More stories

  • in

    No net insect abundance and diversity declines across US Long Term Ecological Research sites

    1.
    Price, P. W., Denno, R. F., Eubanks, M. D., Finke, D. L. & Kaplan, I. Insect Ecology: Behavior, Populations and Communities (Cambridge Univ. Press, 2011).
    2.
    Watanabe, M. E. Pollination worries rise as honey bees decline. Science 265, 1170–1170 (1994).
    CAS  PubMed  Google Scholar 

    3.
    Soroye, P., Newbold, T. & Kerr, J. Climate change contributes to widespread declines among bumble bees across continents. Science 367, 685–688 (2020).
    CAS  PubMed  Google Scholar 

    4.
    Mathiasson, M. E. & Rehan, S. M. Status changes in the wild bees of north-eastern North America over 125 years revealed through museum specimens. Insect Conserv. Divers. 12, 278–288 (2019).
    Google Scholar 

    5.
    Powney, G. D. Widespread losses of pollinating insects in Britain. Nat. Commun. 10, 1018 (2019).
    PubMed  PubMed Central  Google Scholar 

    6.
    Fox, R. The decline of moths in Great Britain: a review of possible causes. Insect Conserv. Divers. 6, 5–19 (2013).
    Google Scholar 

    7.
    Casey, L. M., Rebelo, H., Rotheray, E. & Goulson, D. Evidence for habitat and climatic specializations driving the long-term distribution trends of UK and Irish bumblebees. Divers. Distrib. 21, 864–875 (2015).
    Google Scholar 

    8.
    Hallmann, C. A. et al. More than 75 percent decline over 27 years in total flying insect biomass in protected areas. PLoS ONE 12, e0185809 (2017).
    PubMed  PubMed Central  Google Scholar 

    9.
    Leather, S. R. “Ecological armageddon”–more evidence for the drastic decline in insect numbers. Ann. Appl. Biol. 172, 1–3 (2018).
    Google Scholar 

    10.
    Habel, J. C., Samways, M. J. & Schmitt, T. Mitigating the precipitous decline of terrestrial European insects: Requirements for a new strategy. Biodivers. Conserv. 28, 1343–1360 (2019).
    Google Scholar 

    11.
    Sánchez-Bayo, F. & Wyckhuys, K. A. G. Worldwide decline of the entomofauna: a review of its drivers. Biol. Conserv. 232, 8–27 (2019).
    Google Scholar 

    12.
    Seibold, S. et al. Arthropod decline in grasslands and forests is associated with drivers at landscape level. Nature 574, 671–674 (2019).
    CAS  PubMed  Google Scholar 

    13.
    Salcido, D. M., Forister, M. L., Garcia Lopez, H. & Dyer, L. A. Loss of dominant caterpillar genera in a protected tropical forest. Sci. Rep. 10, 422 (2020).
    CAS  PubMed  PubMed Central  Google Scholar 

    14.
    Wagner, D. L. Insect declines in the Anthropocene. Annu. Rev. Entomol. 65, 457–480 (2020).
    CAS  PubMed  Google Scholar 

    15.
    Wesner, J. S. et al. Loss of potential aquatic–terrestrial subsidies along the Missouri River floodplain. Ecosystems 23, 111–123 (2020).
    Google Scholar 

    16.
    Wepprich, T., Adrion, J. R., Ries, L., Wiedmann, J. & Haddad, N. M. Butterfly abundance declines over 20 years of systematic monitoring in Ohio, USA. PLoS ONE 14, e0216270 (2019).
    CAS  PubMed  PubMed Central  Google Scholar 

    17.
    Welti, E. A. R., Roeder, K. A., de Beurs, K. M., Joern, A. & Kaspari, M. Nutrient dilution and climate cycles underlie declines in a dominant insect herbivore. Proc. Natl Acad. Sci. USA 117, 7271–7275 (2020).
    CAS  PubMed  Google Scholar 

    18.
    Montgomery, G. A. et al. Is the insect apocalypse upon us? How to find out. Biol. Conserv. 241, 108327 (2020).
    Google Scholar 

