1.
Nisbet, E. G. & Sleep, N. H. The habitat and nature of early life. Nature409, 1083–1091 (2001).
ADS CAS PubMed Google Scholar
2.
York, A. A new timeline of life’s early evolution. Nat. Rev. Microbiol.16, 582–583 (2018).
CAS PubMed Google Scholar
3.
Chattopadhyay, P. K., Roederer, M. & Bolton, D. L. A deadly dance: the choreography of host–pathogen interactions, as revealed by single-cell technologies. Nat. Commun.9, 4638 (2018).
ADS PubMed PubMed Central Google Scholar
4.
Davis, F. P., Barkan, D. T., Eswar, N., McKerrow, J. H. & Sali, A. Host-pathogen protein interactions predicted by comparative modeling. Protein Sci.16, 2585–2596 (2007).
CAS PubMed PubMed Central Google Scholar
5.
Böcker, U., Wubshet, S. G., Lindberg, D. & Afseth, N. K. Fourier-transform infrared spectroscopy for characterization of protein chain reductions in enzymatic reactions. Analyst142, 2812–2818 (2017).
ADS PubMed Google Scholar
6.
Bouhekka, A. & Bürgi, T. In situ ATR-IR spectroscopy study of adsorbed protein: Visible light denaturation of bovine serum albumin on TiO2. Appl. Surf. Sci.261, 369–374 (2012).
ADS CAS Google Scholar
7.
Cohen, P. The role of protein phosphorylation in human health and disease. Eur. J. Biochem.268, 5001–5010 (2001).
CAS PubMed Google Scholar
8.
Mavropoulos, E. et al. Adsorption and bioactivity studies of albumin onto hydroxyapatite surface. Colloids Surf. B Biointerfaces83, 1–9 (2011).
CAS PubMed Google Scholar
9.
Ribeiro, A. R. et al. Trojan-like internalization of anatase titanium dioxide nanoparticles by human osteoblast cells. Sci. Rep.6, 23615 (2016).
ADS CAS PubMed PubMed Central Google Scholar
10.
Rual, J.-F. et al. Towards a proteome-scale map of the human protein–protein interaction network. Nature437, 1173–1178 (2005).
ADS CAS PubMed Google Scholar
11.
Bernal, C., Rodríguez, K. & Martínez, R. Integrating enzyme immobilization and protein engineering: an alternative path for the development of novel and improved industrial biocatalysts. Biotechnol. Adv.36, 1470–1480 (2018).
CAS PubMed Google Scholar
12.
Choi, J.-M., Han, S.-S. & Kim, H.-S. Industrial applications of enzyme biocatalysis: current status and future aspects. Biotechnol. Adv.33, 1443–1454 (2015).
CAS PubMed Google Scholar
13.
Mateo, C., Palomo, J. M., Fernandez-Lorente, G., Guisan, J. M. & Fernandez-Lafuente, R. Improvement of enzyme activity, stability and selectivity via immobilization techniques. Enzyme Microb. Technol.40, 1451–1463 (2007).
CAS Google Scholar
14.
Estey, T., Kang, J., Schwendeman, S. P. & Carpenter, J. F. BSA degradation under acidic conditions: a model for protein instability during release from PLGA delivery systems. J. Pharm. Sci.95, 1626–1639 (2006).
CAS PubMed Google Scholar
15.
Huang, J. et al. Layer-by-layer assembled milk protein coated magnetic nanoparticle enabled oral drug delivery with high stability in stomach and enzyme-responsive release in small intestine. Biomaterials39, 105–113 (2015).
CAS PubMed Google Scholar
16.
Hwang, A. A., Lu, J., Tamanoi, F. & Zink, J. I. Functional nanovalves on protein-coated nanoparticles for in vitro and in vivo controlled drug delivery. Small11, 319–328 (2015).
CAS PubMed Google Scholar
17.
Cai, P., Huang, Q. & Walker, S. L. Deposition and survival of Escherichia coli O157:H7 on clay minerals in a parallel plate flow system. Environ. Sci. Technol.47, 1896–1903 (2013).
ADS CAS PubMed Google Scholar
18.
