with English abstract).
    Google Scholar 

    37.
    Asner, G. P. Biophysical and biochemical sources of variability in canopy reflectance. Remote Sens. Environ. 64, 234–253 (1998).
    ADS  Google Scholar 

    38.
    Verrelst, J., Schaepman, M. E., Koetz, B. & Kneubühler, M. Angular sensitivity analysis of vegetation indices derived from CHRIS/PROBA data. Remote Sens. Environ. 11, 2341–2353 (2008).
    ADS  Google Scholar 

    39.
    He, L. et al. Improved remote sensing of leaf nitrogen concentration in winter wheat using multi-angular hyperspectral data. Remote Sens. Environ. 174, 122–133 (2016).
    ADS  Google Scholar 

    40.
    Rouse, J. W., Haas, R. H., Schell, J. A., Deering, D. W., Harlan, J. C. Monitoring the vernal advancements and retrogradation of natural vegetation. In: NASA/GSFC, Final Report, Greenbelt, MD, USA (pp. 1–137) (1974).

    41.
    Jordan, C. F. Derivation of leaf area index from quality of light on the forest floor. Ecology 50, 663–666 (1969).
    Google Scholar 

    42.
    Rondeaux, G., Steven, M. & Baret, F. Optimization of soil-adjusted vegetation indices. Remote Sens. Environ. 55, 95–107 (1996).
    ADS  Google Scholar 

    43.
    Gamon, J. A., Penuelas, J. & Field, C. B. A narrow-waveband spectral index that tracks diurnal changes in photosynthetic efficiency. Remote Sens. Environ. 41, 35–44 (1992).
    ADS  Google Scholar 

    44.
    Peng, Y. & Gitelson, A. A. Application of chlorophyll-related vegetation indices for remote estimation of maize productivity. Agric. Forest Meteorol. 151, 1267–1276 (2011).
    ADS  Google Scholar 

    45.
    Gitelson, A. A., Gritz, Y. & Merzlyak, M. N. Relationships between leaf chlorophyll content and spectral reflectance and algorithms for non-destructive chlorophyll assessment in higher plant leaves. J. Plant Physiol. 160, 271–282 (2003).
    CAS  PubMed  Google Scholar 

    46.
    Sims, D. A. & Gamon, J. A. Relationships between leaf pigment content and spectral reflectance across a wide range of species, leaf structures and developmental stages. Remote Sens. Environ. 81, 331–354 (2002).
    ADS  Google Scholar 

    47.
    Huete, A. et al. Overview of the radiometric and biophysical performance of the MODIS vegetation indices. Remote Sens. Environ. 83, 195–213 (2002).
    ADS  Google Scholar 

    48.
    Dash, J. & Curran, P. J. The MERIS terrestrial chlorophyll index. Int. J. Remote Sens. 25, 5403–5413 (2004).
    ADS  Google Scholar 

    49.
    Haboudane, D., Miller, J. R., Tremblay, N., Zarco-Tejada, P. J. & Dextraze, L. Integrated narrowband vegetation indices for prediction of crop chlorophyll content for application to precision agriculture. Remote Sens. Environ. 81, 416–426 (2002).
    ADS  Google Scholar 

    50.
    Qi, J., Chehbouni, A., Huete, A. R., Keer, Y. H. & Sorooshian, S. A modified soil vegetation adjusted index. Remote Sens. Environ. 48, 119–126 (1994).
    ADS  Google Scholar 

    51.
    Guyot, G., Baret, F. & Major, D. J. High spectral resolution: determination of spectral shifts between the red and the near infrared. Int. Arch. Photogramm. Remote Sens. 11, 750–760 (1988).
    Google Scholar 

    52.
    LeMaire, G., François, C. & Dufrêne, E. Towards universal broad leaf chlorophyll indices using PROSPECT simulated database and hyperspectral reflectance measurements. Remote Sens. Environ. 89, 1–28 (2004).
    ADS  Google Scholar 

    53.
    Wang, X. L. & Li, Z. B. Identifying the parameters of the Kernel Function in Support Vector Machines based on the Grid-Search method. Periodical of Ocean University of China 35, 859–862 (2005) (in Chinese with English abstract).
    MathSciNet  Google Scholar 

    54.
    Feng, C. X., Yu, Z. G., King, U., Baig, M. P. Threefold vs. Fivefold cross validation in one-hidden-layer and two-hidden-layer predictive neural network modeling of machining surface roughness data. J. Manuf. Syst. 24, 93–107 (2005). More

  • in

    Characterization of deep-sea benthic invertebrate megafauna of the Galapagos Islands

    1.
    Darwin, C. The Voyage of the Beagle (1839).
    2.
    Forbes, E. Report on the Mollusca and Radiata of the Aegean Sea: And on Their Distribution, Considered as Bearing on Geology (1843).

    3.
    De La Beche, H. T. Researches in Theoretical Geology (FJ Huntington & co., New York, 1837).
    Google Scholar 

    4.
    Darwin, C. On the Origin of Species by Means of Natural Selection, or the Preservation of Favoured Races in the Struggle for Life (John Murray, Hachette, 1859).
    Google Scholar 

    5.
    Caccone, A. et al. Phylogeography and history of giant Galápagos tortoises. Evolution 56, 2052–2066 (2002).
    PubMed  Google Scholar 

    6.
    Grant, P. R. Ecology and Evolution of Darwin’s Finches (Princeton University Press, Princeton, 1999).
    Google Scholar 

    7.
    Wikelski, M. & Thom, C. Marine iguanas shrink to survive El Niño. Nature 403, 37–38 (2000).
    ADS  CAS  PubMed  Google Scholar 

    8.
    Glynn, P. W. & Wellington, G. M. Corals and Coral Reefs of the Galapagos Islands (University of California Press, California, 1983).
    Google Scholar 

    9.
    McCosker, J. E. & Rosenblatt, R. H. The fishes of the Galápagos Archipelago: an update. Proc. Calif. Acad. Sci. 61, 167–195 (2010).
    Google Scholar 

    10.
    Salinas de León, P. et al. Largest global shark biomass found in the northern Galápagos Islands of Darwin and Wolf. PeerJ 4, e1911 (2016).
    PubMed  PubMed Central  Google Scholar 

    11.
    Wellington, G. M. The Galápagos coastal marine environment (1975).

    12.
    Witman, J. D. & Smith, F. Rapid community change at a tropical upwelling site in the Galápagos Marine Reserve. Biodivers. Conserv. 12, 25–45 (2003).
    Google Scholar 

    13.
    Corliss, J. B., Dymond, J., Gordon, L. I. & Edmond, J. M. on the Galapagos Rift. Science 203, 16 (1979).
    Google Scholar 

    14.
    Hessler, R. R. & Smithey Jr, W. M. The distribution and community structure of megafauna at the Galapagos Rift hydrothermal vents. In Hydrothermal Processes at Seafloor Spreading Centers 735–770 (Springer, 1983).

    15.
    Harpp, K. S. & White, W. M. Tracing a mantle plume: isotopic and trace element variations of Galápagos seamounts. Geochem. Geophys. Geosystems 2 (2001).