    19.
    Saunders, M. E., Janes, J. K. & O’Hanlon, J. C. Moving on from the insect apocalypse narrative: engaging with evidence-based insect conservation. Bioscience 70, 80–89 (2020).
    Google Scholar 

    20.
    Thomas, C. D., Jones, T. H. & Hartley, S. E. “Insectageddon”: a call for more robust data and rigorous analyses. Glob. Change Biol. 25, 1891–1892 (2019).
    Google Scholar 

    21.
    Outhwaite, C. L., Gregory, R. D., Chandler, R. E., Collen, B. & Isaac, N. J. B. Complex long-term biodiversity change among invertebrates, bryophytes and lichens. Nat. Ecol. Evol. 4, 384–392 (2020).
    PubMed  Google Scholar 

    22.
    Macgregor, C. J., Williams, J. H., Bell, J. R. & Thomas, C. D. Moth biomass increases and decreases over 50 years in Britain. Nat. Ecol. Evol. 3, 1645–1649 (2019).
    PubMed  Google Scholar 

    23.
    Gonzalez, A. et al. Estimating local biodiversity change: a critique of papers claiming no net loss of local diversity. Ecology 97, 1949–1960 (2016).
    PubMed  Google Scholar 

    24.
    Vellend, M. et al. Estimates of local biodiversity change over time stand up to scrutiny. Ecology 98, 583–590 (2016).
    Google Scholar 

    25.
    van Klink, R. et al. Meta-analysis reveals declines in terrestrial but increases in freshwater insect abundances. Science 368, 417–420 (2020).
    CAS  PubMed  Google Scholar 

    26.
    Ellis, E. C. Anthropogenic transformation of the terrestrial biosphere. Phil. Trans. R. Soc. A 369, 1010–1035 (2011).
    PubMed  Google Scholar 

    27.
    Vitousek, P. M., Mooney, H. A., Lubchenco, J. & Melillo, J. M. Human domination of Earth’s ecosystems. Science 277, 494–499 (1997).
    CAS  Google Scholar 

    28.
    Kanakidou, M. et al. Past, present, and future atmospheric nitrogen deposition. J. Atmos. Sci. 73, 2039–2047 (2016).
    Google Scholar 

    29.
    Dornelas, M. et al. A balance of winners and losers in the Anthropocene. Ecol. Lett. 22, 847–854 (2019).
    PubMed  Google Scholar 

    30.
    Tylianakis, J. M., Tscharntke, T. & Lewis, O. T. Habitat modification alters the structure of tropical host–parasitoid food webs. Nature 445, 202–205 (2007).
    CAS  PubMed  Google Scholar 

    31.
    Finke, D. L. & Snyder, W. E. Niche partitioning increases resource exploitation by diverse communities. Science 321, 1488–1490 (2008).
    CAS  PubMed  Google Scholar 

    32.
    Crowder, D. W., Northfield, T. D., Strand, M. R. & Snyder, W. E. Organic agriculture promotes evenness and natural pest control. Nature 466, 109–112 (2010).
    CAS  PubMed  Google Scholar 

    33.
    Mack, R. N. et al. Biotic invasions: causes, epidemiology, global consequences, and control. Ecol. Appl. 10, 689–710 (2000).
    Google Scholar 

    34.
    Sikes, D. S. & Raithel, C. J. A review of hypotheses of decline of the endangered American burying beetle (Silphidae: Nicrophorus americanus Olivier). J. Insect Conserv. 6, 103–113 (2002).
    Google Scholar 

    35.
    Harmon, J. P., Stephens, E. & Losey, J. The decline of native coccinellids (Coleoptera: Coccinellidae) in the United States and Canada. J. Insect Conserv. 11, 85–94 (2007).
    Google Scholar 

    36.
    Agrawal, A. A. & Inamine, H. Mechanisms behind the monarch’s decline. Science 360, 1294–1296 (2018).
    CAS  PubMed  Google Scholar 

    37.
    Garibaldi, L. A. et al. Wild pollinators enhance fruit set of crops regardless of honey bee abundance. Science 340, 1608–1611 (2013).
    Google Scholar 