Cai, P., Lin, D., Peacock, C. L., Peng, W. & Huang, Q. EPS adsorption to goethite: molecular level adsorption mechanisms using 2D correlation spectroscopy. Chem. Geol.494, 127–135 (2018).
ADS CAS Google Scholar
19.
Donlan, R. M. Biofilms: microbial life on surfaces. Emerg. Infect. Dis.8, 881–890 (2002).
PubMed PubMed Central Google Scholar
20.
Hori, K. & Matsumoto, S. Bacterial adhesion: from mechanism to control. Biochem. Eng. J.48, 424–434 (2010).
CAS Google Scholar
21.
Liu, Z., Wang, H., Li, J., Hong, Z. & Xu, R. Adhesion of Escherichia coli and Bacillus subtilis to amorphous Fe and Al hydroxides and their effects on the surface charges of the hydroxides. J. Soils Sedim.15, 2293–2303 (2015).
CAS Google Scholar
22.
Lorite, G. S. et al. Surface physicochemical properties at the micro and nano length scales: role on bacterial adhesion and Xylella fastidiosa biofilm development. PLoS ONE8, e75247 (2013).
ADS CAS PubMed PubMed Central Google Scholar
23.
Mudunkotuwa, I. A. & Grassian, V. H. Biological and environmental media control oxide nanoparticle surface composition: the roles of biological components (proteins and amino acids), inorganic oxyanions and humic acid. Environ. Sci. Nano2, 429–439 (2015).
CAS Google Scholar
24.
Bowles, T. M., Acosta-Martínez, V., Calderón, F. & Jackson, L. E. Soil enzyme activities, microbial communities, and carbon and nitrogen availability in organic agroecosystems across an intensively-managed agricultural landscape. Soil Biol. Biochem.68, 252–262 (2014).
CAS Google Scholar
25.
Fatemi, F. R., Fernandez, I. J., Simon, K. S. & Dail, D. B. Nitrogen and phosphorus regulation of soil enzyme activities in acid forest soils. Soil Biol. Biochem.98, 171–179 (2016).
CAS Google Scholar
26.
Jian, S. et al. Soil extracellular enzyme activities, soil carbon and nitrogen storage under nitrogen fertilization: a meta-analysis. Soil Biol. Biochem.101, 32–43 (2016).
CAS Google Scholar
27.
Jarosch, K. A. et al. Characterisation of soil organic phosphorus in NaOH-EDTA extracts: a comparison of 31P NMR spectroscopy and enzyme addition assays. Soil Biol. Biochem.91, 298–309 (2015).
CAS Google Scholar
28.
Saha, B. et al. Microbial transformation of sulphur: an approach to combat the sulphur deficiencies in agricultural soils. In: Role of Rhizospheric Microbes in Soil 77–97 (Springer Singapore, 2018). https://doi.org/10.1007/978-981-13-0044-8_3
29.
Trivedi, P. et al. Microbial regulation of the soil carbon cycle: evidence from gene–enzyme relationships. ISME J.10, 2593–2604 (2016).
CAS PubMed PubMed Central Google Scholar
30.
Kallenbach, C. M., Frey, S. D. & Grandy, A. S. Direct evidence for microbial-derived soil organic matter formation and its ecophysiological controls. Nat. Commun.7, 13630 (2016).
ADS CAS PubMed PubMed Central Google Scholar
31.
Newcomb, C. J., Qafoku, N. P., Grate, J. W., Bailey, V. L. & De Yoreo, J. J. Developing a molecular picture of soil organic matter–mineral interactions by quantifying organo–mineral binding. Nat. Commun.8, 396 (2017).
ADS CAS PubMed PubMed Central Google Scholar
32.
Moon, J., Xia, K. & Williams, M. A. Consistent proteinaceous organic matter partitioning into mineral and organic soil fractions during pedogenesis in diverse ecosystems. Biogeochemistry1, 1–19. https://doi.org/10.1007/s10533-018-0523-1 (2018).
CAS Article Google Scholar
33.
Huang, Q., Liang, W. & Cai, P. Adsorption, desorption and activities of acid phosphatase on various colloidal particles from an Ultisol. Colloids Surf. B Biointerfaces45, 209–214 (2005).