    16.
    Lubetkin, M. et al. Nontronite-bearing tubular hydrothermal deposits from a Galapagos seamount. Deep Sea Res. Part II Top. Stud. Oceanogr. https://doi.org/10.1016/j.dsr2.2017.09.017 (2017).
    Article  Google Scholar 

    17.
    Karl, D. M., Wirsen, C. & Jannasch, H. Deep-sea primary production at the Galapagos hydrothermal vents. Sci. States 207, 1345–1347 (1980).
    CAS  Google Scholar 

    18.
    Rhoads, D. C., Lutz, R. A., Revelas, E. C. & Cerrato, R. M. Growth of bivalves at deep-sea hydrothermal vents along the Galapagos Rift. Science 214, 911–913 (1981).
    ADS  CAS  PubMed  Google Scholar 

    19.
    Van Dover, C. L., Berg Jr, C. J. & Turner, R. D. Recruitment of marine invertebrates to hard substrates at deep-sea hydrothermal vents on the East Pacific Rise and Galapagos spreading center. Deep Sea Res. Part Oceanogr. 35, 1833–1849 (1988).
    ADS  Google Scholar 

    20.
    Iwamoto, T. & McCosker, J. E. Notes on Galápagos grenadiers (Pisces, Gadiformes, Macrouridae), with the description of a new species of Coryphaenoides. Rev. Biol. Trop. 49, 21–27 (2001).
    PubMed  Google Scholar 

    21.
    Long, D. J., McCosker, J. E., Blum, S. & Klapfer, A. Tropical Eastern Pacific records of the prickly shark, Echinorhinus cookei (Chondrichthyes: Echinorhinidae). Pac. Sci. 65, 433–440 (2011).
    Google Scholar 

    22.
    McCosker, J. E., Long, D. J. & Baldwin, C. C. Description of a new species of deepwater catshark, Bythaelurus giddingsi sp. Nov., from the Galápagos Islands (Chondrichthyes: Carcharhiniformes: Scyliorhinidae). Zootaxa 59, 48–59 (2012).
    Google Scholar 

    23.
    Cerutti-Pereyra, F., Yanez, A., Ebert, D. A., Arnés-Urgellés, C. & Salinas-De-León, P. New record and range extension of the deepsea skate, Bathyraja Abyssicola (Chondrichthyes: Arhynchobatidae). The Galapagos Islands. https://doi.org/10.5281/zenodo.1400829 (2018).
    Article  Google Scholar 

    24.
    Cairns, S. D. Deep-water octocorals (Cnidaria, Anthozoa) from the Galápagos and Cocos Islands. Part 1: Suborder Calcaxonia. ZooKeys 729, 1–46 (2018).
    Google Scholar 

    25.
    Cairns, S. D. New records of Stylasteridae (Hydrozoa: Hydroida) from the Galápagos and Cocos Islands (1991).

    26.
    Faxon, W. Reports on an exploration off the west coast of Mexico, Central and South America, and off the Galapagos Islands by the US Fish Commission steamer «Albatross» during 1891…. XV. Mem. Mus. Comp. Zool. 18, 1–292 (1895).
    Google Scholar 

    27.
    Ramirez-Llodra, E. et al. Deep, diverse and definitely different: unique attributes of the world’s largest ecosystem. Biogeosciences 7, 2851–2899 (2010).
    ADS  Google Scholar 

    28.
    Appeltans, W. et al. The magnitude of global marine species diversity. Curr. Biol. 22, 2189–2202 (2012).
    CAS  PubMed  Google Scholar 

    29.
    Archer, S. K. et al. Pyrosome consumption by benthic organisms during blooms in the northeast Pacific and Gulf of Mexico. Ecology 99, 981–984 (2018).
    PubMed  Google Scholar 

    30.
    Gates, A. R., Morris, K. J., Jones, D. O. & Sulak, K. J. An association between a cusk eel (Bassozetus sp.) and a black coral (Schizopathes sp.) in the deep western Indian Ocean. Mar. Biodivers. 47, 971–977 (2017).
    Google Scholar 

    31.
    Salinas-de-León, P. et al. Deep-sea hydrothermal vents as natural egg-case incubators at the Galapagos Rift. Sci. Rep. 8, 1788 (2018).
    ADS  PubMed  PubMed Central  Google Scholar 

    32.
    Harris, P., Macmillan-Lawler, M., Rupp, J. & Baker, E. Geomorphology of the oceans. Mar. Geol. 352, 4–24 (2014).
    ADS  Google Scholar 

    33.
    Geist, D. J., Snell, H., Snell, H., Goddard, C. & Kurz, M. D. A paleogeographic model of the Galápagos Islands and biogeographical and evolutionary implications. Galápagos Nat. Lab. Earth Sci. Am. Geophys. Union Wash. DC USA 145–166 (2014).

    34.
    Morato, T., Hoyle, S. D., Allain, V. & Nicol, S. J. Seamounts are hotspots of pelagic biodiversity in the open ocean. Proc. Natl. Acad. Sci. 107, 9707–9711 (2010).
    ADS  CAS  PubMed  Google Scholar 

    35.
    Pitcher, T. J. et al. Seamounts: Ecology, Fisheries & Conservation (Wiley, Hoboken, 2008).
    Google Scholar 

    36.
    Rogers, A. The biology of seamounts. Adv. Mar. Biol. 30, 305–350 (1994).
    Google Scholar 

    37.
    Genin, A., Dayton, P. K., Lonsdale, P. F. & Spiess, F. N. Corals on seamount peaks provide evidence of current acceleration over deep-sea topography. Nature 322, 59 (1986).
    ADS  Google Scholar 

    38.
    Palacios, D. M. Seasonal patterns of sea-surface temperature and ocean color around the Galápagos: regional and local influences. Deep-Sea Res. Part II Top. Stud. Oceanogr. 51, 43–57 (2004).
    ADS  Google Scholar 

    39.
    Edgar, G. J., Banks, S., Fariña, J. M., Calvopiña, M. & Martínez, C. Regional biogeography of shallow reef fish and macro-invertebrate communities in the Galapagos archipelago. J. Biogeogr. 31, 1107–1124 (2004).
    Google Scholar 

    40.
    Koslow, J. et al. Continental slope and deep-sea fisheries: implications for a fragile ecosystem. ICES J. Mar. Sci. 57, 548–557 (2000).
    Google Scholar 

    41.
    Watling, L. & Norse, E. A. Disturbance of the seabed by mobile fishing gear: a comparison to forest clearcutting. Conserv. Biol. 12, 1180–1197 (1998).
    Google Scholar 

    42.
    Breedy, O., van Ofwegen, L. P. & Vargas, S. A new family of soft corals (Anthozoa, Octocorallia, Alcyonacea) from the aphotic tropical eastern Pacific waters revealed by integrative taxonomy. Syst. Biodivers. 10, 351–359 (2012).
    Google Scholar 

    43.
    Ardron, J. A. et al. A systematic approach towards the identification and protection of vulnerable marine ecosystems. Mar. Policy 49, 146–154 (2014).
    Google Scholar 

    44.
    Halpern, B. S., Selkoe, K. A., Micheli, F. & Kappel, C. V. Evaluating and ranking the vulnerability of global marine ecosystems to anthropogenic threats. Conserv. Biol. 21, 1301–1315 (2007).
    PubMed  Google Scholar 

    45.
    Miloslavich, P. et al. Marine biodiversity in the atlantic and pacific coasts of south america: knowledge and gaps. PLoS ONE 6, e14631 (2011).
    ADS  CAS  PubMed  PubMed Central  Google Scholar 

    46.
    Clark, M. R., Schlacher, T. A., Rowden, A. A., Stocks, K. I. & Consalvey, M. Science priorities for seamounts: research links to conservation and management. PLoS ONE 7, e29232 (2012).
    ADS  CAS  PubMed  PubMed Central  Google Scholar 

    47.
    Sinton, C. W., Christie, D. M. & Duncan, R. A. Geochronology of Galápagos seamounts. J. Geophys. Res. Solid Earth 101, 13689–13700 (1996).
    CAS  Google Scholar 

    48.
    Christie, D. et al. Drowned islands downstream from the Galapagos hotspot imply extended speciation times. Nature 355, 246 (1992).
    ADS  Google Scholar 

    49.
    Watling, L., Guinotte, J., Clark, M. R. & Smith, C. R. A proposed biogeography of the deep ocean floor. Prog. Oceanogr. 111, 91–112 (2013).
    ADS  Google Scholar 

    50.
    Dirección del Parque Nacional Galápagos. Plan de Manejo de las Areas Protegidas de Galápagos par el Buen Vivir (2014).