    38.
    Samson, F. & Knopf, F. Prairie conservation in North America. Bioscience 44, 418–421 (1994).
    Google Scholar 

    39.
    Ratajczak, Z. et al. Abrupt change in ecological systems: inference and diagnosis. Trends Ecol. Evol. 33, 513–526 (2018).
    PubMed  Google Scholar 

    40.
    Ives, A. R., Einarsson, Á., Jansen, V. A. A. & Gardarsson, A. High-amplitude fluctuations and alternative dynamical states of midges in Lake Myvatn. Nature 452, 84–87 (2008).
    CAS  PubMed  Google Scholar 

    41.
    Spatiotemporal Design (NEON, National Science Foundation – National Ecological Observatory Network, 2019); https://www.neonscience.org/about/about/spatiotemporal-design

    42.
    North American Butterfly Count Circles (NABA, North American Butterfly Association, 2019); https://www.naba.org/butter_counts.html

    43.
    Burkle, L. A., Marlin, J. C. & Knight, T. M. Plant–pollinator interactions over 120 years: loss of species, co-occurrence, and function. Science 340, 1611–1615 (2013).
    Google Scholar 

    44.
    Harvey, J. A. et al. International scientists formulate a roadmap for insect conservation and recovery. Nat. Ecol. Evol. 4, 174–176 (2020).
    PubMed  Google Scholar 

    45.
    Cardinale, B. J. et al. Biodiversity loss and its impact on humanity. Nature 486, 59–67 (2012).
    CAS  PubMed  Google Scholar 

    46.
    Vellend, M. et al. Global meta-analysis reveals no net change in local-scale plant biodiversity over time. Proc. Natl Acad. Sci. USA 110, 19456–19459 (2013).
    CAS  PubMed  Google Scholar 

    47.
    Dornelas, M. et al. Assemblage time series reveal biodiversity change but not systematic loss. Science 344, 296–299 (2014).
    CAS  Google Scholar 

    48.
    Newbold, T. et al. Global effects of land use on local terrestrial biodiversity. Nature 520, 45–50 (2015).
    CAS  PubMed  Google Scholar 

    49.
    Lagos-Kutz, D. et al. The soybean aphid suction trap network: sampling the aerobiological “soup”. Am. Entomol. 66, 48–55 (2020).
    Google Scholar 

    50.
    R Core Team R: A Language and Environment for Statistical Computing (R Foundation for Statistical Computing, 2019).

    51.
    De Graaf, R. M., Tilghman, N. G. & Anderson, S. H. Foraging guilds of North American birds. Environ. Manag. 9, 493–536 (1985).
    Google Scholar 

    52.
    Ives, A. R., Abbott, K. C. & Ziebarth, N. L. Analysis of ecological time series with ARMA(p, q) models. Ecology 91, 858–871 (2010).
    PubMed  Google Scholar 

    53.
    Breiman, L. Random forests. Mach. Learn. 45, 5–32 (2001).
    Google Scholar 

    54.
    Fick, S. E. & Hijmans, R. J. WorldClim 2: new 1-km spatial resolution climate surfaces for global land areas. Int. J. Climatol. 37, 4302–4315 (2017).
    Google Scholar 

    55.
    Venter, O. et al. Global terrestrial human footprint maps for 1993 and 2009. Sci. Data 3, 160067 (2016).
    PubMed  PubMed Central  Google Scholar 

    56.
    Halpern, B. S. et al. A global map of human impact on marine ecosystems. Science 319, 948–952 (2008).
    CAS  PubMed  Google Scholar 

    57.
    Cutler, D. R. et al. Random forests for classification in ecology. Ecology 88, 2783–2792 (2007).
    PubMed  Google Scholar 

    58.
    Oksanen, J. et al. vegan: Community Ecology Package. R package version 2.5-4 (2019).

    59.
    Jaccard, P. The distribution of the flora in the alpine zone. N. Phytol. 11, 37–50 (1912).
    Google Scholar 

    60.
    Harrison, S., Ross, S. J. & Lawton, J. H. Beta diversity on geographic gradients in Britain. J. Anim. Ecol. 61, 151–158 (1992).
    Google Scholar 