CAS PubMed Google Scholar
34.
Nannipieri, P. et al. Soil enzymology: classical and molecular approaches. Biol. Fertil. Soils48, 743–762 (2012).
Google Scholar
35.
Tietjen, T. & Wetzel, G. Extracellular enzyme-clay mineral complexes: Enzyme adsorption, alteration of enzyme activity, and protection from photodegradation. Aquat. Ecol.37, 331–339 (2003).
CAS Google Scholar
36.
Vogler, E. A. Protein adsorption in three dimensions. Biomaterials33, 1201–1237 (2012).
CAS PubMed Google Scholar
37.
Nakanishi, K., Sakiyama, T. & Imamura, K. On the adsorption of proteins on solid surfaces, a common but very complicated phenomenon. J. Biosci. Bioeng.91, 233–244 (2001).
CAS PubMed Google Scholar
38.
Baker, M. J. et al. Using Fourier transform IR spectroscopy to analyze biological materials. Nat. Protoc.9, 1771–1791 (2014).
CAS PubMed PubMed Central Google Scholar
39.
Yang, H., Yang, S., Kong, J., Dong, A. & Yu, S. Obtaining information about protein secondary structures in aqueous solution using Fourier transform IR spectroscopy. Nat. Protoc.10, 382–396 (2015).
CAS PubMed Google Scholar
40.
Giacomelli, C. E., Avena, M. J. & De Pauli, C. P. Adsorption of Bovine Serum Albumin onto TiO2Particles. J. Colloid Interface Sci.188, 387–395 (1997).
ADS CAS Google Scholar
41.
Gilmanshin, R., Williams, S., Callender, R. H., Woodruff, W. H. & Dyer, R. B. Fast events in protein folding: relaxation dynamics of secondary and tertiary structure in native apomyoglobin. Proc. Natl. Acad. Sci. U. S. A.94, 3709–3713 (1997).
ADS CAS PubMed PubMed Central Google Scholar
42.
Lu, R. et al. Probing the secondary structure of bovine serum albumin during heat-induced denaturation using mid-infrared fiberoptic sensors. Analyst140, 765–770 (2015).
ADS CAS PubMed Google Scholar
43.
Militello, V. et al. Aggregation kinetics of bovine serum albumin studied by FTIR spectroscopy and light scattering. Biophys. Chem.107, 175–187 (2004).
CAS PubMed Google Scholar
44.
Schmidt, M. P. & Martínez, C. E. Kinetic and conformational insights of protein adsorption onto montmorillonite revealed using in situ ATR-FTIR/2D-COS. Langmuir32, 7719–7729 (2016).
CAS PubMed Google Scholar
45.
Vermonden, T., Giacomelli, C. E. & Norde, W. Reversibility of structural rearrangements in bovine serum albumin during homomolecular exchange from AgI particles. Langmuir https://doi.org/10.1021/la010162o (2002).
Article Google Scholar
46.
Liu, F. et al. Kinetics and mechanisms of protein adsorption and conformational change on hematite particles. Environ. Sci. Technol.53, 10157–10165 (2019).
ADS CAS PubMed Google Scholar
47.
He, X. M. & Carter, D. C. Atomic structure and chemistry of human serum albumin. Nature358, 209–215 (1992).
ADS CAS PubMed Google Scholar
48.
Chi, Z. et al. Investigation on the conformational changes of bovine serum albumin in a wide pH range from 2 to 12. Spectrosc. Lett.51, 279–286 (2018).
ADS CAS Google Scholar
49.
Güler, G., Vorob’ev, M. M., Vogel, V. & Mäntele, W. Proteolytically-induced changes of secondary structural protein conformation of bovine serum albumin monitored by Fourier transform infrared (FT-IR) and UV-circular dichroism spectroscopy. Spectrochim. Acta Part A Mol. Biomol. Spectrosc.161, 8–18 (2016).
50.
Zhang, Y.-Z., Dai, J., Xiang, X., Li, W.-W. & Liu, Y. Studies on the interaction between benzidine and bovine serum albumin by spectroscopic methods. Mol. Biol. Rep.37, 1541–1549 (2010).