    51.
    Carey, S. et al. Exploring the undersea world of the Galápagos Islands. Ocean. Mag 29, 32–34 (2016).
    Google Scholar 

    52.
    Salinas-De-León, P., Acuña-Marrero, D., Carrión-Tacuri, J. & Sala, E. Valor ecológico de los ecosistemas marinos de Darwin y Wolf, Reserva Marina de Galápagos. 15 (2015).

    53.
    Acuña-Marrero, D. et al. Spatial patterns of distribution and relative abundance of coastal shark species in the Galapagos Marine Reserve. Mar. Ecol. Prog. Ser. 593, 73–95 (2018).
    ADS  Google Scholar 

    54.
    Acuña-Marrero, D. et al. Whale shark (Rhincodon typus) seasonal presence, residence time and habitat use at Darwin Island Galapagos Marine Reserve. PLoS ONE 9, e115946 (2014).
    ADS  PubMed  PubMed Central  Google Scholar 

    55.
    Ministerio del Ambiente del Ecuador. Acuerdo Ministerial 076/2018. (2018).

    56.
    Ramirez-Llodra, E. et al. Man and the last great wilderness: human impact on the deep sea. PLoS ONE 6, e22588 (2011).
    ADS  CAS  PubMed  PubMed Central  Google Scholar 

    57.
    Roberts, C. M. Deep impact: the rising toll of fishing in the deep sea. Trends Ecol. Evol. 17, 242–245 (2002).
    MathSciNet  Google Scholar 

    58.
    Hoegh-Guldberg, O. & Bruno, J. F. The impact of climate change on the world’s marine ecosystems. Science 328, 1523–1528 (2010).
    ADS  CAS  PubMed  Google Scholar 

    59.
    Danovaro, R., Dell’Anno, A. & Pusceddu, A. Biodiversity response to climate change in a warm deep sea: biodiversity and climate change in the deep sea. Ecol. Lett. 7, 821–828 (2004).
    Google Scholar 

    60.
    Danovaro, R., Dell’Anno, A., Fabiano, M., Pusceddu, A. & Tselepides, A. Deep-sea ecosystem response to climate changes: the eastern Mediterranean case study. Trends Ecol. Evol. 16, 505–510 (2001).
    Google Scholar 

    61.
    Sweetman, A. K. et al. Major impacts of climate change on deep-sea benthic ecosystems. Elem. Sci. Anthr. 5, 4 (2017).
    Google Scholar 

    62.
    Etnoyer, P. et al. Deep-sea coral collection protocols. NOAA Tech. Memo. NMFS-OPR 28 (2006).

    63.
    Folmer, O., Black, M., Hoeh, W., Lutz, R. & Vrijenhoek, R. DNA primers for amplification of mitochondrial cytochrome c oxidase subunit I from diverse metazoan invertebrates. Mol. Mar. Biol. Biotechnol. 3, 294–299 (1994).
    CAS  PubMed  Google Scholar 

    64.
    Lemmon, A. R., Emme, S. A. & Lemmon, E. M. Anchored hybrid enrichment for massively high-throughput phylogenomics. Syst. Biol. 61, 727–744 (2012).
    CAS  PubMed  Google Scholar 

    65.
    Wieczorek, J. et al. Darwin core: an evolving community-developed biodiversity data standard. PLoS ONE 7, e29715 (2012).
    ADS  CAS  PubMed  PubMed Central  Google Scholar 

    66.
    Ontrup, J., Ehnert, N., Bergmann, M. & Nattkemper, T. W. BIIGLE-Web 2.0 Enabled Labelling and Exploring of Images from the Arctic Deep-Sea Observatory HAUSGARTEN. 1–7 (IEEE, 2009). More

  • in

    Scale-free vertical tracking microscopy

    1.
    Bar-On, Y. M., Phillips, R. & Milo, R. The biomass distribution on Earth. Proc. Natl Acad. Sci. USA 115, 6506–6511 (2018).
    CAS  PubMed  PubMed Central  Google Scholar 
    2.
    Field, C. B., Behrenfeld, M. J., Randerson, J. T. & Falkowski, P. Primary production of the biosphere: integrating terrestrial and oceanic components. Science 281, 237–240 (1998).
    CAS  PubMed  PubMed Central  Google Scholar 

    3.
    Menden-Deuer, S. & Kiørboe, T. HORIZONS small bugs with a big impact: linking plankton ecology with ecosystem processes. J. Plankton Res. 38, 1036–1043 (2016).
    CAS  Google Scholar 

    4.
    Azam, F. Microbial control of oceanic carbon flux: the plot thickens. Science 280, 694–696 (1998).
    CAS  Google Scholar 

    5.
    McManus, M. A. & Woodson, C. B. Plankton distribution and ocean dispersal. J. Exp. Biol. 215, 1008–1016 (2012).
    PubMed  PubMed Central  Google Scholar 

    6.
    Schuech, R. & Menden-Deuer, S. Going ballistic in the plankton: anisotropic swimming behavior of marine protists. Limnol. Oceanogr. Fluids Environ. 4, 1–16 (2014).
    Google Scholar 

    7.
    von Wangenheim, D. et al. Live tracking of moving samples in confocal microscopy for vertically grown roots. eLife 6, e26792 (2017).
    PubMed  PubMed Central  Google Scholar 

    8.
    Berg, H. C. How to track bacteria. Rev. Sci. Instrum. 42, 868–871 (1971).
    CAS  PubMed  PubMed Central  Google Scholar 

    9.
    Kim, D. H. et al. Pan-neuronal calcium imaging with cellular resolution in freely swimming zebrafish. Nat. Methods 14, 1107–1114 (2017).
    CAS  PubMed  PubMed Central  Google Scholar 

    10.
    Darnige, T. et al. Lagrangian 3D tracking of fluorescent microscopic objects in motion. Rev. Sci. Instrum. 88, 055106 (2017).
    CAS  PubMed  PubMed Central  Google Scholar 

    11.
    Drescher, K., Goldstein, R. E., Michel, N., Polin, M. & Tuval, I. Direct measurement of the flow field around swimming microorganisms. Phys. Rev. Lett. 105, 1–4 (2010).
    Google Scholar 

    12.
    Cong, L. et al. Rapid whole-brain imaging of neural activity in freely behaving larval zebrafish (Danio rerio). eLife 6, 1–20 (2017).
    Google Scholar 

    13.
    Ploug, H. & Jørgensen, B. B. A net-jet flow system for mass transfer and micro electrode studies in sinking aggregates. Mar. Ecol. Prog. Ser. 176, 279 (1999).
    CAS  Google Scholar 

    14.
    Drescher, K., Leptos, K. C. & Goldstein, R. E. How to track protists in three dimensions. Rev. Sci. Instrum. 80, 1–7 (2009).
    Google Scholar 

