More stories

  • in

    Close to home

    Global change is predicted to have tremendous implications for the emergence of infectious diseases. Now, Gibb, Redding et al. report that changes in land use (such as urbanization and agriculturalization) cause major changes in the diversity and taxonomic composition of reservoir hosts for pathogens, with implications for the emergence of zoonotic diseases. The authors analysed 6,801 sites and 376 host species worldwide and determined whether there was evidence of pathogens in these hosts and the potential for zoonotic transmission. As anthropogenic land use increased, so did the frequency of zoonotic hosts, and the intensity of land use correlated with increases in zoonotic host species and the number of individuals. Notably, the frequency of rodents, bats and passerine birds was higher in human-dominated sites, suggesting the need for enhanced surveillance efforts in these sites. More

  • in

    Environmental gradients of selection for an alpine-obligate bird, the white-tailed ptarmigan (Lagopus leucura)

    Appella E, Weber IT, Blasi F (1988) Structure and function of epidermal growth factor-like regions in proteins. FEBS Lett 231:1–4
    CAS  PubMed  Google Scholar 

    Berteaux D, Réale D, McAdam AG, Boutin S (2004) Keeping pace with fast climate change: can arctic life count on evolution? Integr Comp Biol 44:140–151
    PubMed  Google Scholar 

    Bi K, Linderoth T, Singhal S, Vanderpool D, Patton JL, Nielsen R et al. (2019) Temporal genomic contrasts reveal rapid evolutionary responses in an alpine mammal during recent climate change. PLoS Genet 15:e1008119
    CAS  PubMed  PubMed Central  Google Scholar 

    Bivand R, Piras G (2015) Comparing implementations of estimation methods for spatial econometrics. J Stat Softw 63:1–36
    Google Scholar 

    Brauer CJ, Hammer MP, Beheregaray LB (2016) Riverscape genomics of a threatened fish across a hydroclimatically heterogeneous river basin. Mol Ecol 25:5093–5113
    CAS  PubMed  Google Scholar 

    Braun CE, Hoffman RW, Rogers GE (1976) Wintering areas and winter ecology of white-tailed ptarmigan in Colorado, Colorado Division of Wildlife, Denver, CO, USA. Special Report 38

    Braun CE, Taylor WP, Ebbert SE, Kaler RSA, Sandercock BK (2011) Protocols for successful translocation of ptarmigan. In: Watson RT, Cade TJ, Fuller M, Hunt G, Potapov E (eds) Gyrfalcons and ptarmigan in a changing world. The Peregrine Fund, Boise, ID, USA, p 339–348
    Google Scholar 

    Braun CE, Williams III SO (2015) History and status of the white-tailed ptarmigan in New Mexico. West Birds 46:233–243
    Google Scholar 

    Brown RD, Brasnett B (2010) Canadian Meteorological Centre (CMC) Daily Snow Depth Analysis Data, version 1. Colorado USA NASA National Snow and Ice Data Center, Distributed Active Archive Center, Boulder, CO, USA
    Google Scholar 

    Browning SR, Browning BL (2007) Rapid and accurate haplotype phasing and missing data inference for whole genome association studies by use of localized haplotype clustering. Am J Hum Genet 81:1084–1097
    CAS  PubMed  PubMed Central  Google Scholar 

    Bryant JP, Kuropat PJ (1980) Selection of winter forage by subarctic browsing vertebrates: the role of plant chemistry. Annu Rev Ecol Syst 11:261–285
    CAS  Google Scholar 

    Capblancq T, Luu K, Blum MGB, Bazin E (2018a) How to make use of ordination methods to identify local adaptation: a comparison of genome scans based on PCA and RDA. bioRxiv: 258988v2

    Capblancq T, Luu K, Blum MGB, Bazin E (2018b) Evaluation of redundancy analysis to identify signatures of local adaptation. Mol Ecol Resour 18:1223–1233
    CAS  PubMed  Google Scholar 

    Carey C, Martin K (1997) Physiological ecology of incubation of ptarmigan eggs at high and low altitudes. Wildlife Biol 3:211–218
    Google Scholar 

    Charmantier A, McCleery RH, Cole LR, Perrins C, Kruuk LEB, Sheldon BC (2008) Adaptive phenotypic plasticity in response to climate change in a wild bird population. Science 320:800–803
    CAS  PubMed  Google Scholar 

    Cingolani P, Platts A, Wang LL, Coon M, Nguyen T, Wang L et al. (2012) A program for annotating and predicting the effects of single nucleotide polymorphisms, SnpEff: SNPs in the genome of Drosophila melanogaster strain w1118; iso-2; iso-3. Fly 6:80–92
    CAS  PubMed  PubMed Central  Google Scholar 

    Clarke JA, Johnson RE (1992) The influence of spring snow depth on white-tailed ptarmigan breeding success in the Sierra Nevada. Condor 94:622–627
    Google Scholar 

    Coop G, Witonsky D, Di Rienzo A, Pritchard JK (2010) Using environmental correlations to identify loci underlying local adaptation. Genetics 185:1411–23
    CAS  PubMed  PubMed Central  Google Scholar 

    Dalloul RA, Long JA, Zimin AV, Aslam L, Beal K, Blomberg LA et al. (2010) Multi-platform next-generation sequencing of the domestic Turkey (Meleagris gallopavo): genome assembly and analysis. PLoS Biol 8:e1000475
    PubMed  PubMed Central  Google Scholar 

    Danecek P, Auton A, Abecasis G, Albers CA, Banks E, DePristo MA et al. (2011) The variant call format and VCFtools. Bioinformatics 27:2156–2158
    CAS  PubMed  PubMed Central  Google Scholar 

    Dragon S, Carey C, Martin K, Baumann R (1999) Effect of high altitude and in vivo adenosine/beta-adrenergic receptor blockade on ATP and 2,3BPG concentrations in red blood cells of avian embryos. J Exp Biol 202:2787–2795
    CAS  PubMed  Google Scholar 

    Dray S, Blanchet D, Borcard D, Clappe S, Guenard G, Jombart T et al. (2019) Adespatial: multivariate multiscale spatial analysis. R package version 0.3-4. http://cran.r-project.org/package=adespatial

    Erikstad KE, Andersen R (1983) The effect of weather on survival, growth rate, and feeding time in different sized willow grouse broods. Ornis Scand 14:249–252
    Google Scholar 

    Fabian DK, Kapun M, Nolte V, Kofler R, Schmidt PS, Schlötterer C et al. (2012) Genome-wide patterns of latitudinal differentiation among populations of Drosophila melanogaster from North America. Mol Ecol 21:4748–4769
    PubMed  PubMed Central  Google Scholar 

    Fedy BC, Martin K (2011) The influence of fine-scale habitat features on regional variation in population performance of alpine white-tailed ptarmigan. Condor 113:306–315
    Google Scholar 

    Fedy BC, Martin K, Ritland C, Young J (2008) Genetic and ecological data provide incongruent interpretations of population structure and dispersal in naturally subdivided populations of white-tailed ptarmigan (Lagopus leucura). Mol Ecol 17:1905–1917
    CAS  PubMed  Google Scholar 

    Fick SE, Hijmans RJ (2017) Worldclim 2: new 1-km spatial resolution climate surfaces for global land areas. Int J Climatol 37:4302–4315
    Google Scholar 

    Forester BR, Lasky JR, Wagner HH, Urban DL (2018) Comparing methods for detecting multilocus adaptation with multivariate genotype-environment associations. Mol Ecol 27:2215–2233
    CAS  PubMed  Google Scholar 

    Forester BR, Jones MR, Joost S, Landguth EL, Lasky JR (2016) Detecting spatial genetic signatures of local adaptation in heterogenous landscapes. Mol Ecol 24:104–120
    Google Scholar 

    Frederick GP, Gutiérrez RJ (1992) Habitat use and population characteristics of the white-tailed ptarmigan in the Sierra Nevada, California. Condor 94:889–902
    Google Scholar 

    Freeman BG, Lee-Yaw JA, Sunday JM, Hargreaves AL (2018) Expanding, shifting and shrinking: the impact of global warming on species’ elevational distributions. Glob Ecol Biogeogr 27:1268–1276
    Google Scholar 

    Friedl MA, Gray J, Sulla-Menashe D (2009) MCD12Q2 MODIS/Terra+Aqua Land Cover Dynamics Yearly L3 Global 500m SIN Grid V005 [2000–2010]. NASA EOSDIS Land Processes DAAC. Sioux Falls, SD, USA

    García-González R, Aldezabal A, Laskurain NA, Margalida A, Novoa C (2016) Influence of snowmelt timing on the diet quality of pyrenean rock ptarmigan (Lagopus muta pyrenaica): implications for reproductive success. PLoS ONE 11:1–21
    Google Scholar 

    Giesen KM, Braun CE, May TA (1980) Reproduction and nest-site selection by white-tailed ptarmigan in Colorado. Wilson Bull 92:188–199
    Google Scholar 

    Hakkarainen H, Virtanen R, Honkanen JO, Roininen H (2007) Willow bud and shoot foraging by ptarmigan in relation to snow level in NW Finnish Lapland. Polar Biol 30:619–624
    Google Scholar 

    Hall D, Salomonson V, Riggs G (2006) MODIS/Terra Snow Cover Daily L3 Global 500m Grid, Version 5. NASA Natl Snow Ice Data Cent Distrib Act Arch Center Boulder, CO, USA

    Hannon SJ, Eason PK, Martin K (1998) Willow ptarmigan (Lagopus lagopus), version 2.0. In: Poole AF, Gill FB (eds) The Birds of North America. Cornell Lab of Ornithology, Ithaca, New York, NY, USA
    Google Scholar 

    Henry P, Sim Z, Russello MA (2012) Genetic evidence for restricted dispersal along continuous altitudinal gradients in a climate change-sensitive mammal: The American Pika. PLoS ONE 7:1–10
    Google Scholar 

    Hoffman RW, Braun CE (1975) Migration of a wintering population of white-tailed ptarmigan in Colorado. J Wildl Manage 39:485–490
    Google Scholar 

    Hoffmann AA, Sgró CM (2011) Climate change and evolutionary adaptation. Nature 470:479–485
    CAS  PubMed  Google Scholar 

    Holsinger LM, Parks SA, Parisien M-A, Miller C, Batllori E, Moritz MA (2019) Climate change likely to reshape vegetation in North America’s largest protected areas. Conserv Sci Pract 1:e50
    Google Scholar 

    Höst P (1942) Effect of light on the moults and sequences of plumage in the willow ptarmigan. Auk 59:388–403
    Google Scholar 

    Huang DW, Sherman BT, Tan Q, Kir J, Liu D, Bryant D et al. (2007) DAVID bioinformatics resources: expanded annotation database and novel algorithms to better extract biology from large gene lists. Nucleic Acids Res 35:169–175
    Google Scholar 

    Imperio S, Bionda R, Viterbi R, Provenzale A (2013) Climate change and human disturbance can lead to local extinction of alpine rock ptarmigan: new insight from the Western Italian Alps. PLoS ONE 8:e81598
    PubMed  PubMed Central  Google Scholar 

    Jacobsen EE, White CM, Emison WB (2007) Molting adaptations of rock ptarmigan on Amchitka Island, Alaska. Condor 85:420
    Google Scholar 

    Kawecki T, Ebert D (2004) Conceptual issues in local adaptation. Ecology Letters 7:1225–1241
    Google Scholar 

    Ke J, Wang L, Xiao D (2017) Cardiovascular adaptation to high-altitude hypoxia. In: Zheng J, Zhou C (eds) Hypoxia and human diseases. IntechOpen Limited, London, UK, p 117–134
    Google Scholar 

    Klanderud K, Birks HJB (2003) Recent increases in species richness and shifts in altitudinal distributions of Norwegian mountain plants. Holocene 13:1–6
    Google Scholar 

    Kohl KD, Varner J, Wilkening JL, Dearing MD (2018) Gut microbial communities of American pikas (Ochotona princeps): evidence for phylosymbiosis and adaptations to novel diets. J Anim Ecol 87:323–330
    PubMed  Google Scholar 

    Kozma R, Rödin-Mörch P, Höglund J (2019) Genomic regions of speciation and adaptation among three species of grouse. Sci Rep 9:1–8
    CAS  Google Scholar 

    Laiolo P, Obeso JR (2017) Life-history responses to the altitudinal gradient. In: Catalan J (ed) High mountain conservation in a changing world, Advances in Global Change Research, Vol 62, p. 3–36. Springer, Cham

    Langin KM, Aldridge CL, Fike JA, Cornman RS, Martin K, Wann GT et al. (2018) Characterizing range-wide divergence in an alpine-endemic bird: a comparison of genetic and genomic approaches. Conserv Genet 19:1471–1485
    CAS  Google Scholar 

    Latifovic R, Pouliot D, Olthof I (2017) Circa 2010 land cover of Canada: local optimization methodology and product development. Remote Sens 9:1098
    Google Scholar 

    Legendre P, Legendre L (2012) Numerical Ecology, 3rd edn. Elsevier, Amsterdam, The Netherlands
    Google Scholar 

    Mangin B, Siberchicot A, Nicolas S, Doligez A, This P, Cierco-Ayrolles C (2012) Novel measures of linkage disequilibrium that correct the bias due to population structure and relatedness. Heredity 108:285–291
    CAS  PubMed  Google Scholar 

    Martin K, Brown GA, Young JR (2004) The historic and current distribution of the Vancouver Island white-tailed ptarmigan (Lagopus leucurus saxatilis). J F Ornithol 75:239–256
    Google Scholar 