    61.
    Barwell, L. J., Isaac, N. J. B. & Kunin, W. E. Measuring β-diversity with species abundance data. J. Anim. Ecol. 84, 1112–1122 (2015).
    PubMed  PubMed Central  Google Scholar 

    62.
    Koleff, P., Gaston, K. J. & Lennon, J. J. Measuring beta diversity for presence–absence data. J. Anim. Ecol. 72, 367–382 (2003).
    Google Scholar  More

  • in

    Net benefits to US soy and maize yields from intensifying hourly rainfall

    1.
    Schlenker, W. & Roberts, M. J. Nonlinear temperature effects indicate severe damages to U.S. crop yields under climate change. Proc. Natl Acad. Sci. USA 106, 15594–15598 (2009).
    CAS  Article  Google Scholar 
    2.
    Vogel, E. et al. The effects of climate extremes on global agricultural yields. Environ. Res. Lett. 14, 054010 (2019).
    Article  Google Scholar 

    3.
    Lesk, C., Rowhani, P. & Ramankutty, N. Influence of extreme weather disasters on global crop production. Nature 529, 84–87 (2016).
    CAS  Article  Google Scholar 

    4.
    Troy, T. J., Kipgen, C. & Pal, I. The impact of climate extremes and irrigation on US crop yields. Environ. Res. Lett. 10, 054013 (2015).
    Article  Google Scholar 

    5.
    Lobell, D. B. et al. The critical role of extreme heat for maize production in the United States. Nat. Clim. Change 3, 497–501 (2013).
    Article  Google Scholar 

    6.
    van der Velde, M., Wriedt, G. & Bouraoui, F. Estimating irrigation use and effects on maize yield during the 2003 heatwave in France. Agric. Ecosyst. Environ. 135, 90–97 (2010).
    Article  Google Scholar 

    7.
    Rosenzweig, C., Tubiello, F. N., Goldberg, R., Mills, E. & Bloomfield, J. Increased crop damage in the US from excess precipitation under climate change. Glob. Environ. Change 12, 197–202 (2002).
    Article  Google Scholar 

    8.
    O’Gorman, P. & Schneider, T. The physical basis for increases in precipitation extremes in simulations of 21st-century climate change. Proc. Natl Acad. Sci. USA 106, 14773–14777 (2009).
    Article  Google Scholar 

    9.
    Westra, S. et al. Future changes to the intensity and frequency of short-duration extreme rainfall. Rev. Geophys. 52, 522–555 (2014).
    Article  Google Scholar 

    10.
    Zhu, X. & Troy, T. J. Agriculturally relevant climate extremes and their trends in the world’s major growing regions. Earth’s Future 6, 656–672 (2018).
    Article  Google Scholar 

    11.
    Ray, D. K., Gerber, J. S., Macdonald, G. K. & West, P. C. Climate variation explains a third of global crop yield variability. Nat. Commun. 6, 5989 (2015).
    CAS  Article  Google Scholar 

    12.
    Lobell, D. B. & Field, C. B. Global scale climate–crop yield relationships and the impacts of recent warming. Environ. Res. Lett. 2, 014002 (2007).
    Article  Google Scholar 

    13.
    Urban, D. W., Roberts, M. J., Schlenker, W. & Lobell, D. B. The effects of extremely wet planting conditions on maize and soybean yields. Clim. Change 130, 247–260 (2015).
    CAS  Article  Google Scholar 

    14.
    Li, Y., Guan, K., Schnitkey, G. D., Delucia, E. & Peng, B. Excessive rainfall leads to maize yield loss of a comparable magnitude to extreme drought in the United States. Glob. Change Biol. 25, 2325–2337 (2019).
    Google Scholar 

    15.
    Lobell, D. B. & Burke, M. B. Why are agricultural impacts of climate change so uncertain? The importance of temperature relative to precipitation. Environ. Res. Lett. 3, 034007 (2008).
    Article  Google Scholar 

    16.
    Lobell, D. B. & Gourdji, S. M. The influence of climate change on global crop productivity. Plant Physiol. 160, 1686–1697 (2012).
    CAS  Article  Google Scholar 