    15.
    Verasztó, C. et al. Ciliary and rhabdomeric photoreceptor-cell circuits form a spectral depth gauge in marine zooplankton. eLife 7, 1–19 (2018).
    Google Scholar 

    16.
    Sauma-Pérez, T., Johnson, C. G., Yang, L. & Mullin, T. An experimental study of the motion of a light sphere in a rotating viscous fluid. J. Fluid Mech. 847, 119–133 (2018).
    Google Scholar 

    17.
    Van Nierop, E. A. et al. Drag and lift forces on bubbles in a rotating flow. J. Fluid Mech. 571, 439–454 (2007).
    Google Scholar 

    18.
    Mukundakrishnan, K., Hu, H. H. & Ayyaswamy, P. S. The dynamics of two spherical particles in a confined rotating flow: Pedalling motion. J. Fluid Mech. 599, 169–204 (2008).
    Google Scholar 

    19.
    Wolf, A. & Schwarz, R. P. Culture Vessel. NASA technical paper 3143 (1999).

    20.
    Schwarz, R. P., Goodwin, T. J. & Wolf, D. A. Cell culture for three-dimensional modeling in rotating-wall vessels: an application of simulated microgravity. J. Tissue Cult. Methods 14, 51–57 (1992).
    CAS  PubMed  PubMed Central  Google Scholar 

    21.
    Salzen, E. A. The density of sea urchin eggs, embryos and larvae. Exp. Cell Res. 12, 615–625 (1957).
    CAS  PubMed  PubMed Central  Google Scholar 

    22.
    Leal, L. G. Advanced Transport Phenomena: Fluid Mechanics and Convective Transport Processes, Vol. 7 (Cambridge University Press, 2007).

    23.
    Marcos, F. H. C., Powers, T. R. & Stocker, R. Bacterial rheotaxis. Proc. Natl Acad. Sci. USA 109, 4780–4785 (2012).
    CAS  PubMed  PubMed Central  Google Scholar 

    24.
    Rusconi, R., Guasto, J. S. & Stocker, R. Bacterial transport suppressed by fluid shear. Nat. Phys. 10, 212–217 (2014).
    CAS  Google Scholar 

    25.
    Mathijssen, A. J. T. M. et al. Oscillatory surface rheotaxis of swimming E. coli bacteria. Nat. Commun. 10, 7–9 (2019).
    Google Scholar 

    26.
    Strathmann, R. R. Larval feeding in echinoderms. Integr. Comp. Biol. 15, 717–730 (1975).
    Google Scholar 

    27.
    Strathmann, R. R. & Grünbaum, D. Good eaters, poor swimmers: compromises in larval form. Integr. Comp. Biol. 46, 312–322 (2006).
    PubMed  PubMed Central  Google Scholar 

    28.
    Emlet, R. B. Flow fields around ciliated larvae: effects of natural and artificial tethers. Mar. Ecol. Prog. Ser. 63, 211–225 (1990).
    Google Scholar 

    29.
    Gonzalez, P., Jiang, J. Z. & Lowe, C. J. The development and metamorphosis of the indirect developing acorn worm Schizocardium californicum (Enteropneusta: Spengelidae). Front. Zool. 15, 1–24 (2018).
    Google Scholar 

    30.
    Keeling, P. J. & del Campo, J. Marine protists are not just big bacteria. Curr. Biol. 27, R541–R549 (2017).
    CAS  PubMed  PubMed Central  Google Scholar 

    31.
    Cheriton, O. M., McManus, M. A., Stacey, M. T. & Steinbuck, J. V. Physical and biological controls on the maintenance and dissipation of a thin phytoplankton layer. Mar. Ecol. Prog. Ser. 378, 55–69 (2009).
    Google Scholar 

    32.
    Zimorski, V., Rauch, C., Van, J. J., Tielens, A. G. M. & Martin, W. F. (eds.) Euglena: Biochemistry, Cell and Molecular Biology. 979 (2017).

    33.
    Kim, I.-H., Prusti, R. K., Song, P.-S., Häder, D.-P. & Häder, M. Phototaxis and photophobic responses in Stentor coeruleus action spectrum and role of Ca2+ fluxes. Biochim. Biophys. Acta 799, 298–304 (1984).
    CAS  PubMed  PubMed Central  Google Scholar 

    34.
    Mackie, G. O., Spencer, A. N. & Strathmann, R. Electrical activity associated with ciliary reversal in an echinoderm larva. Nature 223, 1384 (1969).
    Google Scholar 

    35.
    Gemmell, B. J., Jiang, H. & Buskey, E. J. A new approach to micro-scale particle image velocimetry (μPIV) for quantifying flows around free-swimming zooplankton. J. Plankton Res. 36, 1396–1401 (2014).
    Google Scholar 

    36.
    Nielsen, L. T. & Kiørboe, T. Feeding currents facilitate a mixotrophic way of life. ISME J. 9, 2117–2127 (2015).
    CAS  PubMed  PubMed Central  Google Scholar 

    37.
    Conzelmann, M. et al. Neuropeptides regulate swimming depth of Platynereis larvae. Proc. Natl Acad. Sci. USA 108, E1174–E1183 (2011).
    CAS  PubMed  PubMed Central  Google Scholar 

    38.
    Fenchel, T. & Ockelmann, K. W. Larva on a string. Ophelia 56, 171–178 (2002).
    Google Scholar 

    39.
    Gilpin, W., Prakash, V. N. & Prakash, M. Vortex arrays and ciliary tangles underlie the feeding-swimming trade-off in starfish larvae. Nat. Phys. 13, 380–386 (2017).
    CAS  Google Scholar 

    40.
    Pernet, B. in Evolutionary Ecology of Marine Invertebrate Larvae, Vol. 1 (Oxford University Press, 2018).

    41.
    Jékely, G. et al. Mechanism of phototaxis in marine zooplankton. Nature 456, 395–399 (2008).
    PubMed  PubMed Central  Google Scholar 

    42.
    Tosches, M. A., Bucher, D., Vopalensky, P. & Arendt, D. Melatonin signaling controls circadian swimming behavior in marine zooplankton. Cell 159, 46–57 (2014).
    CAS  PubMed  PubMed Central  Google Scholar 

    43.
    Drescher, K., Goldstein, R. E. & Tuval, I. Fidelity of adaptive phototaxis. Proc. Natl Acad. Sci. USA 107, 11171–11176 (2010).
    CAS  PubMed  PubMed Central  Google Scholar 

    44.
    Costa, M., Goldberger, A. L. & Peng, C. K. Multiscale entropy analysis of biological signals. Phys. Rev. E 71, 1–18 (2005).
    Google Scholar 

    45.
    Nguyen, J. P. et al. Whole-brain calcium imaging with cellular resolution in freely behaving C. elegans. Proc. Natl Acad. Sci. USA 113, E1074-81 (2016).
    PubMed  PubMed Central  Google Scholar 

    46.
    Hardy, A. C. & Bainbridge, R. Experimental observations on the vertical migrations of plankton animals. J. Mar. Biol. Assoc. UK 33, 409–448 (1954).
    Google Scholar 

    47.
    Cowen, R. K. & Sponaugle, S. Larval dispersal and marine population connectivity. Annu. Rev. Mar. Sci. 1, 443–466 (2008).
    Google Scholar 

    48.
    Cowen, R. K., Lwiza, K. M. M., Sponaugle, S., Paris, C. B. & Olson, D. B. Connectivity of marine populations: open or closed? Science 287, 857–859 (2000).
    CAS  PubMed  PubMed Central  Google Scholar 