    Martin K, Robb LA, Wilson S, Braun CE (2015) White-tailed ptarmigan (Lagopus leucura), version 2.0. In: Rodewald PG (ed) The Birds of North America. Cornell Lab of Ornithology, Ithaca, New York, NY, USA
    Google Scholar 

    Martin K, Wiebe KL (2004) Coping mechanisms of alpine and arctic breeding birds: extreme weather and limitations to reproductive resilience. Integr Comp Biol 44:177–185
    PubMed  Google Scholar 

    May TA, Braun CE (1972) Seasonal foods of adult white-tailed ptarmigan in Colorado. J Wildl Manage 36:1180–1186
    Google Scholar 

    McKinnon L, Picotin M, Bolduc E, Juillet C, Bêty J (2012) Timing of breeding, peak food availability, and effects of mismatch on chick growth in birds nesting in the High Arctic. Can J Zool 90:961–971
    Google Scholar 

    Mills LS, Bragina EV, Kumar AV, Zimova M, Lafferty DJR, Feltner J et al. (2018) Winter color polymorphisms identify global hot spots for evolutionary rescue from climate change. Science 359:1033–1036
    CAS  PubMed  Google Scholar 

    Montgomerie R, Holder K (2008) Rock ptarmigan (Lagopus muta), version 2.0. In: Poole AF (ed) The Birds of North America. Cornell Lab of Ornithology, Ithaca, New York, NY, USA
    Google Scholar 

    Morgulis A, Coulouris G, Raytselis Y, Madden TL, Agarwala R, Schäffer AA (2008) Database indexing for production MegaBLAST searches. Bioinformatics 24:1757–1764
    CAS  PubMed  PubMed Central  Google Scholar 

    Moss R (1973) The digestion and intake of winter foods by wild ptarmigan in Alaska. Condor 75:293–300
    Google Scholar 

    Moss R (1974) Winter diets, gut lengths, and interspecific competition in Alaskan ptarmigan. Auk 91:737–746
    Google Scholar 

    Moss R (1983) Gut size, body weight, and digestion of winter foods by grouse and ptarmigan. Condor 85:185–193
    Google Scholar 

    Nei M, Kumar S (2000) Molecular evolution and phylogenetics. Oxford University Press, New York, NY, USA
    Google Scholar 

    New Mexico Department of Game and Fish (2016) White-tailed ptarmigan (Lagopus leucura) recovery plan. New Mexico Department of Game and Fish, Wildlife Management Division, Santa Fe, NM, USA

    NOAA National Centers for Environmental Prediction (NCEP) (2018) NCEP-NCAR Reanalysis montly zonal and meridional winds at standard pressure levels on a 2.5 lat/lon grid. NOAA National Centers for Environmental Prediction (NCEP), College Park, MD, USA

    Oksanen J, Blanchet FG, Friendly M, Kindt R, Legendre P, McGlinn D et al. (2017) vegan: community ecology package version 2.4-3. https://cran.r-project.org/package=vegan

    Oyler-McCance SJ, Langin KM, Cornman RS, Fike J, Aldridge CL, Martin KM et al. (2018) Sample collection information, single nucleotide polymorphism, and microsatellite data for white-tailed ptarmigan across the species range generated in the Molecular Ecology Lab during 2016: U.S. Geological Survey data release, https://doi.org/10.5066/F7GM86GZ

    Palo RT (1984) Distribution of birch (Betula spp.), willow (Salix spp.), and poplar (Populus spp.) secondary metabolites and their potential role as chemical defense against herbivores. J Chem Ecol 10:499–520
    CAS  PubMed  Google Scholar 

    Paradis E, Schlier K (2018) ape 5.0: an environment for modern phylogenetics and evolutionary analyses in R. Bioinformatics 35:526–528
    Google Scholar 

    Parmesan C, Yohe G (2003) A globally coherent fingerprint of climate change. Nature 421:37–42
    CAS  PubMed  Google Scholar 

    Pedersen S, Odden M, Pedersen HC (2017) Climate change induced molting mismatch? Mountain hare abundance reduced by duration of snow cover and predator abundance. Ecosphere 8:e01722
    Google Scholar 

    Pepin N, Bradley RS, Diaz HF, Baraer M, Caceres EB, Forsythe N et al. (2015) Elevation-dependent warming in mountain regions of the world. Nat Clim Chang 5:424–430
    Google Scholar 

    Persons NW, Hosner PA, Meiklejohn KA, Braun EL, Kimball RT (2016) Sorting out relationships among the grouse and ptarmigan using intron, mitochondrial, and ultra-conserved element sequences. Mol Phylogenet Evol 98:123–132
    CAS  PubMed  Google Scholar 

    Peterson BK, Weber JN, Kay EH, Fisher HS, Hoekstra HE (2012) Double digest RADseq: an inexpensive method for de novo SNP discovery and genotyping in model and non-model species. PLoS ONE 7:e37135
    CAS  PubMed  PubMed Central  Google Scholar 

    Pörtner HO (2002) Climate variations and the physiological basis of temperature dependent biogeography: systemic to molecular hierarchy of thermal tolerance in animals. Comp Biochem Physiol part A 132:739–761
    Google Scholar 

    Price N, Lopez L, Platts AE, Lasky JR (2020) In the presence of population structure: from genomics to candidate genes underlying local adaptation. Ecol Evol 10:1889–1904
    PubMed  PubMed Central  Google Scholar 

    Pyle P (2007) Revision of molt and plumage terminology in ptarmigan (Phasianidae: Lagopus spp.) based on evolutionary considerations. Auk 124:508
    Google Scholar 

    Rellstab C, Gugerli F, Eckert AJ, Hancock AM, Holderegger R (2015) A practical guide to environmental association analysis in landscape genomics. Mol Ecol 24:4348–4370
    PubMed  Google Scholar 

    Resano-Mayor J, Korner-Nievergelt F, Vignali S, Horrenberger N, Barras AG, Braunisch V et al. (2019) Snow cover phenology is the main driver of foraging habitat selection for a high-alpine passerine during breeding: implications for species persistence in the face of climate change. Biodivers Conserv 28:2669
    Google Scholar 

    Rolando A, Laiolo P, Formica M (1997) A comparative analysis of the foraging behaviour of the chough Pyrrhocorax pyrrhocorax and the Alpine chough Pyrrhocorax graculus coexisting in the Alps. Ibis 139:461–467
    Google Scholar 

    Rundel PW, Millar CI (2016) Alpine Ecosystems. In: Zavaleta E, Mooney H (eds) Ecosystems of California. University of California, Berkeley, CA, USA, p 613–634
    Google Scholar 

    Salomonsen F (1936) On a new race of willow grouse. Bull Br Ornithol Club 56:99–100
    Google Scholar 

    Singh CP (2008) Alpine ecosystems in relation to climate change. ISG Newsl 14:54–55
    Google Scholar 

    Slatkin M (2008) Linkage disequilibrium: understanding the genetic past and mapping the medical future. Nat Rev Genet 9:477–485
    CAS  PubMed  PubMed Central  Google Scholar 

    Somero G (2010) The physiology of climate change: how potentials for acclimatization and genetic adaptation will determine ‘winners’ and ‘losers. J Exp Biol 213:912–920
    CAS  Google Scholar 

    Spear SL, Aldridge CL, Wann GT, Braun CE (2019) Fine-scale habitat selection by breeding white-tailed ptarmigan in Colorado. J Wildl Manage 84:172–184
    Google Scholar 

    Stokken K-A (1993) Energetics and adaptations to cold in ptarmigan in winter. Ornis Scand 23:366–370
    Google Scholar 

    Storz JF (2005) Using genome scans of DNA polymorphism to infer adaptive population divergence. Mol Ecol 14:671–688
    CAS  PubMed  Google Scholar 

    Swanson DL, King MO, Harmon E (2014) Seasonal variation in pectoralis muscle and heart myostatin and tolloid-like proteinases in small birds: a regulatory role for seasonal phenotypic flexibility? J Comp Physiol B 184:249–258
    CAS  PubMed  Google Scholar 

    Thornton PE, Running SW, White MA (1997) Generating surfaces of daily meteorological variables over large regions of complex terrain. J Hydrol 190:214–251
    Google Scholar 

    Thornton PE, Thornton MM, Mayer BW, Wei Y, Devarakonda R, Vose RS et al. (2018) Daymet: daily surface weather data on a 1-km grid for North America, version 3. Oak Ridge, Tennessee, USA

    Thuiller W (2004) Patterns and uncertainties of species’ range shifts under climate change. Glob Change Biol 10:2020–2027
    Google Scholar 

    United States Fish and Wildlife Service (2012) Endangered and threatened wildlife and plants; 90-day finding on a petition to list the southern white-tailed ptarmigan and the Mt. Rainier white-tailed ptarmigan as threatened with critical habitat. Fed Regist 77:33143–33155
    Google Scholar 

    United States Geological Survey EROS Center (2007) North American elevation 1-kilometer resolution, 3rd edn. National Atlas of the US, Reston, VA
    Google Scholar 

    Vos PG, Paulo MJ, Voorrips RE, Visser RGF, van Eck HJ, van Eeuwijk FA (2017) Evaluation of LD decay and various LD‑decay estimators in simulated and SNP‑array data of tetraploid potato. Theor Appl Genet 130:123–135
    PubMed  Google Scholar 

    Walker WP, Aradhya S, Hu C-L, Shen S, Zhang W, Azarani A et al. (2007) Genetic analysis of attractin homologs. Genesis 45:744–756
    CAS  PubMed  Google Scholar 

    Walker WP, Gunn TM (2010) Shades of meaning: the pigment-type switching system as a tool for discovery. Pigment Cell Melanoma Res 23:485–495
    CAS  PubMed  Google Scholar 

    Wang G, Hobbs NT, Galbraith H, Giesen KM (2002a) Signatures of large-scale and local climates on the demography of white-tailed ptarmigan in Rocky Mountain National Park, Colorado, USA. Int J Biometeorol 46:197–201
    PubMed  Google Scholar 

    Wang G, Hobbs NT, Giesen KM, Galbraith H, Ojima DS, Braun CE (2002b) Relationships between climate and population dynamics of white-tailed ptarmigan Lagopus leucurus in Rocky Mountain National Park, Colorado, USA. Clim Res 23:81–87
    Google Scholar 

    Wann GT, Aldridge CL, Braun CE (2014) Estimates of annual survival, growth, and recruitment of a white-tailed ptarmigan population in Colorado over 43 years. Popul Ecol 56:555–567
    Google Scholar 

    Wann GT, Aldridge CL, Braun CE (2016) Effects of seasonal weather on breeding phenology and reproductive success of alpine ptarmigan in Colorado. PLoS ONE 11:e0158913
    PubMed  PubMed Central  Google Scholar 

    Wann GT, Aldridge CL, Seglund AE, Oyler‐McCance SJ, Kondratieff BC, Braun CE (2019) Mismatches between breeding phenology and resource abundance of resident alpine ptarmigan negatively affect chick survival. Ecol Evol 9:7200–7212
    PubMed  PubMed Central  Google Scholar 

    Weeden RB (1967) Seasonal and geographic variation in the foods of adult white-tailed ptarmigan. Condor 69:303–309
    Google Scholar 

    Werhahn G, Liu Y, Meng Y, Cheng C, Lu Z, Atzeni L et al. (2020) Himalayan wolf distribution and admixture based on multiple genetic markers J Biogeogr https://doi.org/10.1111/jbi.13824
    Article  Google Scholar 

    Wiebe KL, Martin K (1998) Costs and benefits of nest cover for ptarmigan: changes within and between years. Anim Behav 56:1137–1144
    CAS  PubMed  Google Scholar 

    Wilson S, Martin K (2008) Breeding habitat selection of sympatric white-tailed, rock and willow ptarmigan in the southern Yukon Territory, Canada. J Ornithol 149:629–637
    Google Scholar 

    Wilson S, Martin K (2011) Life-history and demographic variation in an alpine specialist at the latitudinal extremes of the range. Popul Ecol 53:459–471
    Google Scholar 

    Xin J-W, Chai Z-X, Zhang C-F, Zhang Q, Zhu Y, Cao H-W et al. (2019) Transcriptome profiles revealed the mechanisms underlying the adaptation of yak to high-altitude environments. Sci Rep 9:7558
    PubMed  PubMed Central  Google Scholar 

    Zimova M, Hackländer K, Good JM, Melo-Ferreira J, Alves PC, Mills LS (2018) Function and underlying mechanisms of seasonal colour moulting in mammals and birds: what keeps them changing in a warming world? Biol Rev 93:1478–1498
    PubMed  Google Scholar  More

  • in

    A nutrient control on marine anoxia during the end-Permian mass extinction

    1.
    Burgess, S. D., Bowring, S. & Shen, S.-Z. High-precision timeline for Earth’s most severe extinction. Proc. Natl Acad. Sci. USA 111, 3316–3321 (2014).
    Google Scholar 
    2.
    Wignall, P. B. & Twitchett, R. J. Oceanic anoxia and the end Permian mass extinction. Science 272, 1155–1158 (1996).
    Google Scholar 

    3.
    Cao, C. et al. Biogeochemical evidence for euxinic oceans and ecological disturbance presaging the end-Permian mass extinction event. Earth Planet. Sci. Lett. 281, 188–201 (2009).
    Google Scholar 