    17.
    Palecki, M. A., Angel, J. R. & Hollinger, S. E. Storm precipitation in the United States. Part I: meteorological characteristics. J. Appl. Meteorol. 44, 933–946 (2005).
    Article  Google Scholar 

    18.
    Thorp, J. M. & Scott, B. C. Preliminary calculations of average storm duration and seasonal precipitation rates for the northeast sector of the United States. Atmos. Environ. 16, 1763–1774 (1982).
    Article  Google Scholar 

    19.
    Zhang, W., Villarini, G., Scoccimarro, E. & Vecchi, G. A. Stronger influences of increased CO2 on subdaily precipitation extremes than at the daily scale. Geophys. Res. Lett. 44, 7454–7471 (2017).
    Google Scholar 

    20.
    Lepore, C., Allen, J. T. & Tippett, M. K. Relationships between hourly rainfall intensity and atmospheric variables over the contiguous United States. J. Clim. 29, 3181–3197 (2016).
    Article  Google Scholar 

    21.
    Ashraf, M. & Habib-ur-Rehman. Interactive effects of nitrate and long-term waterlogging on growth, water relations, and gaseous exchange properties of maize (Zea mays L.). Plant Sci. 144, 35–43 (1999).
    CAS  Article  Google Scholar 

    22.
    Martínez-Casasnovas, J. A., Ramos, M. C. & Ribes-Dasi, M. Soil erosion caused by extreme rainfall events: mapping and quantification in agricultural plots from very detailed digital elevation models. Geoderma 105, 125–140 (2002).
    Article  Google Scholar 

    23.
    Meisinger, J. J. & Delgado, J. A. Principles for managing nitrogen leaching. J. Soil Water Conserv. 57, 485–498 (2002).
    Google Scholar 

    24.
    Zahran, H. H. Rhizobium–legume symbiosis and nitrogen fixation under severe conditions and in an arid climate. Microbiol. Mol. Biol. Rev. 63, 968–989 (1999).
    CAS  Article  Google Scholar 

    25.
    Dastane, N. G. Effective Rainfall in Irrigated Agriculture Irrigation and Drainage Paper No. 25 (FAO, 1978).

    26.
    Van Elewijk, L. Stemflow on maize: a stemflow equation and the influence of rainfall intensity on stemflow amount. Soil Technol. 2, 41–48 (1989).
    Article  Google Scholar 

    27.
    Munkvold, G. P. Epidemiology of Fusarium diseases and their mycotoxins in maize ears. Eur. J. Plant Pathol. 109, 705–713 (2003).
    CAS  Article  Google Scholar 

    28.
    Harvell, C. D. et al. Climate warming and disease risks for terrestrial and marine biota. Science 296, 2158–2162 (2002).
    CAS  Article  Google Scholar 

    29.
    Lenderink, G. & Van Meijgaard, E. Increase in hourly precipitation extremes beyond expectations from temperature changes. Nat. Geosci. 1, 511–514 (2008).
    CAS  Article  Google Scholar 

    30.
    Berg, P., Moseley, C. & Haerter, J. O. Strong increase in convective precipitation in response to higher temperatures. Nat. Geosci. 6, 181–185 (2013).
    CAS  Article  Google Scholar 

    31.
    Prein, A. F. et al. The future intensification of hourly precipitation extremes. Nat. Clim. Change 7, 48–52 (2017).
    Article  Google Scholar 

    32.
    Chou, C., Chen, C. A., Tan, P. H. & Chen, K. T. Mechanisms for global warming impacts on precipitation frequency and intensity. J. Clim. 25, 3291–3306 (2012).
    Article  Google Scholar 

    33.
    Kendon, E. J. et al. Heavier summer downpours with climate change revealed by weather forecast resolution model. Nat. Clim. Change 4, 570–576 (2014).
    Article  Google Scholar 

    34.
    Zhao, C. et al. Temperature increase reduces global yields of major crops in four independent estimates. Proc. Natl Acad. Sci. USA 114, 9326–9331 (2017).
    CAS  Article  Google Scholar 