    49.
    Boyd, P. W., Claustre, H., Levy, M., Siegel, D. A. & Weber, T. Multi-faceted particle pumps drive carbon sequestration in the ocean. Nature 568, 327–335 (2019).
    CAS  PubMed  PubMed Central  Google Scholar 

    50.
    DeLong, E. F. The microbial ocean from genomes to biomes. Nature 459, 200–206 (2009).
    CAS  PubMed  PubMed Central  Google Scholar 

    51.
    Lukežič, A. et al. Discriminative correlation filter tracker with channel and spatial reliability. Int. J. Computer Vis. 126, 671–688 (2018).
    Google Scholar 

    52.
    Zhu, Z. et al. Distractor-aware siamese networks for visual object tracking. Lect. Notes Comput. Sci. 11213, 103–119 (2018).
    Google Scholar 

    53.
    Batten, C. F., Holburn, D. M., Breton, B. C. & Caldwell, N. H. M. Sharpness search algorithms for automatic focusing in the scanning electron microscope. Scanning 23, 112–113 (2001).
    Google Scholar 

    54.
    Batten, C. F. Autofocusing and Astigmatism Correction in the Scanning Electron Microscope. MPhil thesis, University of Cambridge (2000).

    55.
    Strathmann, M. F. Reproduction and Development of Marine Invertebrates of the Northern Pacific Coast: Data and Methods for the Study of Eggs, Embryos and Larvae (University of Washington Press, 2017). More

  • in

    The elusive search for tipping points

    1.
    Gladwell, M. The Tipping Point: How Little Things Can Make a Big Difference (Little, Brown and Company, 2000).
    2.
    Barnosky, A. D. et al. Nature 486, 52–58 (2012).
    CAS  Article  Google Scholar 

    3.
    Ehrlich, P. R. & Ehrlich, A. H. Proc. R. Soc. B 280, 20122845 (2013).
    Article  Google Scholar 

    4.
    Rockström, J. et al. Nature 461, 472–475 (2009).
    Article  Google Scholar 

    5.
    Dudney, J., Hobbs, R. J., Heilmayr, R., Battles, J. J. & Suding, K. N. Trends Ecol. Evol. 33, 863–873 (2018).
    Article  Google Scholar 

    6.
    Hillebrand, H. et al. Nat. Ecol. Evol. https://doi.org/10.1038/s41559-020-1256-9 (2020).

    7.
    Hallett, L. M. et al. Ecology 95, 1693–1700 (2014).
    Article  Google Scholar 

    8.
    Berdugo, M. et al. Science 367, 787–790 (2020).
    CAS  Article  Google Scholar 

    9.
    Benedetti-Cecchi, L., Tamburello, L., Maggi, E. & Bulleri, F. Curr. Biol. 25, 1867–1872 (2015).
    CAS  Article  Google Scholar 

    10.
    Millar, C. I. & Stephenson, N. L. Science 349, 823–826 (2015).
    CAS  Article  Google Scholar 

    11.
    Monger, C. et al. Front. Ecol. Environ. 13, 13–19 (2015).
    Article  Google Scholar 

    12.
    Turner, M. G. et al. Phil. Trans. R. Soc. B 375, 20190105 (2020).
    Article  Google Scholar  More

  • in

    Thresholds for ecological responses to global change do not emerge from empirical data

    1.
    Scheffer, M., Carpenter, S., Foley, J. A., Folke, C. & Walker, B. Catastrophic shifts in ecosystems. Nature 413, 591–596 (2001).
    CAS  PubMed  Google Scholar 
    2.
    Scheffer, M. Critical Transitions in Nature and Society (Princeton Univ. Press, 2009).

    3.
    Rockström, J. et al. A safe operating space for humanity. Nature 461, 472–475 (2009).
    PubMed  Google Scholar 

    4.
    Folke, C. et al. Regime shifts, resilience and biodiversity in ecosystem management. Annu. Rev. Ecol. Evol. Syst. 35, 557–581 (2004).
    Google Scholar 

    5.
    Donohue, I. et al. Navigating the complexity of ecological stability. Ecol. Lett. 19, 1172–1185 (2016).
    PubMed  Google Scholar 

    6.
    Aichi Biodiversity Targets (UN, 2010); https://www.cbd.int/sp/targets/

    7.
    Carpenter, S. R. & Brock, W. A. Rising variance: a leading indicator of ecological transition. Ecol. Lett. 9, 308–315 (2006).
    Google Scholar 

    8.
    Scheffer, M. et al. Early-warning signals for critical transitions. Nature 461, 53–59 (2009).
    CAS  PubMed  Google Scholar 

    9.
    Hartigan, J. A. & Hartigan, P. M. The dip test of unimodality. Ann. Stat. 13, 70–84 (1985).
    Google Scholar 

    10.
    Montoya, J. M., Donohue, I. & Pimm, S. L. Planetary boundaries for biodiversity: implausible science, pernicious policies. Trends Ecol. Evol. 33, 71–73 (2018).
    PubMed  Google Scholar 

    11.
    Pimm, S. L., Donohue, I., Montoya, J. M. & Loreau, M. Measuring resilience is essential to understand it. Nat. Sustain. 2, 895–897 (2019).
    PubMed  PubMed Central  Google Scholar 

    12.
    Clark, C. M. & Tilman, D. Loss of plant species after chronic low-level nitrogen deposition to prairie grasslands. Nature 451, 712–715 (2008).
    CAS  PubMed  Google Scholar 

    13.
    Korell, L., Auge, H., Chase, J. M., Harpole, W. S. & Knight, T. M. We need more realistic climate change experiments for understanding ecosystems of the future. Glob. Change Biol. 26, 325–327 (2020).
    Google Scholar 

    14.
    Hillebrand, H. et al. Decomposing multiple dimensions of stability in global change experiments. Ecol. Lett. 21, 21–30 (2018).
    PubMed  Google Scholar 

    15.
    Connell, S. D. & Ghedini, G. Resisting regime-shifts: the stabilising effect of compensatory processes. Trends Ecol. Evol. 30, 513–515 (2015).
    PubMed  Google Scholar 

    16.
    Bruno, J. F., Sweatman, H., Precht, W. F., Selig, E. R. & Schutte, V. G. W. Assessing evidence of phase shifts from coral to macroalgal dominance on coral reefs. Ecology 90, 1478–1484 (2009).
    PubMed  Google Scholar 

    17.
    Diaz-Pulido, G. et al. Doom and boom on a resilient reef: climate change, algal overgrowth and coral recovery. PLoS ONE 4, e5239 (2009).
    PubMed  PubMed Central  Google Scholar 

    18.
    Carpenter, S. R. et al. Early warnings of regime shifts: a whole-ecosystem experiment. Science 332, 1079–1082 (2011).
    CAS  PubMed  Google Scholar 

    19.
    Suding, K. N. & Hobbs, R. J. Threshold models in restoration and conservation: a developing framework. Trends Ecol. Evol. 24, 271–279 (2009).
    PubMed  Google Scholar 

    20.
    Vaquer-Sunyer, R. & Duarte, C. M. Thresholds of hypoxia for marine biodiversity. Proc. Natl Acad. Sci. USA 105, 15452–15457 (2008).
    CAS  PubMed  Google Scholar 

    21.
    Groffman, P. M. et al. Ecological thresholds: the key to successful environmental management or an important concept with no practical application? Ecosystems 9, 1–13 (2006).
    Google Scholar 

    22.
    Hughes, T. P., Carpenter, S., Rockstrom, J., Scheffer, M. & Walker, B. Multiscale regime shifts and planetary boundaries. Trends Ecol. Evol. 28, 389–395 (2013).
    PubMed  Google Scholar 

    23.
    Papworth, S. K., Rist, J., Coad, L. & Milner-Gulland, E. J. Evidence for shifting baseline syndrome in conservation. Conserv. Lett. 2, 93–100 (2009).
    Google Scholar 

    24.
    Schlesinger, W. H. Planetary boundaries: thresholds risk prolonged degradation. Nat. Clim. Change 1, 112–113 (2009).