    4.
    Nabbefeld, B. et al. An integrated biomarker, isotopic and palaeoenvironmental study through the Late Permian event at Lusitaniadalen, Spitsbergen. Earth Planet. Sci. Lett. 291, 84–96 (2010).
    Google Scholar 

    5.
    Brennecka, G. A., Herrmann, A. D., Anbar, A. D. & Algeo, T. J. Rapid expansion of oceanic anoxia immediately before the end-Permian mass extinction. Proc. Natl Acad. Sci. USA 108, 17631–17634 (2011).
    Google Scholar 

    6.
    Dustira, A. M. et al. Gradual onset of anoxia across the Permian–Triassic boundary in Svalbard, Norway. Palaeogeogr. Palaeoclimatol. Palaeoecol. 374, 303–313 (2013).
    Google Scholar 

    7.
    Schobben, M. et al. Flourishing ocean drives the end-Permian marine mass extinction. Proc. Natl Acad. Sci. USA 112, 10298–10303 (2015).
    Google Scholar 

    8.
    Stanley, S. M. Estimates of the magnitudes of major marine mass extinctions in Earth history. Proc. Natl Acad. Sci. USA 113, E6325–E6334 (2016).
    Google Scholar 

    9.
    Kiehl, J. T. & Shields, C. A. Climate simulation of the latest Permian: implications for mass extinction. Geology 33, 757–760 (2005).
    Google Scholar 

    10.
    Hotinski, R. M., Bice, K. L., Kump, L. R., Najjar, R. G. & Arthur, M. A. Ocean stagnation and end-Permian anoxia. Geology 29, 7–10 (2001).
    Google Scholar 

    11.
    Meyer, K., Kump, L. & Ridgwell, A. Biogeochemical controls on photic-zone euxinia during the end-Permian mass extinction. Geology 36, 747–750 (2008).
    Google Scholar 

    12.
    Algeo, T. J. & Twitchett, R. J. Anomalous Early Triassic sediment fluxes due to elevated weathering rates and their biological consequences. Geology 38, 1023–1026 (2010).
    Google Scholar 

    13.
    Shen, J. et al. Marine productivity changes during the end-Permian crisis and Early Triassic recovery. Earth-Sci. Rev. 149, 136–162 (2015).
    Google Scholar 

    14.
    Tyrrell, T. The relative influences of nitrogen and phosphorus on oceanic primary production. Nature 400, 525–531 (1999).
    Google Scholar 

    15.
    Sephton, M. A. et al. Catastrophic soil erosion during the end-Permian biotic crisis. Geology 33, 941–944 (2005).
    Google Scholar 

    16.
    Sun, H. et al. Rapid enhancement of chemical weathering recorded by extremely light seawater lithium isotopes at the Permian–Triassic boundary. Proc. Natl Acad. Sci. USA 115, 3782–3787 (2018).
    Google Scholar 

    17.
    Visscher, H. et al. Environmental mutagenesis during the end-Permian ecological crisis. Proc. Natl Acad. Sci. USA 101, 12952–12956 (2004).
    Google Scholar 

    18.
    Burgess, S. D., Muirhead, J. D. & Bowring, S. A. Initial pulse of Siberian Traps sills as the trigger of the end-Permian mass extinction. Nat. Commun. 8, 164 (2017).
    Google Scholar 

    19.
    Ward, P. D., Montgomery, D. R. & Smith, R. Altered river morphology in South Africa related to the Permian–Triassic extinction. Science 289, 1740–1743 (2000).
    Google Scholar 

    20.
    Algeo, T. et al. Evidence for a diachronous late Permian marine crisis from the Canadian Arctic region. Geol. Soc. Am. Bull. 124, 1424–1448 (2012).
    Google Scholar 

    21.
    Froelich, P. N. et al. Early oxidation of organic matter in pelagic sediments of the eastern equatorial: suboxic diagenesis. Geochim. Cosmochim. Acta 43, 1075–1090 (1979).
    Google Scholar 

    22.
    Krom, M. D. & Berner, R. A. The diagenesis of phosphorus in a nearshore marine sediment. Geochim. Cosmochim. Acta 45, 207–216 (1981).
    Google Scholar 

    23.
    Slomp, C. P., Van Der Gaast, S. J. & Van Raaphorst, W. Phosphorus binding by poorly crystalline iron oxides in North Sea sediments. Mar. Chem. 52, 55–73 (1996).
    Google Scholar 

    24.
    Schenau, S. J. & De Lange, G. J. A novel chemical method to quantify fish debris in marine sediments. Limnol. Oceanogr. 45, 963–971 (2000).
    Google Scholar 

    25.
    Ruttenberg, K. C. Development of a sequential extraction method for different forms of phosphorus in marine sediments. Limnol. Oceanogr. 37, 1460–1482 (1992).
    Google Scholar 

    26.
    Egger, M., Jilbert, T., Behrends, T., Rivard, C. & Slomp, C. P. Vivianite is a major sink for phosphorus in methanogenic coastal surface sediments. Geochim. Cosmochim. Acta 169, 217–235 (2015).
    Google Scholar 

    27.
    Cappellen, P. V. & Ingall, E. D. Redox stabilization of the atmosphere and oceans by phosphorus-limited marine productivity. Science 271, 493–496 (1996).
    Google Scholar 

    28.
    Algeo, T. J. & Ingall, E. Sedimentary Corg:P ratios, paleocean ventilation, and Phanerozoic atmospheric pO2. Palaeogeogr. Palaeoclimatol. Palaeoecol. 256, 130–155 (2007).
    Google Scholar 

    29.
    Harland, W. The Geology of Svalbard (Geological Society, 1997).

    30.
    Blomeier, D., Dustira, A. M., Forke, H. & Scheibner, C. Facies analysis and depositional environments of a storm-dominated, temperate to cold, mixed siliceous–carbonate ramp: the Permian Kapp Starostin Formation in NE Svalbard. Nor. J. Geol. 93, 75–93 (2013).
    Google Scholar 

    31.
    Zuchuat, V. et al. A new high-resolution stratigraphic and palaeoenvironmental record spanning the end-Permian mass extinction and its aftermath in central Spitsbergen, Svalbard. Palaeogeogr. Palaeoclimatol. Palaeoecol. 554, 109732 (2020).

    32.
    Poulton, S. W. & Canfield, D. E. Development of a sequential extraction procedure for iron: implications for iron partitioning in continentally derived particulates. Chem. Geol. 214, 209–221 (2005).
    Google Scholar 

    33.
    Algeo, T. & Tribovillard, N. Environmental analysis of paleoceanographic systems based on molybdenum–uranium covariation. Chem. Geol. 268, 211–225 (2009).
    Google Scholar 

    34.
    Raiswell, R. & Canfield, D. E. Sources of iron for pyrite formation in marine sediments. Am. J. Sci. 298, 219–245 (1998).
    Google Scholar 

    35.
    Poulton, S. W. & Raiswell, R. The low-temperature geochemical cycle of iron: from continental fluxes to marine sediment deposition. Am. J. Sci. 302, 774–805 (2002).
    Google Scholar 

    36.
    Poulton, S. W. & Canfield, D. E. Ferruginous conditions: a dominant feature of the ocean through Earth’s history. Elements 7, 107–112 (2011).
    Google Scholar 

    37.
    Lyons, T. W. & Severmann, S. A critical look at iron paleoredox proxies: new insights from modern euxinic marine basins. Geochim. Cosmochim. Acta 70, 5698–5722 (2006).
    Google Scholar 

    38.
    Poulton, S. W., Fralick, P. W. & Canfield, D. E. Spatial variability in oceanic redox structure 1.8 billion years ago. Nat. Geosci. 3, 486–490 (2010).
    Google Scholar 

    39.
    Doyle, K. A., Poulton, S. W., Newton, R. J., Podkovyrov, V. N. & Bekker, A. Shallow water anoxia in the Mesoproterozoic ocean: evidence from the Bashkir Meganticlinorium, Southern Urals. Precambrian Res. 317, 196–210 (2018).
    Google Scholar 

    40.
    Kendall, B. et al. Pervasive oxygenation along late Archaean ocean margins. Nat. Geosci. 3, 647–652 (2010).
    Google Scholar 

    41.
    Chafetz, H. S. & Reid, A. Syndepositional shallow-water precipitation of glauconitic minerals. Sediment. Geol. 136, 29–42 (2000).
    Google Scholar 

    42.
    Peters, S. E. & Gaines, R. R. Formation of the ‘Great Unconformity’ as a trigger for the Cambrian explosion. Nature 484, 363–366 (2012).
    Google Scholar 

    43.
    Manwell, C. Oxygen equilibrium of brachiopod Lingula hemerythrin. Science 132, 550–551 (1960).
    Google Scholar 

    44.
    Peng, Y., Shi, G. R., Gao, Y., He, W. & Shen, S. How and why did the Lingulidae (Brachiopoda) not only survive the end-Permian mass extinction but also thrive in its aftermath? Palaeogeogr. Palaeoclimatol. Palaeoecol. 252, 118–131 (2007).
    Google Scholar 

    45.
    Scott, C. & Lyons, T. W. Contrasting molybdenum cycling and isotopic properties in euxinic versus non-euxinic sediments and sedimentary rocks: refining the paleoproxies. Chem. Geol. 324-325, 19–27 (2012).
    Google Scholar 

    46.
    Lyons, T. W. Sulfur isotopic trends and pathways of iron sulfide formation in upper Holocene sediments of the anoxic Black Sea. Geochim. Cosmochim. Acta 61, 3367–3382 (1997).
    Google Scholar 

    47.
    Shen, Y., Canfield, D. E. & Knoll, A. H. Middle proterozoic ocean chemistry: evidence from the McArthur Basin, Northern Australia. Am. J. Sci. 302, 81–109 (2002).
    Google Scholar 

    48.
    Borgnino, L., Avena, M. & De Pauli, C. Synthesis and characterization of Fe(III)-montmorillonites for phosphate adsorption. Colloids Surf. A 341, 46–52 (2009).
    Google Scholar 

    49.
    Foster, W. J., Danise, S. & Twitchett, R. J. A silicified Early Triassic marine assemblage from Svalbard. J. Syst. Palaeontol. 15, 851–877 (2017).
    Google Scholar 

    50.
    Barnosky, A. D. et al. Approaching a state shift in Earth’s biosphere. Nature 486, 52–58 (2012).
    Google Scholar 

    51.
    Wedepohl, K. H. in Metals and Their Compounds in the Environment (ed. Merian, E.) 3–17 (Verlag Chemie, 1991).

    52.
    Thompson, J. et al. Development of a modified SEDEX phosphorus speciation method for ancient rocks and modern iron-rich sediments. Chem. Geol. 524, 383–393 (2019).
    Google Scholar 

    53.
    Canfield, D. E., Raiswell, R., Westrich, J. T., Reaves, C. M. & Berner, R. A. The use of chromium reduction in the analysis of reduced inorganic sulfur in sediments and shales. Chem. Geol. 54, 149–155 (1986).
    Google Scholar  More

  • in

    High-throughput microCT scanning of small specimens: preparation, packing, parameters and post-processing

    1.
    Sato, T., Ikeda, O., Yamakoshi, Y. & Tsubouchi, M. X-ray tomography for microstructural objects. Appl. Opt. 20, 3880–3883 (1981).
    ADS  CAS  PubMed  Google Scholar 
    2.
    Elliott, J. C. & Dover, S. D. X-ray microtomography. J. Microsc. 126, 211–213 (1982).
    CAS  PubMed  Google Scholar 

    3.
    Elliott, J. C. & Dover, S. D. X-ray microscopy using computerized axial tomography. J. Microsc. 138, 329–331 (1985).
    CAS  PubMed  Google Scholar 

    4.
    Sutton, M., Rahman, I. & Garwood, R. Techniques for Virtual Palaeontology 208 (Wiley-Blackwell, London, 2014).
    Google Scholar 

    5.
    Davies, T. G. et al. Open data and digital morphology. Proc. R. Soc. B 284, 20170194 (2017).
    PubMed  Google Scholar 

    6.
    Gutiérrez, Y., Ott, D., Töpperwien, M., Salditt, T. & Scherber, C. X-ray computed tomography and its potential in ecological research: a review of studies and optimization of specimen preparation. Ecol. Evol. 8, 7717–7732 (2018).
    PubMed  PubMed Central  Google Scholar 

    7.
    Schindelin, J. et al. Fiji: an open-source platform for biological-image analysis. Nat. Methods 9, 676–682 (2012).
    CAS  PubMed  PubMed Central  Google Scholar 

    8.
    Ketcham, R. A. Computational methods for quantitative analysis of three-dimensional features in geological specimens. Geosphere 1, 32–41 (2005).
    ADS  Google Scholar 

    9.
    Page, L. M., MacFadden, B. J., Fortes, J. A., Soltis, P. S. & Riccardi, G. Digitization of biodiversity collections reveals biggest data on biodiversity. Bioscience 65, 841–842 (2015).
    Google Scholar 

    10.
    Faulwetter, S., Vasileiadou, A., Kouratoras, M., Dailianis, T. & Arvanitidis, C. Micro-computed tomography: introducing new dimensions to taxonomy. ZooKeys 263, 1–45 (2013).
    Google Scholar 

    11.
    Akkari, N. et al. New avatars for Myriapods: complete 3D morphology of type specimens transcends conventional species description (Myriapoda, Chilopoda). PLoS ONE 13, 0200158. https://doi.org/10.1371/journal.pone.0200158 (2018).
    CAS  Article  Google Scholar 