CAS PubMed Google Scholar
51.
Kim, J. & Cremer, P. S. Elucidating changes in interfacial water structure upon protein adsorption. ChemPhysChem2, 543–546 (2001).
CAS PubMed Google Scholar
52.
Limo, M. J. et al. Interactions between metal oxides and biomolecules: from fundamental understanding to applications. Chem. Rev.118, 1 (2018).
ADS Google Scholar
53.
Lyklema, J. Proteins at solid—liquid interfaces A colloid-chemical review. Colloids Surf.10, 33–42 (1984).
CAS Google Scholar
54.
McClellan, S. J. & Franses, E. I. Adsorption of bovine serum albumin at solid/aqueous interfaces. Colloids Surf. A Physicochem. Eng. Asp.260, 265–275 (2005).
CAS Google Scholar
55.
Roach, P., Farrar, D., Perry C. C. Interpretation of protein adsorption: surface-induced conformational changes. (2005). https://doi.org/10.1021/JA042898O
56.
Rabe, M., Verdes, D. & Seeger, S. Understanding protein adsorption phenomena at solid surfaces. Adv. Colloid Interface Sci.162, 87–106 (2011).
CAS PubMed Google Scholar
57.
Sanfeld, A., Royer, C. & Steinchen, A. Thermodynamic, kinetic and conformational analysis of proteins diffusion–sorption on a solid surface. Adv. Colloid Interface Sci.222, 639–660 (2015).
CAS PubMed Google Scholar
58.
Topală, T., Bodoki, A., Oprean, L. & Oprean, R. Bovine serum albumin interactions with metal complexes. Clujul Med.87, 215 (2014).
PubMed PubMed Central Google Scholar
59.
Navrotsky, A., Mazeina, L. & Majzlan, J. Size-driven structural and thermodynamic complexity in iron oxides. Science (80-).319, 1635–1638 (2008).
ADS CAS Google Scholar
60.
Schwertmann, U. Iron oxides. in Encyclopedia of earth sciences series (2008). https://doi.org/10.1002/9783527613229.ch01
61.
Rufus, A., Sreeju, N. & Philip, D. Size tunable biosynthesis and luminescence quenching of nanostructured hematite (α-Fe2O3) for catalytic degradation of organic pollutants. J. Phys. Chem. Solids124, 221–234 (2019).
ADS CAS Google Scholar
62.
Sherman, D. M. & Randall, S. R. Surface complexation of arsenic(V) to iron(III) (hydr)oxides: structural mechanism from ab initio molecular geometries and EXAFS spectroscopy. Geochim. Cosmochim. Acta67, 4223–4230 (2003).
ADS CAS Google Scholar
63.
Fontes, M. P. F. & Weed, S. B. Phosphate adsorption by clays from Brazilian Oxisols: relationships with specific surface area and mineralogy. Geoderma72, 37–51 (1996).
ADS CAS Google Scholar
64.
Schaefer, C. E. G. R., Fabris, J. D. & Ker, J. C. Minerals in the clay fraction of Brazilian Latosols (Oxisols): a review. Clay Miner.43, 137–154 (2008).
ADS CAS Google Scholar
65.
Fink, J. R. et al. Adsorption and desorption of phosphorus in subtropical soils as affected by management system and mineralogy. Soil Tillage Res.155, 62–68 (2016).
Google Scholar
66.
Mazeina, L. & Navrotsky, A. Enthalpy of water adsorption and surface enthalpy of goethite (α-FeOOH) and hematite (α-Fe 2 O 3). Chem. Mater.19, 825–833 (2007).
CAS Google Scholar
67.
Kubiak-Ossowska, K., Tokarczyk, K., Jachimska, B. & Mulheran, P. A. Bovine serum albumin adsorption at a silica surface explored by simulation and experiment. J. Phys. Chem. B121, 3975–3986 (2017).
CAS PubMed Google Scholar
68.