    25.
    Duarte, C. M. et al. Reconsidering ocean calamities. BioScience 65, 130–139 (2015).
    Google Scholar 

    26.
    Chase, J. M. & Knight, T. M. Scale-dependent effect sizes of ecological drivers on biodiversity: why standardised sampling is not enough. Ecol. Lett. 16, 17–26 (2013).
    PubMed  Google Scholar 

    27.
    Cardinale, B. J. et al. Effects of biodiversity on the functioning of trophic groups and ecosystems. Nature 443, 989–992 (2006).
    CAS  PubMed  Google Scholar 

    28.
    Gruner, D. S. et al. A cross-system synthesis of consumer and nutrient resource control on producer biomass. Ecol. Lett. 11, 740–755 (2008).
    PubMed  Google Scholar 

    29.
    Elser, J. J. et al. Global analysis of nitrogen and phosphorus limitation of primary producers in freshwater, marine and terrestrial ecosystems. Ecol. Lett. 10, 1135–1142 (2007).
    PubMed  Google Scholar 

    30.
    Lin, D., Xia, J. & Wan, S. Climate warming and biomass accumulation of terrestrial plants: a meta-analysis. New Phytol. 188, 187–198 (2010).
    PubMed  Google Scholar 

    31.
    Treseder, K. K. Nitrogen additions and microbial biomass: a meta-analysis of ecosystem studies. Ecol. Lett. 11, 1111–1120 (2008).
    PubMed  Google Scholar 

    32.
    Akiyama, H., Yan, X. & Yagi, K. Evaluation of effectiveness of enhanced-efficiency fertilizers as mitigation options for N2O and NO emissions from agricultural soils: meta-analysis. Glob. Change Biol. 16, 1837–1846 (2010).
    Google Scholar 

    33.
    Gibson, L. et al. Primary forests are irreplaceable for sustaining tropical biodiversity. Nature 478, 378–381 (2011).
    CAS  PubMed  Google Scholar 

    34.
    Liang, J. Y., Qi, X., Souza, L. & Luo, Y. Q. Processes regulating progressive nitrogen limitation under elevated carbon dioxide: a meta-analysis. Biogeosciences 13, 2689–2699 (2016).
    CAS  Google Scholar 

    35.
    Liu, L. L. et al. A cross-biome synthesis of soil respiration and its determinants under simulated precipitation changes. Glob. Change Biol. 22, 1394–1405 (2016).
    Google Scholar 

    36.
    van Lent, J., Hergoualc’h, K. & Verchot, L. V. Reviews and syntheses: soil N2O and NO emissions from land use and land-use change in the tropics and subtropics: a meta-analysis. Biogeosciences 12, 7299–7313 (2015).
    Google Scholar 

    37.
    Ateweberhan, M. & McClanahan, T. R. Relationship between historical sea-surface temperature variability and climate change-induced coral mortality in the western Indian Ocean. Mar. Pollut. Bull. 60, 964–970 (2010).
    CAS  PubMed  Google Scholar 

    38.
    Gärtner, M. et al. Invasive plants as drivers of regime shifts: identifying high-priority invaders that alter feedback relationships. Divers. Distrib. 20, 733–744 (2014).
    Google Scholar 

    39.
    Dooley, S. R. & Treseder, K. K. The effect of fire on microbial biomass: a meta-analysis of field studies. Biogeochemistry 109, 49–61 (2012).
    Google Scholar 

    40.
    Dijkstra, F. A. & Adams, M. A. Fire eases imbalances of nitrogen and phosphorus in woody plants. Ecosystems 18, 769–779 (2015).
    CAS  Google Scholar 

    41.
    Lu, M. et al. Responses of ecosystem carbon cycle to experimental warming: a meta-analysis. Ecology 94, 726–738 (2013).
    PubMed  Google Scholar 

    42.
    Griffin, J. N., Byrnes, J. E. K. & Cardinale, B. J. Effects of predator richness on prey suppression: a meta-analysis. Ecology 94, 2180–2187 (2013).
    PubMed  Google Scholar 

    43.
    Srivastava, D. S. et al. Diversity has stronger top-down than bottom-up effects on decomposition. Ecology 90, 1073–1083 (2009).
    PubMed  Google Scholar 

    44.
    Östman, Ö. et al. Top-down control as important as nutrient enrichment for eutrophication effects in North Atlantic coastal ecosystems. J. Appl. Ecol. 53, 1138–1147 (2016).
    Google Scholar 

    45.
    Katano, I., Doi, H., Eriksson, B. K. & Hillebrand, H. A cross-system meta-analysis reveals coupled predation effects on prey biomass and diversity. Oikos 124, 1427–1435 (2015).
    Google Scholar 

    46.
    Borer, E. T. et al. What determines the strength of a trophic cascade? Ecology 86, 528–537 (2005).
    Google Scholar 

    47.
    Hodapp, D. & Hillebrand, H. Effect of consumer loss on resource removal depends on species-specific traits. Ecosphere 8, e01742 (2017).
    Google Scholar 

    48.
    Liu, L. L. & Greaver, T. L. A global perspective on belowground carbon dynamics under nitrogen enrichment. Ecol. Lett. 13, 819–828 (2010).
    PubMed  Google Scholar 

    49.
    Martinson, H. M. & Fagan, W. F. Trophic disruption: a meta-analysis of how habitat fragmentation affects resource consumption in terrestrial arthropod systems. Ecol. Lett. 17, 1178–1189 (2014).
    PubMed  Google Scholar 

    50.
    Holden, S. & Treseder, K. A meta-analysis of soil microbial biomass responses to forest disturbances. Front. Microbiol. 4, 163 (2013).

    51.
    Nagelkerken, I. & Connell, S. D. Global alteration of ocean ecosystem functioning due to increasing human CO2 emissions. Proc. Natl Acad. Sci. USA 112, 13272–13277 (2015).
    CAS  PubMed  Google Scholar 

    52.
    Kaiser, M. J. et al. Global analysis of response and recovery of benthic biota to fishing. Mar. Ecol. Prog. Ser. 311, 1–14 (2006).
    Google Scholar 

    53.
    Gill, D. A. et al. Capacity shortfalls hinder the performance of marine protected areas globally. Nature 534, 665–669 (2017).
    Google Scholar 

    54.
    Gallardo, B., Clavero, M., Sánchez, M. I. & Vilà, M. Global ecological impacts of invasive species in aquatic ecosystems. Glob. Change Biol. 22, 151–163 (2016).
    Google Scholar 

    55.
    Vila, M. et al. Ecological impacts of invasive alien plants: a meta-analysis of their effects on species, communities and ecosystems. Ecol. Lett. 14, 702–708 (2011).
    PubMed  Google Scholar 

    56.
    Scheffer, M. & Carpenter, S. R. Catastrophic regime shifts in ecosystems: linking theory to observation. Trends Ecol. Evol. 18, 648–656 (2003).
    Google Scholar 

    57.
    Andersen, T., Carstensen, J., Hernandez-Garcia, E. & Duarte, C. M. Ecological thresholds and regime shifts: approaches to identification. Trends Ecol. Evol. 24, 49–57 (2009).
    PubMed  Google Scholar 

    58.
    Fasiolo, M., Goude, Y., Nedellec, R. & Wood, S. N. Fast calibrated additive quantile regression. J. Am. Stat. Assoc. https://doi.org/10.1080/01621459.2020. 1725521 (2020).