    35.
    de Bruyn, L. P. & de Jager, J. M. A meteorological approach to the identification of drought sensitive periods in field crops. Agric. Meteorol. 19, 35–40 (1978).
    Article  Google Scholar 

    36.
    Lin, Y. GCIP/EOP Surface: Precipitation NCEP/EMC 4KM Gridded Data (GRIB) Stage IV Data (UCAR/NCAR—Earth Obs. Lab., 2011); https://doi.org/10.5065/D6PG1QDD

    37.
    USDA Quickstats (USDA, 2018); http://quickstats.nass.usda.gov

    38.
    Thornton, P. E. et al. Daymet: Daily Surface Weather Data on a 1-km Grid for North America Version 2 (ORNL DAAC, 2016).

    39.
    Butler, E. E. & Huybers, P. Adaptation of US maize to temperature variations. Nat. Clim. Change 3, 68–72 (2013).
    Article  Google Scholar 

    40.
    Krajewski, W. F. & Smith, J. A. Radar hydrology: rainfall estimation. Adv. Water Resour. 25, 1387–1394 (2002).
    Article  Google Scholar 

    41.
    Karl, T., Nicholls, N. & Ghazi, A. Workshop on indices and indicators for climate extremes precipitation. Clim. Change 42, 3–7 (1999).
    Article  Google Scholar 

    42.
    Lau, W. K., Wu, H. & Kim, K. A canonical response of precipitation characteristics to global warming from CMIP5 models. Geophys. Res. Lett. 40, 3163–3169 (2013).
    Article  Google Scholar  More

  • in

    Land use and pollinator dependency drives global patterns of pollen limitation in the Anthropocene

    1.
    Ollerton, J., Winfree, R. & Tarrant, S. How many flowering plants are pollinated by animals? Oikos120, 321–326 (2011).
    Article  Google Scholar 
    2.
    Hedges, L. V., Gurevitch, J. & Curtis, P. S. The meta-analysis of response ratios in experimental ecology. Ecology80, 1150–1156 (1999).
    Article  Google Scholar 

    3.
    Gurevitch, J., Curtis, P. S. & Jones, M. H. Meta-analysis in ecology. Adv. Ecol. Res.32, 199–247 (2001).
    CAS  Article  Google Scholar 

    4.
    IPBES. Summary for policymakers of the global assessment report on biodiversity and ecosystem services of the Intergovernmental Science-Policy Platform on Biodiversity and Ecosystem Services. https://www.ipbes.net/sites/default/files/downloads/spm_unedited_advance_for_posting_htn.pdf (2019).

    5.
    Potts, S. G. et al. Global pollinator declines: trends, impacts and drivers. Trends Ecol. Evol.25, 345–353 (2010).
    Article  Google Scholar 

    6.
    Garibaldi, L. A. et al. Stability of pollination services decreases with isolation from natural areas despite honey bee visits. Ecol. Lett.14, 1062–1072 (2011).
    Article  Google Scholar 

    7.
    Deguines, N., Julliard, R., Flores, M. & Fontaine, C. Functional homogenization of flower visitor communities with urbanization. Ecol. Evol.6, 1967–1976 (2016).
    Article  Google Scholar 

    8.
    Burkle, L. A., Marlin, J. C. & Knight, T. M. Plant-pollinator interactions over 120 years: loss of species, co-occurrence, and function. Science339, 1611–1615 (2013).
    ADS  CAS  Article  Google Scholar 

    9.
    Biesmeijer, J. C. et al. Parallel declines in pollinators and insect-pollinated plants in Britain and the Netherlands. Science313, 351–354 (2006).
    ADS  CAS  Article  Google Scholar 

    10.
    Winfree, R., Bartomeus, I. & Cariveau, D. P. Native pollinators in anthropogenic habitats. Annu. Rev. Ecol. Evol. Syst.42, 1 (2011).
    Article  Google Scholar 

    11.
    IPBES. Summary for policymakers of the assessment report of the Intergovernmental Science-Policy Platform on Biodiversity and Ecosystem Services on pollinators, pollination and food production. Secretariat of the Intergovernmental Science-Policy Platform on Biodiversity and Ecosystem Services (2016).