    12.
    Fontaine, B., Perrard, A. & Bouchet, P. 21 years of shelf life between discovery and description of new species. Curr. Biol. 22, R943–R944 (2012).
    CAS  PubMed  Google Scholar 

    13.
    Hipsley, C. A. & Sherratt, E. Psychology, not technology, is our biggest challenge to open digital morphology data. Sci. Data. 6, 41 (2019).
    PubMed  PubMed Central  Google Scholar 

    14.
    Blagoderov, V., Kitching, I. J., Livermore, L., Simonsen, T. J. & Smith, V. S. No specimen left behind: industrial scale digitization of natural history collections. Zookeys 209, 133–146 (2012).
    Google Scholar 

    15.
    Rogers, N. Museum drawers go digital. Science 352, 762–765 (2016).
    ADS  CAS  PubMed  Google Scholar 

    16.
    Meineke, E. K., Davies, T. J., Daru, B. H. & Davis, C. C. Biological collections for understanding biodiversity in the Anthropocene. Philos. Trans. R. Soc. B 374, 20170386 (2018).
    Google Scholar 

    17.
    Schmitt, C. J., Cook, J. A., Zamudio, K. R. & Edwards, S. V. Museum specimens of terrestrial vertebrates are sensitive indicators of environmental change in the Anthropocene. Philos. Trans. R. Soc. B 374, 20170387 (2018).
    Google Scholar 

    18.
    Sherratt, E., Gower, D. J., Klingenberg, C. P. & Wilkinson, M. Evolution of cranial shape in caecilians (Amphibia: Gymnophiona). Evol. Biol. 41, 528–545 (2014).
    Google Scholar 

    19.
    Watanabe, A. et al. Ecomorphological diversification in squamates from conserved pattern of cranial integration. Proc. Natl. Acad. Sci. 116, 14688–14697 (2019).
    CAS  PubMed  Google Scholar 

    20.
    Simon, M. N., Machado, F. A. & Marroig, G. High evolutionary constraints limited adaptive responses to past climate changes in toad skulls. Proc. R. Soc. B-Biol. Sci. 283, 20161783 (2016).
    Google Scholar 

    21.
    Sherratt, E., Serb, J. M. & Adams, D. C. Rates of morphological evolution, asymmetry and morphological integration of shell shape in scallops. BMC Evol. Biol. 17, 248 (2017).
    PubMed  PubMed Central  Google Scholar 

    22.
    Chira, A. M. et al. Correlates of rate heterogeneity in avian ecomorphological traits. Ecol. Lett. 21, 1505–1514 (2018).
    CAS  PubMed  PubMed Central  Google Scholar 

    23.
    Percival, C. J. et al. The effect of automated landmark identification on morphometric analyses. J. Anat. 234, 917–935 (2019).
    PubMed  PubMed Central  Google Scholar 

    24.
    Bouxsein, M. L. et al. Guidelines for assessment of bone microstructure in rodents using micro –computed tomography. J. Bone Miner. Res. 25, 1468–1486 (2010).
    Google Scholar 

    25.
    Broeckhoven, C. & du Plessis, A. X-ray microtomography in herpetological research: a review. Amphibia-Reptilia 39, 377–401 (2018).
    Google Scholar 

    26.
    Marcy, A. E., Fruciano, C., Phillips, M. J., Mardon, K. & Weisbecker, V. Low resolution scans can provide a sufficiently accurate, cost- and time-effective alternative to high resolution scans for 3D shape analyses. PeerJ 6, 5032. https://doi.org/10.7717/peerj.5032 (2018).
    Article  Google Scholar 

    27.
    Gray, J. A., McDowell, M. C., Hutchinson, M. N. & Jones, M. E. Geometric morphometrics provides an alternative approach for interpreting the affinity of fossil lizard jaws. J. Herpetol. 51, 375–382 (2017).
    Google Scholar 

    28.
    Thorn, K. M., Hutchinson, M. N., Archer, M. & Lee, M. S. Y. A new scincid lizard from the Miocene of northern Australia, and the evolutionary history of social skinks (Scincidae: Egerniinae). J. Vertebr. Paleontol. 39, 1 (2019).
    Google Scholar 

    29.
    Chaplin, K., Sumner, J., Hipsley, C. A. & Melville, J. An integrative approach using phylogenomics and high-resolution X-ray computed tomography for species delimitation in cryptic taxa. Syst. Biol. 69, syz048. https://doi.org/10.1093/sysbio/syz048 (2019).
    Article  Google Scholar 

    30.
    Melville, J. et al. Integrating phylogeography and high-resolution X-ray CT reveals five new cryptic species and multiple hybrid zones among Australian earless dragons. R. Soc. Open Sci. 6, 191166. https://doi.org/10.1098/rsos.191166 (2019).
    ADS  Article  PubMed  PubMed Central  Google Scholar 

    31.
    Caro, A., Gómez-Moliner, B. J. & Madeira, M. J. Integrating multilocus DNA data and 3D geometric morphometrics to elucidate species boundaries in the case of Pyrenaearia (Pulmonata: Hygromiidae). Mol. Phylogenet. Evol. 132, 194–206 (2019).
    CAS  PubMed  Google Scholar 

    32.
    Winkelmann, C. T. & Wise, L. D. High-throughput micro-computed tomography imaging as a method to evaluate rat and rabbit fetal skeletal abnormalities for developmental toxicity studies. J. Pharmacol. Tox. Met. 59, 156–165 (2009).
    CAS  Google Scholar 

    33.
    Sevilla, R. S. et al. Development and optimization of a high-throughput micro-computed tomography imaging method incorporating a novel analysis technique to evaluate bone mineral density of arthritic joints in a rodent model of collagen induced arthritis. Bone 73, 32–41 (2015).
    PubMed  Google Scholar 

    34.
    Wong, M. D., Maezawa, Y., Lerch, J. P. & Henkelman, R. M. Automated pipeline for anatomical phenotyping of mouse embryos using micro-CT. Development 141, 2533–2541 (2014).
    CAS  PubMed  PubMed Central  Google Scholar 

    35.
    Wu, D. et al. Combining high-throughput micro-CT-RGB phenotyping and genome-wide association study to dissect the genetic architecture of tiller growth in rice. J. Exp. Bot. 70, 545–561 (2019).
    CAS  PubMed  Google Scholar 

    36.
    Ding, Y. et al. Computational 3D histological phenotyping of whole zebrafish by X-ray histotomography. Elife 8, 44898. https://doi.org/10.7554/eLife.44898.001 (2019).
    Article  Google Scholar 

    37.
    Staedtler, Y. M., Masson, D. & Schönenberger, J. Plant tissues in 3D via X-ray tomography: simple contrasting methods allow high resolution imaging. PLoS ONE 8, 75295. https://doi.org/10.1371/journal.pone.0075295 (2013).
    ADS  CAS  Article  Google Scholar 

    38.
    Keklikoglou, K. et al. Micro-computed tomography for natural history specimens: a handbook of best practice protocols. Eur. J. Taxon. 522, 1–55 (2019).
    Google Scholar 

    39.
    Adams, D., Collyer, M. & Kaliontzopoulou, A. Geomorph: Software for geometric morphometric analyses. R package version 3.1.0. https://cran.r-project.org/package=geomorph (2019).

    40.
    Klingenberg, C. P. MorphoJ: an integrated software package for geometric morphometrics. Mol. Ecol. Resour. 11, 353–357 (2011).
    PubMed  Google Scholar 

    41.
    du Plessis, A., Broeckhoven, C., Guelpa, A. & le Roux, S. G. Laboratory X-ray micro-computed tomography: a user guideline for biological samples. Gigascience 6, 1–11 (2017).
    PubMed  PubMed Central  Google Scholar 

    42.
    Hocknull, S. A., Zhao, J. X., Feng, Y. X. & Webb, G. E. Responses of middle Pleistocene rainforest vertebrates to climate change in Australia. Earth Planet. Sci. Lett. 264, 317–331 (2007).
    ADS  CAS  Google Scholar 

    43.
    Hedrick, B. P. et al. Digitization and the future of natural history collections. Bioscience 70, 243–251 (2020).
    Google Scholar 

    44.
    Lawrence, R. A. & Hocknull, S. Engaging the public with small vertebrate fossils and utilizing citizen science to maximise scientific discovery at Capricorn Caves, Central Eastern Queensland, Australia. J. Vertebr. Paleontol. Program Abstr. 139 (2019).

    45.
    Long, J. A., Young, G. C., Holland, T., Senden, T. J. & Fitzgerald, E. M. An exceptional Devonian fish from Australia sheds light on tetrapod origins. Nature 444, 199–202 (2006).
    ADS  CAS  PubMed  Google Scholar 

    46.
    Arbour, J. H., Curtis, A. A. & Santana, S. E. Signatures of echolocation and dietary ecology in the adaptive evolution of skull shape in bats. Nat. Commun. 10, 2036 (2019).
    ADS  PubMed  PubMed Central  Google Scholar 

    47.
    Park, T., Fitzgerald, E. M. & Evans, A. R. Ultrasonic hearing and echolocation in the earliest toothed whales. Biol. Lett. 12, 20160060. https://doi.org/10.1098/rsbl.2016.0060 (2016).
    Article  PubMed  PubMed Central  Google Scholar 

    48.
    Müller, J. et al. Eocene lizard from Germany reveals amphisbaenian origins. Nature 473, 364–367 (2011).
    ADS  PubMed  Google Scholar 

    49.
    Miralles, A. et al. Distinct patterns of desynchronized limb regression in Malagasy scincine lizards (Squamata, Scincidae). PLoS ONE 10, 0126074. https://doi.org/10.1371/journal.pone.0126074 (2015).
    CAS  Article  Google Scholar 

    50.
    Weisbecker, V. Monotreme ossification sequences and the riddle of mammalian skeletal development. Evolution 65, 1323–1335 (2011).
    PubMed  Google Scholar 

    51.
    Newton, A. H. et al. Letting the ‘cat’ out of the bag: pouch young development of the extinct Tasmanian tiger revealed by X-ray computed tomography. R. Soc. Open Sci. 5, 171914. https://doi.org/10.1098/rsos.171914 (2018).
    ADS  Article  PubMed  PubMed Central  Google Scholar 

    52.
    Hublin, J. J. et al. New fossils from Jebel Irhoud, Morocco and the pan-African origin of Homo sapiens. Nature 546, 289–292 (2017).
    ADS  CAS  PubMed  Google Scholar 

    53.
    Beaudet, A. & Gilissen, E. Fossil primate endocasts: perspectives from advanced imaging techniques In Digital Endocasts: from Skulls to Brains (eds. Bruner, E., Ogihara, N. & Tanabe, H.) 47–58 (Springer, Berlin, 2018).

    54.
    Wulff, N. C., Lehmann, A. W., Hipsley, C. A. & Lehmann, G. U. C. Copulatory courtship by bushcricket genital titillators revealed by functional morphology, μCT scanning for 3D reconstruction and female sense structures. Arthropod Struct. Dev. 44, 388–397 (2015).
    PubMed  Google Scholar 

    55.
    Gee, C. T. Applying microCT and 3D visualization to Jurassic silicified conifer seed cones: a virtual advantage over thin-sectioning. Appl. Plant Sci. 1, 1300039. https://doi.org/10.3732/apps.1300039 (2013).
    Article  Google Scholar 

    56.
    Meyer, M. et al. Three-dimensional microCT analysis of the Ediacara fossil Pteridinium simplex sheds new light on its ecology and phylogenetic affinity. Precambrian Res. 249, 79–87 (2014).
    ADS  CAS  Google Scholar 

    57.
    Gooday, A. J., Sykes, D., Goral, T., Zubkov, M. V. & Glover, A. G. Micro-CT 3D imaging reveals the internal structure of three abyssal xenophyophore species (Protista, Foraminifera) from the eastern equatorial Pacific Ocean. Sci. Rep. 8, 12103. https://doi.org/10.1038/s41598-018-30186-2 (2018).
    ADS  CAS  Article  PubMed  PubMed Central  Google Scholar 

    58.
    Dunlop, J. A. et al. Microtomography of the Baltic amber tick Ixodes succineus reveals affinities with the modern Asian disease vector Ixodes ovatus. BMC Evol. Biol. 16, 203 (2016).
    PubMed  PubMed Central  Google Scholar  More

  • in

    Climate-driven changes in the composition of New World plant communities

    1.
    Zhang, T., Niinemets, Ü., Sheffield, J. & Lichstein, J. W. Shifts in tree functional composition amplify the response of forest biomass to climate. Nature 556, 99–102 (2018).
    CAS  Google Scholar 
    2.
    Parmesan, C. & Yohe, G. A globally coherent fingerprint of climate change impacts across natural systems. Nature 421, 37–42 (2003).
    CAS  Google Scholar 

    3.
    Parmesan, C. & Hanley, M. E. Plants and climate change: complexities and surprises. Ann. Bot. 116, 849–864 (2015).
    Google Scholar 

    4.
    Telwala, Y., Brook, B. W., Manish, K. & Pandit, M. K. Climate-induced elevational range shifts and increase in plant species richness in a Himalayan biodiversity epicentre. PLoS ONE 8, e57103 (2013).
    CAS  Google Scholar 

    5.
    Jump, A. S., Huang, T. J. & Chou, C. H. Rapid altitudinal migration of mountain plants in Taiwan and its implications for high altitude biodiversity. Ecography 35, 204–210 (2012).
    Google Scholar 