    59.
    Sheather, S. J. & Jones, M. C. A reliable data-based bandwidth selection method for kernel density estimation. J. Royal Stat. Soc. B 53, 683–690 (1991).
    Google Scholar  More

  • in

    DNA methylation mediates differentiation in thermal responses of Pacific oyster (Crassostrea gigas) derived from different tidal levels

    Andrews S (2010) Babraham bioinformatics. Babraham Institute, Cambridge, United Kingdom
    Google Scholar 

    Aran D, Toperoff G, Rosenberg M, Hellman A (2011) Replication timing-related and gene body-specific methylation of active human genes. Hum Mol Genet 20(4):670–680
    CAS  PubMed  Google Scholar 

    Bhatia G, Patterson N, Sankararaman S, Price AL (2013) Estimating and interpreting FST: the impact of rare variants. Genome Res 23(9):1514–1521
    CAS  PubMed  PubMed Central  Google Scholar 

    Bolger AM, Lohse M, Usadel B (2014) Trimmomatic: a flexible trimmer for Illumina sequence data. Bioinformatics 30(15):2114–2120
    CAS  PubMed  PubMed Central  Google Scholar 

    Deans C, Maggert KA (2015) What do you mean, “epigenetic”? Genetics 199(4):887–896
    CAS  PubMed  PubMed Central  Google Scholar 

    Diederich CM, Pechenik JA (2013) Thermal tolerance of Crepidula fornicata (Gastropoda) life history stages from intertidal and subtidal subpopulations. Mar Ecol-Prog Ser 486:173–187
    Google Scholar 

    Dixon G, Liao Y, Bay LK, Matz MV (2018) Role of gene body methylation in acclimatization and adaptation in a basal metazoan. Proc Natl Acad Sci USA 115(52):13342–13346
    CAS  PubMed  Google Scholar 

    Dixon GB, Bay LK, Matz MV (2016) Evolutionary consequences of DNA methylation in a basal metazoan. Mol Biol Evol 33(9):2285–2293
    CAS  PubMed  PubMed Central  Google Scholar 

    Ellison A, Rodriguez Lopez CM, Moran P, Breen J, Swain M, Megias M et al. (2015) Epigenetic regulation of sex ratios may explain natural variation in self-fertilization rates. Proc Biol Sci 282:1819
    Google Scholar 

    Felix K, Andrews SR (2011) Bismark: a flexible aligner and methylation caller for Bisulfite-Seq applications. Bioinformatics 11:11
    Google Scholar 

    Fernandez-Reiriz MJ, Irisarri J, Labarta U (2016) Flexibility of physiological traits underlying inter-individual growth differences in intertidal and subtidal Mussels Mytilus galloprovincialis. PLoS ONE 11(2):e0148245
    PubMed  PubMed Central  Google Scholar 

    Gao G, Li J, Li H, Li F, Xu K, Yan G et al. (2014) Comparison of the heat stress induced variations in DNA methylation between heat-tolerant and heat-sensitive rapeseed seedlings. Breed Sci 64(2):125–133
    CAS  PubMed  PubMed Central  Google Scholar 

    Gavery MR, Roberts SB (2013) Predominant intragenic methylation is associated with gene expression characteristics in a bivalve mollusc. PeerJ 1:e215
    PubMed  PubMed Central  Google Scholar 

    Guo X, Li Q, Wang QZ, Kong LF (2012) Genetic mapping and QTL analysis of growth-related traits in the Pacific oyster. Mar Biotechnol 14(2):218–226
    CAS  PubMed  Google Scholar 

    Han Z, Truong QA, Park S, Breslow JL (2003) Two Hsp70 family members expressed in atherosclerotic lesions. Proc Natl Acad Sci USA 100(3):1256–1261
    CAS  PubMed  Google Scholar 

    Hao F, Conneely KN, Hao W (2014) A Bayesian hierarchical model to detect differentially methylated loci from single nucleotide resolution sequencing data. Nucleic Acids Res 42(8):e69
    Google Scholar 

    Hao W, Tianlei X, Hao F, Li C, Ben L, Bing Y et al. (2015) Detection of differentially methylated regions from whole-genome bisulfite sequencing data without replicates Nucleic Acids Res 43(21):e141
    Google Scholar 

    Hawes NA, Tremblay LA, Pochon X, Dunphy B, Fidler AE, Smith KF (2018) Effects of temperature and salinity stress on DNA methylation in a highly invasive marine invertebrate, the colonial ascidian Didemnum vexillum. Peer J 6:e5003
    PubMed  Google Scholar 

    Holloway GJ (2002) Phenotypic Plasticity: Beyond Nature and Nurture. Heredity 89(6):410
    Google Scholar 

    Ittiprasert W, Miller A, Knight M, Tucker M, Hsieh MH (2015) Evaluation of cytosine DNA methylation of the Biomphalaria glabratahe at shock protein 70 locus after biological and physiological stresses. J Parasitol Vector Biol 7(10):182–193
    Google Scholar 

    Jaenisch R, Bird A (2003) Epigenetic regulation of gene expression: how the genome integrates intrinsic and environmental signals. Nat Genet 33(Suppl):245–254
    CAS  PubMed  Google Scholar 

    Jombart T, Devillard S, Balloux F (2010) Discriminant analysis of principal components: a new method for the analysis of genetically structured populations. BMC Genet 11:94
    PubMed  PubMed Central  Google Scholar 

    Kvitt H, Rosenfeld H, Tchernov D (2016) The regulation of thermal stress induced apoptosis in corals reveals high similarities in gene expression and function to higher animals. Sci Rep. 6:30359
    CAS  PubMed  PubMed Central  Google Scholar 

    Langmead B, Salzberg SL (2012) Fast gapped-read alignment with Bowtie 2. Nat Methods 9(4):357–359
    CAS  PubMed  PubMed Central  Google Scholar 

    Li A, Li L, Wang W, Song K, Zhang G (2018) Transcriptomics and fitness data reveal adaptive plasticity of thermal tolerance in oysters inhabiting different tidal zones. Front Physiol 9:825
    PubMed  PubMed Central  Google Scholar 

    Liew YJ, Howells EJ, Wang X, Michell CT, Burt JA, Idaghdour Y et al. (2020) Intergenerational epigenetic inheritance in reef-building corals. Nat Clim Change 10(3):254–259
    Google Scholar 

    Liew YJ, Zoccola D, Li Y, Tambutte E, Venn AA, Michell CT et al. (2018) Epigenome-associated phenotypic acclimatization to ocean acidification in a reef-building coral. Sci Adv 4(6):eaar8028
    PubMed  PubMed Central  Google Scholar 

    Lira-Medeiros CF, Parisod C, Fernandes RA, Mata CS, Cardoso MA, Ferreira PC (2010) Epigenetic variation in mangrove plants occurring in contrasting natural environment. PLoS ONE 5(4):e10326
    PubMed  PubMed Central  Google Scholar 

    Lister R, Mukamel EA, Nery JR, Urich M, Puddifoot CA, Johnson ND et al. (2013) Global epigenomic reconfiguration during mammalian brain development. Science 341(6146):1237905
    PubMed  PubMed Central  Google Scholar 