Phan, H. T. M., Bartelt-Hunt, S., Rodenhausen, K. B., Schubert, M. & Bartz, J. C. Investigation of bovine serum albumin (BSA) attachment onto self-assembled monolayers (SAMs) using combinatorial quartz crystal microbalance with dissipation (QCM-d) and spectroscopic ellipsometry (SE). PLoS ONE10, e0141282 (2015).
PubMed PubMed Central Google Scholar
69.
Scarangella, A. et al. Adsorption properties of BSA and DsRed proteins deposited on thin SiO 2 layers: optically non-absorbing versus absorbing proteins. Nanotechnology29, 115101 (2018).
ADS CAS PubMed Google Scholar
70.
Lefèvre, G. In situ Fourier-transform infrared spectroscopy studies of inorganic ions adsorption on metal oxides and hydroxides. Adv. Colloid Interface Sci.107, 109–123 (2004).
PubMed Google Scholar
71.
Elzinga, E. J. & Sparks, D. L. Phosphate adsorption onto hematite: An in situ ATR-FTIR investigation of the effects of pH and loading level on the mode of phosphate surface complexation. J. Colloid Interface Sci.308, 53–70 (2007).
ADS CAS PubMed Google Scholar
72.
Wu, Y., Zhang, L., Jung, Y. M. & Ozaki, Y. Two-dimensional correlation spectroscopy in protein science, a summary for past 20 years. Spectrochim. Acta Part A Mol. Biomol. Spectrosc.189, 291–299 (2018).
73.
Tao, Y., Wu, Y. & Zhang, L. Advancements of two dimensional correlation spectroscopy in protein researches. Spectrochim. Acta Part A Mol. Biomol. Spectrosc.197, 185–193 (2018).
74.
Gomaa, A. I., Sedman, J. & Ismail, A. A. An investigation of the effect of microwave treatment on the structure and unfolding pathways of β-lactoglobulin using FTIR spectroscopy with the application of two-dimensional correlation spectroscopy (2D-COS). Vib. Spectrosc.65, 101–109 (2013).
CAS Google Scholar
75.
Zhou, J., Rao, X., Tian, J., Wang, J. & Liu, S. Two-Dimensional terahertz correlation spectroscopic study on the conformation change of protein induced by pH. in 2017 42nd International Conference on Infrared, Millimeter, and Terahertz Waves (IRMMW-THz) 1–2 (IEEE, 2017). https://doi.org/10.1109/IRMMW-THz.2017.8067155
76.
Sugimoto, T., Sakata, K. & Muramatsu, A. Formation mechanism of monodisperse pseudocubic α-Fe2O3 particles from condensed ferric hydroxide gel. J. Colloid Interface Sci.159, 372–382 (1993).
ADS CAS Google Scholar
77.
Elzinga, E. J. & Kretzschmar, R. In situ ATR-FTIR spectroscopic analysis of the co-adsorption of orthophosphate and Cd(II) onto hematite. Geochim. Cosmochim. Acta117, 53–64 (2013).
ADS CAS Google Scholar
78.
Brechbühl, Y., Christl, I., Elzinga, E. J. & Kretzschmar, R. Competitive sorption of carbonate and arsenic to hematite: combined ATR-FTIR and batch experiments. J. Colloid Interface Sci.377, 313–321 (2012).
ADS PubMed Google Scholar
79.
Jachimska, B. & Pajor, A. Physico-chemical characterization of bovine serum albumin in solution and as deposited on surfaces. Bioelectrochemistry87, 138–146 (2012).
CAS PubMed Google Scholar
80.
Barreto, M. S. C., Elzinga, E. J. & Alleoni, L. R. F. Hausmannite as potential As(V) filter. Macroscopic and spectroscopic study of As(V) adsorption and desorption by citric acid. Environ. Pollut.262, 114196 (2020).
81.
Barreto, M. S. C., Elzinga, E. J. & Alleoni, L. R. F. Attenuated total reflectance: Fourier transform infrared study of the effects of citrate on the adsorption of phosphate at the hematite surface. Soil Sci. Soc. Am. J.84, 57–67 (2020).
ADS CAS Google Scholar
82.
Kemmer, G. & Keller, S. Nonlinear least-squares data fitting in Excel spreadsheets. Nat. Protoc.5, 267–281 (2010).