    6.
    Angelo, C. L. & Daehler, C. C. Upward expansion of fire‐adapted grasses along a warming tropical elevation gradient. Ecography 36, 551–559 (2013).
    Google Scholar 

    7.
    Morueta-Holme, N. et al. Strong upslope shifts in Chimborazo’s vegetation over two centuries since Humboldt. Proc. Natl Acad. Sci. USA 112, 12741–12745 (2015).
    CAS  Google Scholar 

    8.
    Parolo, G. & Rossi, G. Upward migration of vascular plants following a climate warming trend in the Alps. Basic Appl. Ecol. 9, 100–107 (2008).
    Google Scholar 

    9.
    Chen, I.-C., Hill, J. K., Ohlemüller, R., Roy, D. B. & Thomas, C. D. Rapid range shifts of species associated with high levels of climate warming. Science 333, 1024–1026 (2011).
    CAS  Google Scholar 

    10.
    Moret, P., Muriel, P., Jaramillo, R. & Dangles, O. Humboldt’s tableau physique revisited. Proc. Natl Acad. Sci. USA 116, 12889–12894 (2019).
    CAS  Google Scholar 

    11.
    Lenoir, J. & Svenning, J. C. Climate-related range shifts—a global multidimensional synthesis and new research directions. Ecography 38, 15–28 (2015).
    Google Scholar 

    12.
    Lenoir, J., Gegout, J. C., Marquet, P. A., de Ruffray, P. & Brisse, H. A significant upward shift in plant species optimum elevation during the 20th century. Science 320, 1768–1771 (2008).
    CAS  Google Scholar 

    13.
    Feeley, K. J. Distributional migrations, expansions, and contractions of tropical plant species as revealed in dated herbarium records. Glob. Change Biol. 18, 1335–1341 (2012).
    Google Scholar 

    14.
    Fei, S. et al. Divergence of species responses to climate change. Sci. Adv. 3, e1603055 (2017).
    Google Scholar 

    15.
    Zhu, K., Woodall, C. W. & Clark, J. S. Failure to migrate: lack of tree range expansion in response to climate change. Glob. Change Biol. 18, 1042–1052 (2012).
    Google Scholar 

    16.
    Crimmins, S. M., Dobrowski, S. Z., Greenberg, J. A., Abatzoglou, J. T. & Mynsberge, A. R. Changes in climatic water balance drive downhill shifts in plant species’ optimum elevations. Science 331, 324–327 (2011).
    CAS  Google Scholar 

    17.
    Kelly, A. E. & Goulden, M. L. Rapid shifts in plant distribution with recent climate change. Proc. Natl Acad. Sci. USA 105, 11823–11826 (2008).
    CAS  Google Scholar 

    18.
    Wieczynski, D. J. et al. Climate shapes and shifts functional biodiversity in forests worldwide. Proc. Natl Acad. Sci. USA 116, 587–592 (2019).
    CAS  Google Scholar 

    19.
    Bertrand, R. et al. Changes in plant community composition lag behind climate warming in lowland forests. Nature 479, 517–520 (2011).
    CAS  Google Scholar 

    20.
    Blonder, B. et al. Linking environmental filtering and disequilibrium to biogeography with a community climate framework. Ecology 96, 972–985 (2015).
    Google Scholar 

    21.
    Gottfried, M. et al. Continent-wide response of mountain vegetation to climate change. Nat. Clim. Change 2, 111–115 (2012).
    Google Scholar 

    22.
    Duque, A., Stevenson, P. & Feeley, K. J. Thermophilization of adult and juvenile tree communities in the northern tropical Andes. Proc. Natl Acad. Sci. USA 112, 10744–10749 (2015).
    CAS  Google Scholar 

    23.
    Fadrique, B. et al. Widespread but heterogeneous responses of Andean forests to climate change. Nature 564, 207–212 (2018).
    CAS  Google Scholar 

    24.
    Feeley, K. J., Hurtado, J., Saatchi, S., Silman, M. R. & Clark, D. B. Compositional shifts in Costa Rican forests due to climate-driven species migrations. Glob. Change Biol. 19, 3472–3480 (2013).
    Google Scholar 

    25.
    Feeley, K. J. et al. Upslope migration of Andean trees. J. Biogeogr. 38, 783–791 (2011).
    Google Scholar 

    26.
    Esquivel‐Muelbert, A. et al. Compositional response of Amazon forests to climate change. Glob. Change Biol. 25, 39–56 (2019).
    Google Scholar 

    27.
    Feeley, K. J. & Silman, M. R. Biotic attrition from tropical forests correcting for truncated temperature niches. Glob. Change Biol. 16, 1830–1836 (2010).
    Google Scholar 

    28.
    Title, P. O. & Bemmels, J. B. ENVIREM: an expanded set of bioclimatic and topographic variables increases flexibility and improves performance of ecological niche modeling. Ecography 41, 291–307 (2018).
    Google Scholar 

    29.
    Santiago, L. S. et al. Coordination and trade-offs among hydraulic safety, efficiency and drought avoidance traits in Amazonian rainforest canopy tree species. New Phytol. 218, 1015–1024 (2018).
    Google Scholar 

    30.
    Strzepek, K., Yohe, G., Neumann, J. & Boehlert, B. Characterizing changes in drought risk for the United States from climate change. Environ. Res. Lett. 5, 044012 (2010).
    Google Scholar 

    31.
    Sheffield, J. & Wood, E. F. Projected changes in drought occurrence under future global warming from multi-model, multi-scenario, IPCC AR4 simulations. Clim. Dynam. 31, 79–105 (2008).
    Google Scholar 

    32.
    Duffy, P. B., Brando, P., Asner, G. P. & Field, C. B. Projections of future meteorological drought and wet periods in the Amazon. Proc. Natl Acad. Sci. USA 112, 13172–13177 (2015).
    CAS  Google Scholar 

    33.
    Conradi, T., Van Meerbeek, K., Ordonez, A. & Svenning, J. C. Biogeographic historical legacies in the net primary productivity of Northern Hemisphere forests. Ecol. Lett. 23, 800–810 (2020).

    34.
    Dinerstein, E. et al. An ecoregion-based approach to protecting half the terrestrial realm. BioScience 67, 534–545 (2017).
    Google Scholar 

    35.
    Olson, D. M. et al. Terrestrial ecoregions of the world: a new map of life on Earth. BioScience 51, 933–938 (2001).
    Google Scholar 

    36.
    Anderson-Teixeira, K. J. et al. CTFS-ForestGEO: a worldwide network monitoring forests in an era of global change. Glob. Change Biol. 21, 528–549 (2015).
    Google Scholar 

    37.
    Dauby, G. et al. RAINBIO: a mega-database of tropical African vascular plants distributions. PhytoKeys 74, 1–18 (2016).
    Google Scholar 

    38.
    DeWalt, S. J., Bourdy, G., de Michel, L. R. & Quenevo, C. Ethnobotany of the Tacana: quantitative inventories of two permanent plots of Northwestern Bolivia. Econ. Bot. 53, 237–260 (1999).
    Google Scholar 

    39.
    Enquist, B. & Boyle, B. SALVIAS—the SALVIAS vegetation inventory database. Biodivers. Ecol. 4, 288 (2012).
    Google Scholar 

    40.
    Enquist, B. J., Condit, R., Peet, R. K., Schildhauer, M. & Thiers, B. M. Cyberinfrastructure for an integrated botanical information network to investigate the ecological impacts of global climate change on plant biodiversity. Preprint at https://peerj.com/preprints/2615/ (2016).

    41.
    Fegraus, E. Tropical Ecology Assessment and Monitoring Network (TEAM Network). Biodivers. Ecol. 4, 287 (2012).
    Google Scholar 

    42.
    Maitner, B. S. et al. The BIEN R package: a tool to access the Botanical Information and Ecology Network (BIEN) database. Methods Ecol. Evol. 9, 373–379 (2018).
    Google Scholar 

    43.
    Peet, R. K. et al. Vegetation-plot database of the Carolina Vegetation Survey. Biodivers. Ecol. 4, 243–253 (2012).
    Google Scholar 

    44.
    Peet, R. K., Lee, M. T., Jennings, M. D. & Faber-Langendoen, D. VegBank: a permanent, open-access archive for vegetation plot data. Biodivers. Ecol. 4, 233–241 (2012).
    Google Scholar 

    45.
    Sosef, M. S. M. et al. Exploring the floristic diversity of tropical Africa. BMC Biol. 15, 15 (2017).
    Google Scholar 

    46.
    König, C. et al. Biodiversity data integration—the significance of data resolution and domain. PLoS Biol. 17, e3000183 (2019).
    Google Scholar 

    47.
    Karger, D. N. et al. Climatologies at high resolution for the earth’s land surface areas. Sci. Data 4, 170122 (2017).
    Google Scholar 

    48.
    Enquist, B. J. et al. The commonness of rarity: global and future distribution of rarity across land plants. Sci. Adv. 5, eaaz0414 (2019).
    Google Scholar 

    49.
    Feeley, K. J., Davies, S. J., Perez, R., Hubbell, S. P. & Foster, R. B. Directional changes in the species composition of a tropical forest. Ecology 92, 871–882 (2011).
    Google Scholar 

    50.
    Gosselin, F. Putting floristic thermophilization in forests into a conservation biology perspective: beyond mean trait approaches. Ann. For. Sci. 73, 215–218 (2016).
    Google Scholar 

    51.
    De Frenne, P. et al. Microclimate moderates plant responses to macroclimate warming. Proc. Natl Acad. Sci. USA 110, 18561–18565 (2013).
    Google Scholar 

    52.
    Stevens, J. T., Safford, H. D., Harrison, S. & Latimer, A. M. Forest disturbance accelerates thermophilization of understory plant communities. J. Ecol. 103, 1253–1263 (2015).
    Google Scholar 

    53.
    Bush, M. B., Silman, M. R. & Urrego, D. H. 48,000 years of climate and forest change in a biodiversity hot spot. Science 303, 827–829 (2004).
    CAS  Google Scholar 

    54.
    R Core Team. R: A Language and Environment for Statistical Computing (R Foundation for Statistical Computing, 2014).

    55.
    Bates, D., Mächler, M., Bolker, B. & Walker, S. Fitting linear mixed-effects models using lme4. J. Stat. Soft. 67, 1–48 (2015).
    Google Scholar 

    56.
    Nakagawa, S. & Schielzeth, H. A general and simple method for obtaining R 2 from generalized linear mixed‐effects models. Methods Ecol. Evol. 4, 133–142 (2013).
    Google Scholar  More

  • in

    Environmentally induced phenotypic plasticity and DNA methylation changes in a wild potato growing in two contrasting Andean experimental gardens

    Berend K, Haynes K, MacKenzie CM (2019) Common garden experiments as a dynamic tool for ecological studies of alpine plants and communities in northeastern north America. Rhodora 121:174–212
    Google Scholar 

    Berli FJ, Alonso R, Bressan-Smith R, Bottini R (2013) UV-B impairs growth and gas exchange in grapevines grown in high altitude. Physiol Plant 149:127–140
    CAS  PubMed  Google Scholar 

    Camadro EL (2012) Relevance of the genetic structure of natural populations, and sampling and classification approaches for conservation and use of wild crop relatives: potato as an example. Botany 90(11):1065–1072
    Google Scholar 

    Cara N, Marfil CF, Masuelli RW (2013) Epigenetic patterns newly established after interspecific hybridization in natural populations of Solanum. Ecol Evol 3:3764–3779
    PubMed  PubMed Central  Google Scholar 

    Castonguay E, Angers B (2012) The key role of epigenetics in the persistence of asexual lineages. Genet Res Int 2012:1–9
    Google Scholar 

    Coneva V, Chitwood DH (2018) Genetic and developmental basis for increased leaf thickness in the Arabidopsis cvi ecotype. Front Plant Sci 9:1–10.
    Google Scholar 

    Cooper HF, Grady KC, Cowan JA, Best RJ, Allan GJ, Whitham TG (2019) Genotypic variation in phenological plasticity: Reciprocal common gardens reveal adaptive responses to warmer springs but not to fall frost. Glob Change Biol 25:187–200
    Google Scholar 

    Correll D (1962) The potato and its wild relatives. Texas Research Foundation, Renner, TX

    Cortijo S, Wardenaar R, Colomé-Tatché M, Gilly A, Etcheverry M, Labadie K et al. (2014) Mapping the epigenetic basis of complex traits. Science 343:1145–1148
    CAS  PubMed  Google Scholar 

    Crisp PA, Ganguly D, Eichten SR, Borevitz JO, Pogson BJ (2016) Reconsidering plant memory: intersections between stress recovery, RNA turnover, and epigenetics. Sci Adv 2:1–14.
    Google Scholar 

    Cubas P, Vincent C, Coen E (1999) An epigenetic mutation responsible for natural variation in floral symmetry. Nature 401:157–161
    CAS  PubMed  Google Scholar 

    Donelson JM, Salinas S, Munday PL, Shama LN (2017) Transgenerational plasticity and climate change experiments: Where do we go from here? Glob Change Biol 24:13–34
    Google Scholar 

    Dubin MJ, Zhang P, Meng D, Remigereau M-S, Osborne EJ, Casale FP et al. (2015) DNA methylation in Arabidopsis has a genetic basis and shows evidence of local adaptation. Elife 4:e05255
    PubMed  PubMed Central  Google Scholar 

    Erazzú LE, Camadro EL, Clausen AM (2009) Persistence over time, overlapping distribution and molecular indications of interspecific hybridization in wild potato populations of Northwest Argentina. Euphytica 168:249–262
    Google Scholar 

    FAO UN (2018) FAOstat. http://www.fao.org/faostat/en/#data/QC. Accessed 29 Dec 2018.