    Liu Y, Siegmund KD, Laird PW, Berman BP (2012) Bis-SNP: combined DNA methylation and SNP calling for Bisulfite-seq data. Genome Biol 13(7):R61
    CAS  PubMed  PubMed Central  Google Scholar 

    Lyko F, Foret S, Kucharski R, Wolf S, Falckenhayn C, Maleszka R (2010) The Honey Bee Epigenomes: Differential Methylation of Brain DNA in Queens and Workers. PLoS Biol 8(11):e1000506
    PubMed  PubMed Central  Google Scholar 

    Mao X, Tao CJGO, Wei L (2005) Automated genome annotation and pathway identification using the KEGG Orthology (KO) as a controlled vocabulary. Bioinformatics 21(19):3787–3793
    CAS  PubMed  Google Scholar 

    Marsh AG, Pasqualone AA (2014) DNA methylation and temperature stress in an Antarctic polychaete, Spiophanes tcherniai. Front Physiol 5:173
    PubMed  PubMed Central  Google Scholar 

    Masoudi AA, Uchida K, Yokouchi K, Ohwada K, Abbasi AR, Tsuji T et al. (2008) Linkage mapping of the locus responsible for forelimb-girdle muscular anomaly of Japanese black cattle on bovine chromosome 26. Anim Genet 39(1):46–50
    CAS  PubMed  Google Scholar 

    Metzger DCH, Schulte PM (2017) Persistent and plastic effects of temperature on DNA methylation across the genome of threespine stickleback (Gasterosteus aculeatus). Proc Biol Sci 284:1864
    Google Scholar 

    Mondol MR, Kim C-W, Kang C-K, Park SR, Noseworthy RG, Choi K-S (2016) Growth and reproduction of early grow-out hardened juvenile Pacific oysters, Crassostrea gigas in Gamakman Bay, off the south coast of Korea. Aquaculture 463:224–233
    Google Scholar 

    Moore LD, Le T, Fan G (2013) DNA methylation and its basic function. Neuropsychopharmacology 38(1):23–38
    CAS  PubMed  Google Scholar 

    Olson CE, Roberts SB (2014) Genome-wide profiling of DNA methylation and gene expression in Crassostrea gigas male gametes. Front Physiol 5:224
    PubMed  PubMed Central  Google Scholar 

    Park Y, Wu H (2016) Differential methylation analysis for BS-seq data under general experimental design. Bioinformatics 32(10):1–10
    Google Scholar 

    Pernice M, Dunn SR, Miard T, Dufour S, Dove S, Hoegh-Guldberg O (2011) Regulation of apoptotic mediators reveals dynamic responses to thermal stress in the reef building coral Acropora millepora. PLoS ONE 6(1):e16095
    CAS  PubMed  PubMed Central  Google Scholar 

    Place SP, Menge BA, Hofmann GE (2012) Transcriptome profiles link environmental variation and physiological response of Mytilus californianus between Pacific tides. Funct Ecol 26(1):144–155
    PubMed  Google Scholar 

    Pörtner HO, Lloyd P, George S (2007) Thermal limits and adaptation in marine Antarctic ectotherms: an integrative view. Philos Trans R Soc Lond 362(1488):2233–2258
    Google Scholar 

    Putnam HM, Davidson JM, Gates RD (2016) Ocean acidification influences host DNA methylation and phenotypic plasticity in environmentally susceptible corals. Evol Appl 9(9):1165–1178
    CAS  PubMed  PubMed Central  Google Scholar 

    Riviere G, Wu GC, Fellous A, Goux D, Sourdaine P, Favrel P (2013) DNA methylation is crucial for the early development in the Oyster C. gigas. Mar Biotechnol 15(6):739–753
    CAS  PubMed  Google Scholar 

    Rondon R, Grunau C, Fallet M, Charlemagne N, Sussarellu R, Chaparro C et al. (2017) Effects of a parental exposure to diuron on Pacific oyster spat methylome. Environ Epigenet 3(1):dvx004
    PubMed  PubMed Central  Google Scholar 

    Sanford E, Kelly MW (2011) Local adaptation in marine invertebrates. Ann Rev Mar Sci 3:509–535
    PubMed  Google Scholar 

    Schmidt PS, Rand DM (2001) Adaptive maintenance of genetic polymorphism in an intertidal barnacle: habitat- and life-stage-specific survivorship of Mpi genotypes. Evolution 55(7):1336–1344
    CAS  PubMed  Google Scholar 

    Schulte PM, Healy TM, Fangue NA (2011) Thermal performance curves, phenotypic plasticity, and the time scales of temperature exposure. Integr Comp Biol 51(5):691–702
    PubMed  Google Scholar 

    Somero GN (2010) The physiology of climate change: how potentials for acclimatization and genetic adaptation will determine ‘winners’ and ‘losers’. J Exp Biol 213(6):912–920
    CAS  PubMed  Google Scholar 

    Southward JA (1958) Note on the temperature tolerances of some intertidal animals in relation to environmental temperatures and geographical distribution. J Mar Biol Assoc UK 37(01):49
    Google Scholar 

    Sunday JM, Bates AE, Dulvy NK (2012) Thermal tolerance and the global redistribution of animals. Nat Clim Change 2:686
    Google Scholar 

    Venegas D, Marmolejo-Valencia A, Valdes-Quezada C, Govenzensky T, Recillas-Targa F, Merchant-Larios H (2016) Dimorphic DNA methylation during temperature-dependent sex determination in the sea turtle Lepidochelys olivacea. Gen Comp Endocrinol 236:35–41
    CAS  PubMed  Google Scholar 

    Williams SE, Shoo LP, Isaac JL, Hoffmann AA, Langham G (2008) Towards an integrated framework for assessing the vulnerability of species to climate change. PLoS Biol 6(12):2621–2626
    CAS  PubMed  Google Scholar 

    You L, Ning X, Liu F, Zhao J, Wang Q, Wu H (2013) The response profiles of HSPA12A and TCTP from Mytilus galloprovincialis to pathogen and cadmium challenge. Fish Shellfish Immunol 35(2):343–350
    CAS  PubMed  Google Scholar 

    Young MD, Wakefield MJ, Smyth GK, Oshlack A (2010) Gene ontology analysis for RNA-seq: accounting for selection bias. Genome Biol 11(2):R14
    PubMed  PubMed Central  Google Scholar 

    Zemach A, McDaniel IE, Silva P, Zilberman D (2010) Genome-wide evolutionary analysis of eukaryotic DNA methylation. Science 328(5980):916–919
    CAS  PubMed  Google Scholar 

    Zhang G, Fang X, Guo X, Li L, Luo R, Xu F et al. (2012) The oyster genome reveals stress adaptation and complexity of shell formation. Nature 490(7418):49–54
    CAS  PubMed  Google Scholar 

    Zhang X, Li Q, Kong L, Yu H (2017a) DNA methylation changes detected by methylation-sensitive amplified polymorphism in the Pacific oyster (Crassostrea gigas) in response to salinity stress. Genes Genomics 39(11):1173–1181
    CAS  Google Scholar 

    Zhang X, Li Q, Yu H, Kong L (2017b) Effects of air exposure on genomic DNA methylation in the Pacific oyster (Crassostrea gigas). J Fish Sci China 24(4):690–697
    Google Scholar 

    Zhu Y, Ren C, Wan X, Zhu Y, Zhu J, Zhou H et al. (2013) Gene expression of Hsp70, Hsp90 and Hsp110 families in normal palate and cleft palate during mouse embryogenesis. Toxicol Ind Health 29(10):915–930
    CAS  PubMed  Google Scholar  More