    12.
    Kremen, C. et al. Pollination and other ecosystem services produced by mobile organisms: a conceptual framework for the effects of land‐use change. Ecol. Lett.10, 299–314 (2007).
    Article  Google Scholar 

    13.
    Knight, T. M. et al. Reflections on, and visions for, the changing field of pollination ecology. Ecol. Lett.21, 1282–1295 (2018).
    CAS  Article  Google Scholar 

    14.
    Aguilar, R., Ashworth, L., Galetto, L. & Aizen, M. A. Plant reproductive susceptibility to habitat fragmentation: review and synthesis through a meta-analysis. Ecol. Lett.9, 968–980 (2006).
    Article  Google Scholar 

    15.
    McKechnie, I. M. & Sargent, R. D. Do plant traits influence a species’ response to habitat disturbance? A meta-analysis. Biol. Conserv.168, 69–77 (2013).
    Article  Google Scholar 

    16.
    Ashman, T-L. et al. Pollen limitation of plant reproduction: ecological and evolutionary causes and consequences. Ecology85, 2408–2421 (2004).
    Article  Google Scholar 

    17.
    Bennett, J. M. et al. GloPL, Global data base on pollen limitation of plant reproduction. Sci. Data5, 180249 (2018).
    CAS  Article  Google Scholar 

    18.
    Lajeunesse, M. J., Rosenberg, M. S. & Jennions, M. D. Phylogenetic nonindependence and meta-analysis. Handbook of Meta-Analysis in Ecology and Evolution. 284–299 (Princeton University Press, Princeton, NJ, 2013).

    19.
    Knight, T. M. et al. Pollen limitation of plant reproduction: pattern and process. Annu. Rev. Ecol. Evol. Syst. 36, 467–497 (2005).
    Article  Google Scholar 

    20.
    Bateman, A. J. lntra-sexual selection in Drosophila. Heredity2, 349–368 (1948).
    CAS  Article  Google Scholar 

    21.
    Haig, D. & Westoby, M. On limits to seed production. Am. Nat.131, 757–759 (1988).
    Article  Google Scholar 

    22.
    Burd, M. The Haig-Westoby model revisited. Am. Nat.171, 400–404 (2008).
    Article  Google Scholar 

    23.
    Aizen, M. A. & Harder, L. D. Expanding the limits of the pollen-limitation concept: effects of pollen quantity and quality. Ecology88, 271–281 (2007).
    Article  Google Scholar 

    24.
    Burns, J. H. et al. Plant traits moderate pollen limitation of introduced and native plants: a phylogenetic meta-analysis. New Phytol. 223, 2063–2075 (2019).
    Article  Google Scholar 

    25.
    Vamosi, J. C., Steets, J. A. & Ashman, T-L. Drivers of pollen limitation: macroecological interactions between breeding system, rarity, and diversity. Plant Ecol. Divers.6, 171–180 (2013).
    Article  Google Scholar 

    26.
    Harrison, T. & Winfree, R. Urban drivers of plant-pollinator interactions. Funct. Ecol.29, 879–888 (2015).
    Article  Google Scholar 

    27.
    Baldock, K. C. R. et al. Where is the UK’s pollinator biodiversity? The importance of urban areas for flower-visiting insects. Proc. R. Soc. B Biol. Sci.282, 20142849 (2015).
    Article  Google Scholar 

    28.
    Ashworth, L., Aguilar, R., Galetto, L. & Aizen, M. A. Why do pollination generalist and specialist plant species show similar reproductive susceptibility to habitat fragmentation? J. Ecol.92, 717–719 (2004).
    Article  Google Scholar 

    29.
    Powney, G. D. et al. Widespread losses of pollinating insects in Britain. Nat. Commun.10, 1018 (2019).
    ADS  Article  Google Scholar 

    30.
    Koski, M. H., Ison, J. L., Padilla, A., Pham, A. Q. & Galloway, L. F. Linking pollinator efficiency to patterns of pollen limitation: small bees exploit the plant–pollinator mutualism. Proc. R. Soc. B Biol. Sci.285, 20180635 (2018).
    Article  Google Scholar 