    Fulneček J, Kovařík A (2014) How to interpret methylation sensitive amplified polymorphism (MSAP) profiles? BMC Genet 15:1–9
    Google Scholar 

    Gao L, Geng Y, Li B, Chen J, Yang J (2010) Genome-wide DNA methylation alterations of Alternanthera philoxeroides in natural and manipulated habitats: Implications for epigenetic regulation of rapid responses to environmental fluctuation and phenotypic variation. Plant Cell Environ 33:1820–1827
    CAS  PubMed  Google Scholar 

    Garnier E, Laurent G, Bellmann A, Debain S, Berthelier P, Ducout B, Roumet C, Navas ML (2001) Consistency of species ranking based on functional leaf traits. N Phytologist 152:69–83
    Google Scholar 

    Godoy O, Valladares F, Castro‐Díez P (2012) The relative importance for plant invasiveness of trait means, and their plasticity and integration in a multivariate framework. N Phytologist 195:912–922
    Google Scholar 

    González APR, Preite V, Verhoeven KJF, Latzel V (2018) Transgenerational effects and epigenetic memory in the clonal plant Trifolium repens. Front Plant Sci 9:1–11
    Google Scholar 

    Hawkes JG (1954) The ecology of wild potato species and its bearing on the origin of potato cultivation. J d’Agriculture Traditionnelle et de Botanique Appliquée 1:356–358
    Google Scholar 

    Hawkes JG, Hjerting JP (1969) The potatoes of Argentina, Brazil, Paraguay and Uruguay. A biosystematic study. Clarendon Press, Oxford, UK
    Google Scholar 

    Herrera CM, Bazaga P (2011) Untangling individual variation in natural populations: ecological, genetic and epigenetic correlates of long-term inequality in herbivory. Mol Ecol 20:1675–1688
    CAS  PubMed  Google Scholar 

    Hijmans RJ, Spooner DM, Salas AR, Guarino L, de la Cruz J (2002) Atlas of wild potatoes. International Plant Genetic Resources Institute, Rome

    Hiatt D, Flory SL (2020) Populations of a widespread invader and co‐occurring native species vary in phenotypic plasticity. N Phytologist 225:584–594
    CAS  Google Scholar 

    Ibañez VN, Berli FJ, Masuelli RW, Bottini RA, Marfil CF (2017) Influence of altitude and enhanced ultraviolet-B radiation on tuber production, seed viability, leaf pigments and morphology in the wild potato species Solanum kurtzianum Bitter and Wittm collected from an elevational gradient. Plant Sci 261:60–68
    PubMed  Google Scholar 

    IPCC (2014) Climate Change 2014: Synthesis report. Contribution of Working Groups I, II and III to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change, In: Core Writing Team, RK Pachauri, LA Meyer (eds). IPCC, Geneva, Switzerland, p 151

    Jansky SH, Simon R, Spooner DM (2006) A test of taxonomic predictivity: resistance to white mold in wild relatives of cultivated potato. Crop Sci 46:2561–2570
    Google Scholar 

    Jansky SH, Simon R, Spooner DM (2009) A test of taxonomic predictivity: resistance to the colorado potato beetle in wild relatives of cultivated potato. J Economic Entomol 102:422–431
    CAS  Google Scholar 

    Kassambara A, Mundt F (2017) Factoextra: extract and visualize the results of multivariate data analyses. R package version 1.0.5.

    Kelly M (2019) Adaptation to climate change through genetic accommodation and assimilation of plastic phenotypes. Philos Trans R Soc B 374:20180176
    Google Scholar 

    Kooke R, Johannes F, Wardenaar R, Becker F, Etcheverry M, Colot, Vreugdenhil D, Keurentjes JJB (2015) Epigenetic basis of morphological variation and phenotypic plasticity in Arabidopsis thaliana. Plant Cell 27:337–348
    CAS  PubMed  PubMed Central  Google Scholar 

    Latzel V, Allan E, Bortolini Silveira A, Colot V, Fischer M, Bossdorf O (2013) Epigenetic diversity increases the productivity and stability of plant populations. Nat Commun 4:1–7
    Google Scholar 

    Le S, Julie J, Husson F (2008) FactoMineR: an R package for multivariate analysis. J Stat Softw 25:1–18
    Google Scholar 

    Lira-Madeiros CF, Parisod C, Fernandes RA, Mata CS, Cardoso MA, Ferreira PCG (2010) Epigenetic variation in mangrove plants occurring in contrasting natural environment. PLoS ONE 5:1–8
    Google Scholar 

    Marfil CF, Camadro EL, Masuelli RW (2009) Phenotypic instability and epigenetic variability in a diploid potato of hybrid origin, Solanum ruiz-lealii. BMC Plant Biol 9:1–16.
    Google Scholar 

    Marfil CF, Asurmendi S, Masuelli RW (2012) Changes in micro RNA expression in a wild tuber-bearing Solanum species induced by 5-Azacytidine treatment. Plant Cell Rep 31:1449–1461
    CAS  PubMed  Google Scholar 

    Marfil CF, Masuelli RW (2014) Reproductive ecology and genetic variability in natural populations of the wild potato, Solanum kurtzianum. Plant Biol 16:485–494
    CAS  PubMed  Google Scholar 

    Marfil CF, Hidalgo V, Masuelli RW (2015) In situ conservation of wild potato germplasm in Argentina: example and possibilities. Glob Ecol Conserv 3:461–476
    Google Scholar 

    Marfil CF, Duarte P, Masuelli RW (2018) Phenotypic and epigenetic variation induced in newly synthesized allopolyploids and autopolyploids of potato. Scientia Horticulturae 234:101–109
    Google Scholar 

    Masuelli RW, Camadro EL, Erazzú LE, Bedogni MC, Marfil CF (2009) Homoploid hybridization in the origin and evolution of wild diploid potato species. Plant Syst Evol 277:143–151
    Google Scholar 

    McGregor CE, van Treuren R, Hoekstra R, van Hintum TJL (2002) Analysis of the wild potato germplasm of the series Acaulia with AFLPs: implications for ex situ conservation. TAG. Theor Appl Genet 104:146–156
    CAS  PubMed  Google Scholar 

    Medrano M, Herrera CM, Bazaga P (2014) Epigenetic variation predicts regional and local intraspecific functional diversity in a perennial herb. Mol Ecol 23:4926–4938
    CAS  PubMed  Google Scholar 

    Nicotra AB, Atkin OK, Bonser SP, Davidson AM, Finnegan EJ, Mathesius U, Poot P, Purugganan MD, Richards CL, Valladares F, van Kleunen M (2010) Plant phenotypic plasticity in a changing climate. Trends plant Sci 15:684–692
    CAS  PubMed  Google Scholar 

    Nicotra AB, Segal DL, Hoyle GL, Schrey AW, Verhoeven KJF, Richards CL (2015) Adaptive plasticity and epigenetic variation in response to warming in an Alpine plant. Ecol Evolution 5:634–647
    Google Scholar 

    O’Dea RE, Noble DW, Johnson SL, Hesselson D, Nakagawa S (2016) The role of non-genetic inheritance in evolutionary rescue: epigenetic buffering, heritable bet hedging and epigenetic traps. Environ Epigenetics 2:1–12.
    Google Scholar 

    Oksanen J,(2015) Multivariate analysis of ecological communities in R: vegan tutorial. R Documentation. 1:11–12

    Peppe DJ, Royer DL, Cariglino B, Oliver SY, Newman S, Leight E et al. (2011) Sensitivity of leaf size and shape to climate: global patterns and paleoclimatic applications. N Phytologist 190:724–739
    Google Scholar 

    Pimpinelli S, Piacentini L (2019) Environmental change and the evolution of genomes: Transposable elements as translators of phenotypic plasticity into genotypic variability. Funct Ecol 00:1–14
    Google Scholar 

    Preite V, Snoek LB, Oplaat C, Biere A, Van Der Putten WH, Verhoeven KJF (2015) The epigenetic footprint of poleward range-expanding plants in apomictic dandelions. Mol Ecol 24:4406–4418
    CAS  PubMed  Google Scholar 

    R Core Team (2018) R: a language and environment for statistical computing. R Foundation for Statistical Computing, Vienna, Austria

    Richards CL, Alonso C, Becker C, Bossdorf O, Bucher E, Colomé-Tatché M et al. (2017) Ecological plant epigenetics: Evidence from model and non-model species, and the way forward. Ecol Lett 20:1576–1590
    PubMed  Google Scholar 

    Richards EJ (2006) Inherited epigenetic variation revisiting soft inheritance. Nat Rev Genet 7:395–401
    CAS  PubMed  Google Scholar 

    Schulz B, Eckstein RL, Durka W (2013) Scoring and analysis of methylation‐sensitive amplification polymorphisms for epigenetic population studies. Mol Ecol Resour 13:642–653
    CAS  PubMed  Google Scholar 

    Schulz E, Tohge T, Zuther E, Fernie AR, Hincha DK (2015) Natural variation in flavonol and anthocyanin metabolism during cold acclimation in Arabidopsis thaliana accessions. Plant Cell Environ 38:1658–1672
    CAS  PubMed  Google Scholar 

    Sneath PHA, Sokal RR (1973) Numerical taxonomy. The principles and practice of numerical classification. WH Freeman and Company, San Francisco, USA
    Google Scholar 

    Spooner DM (2009) DNA barcoding will frequently fail in complicated groups: an example in wild potatoes. Am J Bot 96:1177–1189
    CAS  PubMed  Google Scholar 

    Spooner DM, Jansky SH, Simon R (2009) Tests of taxonomic and biogeographic predictivity: resistance to disease and insect pests in wild relatives of cultivated potato. Crop Sci 49:1367–1376
    Google Scholar 

    Tricker PJ, Gibbings JG, Rodríguez López CM, Hadley P, Wilkinson MJ (2012) Low relative humidity triggers RNA-directed de novo DNA methylation and suppression of genes controlling stomatal development. J Exp Bot 63:3799–3813
    CAS  PubMed  PubMed Central  Google Scholar 

    Valladares F, Sanchez-Gomez D, Zavala M (2006) Quantitative estimation of phenotypic plasticity: bridging the gap between the evolutionary concept and its ecological applications. J Ecol 94:1103–1116
    Google Scholar 

    Verhoeven KJF, Jansen JJ, van Dijk PJ, Biere A (2010) Stress-induced DNA methylation changes and their heritability in asexual dandelions. N Phytologist 185:1108–1118
    CAS  Google Scholar 

    Verhoeven KJF, Preite V (2014) Epigenetic variation in asexually reproducing organisms. Evolution 68:644–655
    PubMed  Google Scholar 

    Verhoeven KJF, Von Holdt BM, Sork VL (2016) Epigenetics in ecology and evolution: what we know and what we need to know. Mol Ecol 25:1631–1638
    PubMed  Google Scholar 

    Wei N, Cronn R, Liston A, Ashman TL (2019) Functional trait divergence and trait plasticity confer polyploid advantage in heterogeneous environments. N Phytologist 221:2286–2297
    Google Scholar 

    Wright IJ, Dong N, Maire V, Prentice IC, Westoby M, Díaz S et al. (2017) Global climatic drivers of leaf size. Science 357:917–921
    CAS  PubMed  Google Scholar 

    Zhang YY, Fischer M, Colot V, Bossdorf O (2013) Epigenetic variation creates potential for evolution of plant phenotypic plasticity. N Phytologist 197:314–322
    CAS  Google Scholar  More

  • in

    Spatial patterns of microbial communities across surface waters of the Great Barrier Reef

    1.
    Hughes, T. P. et al. Coral reefs in the Anthropocene. Nature 546, 82–90 (2017).
    CAS  PubMed  Google Scholar 
    2.
    Hoegh-Guldberg, O. et al. Coral reefs under rapid climate change and ocean acidification. Science 318, 1737–1742 (2007).
    CAS  PubMed  Google Scholar 

    3.
    De’ath, G., Fabricius, K. E., Sweatman, H. & Puotinen, M. The 27-year decline of coral cover on the Great Barrier Reef and its causes. Proc. Natl Acad. Sci. USA 109, 17995–17999 (2012).
    PubMed  Google Scholar 

    4.
    Brodie, J., De’ath, G., Devlin, M., Furnas, M. & Wright, M. Spatial and temporal patterns of near-surface chlorophyll a in the Great Barrier Reef lagoon. Mar. Freshw. Res. 58, 342–353 (2007).
    CAS  Google Scholar 

    5.
    Schaffelke, B., Carleton, J., Skuza, M., Zagorskis, I. & Furnas, M. J. Water quality in the inshore Great Barrier Reef lagoon: implications for long-term monitoring and management. Mar. Pollut. Bull. 65, 249–260 (2012).
    CAS  PubMed  Google Scholar 

    6.
    Hughes, T. P. et al. Global warming and recurrent mass bleaching of corals. Nature 543, 373–377 (2017).
    CAS  PubMed  Google Scholar 

    7.
    Hughes, T. P. et al. Global warming impairs stock-recruitment dynamics of corals. Nature https://doi.org/10.1038/s41586-019-1081-y (2019).
    Article  PubMed  PubMed Central  Google Scholar 

    8.
    ARC Centre of Excellence for Coral Reef Studies. (ed Hugues, T. P.) (2020).

    9.
    Bourne, D. & Webster, N. in Coral Reef Microbial Communities (ed Rosenberg, E.) (Springer, 2013).

    10.
    Gast, G. J., Wiegman, S., Wieringa, E., Duyl, F. C. & Bak, R. P. M. Bacteria in coral reef water types: removal of cells, stimulation of growth and mineralization. Mar. Ecol. Prog. Ser. 167, 37–45 (1998).
    Google Scholar 

    11.
    Bourne, D. G., Morrow, K. M. & Webster, N. S. Insights into the coral microbiome: underpinning the health and resilience of Reef ecosystems. Annu. Rev. Microbiol. 70, 317–340 (2016).
    CAS  PubMed  Google Scholar 

    12.
    Dinsdale, E. A. et al. Microbial ecology of four coral atolls in the northern line islands. PLoS ONE https://doi.org/10.1371/journal.pone.0001584 (2008).