CAS PubMed Google Scholar
83.
Fabian, H., Yu, Z., Wang, Y. & Naumann, D. Generalized 2D and time-resolved FTIR studies of protein unfolding events. J. Mol. Struct.974, 203–209 (2010).
ADS CAS Google Scholar
84.
Wang, Y. et al. Two-dimensional Fourier transform near-infrared spectroscopy study of heat denaturation of ovalbumin in aqueous solutions. J. Phys. Chem. B https://doi.org/10.1021/jp9816115 (1998).
Article Google Scholar
85.
Noda, I. Vibrational two-dimensional correlation spectroscopy (2DCOS) study of proteins. Spectrochim Acta Part A Mol. Biomol. Spectrosc.187, 119–129 (2017).
ADS CAS Google Scholar
86.
Noda, I. Generalized two-dimensional correlation spectroscopy. in Frontiers of Molecular Spectroscopy (2009). https://doi.org/10.1016/B978-0-444-53175-9.00013-1
87.
Zhang, J., Zhang, X., Zhang, F. & Yu, S. Solid-film sampling method for the determination of protein secondary structure by Fourier transform infrared spectroscopy. Anal. Bioanal. Chem.409, 4459–4465 (2017).
CAS PubMed Google Scholar
88.
Jeon, J. S., Raghavan, S. & Sperline, R. P. Quantitative analysis of albumin adsorption onto uncoated and poly(ether)urethane-coated ZnSe surfaces using the attenuated total reflection FTIR technique. Colloids Surf. A Physicochem. Eng. Asp.92, 255–265 (1994).
CAS Google Scholar
89.
Gao, X. & Chorover, J. Adsorption of sodium dodecyl sulfate (SDS) at ZnSe and α-Fe2O3 surfaces: combining infrared spectroscopy and batch uptake studies. J. Colloid Interface Sci.348, 167–176 (2010).
ADS CAS PubMed Google Scholar
90.
Givens, B. E., Xu, Z., Fiegel, J. & Grassian, V. H. Bovine serum albumin adsorption on SiO2 and TiO2 nanoparticle surfaces at circumneutral and acidic pH: A tale of two nano-bio surface interactions. J. Colloid Interface Sci.493, 334–341 (2017).
ADS CAS PubMed Google Scholar
91.
Márquez, A. et al. Bovine serum albumin adsorption on TiO2 colloids: the effect of particle agglomeration and surface composition. Langmuir33, 2551–2558 (2017).
PubMed Google Scholar
92.
Alkan, M., Demirbaş, Ö, Doğan, M. & Arslan, O. Surface properties of bovine serum albumin—adsorbed oxides: adsorption, adsorption kinetics and electrokinetic properties. Microporous Mesoporous Mater.96, 331–340 (2006).
CAS Google Scholar
93.
Fukuzaki, S., Urano, H. & Nagata, K. Adsorption of bovine serum albumin onto metal oxide surfaces. J. Ferment. Bioeng.81, 163–167 (1996).
CAS Google Scholar
94.
Song, L., Yang, K., Jiang, W., Du, P. & Xing, B. Adsorption of bovine serum albumin on nano and bulk oxide particles in deionized water. Colloids Surf. B Biointerfaces94, 341–346 (2012).
CAS PubMed Google Scholar
95.
Andersen, A. et al. Protein-mineral interactions: molecular dynamics simulations capture importance of variations in mineral surface composition and structure. Langmuir32, 6194–6209 (2016).
CAS PubMed Google Scholar
96.
Barral, S., Villa-García, M. A., Rendueles, M. & Díaz, M. Interactions between whey proteins and kaolinite surfaces. Acta Mater.56, 2784–2790 (2008).
CAS Google Scholar
97.
Duarte-Silva, R., Villa-García, M. A., Rendueles, M. & Díaz, M. Structural, textural and protein adsorption properties of kaolinite and surface modified kaolinite adsorbents. Appl. Clay Sci.90, 73–80 (2014).
CAS Google Scholar
98.
Scheufele, F. B. et al. Monolayer–multilayer adsorption phenomenological model: kinetics, equilibrium and thermodynamics. Chem. Eng. J.284, 1328–1341 (2016).