    13.
    Kwong, W. K., Del Campo, J., Mathur, V., Vermeij, M. J. A. & Keeling, P. J. A widespread coral-infecting apicomplexan with chlorophyll biosynthesis genes. Nature 568, 103–107 (2019).
    CAS  PubMed  Google Scholar 

    14.
    Ainsworth, T. D. & Gates, R. D. Corals’ microbial sentinels. Science 352, 1518–1519 (2016).
    CAS  PubMed  Google Scholar 

    15.
    Ziegler, M. et al. Coral microbial community dynamics in response to anthropogenic impacts near a major city in the central Red Sea. Mar. Pollut. Bull. https://doi.org/10.1016/j.marpolbul.2015.12.045 (2016).
    Article  PubMed  Google Scholar 

    16.
    Beatty, D. S. et al. Variable effects of local management on coral defenses against a thermally regulated bleaching pathogen. Sci. Adv. 5, eaay1048 (2019).

    17.
    Pearman, J. K. et al. Microbial planktonic communities in the Red Sea: high levels of spatial and temporal variability shaped by nutrient availability and turbulence. Sci. Rep. https://doi.org/10.1038/s41598-017-06928-z (2017).

    18.
    Weber, L. et al. Microbial signatures of protected and impacted Northern Caribbean reefs: changes from Cuba to the Florida Keys. Environ. Microbiol. https://doi.org/10.1111/1462-2920.14870 (2019).

    19.
    Vega Thurber, R. L. et al. Chronic nutrient enrichment increases prevalence and severity of coral disease and bleaching. Glob. Change Biol. 20, 544–554 (2014).
    Google Scholar 

    20.
    Bruce, T. et al. Abrolhos bank Reef health evaluated by means of water quality, microbial diversity, benthic cover, and fish biomass data. PLoS ONE 10.1371/journal.pone.0036687 (2012).

    21.
    Zaneveld, J. R. et al. Overfishing and nutrient pollution interact with temperature to disrupt coral reefs down to microbial scales. Nat. Commun. https://doi.org/10.1038/ncomms11833 (2016).

    22.
    Mumby, P. J. Phase shifts and the stability of macroalgal communities on Caribbean coral reefs. Coral Reefs 28, 761–773 (2009).
    Google Scholar 

    23.
    Kelly, L. W. et al. Black reefs: iron-induced phase shifts on coral reefs. ISME J. 6, 638–649 (2012).
    CAS  PubMed  Google Scholar 

    24.
    Haas, A. F. et al. Effects of coral Reef benthic primary producers on dissolved organic carbon and microbial activity. PLoS ONE https://doi.org/10.1371/journal.pone.0027973 (2011).

    25.
    Barott, K. L. & Rohwer, F. L. Unseen players shape benthic competition on coral reefs. Trends Microbiol. 20, 621–628 (2012).
    CAS  PubMed  Google Scholar 

    26.
    Haas, A. F. et al. Global microbialization of coral reefs. Nat. Microbiol. https://doi.org/10.1038/NMICROBIOL.2016.42 (2016).

    27.
    McDole, T. et al. Assessing coral reefs on a pacific-wide scale using the microbialization score. PLoS ONE https://doi.org/10.1371/journal.pone.0043233 (2012).

    28.
    Mumby, P. J. & Steneck, R. S. Paradigm lost: dynamic nutrients and missing detritus on coral reefs. Bioscience 68, 487–495 (2018).
    Google Scholar 

    29.
    Kelly, L. W. et al. Local genomic adaptation of coral reef-associated microbiomes to gradients of natural variability and anthropogenic stressors. Proc. Natl Acad. Sci. USA https://doi.org/10.1073/pnas.1403319111 (2014).

    30.
    Angly, F. E. et al. Marine microbial communities of the Great Barrier Reef lagoon are influenced by riverine floodwaters and seasonal weather events. PeerJ 4, e1511 (2016).
    PubMed  PubMed Central  Google Scholar 

    31.
    Alongi, D. M. et al. Phytoplankton, bacterioplankton and virioplankton structure and function across the southern Great Barrier Reef shelf. J. Mar. Syst. 142, 25–39 (2015).
    Google Scholar 

    32.
    Glasl, B. et al. Microbial indicators of environmental perturbations in coral reef ecosystems. Microbiome 7, 94 (2019).
    PubMed  PubMed Central  Google Scholar 

    33.
    Martiny, J. B. H. et al. Microbial biogeography: putting microorganisms on the map. Nat. Rev. Microbiol. 4, 102–112 (2006).
    CAS  PubMed  Google Scholar 

    34.
    MacNeil, M. A. et al. Water quality mediates resilience on the Great Barrier Reef. Nat. Ecol. Evol. 3, 620–627 (2019).
    PubMed  Google Scholar 

    35.
    Mellin, C. et al. Spatial resilience of the Great Barrier Reef under cumulative disturbance impacts. Glob. Change Biol. 25, 2431–2445 (2019).
    Google Scholar 

    36.
    Glasl, B., Bourne, D. G., Frade, P. R. & Webster, N. S. Establishing microbial baselines to identify indicators of coral reef health. Microbiol. Aust. https://doi.org/10.1071/MA18011 (2018).
    Article  Google Scholar 

    37.
    van Oppen, M. J. H. et al. Shifting paradigms in restoration of the world’s coral reefs. Glob. Change Biol. 23, 3437–3448 (2017).
    Google Scholar 

    38.
    Great Barrier Reef Marine Park Authority. Great Barrier Reef Outlook Report 2019. (Townsville, 2019).

    39.
    Emslie, M. Long-term Reef Monitoring Program – Annual Summary Report on coral reef condition for 2019 (Townsville, 2019).

    40.
    Epstein, H. E., Torda, G., Munday, P. L. & van Oppen, M. J. H. Parental and early life stage environments drive establishment of bacterial and dinoflagellate communities in a common coral. ISME J. 13, 1635–1638 (2019).
    CAS  PubMed  PubMed Central  Google Scholar 

    41.
    Brown, M. V. et al. Systematic, continental scale temporal monitoring of marine pelagic microbiota by the Australian Marine Microbial Biodiversity Initiative. Nat. Sci. Data https://doi.org/10.1038/sdata.2018.130 (2018).

    42.
    Wang, Z. et al. Microbial communities across nearshore to offshore coastal transects are primarily shaped by distance and temperature. Environ. Microbiol. https://doi.org/10.1111/1462-2920.14734 (2019).

    43.
    Mo, Y. Y. et al. Biogeographic patterns of abundant and rare bacterioplankton in three subtropical bays resulting from selective and neutral processes. ISME J. 12, 2198–2210 (2018).
    PubMed  PubMed Central  Google Scholar 

    44.
    Nelson, C. E., Alldredge, A. L., McCliment, E. A., Amaral-Zettler, L. A. & Carlson, C. A. Depleted dissolved organic carbon and distinct bacterial communities in the water column of a rapid-flushing coral reef ecosystem. ISME J. 5, 1374–1387 (2011).
    CAS  PubMed  PubMed Central  Google Scholar 

    45.
    Devlin, M. J. & Brodie, J. Terrestrial discharge into the Great Barrier Reef Lagoon: nutrient behavior in coastal waters. Mar. Pollut. Bull. 51, 9–22 (2005).
    CAS  PubMed  Google Scholar 

    46.
    Alongi, D. M. & McKinnon, A. D. The cycling and fate of terrestrially-derived sediments and nutrients in the coastal zone of the Great Barrier Reef shelf. Mar. Pollut. Bull. 51, 239–252 (2005).
    CAS  PubMed  Google Scholar 

    47.
    Hopley, D., Smithers, S. G. & Parnell, K. E. The Geomorphology of the Great Barrier Reef: Development, Diversity and Change (Cambridge University Press, 2007).

    48.
    Yeo, S. K., Huggett, M. J., Eiler, A. & Rappe, M. S. Coastal bacterioplankton community dynamics in response to a natural disturbance. PLoS ONE 8, e56207 (2013).
    CAS  PubMed  PubMed Central  Google Scholar 

    49.
    Furnas, M., Mitchell, A., Skuza, M. & Brodie, J. In the other 90%: phytoplankton responses to enhanced nutrient availability in the Great Barrier Reef Lagoon. Mar. Pollut. Bull. 51, 253–265 (2005).
    CAS  PubMed  Google Scholar 

    50.
    Brodie, J. E., Devlin, M., Haynes, D. & Waterhouse, J. Assessment of the eutrophication status of the Great Barrier Reef lagoon (Australia). Biogeochemistry 106, 281–302 (2010).
    Google Scholar 

    51.
    Morris, R. M. et al. SAR11 clade dominates ocean surface bacterioplankton communities. Nature 420, 806–810 (2002).
    CAS  PubMed  Google Scholar 

    52.
    Partensky, F., Hess, W. R. & Vaulot, D. Prochlorococcus, a marine photosynthetic prokaryote of global significance. Microbiol. Mol. Biol. Rev. 63, 106 (1999).
    CAS  PubMed  PubMed Central  Google Scholar 

    53.
    Scanlan, D. J. & West, N. J. Molecular ecology of the marine cyanobacterial genera Prochlorococcus and Synechococcus. FEMS Microbiol. Ecol. 40, 1–12 (2002).
    CAS  PubMed  Google Scholar 

    54.
    Jang, Y. et al. Genome sequence of strain IMCC3088, a Proteorhodopsin-containing marine bacterium belonging to the OM60/NOR5 clade. J. Bacteriol. 193, 3415–3416 (2011).
    CAS  PubMed  PubMed Central  Google Scholar 

    55.
    Yan, S. et al. Biogeography and phylogeny of the NOR5/OM60 clade of Gammaproteobacteria. Syst. Appl. Microbiol. 32, 124–139 (2009).
    CAS  PubMed  Google Scholar 

    56.
    Roder, C., Arif, C., Daniels, C., Weil, E. & Voolstra, C. R. Bacterial profiling of White Plague Disease across corals and oceans indicates a conserved and distinct disease microbiome. Mol. Ecol. 23, 965–974 (2014).
    PubMed  PubMed Central  Google Scholar 

    57.
    Lofmark, S., Jernberg, C., Jansson, J. K. & Edlund, C. Clindamycin-induced enrichment and long-term persistence of resistant Bacteroides spp. and resistance genes. J. Antimicrob. Chemother. 58, 1160–1167 (2006).
    PubMed  Google Scholar 

    58.
    Glasl, B. et al. Comparative genome-centric analysis reveals seasonal variation in the function of coral reef microbiomes. ISME J. https://doi.org/10.1038/s41396-020-0622-6 (2020).
    Article  PubMed  PubMed Central  Google Scholar 

    59.
    Baldini, J. I. et al. in The Prokaryotes (eds Rosenberg, E. et al.) 533–618 (Springer, 2014).

    60.
    Dupont, C. L. et al. Genomic insights to SAR86, an abundant and uncultivated marine bacterial lineage. ISME J. 6, 1186–1199 (2012).
    CAS  PubMed  Google Scholar 

    61.
    Zubkov, M. V., Fuchs, B. M., Tarran, G. A., Burkill, P. H. & Amann, R. High rate of uptake of organic nitrogen compounds by Prochlorococcus cyanobacteria as a key to their dominance in oligotrophic oceanic waters. Appl. Environ. Microbiol. 69, 1299–1304 (2003).
    CAS  PubMed  PubMed Central  Google Scholar 

    62.
    Martiny, J. B., Jones, S. E., Lennon, J. T. & Martiny, A. C. Microbiomes in light of traits: a phylogenetic perspective. Science 350, aac9323 (2015).
    PubMed  Google Scholar 

    63.
    Martiny, A. C., Coleman, M. L. & Chisholm, S. W. Phosphate acquisition genes in Prochlorococcus ecotypes: evidence for genome-wide adaptation. Proc. Natl Acad. Sci. USA 103, 12552–12557 (2006).
    CAS  PubMed  Google Scholar 

    64.
    Chase, A. B. & Martiny, J. B. H. The importance of resolving biogeographic patterns of microbial microdiversity. Microbiol. Aust. 38, 2015–2205 (2018).
    Google Scholar 

    65.
    Nelson, C. E. et al. Coral and macroalgal exudates vary in neutral sugar composition and differentially enrich reef bacterioplankton lineages. ISME J. 7, 962–979 (2013).
    CAS  PubMed  PubMed Central  Google Scholar 

    66.
    Roach, T. N. F. et al. Microbial bioenergetics of coral-algal interactions. Peerj https://doi.org/10.7717/peerj.3423 (2017).

    67.
    McCliment, E. A. et al. An all-taxon microbial inventory of the Moorea coral reef ecosystem. ISME J. 6, 309–319 (2012).
    CAS  PubMed  Google Scholar 

    68.
    Steven, A. D. L. et al. eReefs: an operational information system for managing the Great Barrier Reef. J. Operational Oceanogr. 12, S12–S28 (2019).

    69.
    Venables, W. N. & Ripley, B. D. Modern Applied Statistics with S. (Springer, 2002).

    70.
    Sammut, C. & Webb, G. I. in Encyclopedia of Machine Learning (eds Claude Sammut & Geoffrey I. Webb) 600-601 (Springer US, 2010).

    71.
    Cohen, J. Weighted kappa: Nominal scale agreement with provision for scaled disagreement or partial credit. Psychological Bull. 70, 213–220 (1968).
    CAS  Google Scholar 

    72.
    Bates, D., Mächler, M., Bolker, B. M. & Walker, S. C. Fitting linear mixed-effects models using lme4. J. Stat. Softw. https://doi.org/10.18637/jss.v067.i01 (2015).

    73.
    Kuznetsova, A., Brockhoff, P. B. & Christensen, R. H. B. lmerTest Package: Tests in Linear Mixed Effects Models. J. Stat. Softw. 82, 1–26 (2017).
    Google Scholar 

    74.
    Chen, H. & Boutros, P. C. VennDiagram: a package for the generation of highly-customizable Venn and Euler diagrams in R. BMC Bioinforma. 12, 35 (2011).
    Google Scholar 

    75.
    Oksanen, J. et al. vegan: community ecology package. R package version 2.4-6. (2018).

    76.
    Tang, Y., Horikoshi, M. & Li, W. ggfortify: unified interface to visualize statistical result of popular R packages. The R Journal 8 (2016).

    77.
    De Caceres, M., Legendre, P. & Moretti, M. Improving indicator species analysis by combining groups of sites. Oikos 119, 1674–1684 (2010).
    Google Scholar 

    78.
    De Caceres, M. & Legendre, P. Associations between species and groups of sites: indices and statistical inference. Ecology 90, 3566–3574 (2009).
    PubMed  Google Scholar 

    79.
    Glasl, B., Herndl, G. J. & Frade, P. R. The microbiome of coral surface mucus has a key role in mediating holobiont health and survival upon disturbance. ISME J. 10, 2280–2292 (2016).
    CAS  PubMed  PubMed Central  Google Scholar 

    80.
    R: A language and environment for statistical computing (R Foundation for Statistical Computing, Vienna, Austria, 2015).

    81.
    McMurdie, P. J. & Holmes, S. phyloseq: An R Package for Reproducible Interactive Analysis and Graphics of Microbiome Census Data. PLoS ONE https://doi.org/10.1371/journal.pone.0061217 (2013).

    82.
    Wickham, H. ggplot2: Elegant Graphics for Data Analysis. (Springer-Verlag, 2009).

    83.
    Matthews, S. A., Mellin, C. & Frade, P. R. An adapted R script to extract environmental data from eReefs, https://github.com/sammatthews990/eReefs_Fradeetal2019 (2019). More

  • in

    Life histories determine divergent population trends for fishes under climate warming

    Compilation of population life-history data
    We compiled population-specific life-history data for Indo-Pacific fishes from primary literature using a combination of systematic and opportunistic searches. We obtained references primarily from Google Scholar and the web page of Fisheries and Oceans Canada (DFO, http://www.isdm-gdsi.gc.ca/csas-sccs/applications/publications/index-eng.asp), using a combination of species name and the following keywords: Pacific, temperature effects, von Bertalanffy growth, age at maturation, or natural mortality. Species names for 107 common teleosts in the Indo-Pacific Ocean were obtained from the global-capture production database of the Food and Agricultural Organization (FAO, ISSCAAP groups 31-37; available at: http://www.fao.org/fishery/statistics/global-capture-production/query/en). Although similar data are available in FishBase, a global and freely available database on fish, we opted not to use data from FishBase because temperature data associated with population records are often missing and difficult to restore due to lacking spatial coordinates in FishBase.
    In total, we screened around 8000 references published in 1958–2017. We extracted data from 440 references representing peer-reviewed journal papers, stock assessment reports, governmental documents, graduate theses, and conference proceedings. Our data include 332 species, with conspecific life-history data of ≥2 records in 206 species.
    We extracted available population data of seven life-history traits related to growth and maturation for each population: i.e., the von Bertalanffy growth coefficient K (yr-1) and asymptotic length L∞ (cm), age and length at 50% maturity (A50 (yrs) and L50 (cm)), allometric exponent (b) of length–weight relationship (W = aL^b), lifespan (Amax (yrs)), and natural mortality (yr-1). To make the length traits (L∞ and L50) comparable among populations, we standardized different length measures (e.g., standard length or fork length) into total length using available regression models (Supplementary Table 7). To account for between-sex differences in traits values, we coded life-history data of each population as sex-specific or combined-sexes. When data of single- and combined-sexes were both available, we primarily used combined-sexes data for our analysis. When only sex-specific data were available, we used female data.
    In our selected references, the von Bertalanffy growth coefficients are primarily estimated via fitting length-at-age data (Lt, where L is length and t is age) with one of these methods: the Ford–Walford method, length-based method, and nonlinear regression fitting. As all these fitting methods involve the same model form (L_t = L_infty left( {1 – e^{ – Kleft( {t – t_0} right)}} right)) and similar optimization processes (e.g., minimizing residual errors), we consider that the growth coefficients estimated with these methods are generally comparable. However, we excluded the growth coefficient data derived from other model forms, as transforming those coefficients could introduce biases (e.g., Gompertz model or weight-based form of von Bertalanffy model). The population natural mortality data were derived from various models with distinct assumptions (Supplementary Table 8); thus, these natural mortality estimates may not be comparable. To investigate the temperature effects on natural mortality, we re-estimated natural mortality estimates for individual populations using a life-history invariant method (see Methods: Derivation of M).
    We recorded additional descriptive variables for each population: e.g., ecological group (coded based on habitat types following definitions in FishBase, Supplementary Table 5), family, species, latitude, and longitude of sampling site (in decimal degrees; for the studies with multiple sampling sites, the minimum and maximum of latitudes and longitudes of sampling sites are recorded), minimum and maximum sampling depths, and sample size. Latitudes and longitudes of sampling sites were derived from available spatial coordinates, names of sampling ports, or the maps in the references.
    Some references were excluded to avoid ambiguity. For example, we excluded references of fish in estuary and artificial habitats (e.g., aquaculture species). To alleviate noise in the datasets, we rejected data lacking clear descriptions of study area (e.g., studies that did not define sampling sites or those that aggregated samples across a very broad range) and those lacking explicit information on fitting procedures for the growth or maturation models (e.g., lacking information on sample size, suitable range of length-at-age data, independent samples, description of the fitting methods, a plot of data with the fitted line, or other means for assessing the fit). Similarly, we excluded studies without descriptions of fitting methods for estimating natural mortality (as suggested by 14). For stock assessment reports and review papers, we scrutinized the summarized data based on original publications and rejected data lacking clear sampling or fitting information. Lastly, we removed duplicated data cited in multiple reports.
    Compilation of population temperature data
    We used available in situ data of mean decadal sea temperature as habitat data. These temperature data were obtained from the World Ocean Atlas 2013 (NOAA Atlas NESDIS 73; 43; hereafter referred to as WOA13; available at: https://www.nodc.noaa.gov/cgi-bin/OC5/woa13). Sources of the WOA13 temperature data include temperature profiles measured by various instruments43. The mean decadal temperature profile was calculated by averaging six decadal datasets spanning 1955–201243. For our analysis, we used the mean decadal temperature profile data in the Indo-Pacific region, with a horizontal resolution of 0.25° and depth segments of 5 m from surface to 100 m and depth segments of 25−100 m for >100 m (maximum depth = 5500 m)43. As rates of temporal changes in the ocean temperature were slow (e.g., 1.48 °C per century; 25), we did not account for the small temperature changes due to differences in time of measurements between the temperature and life-history data.
    We matched the mean decadal temperature profile data with spatial coordinates for each of these populations. For populations with single sampling sites, we assumed that their potential habitats centered at the sampling sites and extended for 0.5° in the north, south, east, and west directions. Further, for populations with multiple sampling sites, we assumed that their habitats were bounded by the ranges of latitudes and longitudes of sampling sites. To account for habitat depths, we estimated the minimum and maximum depths of populations based on ranges of sampling depths or description of depths of species habitats in the references. When depth information was unavailable, we used the maximum depth of the species in FishBase as the maximum depth for a population. For each population, we derived two habitat variables: SST and BT. SST is the temperature at 0 m (WOA13 data; 43). BT is the temperature at the maximum depths of populations. Finally, we calculated the minimum, mean, maximum, and coefficients of variation of each of the habitat indices for each population.
    Derivation of natural mortality (M)
    Population-specific natural mortality (hereafter referred as M) provides insight into population sustainability under fishing or environmental changes (i.e., high natural mortality indicates high degree of sustainability13,15). However, because estimates of M from different models are not necessarily comparable, we re-estimated M for each population using the model II of Gislason et al.14, which builds on well-established empirical relationships44,45 and has some theoretical backing46,47. The equation is:

    $$ln left( M right) = 0.55 – 1.61ln left( L right) + 1.44ln left( {L_infty } right) + ln left( K right),$$
    (1)

    where M is natural mortality and L is the midpoint of length range (cm) of a population, respectively14. As the length range data were not available to us, we constrained L to be the length at age-at-50% maturity (A50) to estimate M, following the invariant relationship among mortality-at-age at maturation, L50, L∞ and K13,48. Further, because A50 data are available for fewer number of populations (n = 119, about 8.5% of total populations), we restored the missing values of A50 based on a theoretical linear relationship between population A50 and (frac{{L_{50}}}{{K times L_infty }})49. With the available data of A50, L50, L∞, and K for 70 populations, we fitted this linear relationship (F = 204.6, df = 1,68, R2 = 0.75, P  25 yr-1). Range of M’s for the remaining 1387 populations is 0.05–21.8 yr-1 (Supplementary Fig. 1). These Gislason M estimates were used in the subsequent regression and life-table modeling analysis.
    Evaluation of the relationships between temperature and life-history traits
    Because life-history variation is nested within phylogenetic levels, we used the linear mixed-effect model (LME) to explore the relationships between each life-history trait and each temperature index, simultaneously accounting for species- and family-related variance as random effects. We used the lme4 and lmetest packages in R (www.r-project.org50;) to construct these LME models. Given the eight different temperature indices (e.g., four descriptive metrics nested within two temperature variables), we constructed eight LME models for each life-history trait. For each model, a natural-log transformed life-history trait is the response variable, a species mean-centered habitat index is a single fixed-effect variable, and species and family are two random-effect variables. We considered four alternative model structures for random effects: i.e., with either family or species as random intercepts, and with either family or species as random intercepts and slopes.
    We evaluated strength of each of fixed- and random-effect variables using the likelihood ratio test51. Specifically, we estimated the log likelihood between a pair of full and alternative models (with one less fixed or random variables), deriving the test statistics (i.e., 2 times the difference between log likelihood of two models) and P value. If the two models were not different significantly (e.g., P  > 0.05), we selected the more parsimonious model. Otherwise, significant difference between these two models (e.g., P ≤ 0.05) indicates pronounced variation in the response variable due to the additional fixed or random effect in the full model. Furthermore, when neither family nor species accounts for significant variance in the response variable, we reduced the model to a simple linear regression with a habitat index as the sole fixed-effect predictor. We selected the best model structure to depict the relationship between each of the eight habitat indices and a life-history trait.
    We observed pronounced intra-specific variability in the empirical K and L∞ for some of our study species; e.g., ≥3-fold differences in these traits within some species. Because large variability in K and L∞ within a species may be partially due to that the estimation of these traits depends on one another, we conducted PCA with these two traits and evaluated the ratios of maximum-to-minimum scores of the first PC1 among species. We found 34 species with the absolute values of the ratios of PC1 scores ≥3, whereas 285 species had |ratios| 0 indicate positive warming effects on population growth rates). To derive (frac{{R_0}}{G}), we built an age-structured model (i.e., a life-table33;), incorporating functions for growth increment (in length and weight), maturity states, fecundity, and survivorship probability. The length-at-age data (Lt) were calculated using the von Bertalanffy growth model (Eq. (3)):

    $$L_t = L_infty left( {1 – e^{ – Kleft( {t – t_0} right)}} right),$$
    (3)

    where t denotes age, and L∞, K, and t0 are the von Bertalanffy growth coefficients. Weight-at-age data (Wt) were estimated using an allometric function of Lt (Eq. (4)):

    $$W_t = alpha L_t^beta.$$
    (4)

    Also, fecundity (mt) is an allometric function of Wt (Eq. (5)23:

    $$m_t = delta W_t^gamma.$$
    (5)

    Because of lacking data on the length-weight and fecundity-weight relationships for many populations, we assumed constant intercepts and slopes for Eqs. (4) and (5) (i.e., α = 0.02, β = 3, γ = 1.18, δ = 2930). However, L∞ and K data are available for most populations in our data (n = 1,387). As a result, we used these data to derive length-at-age for each population (assuming t0 = 0). Also, we used the model-derived A50 estimates (Supplementary Fig. 7) to account for maturity state for mt for each population (i.e., mt = 0 for t  More