CAS Google Scholar
99.
Latour, R. A. The langmuir isotherm: a commonly applied but misleading approach for the analysis of protein adsorption behavior. J. Biomed. Mater. Res. Part A103, 949–958 (2015).
Google Scholar
100.
Coglitore, D., Janot, J.-M. & Balme, S. Protein at liquid solid interfaces: toward a new paradigm to change the approach to design hybrid protein/solid-state materials. Adv. Colloid Interface Sci.270, 278–292 (2019).
CAS PubMed Google Scholar
101.
Binazadeh, M., Zeng, H. & Unsworth, L. D. Effect of peptide secondary structure on adsorption and adsorbed film properties. Acta Biomater.9, 6403–6413 (2013).
CAS PubMed Google Scholar
102.
Chi, E. Y., Krishnan, S., Randolph, T. W. & Carpenter, J. F. Physical stability of proteins in aqueous solution: mechanism and driving forces in nonnative protein aggregation. Pharm. Res. https://doi.org/10.1023/A:1025771421906 (2003).
Article PubMed Google Scholar
103.
Noda, I. & Ozaki, Y. Principle of Two-Dimensional Correlation Spectroscopy. in Two-Dimensional Correlation Spectroscopy: Applications in Vibrational and Optical Spectroscopy 15–38 (John Wiley & Sons, Ltd, 2005). https://doi.org/10.1002/0470012404.ch2
104.
Meissner, J., Prause, A., Bharti, B. & Findenegg, G. H. Characterization of protein adsorption onto silica nanoparticles: influence of pH and ionic strength. Colloid Polym. Sci.293, 3381–3391 (2015).
CAS PubMed PubMed Central Google Scholar
105.
Barbosa, L. R. S. et al. The importance of protein-protein interactions on the pH-induced conformational changes of bovine serum albumin: a small-angle X-ray scattering study. Biophys. J.98, 147–157 (2010).
ADS CAS PubMed PubMed Central Google Scholar
106.
Wendorf, J. R., Radke, C. J. & Blanch, H. W. The role of electrolytes on protein adsorption at a hydrophilic solid–water interface. Colloids Surf. B Biointerfaces75, 100–106 (2010).
CAS PubMed Google Scholar
107.
Rowley, M. C., Grand, S. & Verrecchia, ÉP. Calcium-mediated stabilisation of soil organic carbon. Biogeochemistry137, 27–49 (2018).
CAS Google Scholar
108.
Simons, J.-W.F., Kosters, H. A., Visschers, R. W. & de Jongh, H. H. Role of calcium as trigger in thermal β-lactoglobulin aggregation. Arch. Biochem. Biophys.406, 143–152 (2002).
CAS PubMed Google Scholar
109.
Li, R., Wu, Z., Wangb, Y., Ding, L. & Wang, Y. Role of pH-induced structural change in protein aggregation in foam fractionation of bovine serum albumin. Biotechnol. Rep.9, 46–52 (2016).
Google Scholar
110.
Bolt, G. H. The surface chemistry of soils. Clays Clay Miner.33, 367–367 (1985).
ADS Google Scholar
111.
Eklouh-Molinier, C. et al. Investigating the relationship between changes in collagen fiber orientation during skin aging and collagen/water interactions by polarized-FTIR microimaging. Analyst140, 6260–6268 (2015).
ADS CAS PubMed Google Scholar
112.
Lin, S., Jiang, X., Wang, L., Li, G. & Guo, L. Adsorption orientation of horse heart cytochrome c on a bare gold electrode hampers its electron transfer. J. Phys. Chem. C116, 637–642 (2012).
CAS Google Scholar
113.
Lu, J. R., Su, T. J. & Thomas, R. K. Structural conformation of bovine serum albumin layers at the air-water interface studied by neutron reflection. J. Colloid Interface Sci.213, 426–437 (1999).
ADS CAS PubMed Google Scholar
114.
Chittur, K. K. FTIR/ATR for protein adsorption to biomaterial surfaces. Biomaterials19, 357–369 (1998).
CAS PubMed Google Scholar More