    31.
    Aizen, M. A. & Harder, L. D. The global stock of domesticated honey bees is growing slower than agricultural demand for pollination. Curr. Biol.19, 915–918 (2009).
    CAS  Article  Google Scholar 

    32.
    González-Varo, J. P., Arroyo, J. & Aparicio, A. Effects of fragmentation on pollinator assemblage, pollen limitation and seed production of Mediterranean myrtle (Myrtus communis). Biol. Conserv.142, 1058–1065 (2009).
    Article  Google Scholar 

    33.
    Geldmann, J. & González-Varo, J. P. Conserving honey bees does not help wildlife. Science359, 392–393 (2018).
    ADS  Article  Google Scholar 

    34.
    Holzschuh, A., Dormann, C. F., Tscharntke, T. & Steffan-Dewenter, I. Mass-flowering crops enhance wild bee abundance. Oecologia172, 477–484 (2013).
    Article  Google Scholar 

    35.
    Thomann, M., Imbert, E., Devaux, C. & Cheptou, P.-O. Flowering plants under global pollinator decline. Trends Plant Sci.18, 353–359 (2013).
    CAS  Article  Google Scholar 

    36.
    Cruden, R. W. Pollen grains: why so many? in Pollen and Pollination 143–165 (Springer Vienna, 2000). https://doi.org/10.1007/978-3-7091-6306-1_8.

    37.
    Koricheva, J., Gurevitch, J. & Mengersen, K. Handbook of Meta-Analysis in Ecology and Evolution. (Princeton University Press, 2013).

    38.
    Borenstein, M., Hedges, L. V., Higgins, J. P. T. & Rothstein, H. R. Introduction to Meta-Analysis. (John Wiley & Sons, 2011).

    39.
    Hurtt, G. C. et al. Harmonization of Global Land Use Change and Management for the Period 2015-2300. Version 20190529. Earth System Grid Federation. https://doi.org/10.22033/ESGF/input4MIPs.10468 (2019).

    40.
    R Development Core Team. R: A Language and Environment for Statistical Computing. version 3.6.3 (R Foundation for Statistical Computing, Vienna, Austria, 2020) https://www.R-project.org.

    41.
    Oduor, A. M. O., Leimu, R. & Kleunen, M. Invasive plant species are locally adapted just as frequently and at least as strongly as native plant species. J. Ecol.104, 957–968 (2016).
    Article  Google Scholar 

    42.
    Zanne, A. E. et al. Three keys to the radiation of angiosperms into freezing environments. Nature506, 89–92 (2014).
    ADS  CAS  Article  Google Scholar 

    43.
    Pearse, W. D. et al. pez: phylogenetics for the environmental sciences. Bioinformatics31, 2888–2890 (2015).
    CAS  Article  Google Scholar 

    44.
    Paradis, E. & Schliep, K. ape 5.0: an environment for modern phylogenetics and evolutionary analyses in R. Bioinformatics35, 526–528 (2019).
    CAS  Article  Google Scholar 

    45.
    Knight, T. M., Steets, J. A. & Ashman, T-L. A quantitative synthesis of pollen supplementation experiments highlights the contribution of resource reallocation to estimates of pollen limitation. Am. J. Bot.93, 271–277 (2006).
    Article  Google Scholar 

    46.
    Viechtbauer, W. Conducting meta-analyses in R with the metafor package. J. Stat. Softw.36, 1–48 (2010).
    Article  Google Scholar 

    47.
    Holm, S. A simple sequentially rejective multiple test procedure. Scand. J. Stat.6, 65–70 (1979).
    MathSciNet  MATH  Google Scholar  More

  • in

    The molecular insights into protein adsorption on hematite surface disclosed by in-situ ATR-FTIR/2D-COS study

    1.
    Nisbet, E. G. & Sleep, N. H. The habitat and nature of early life. Nature409, 1083–1091 (2001).
    ADS  CAS  PubMed  Google Scholar 
    2.
    York, A. A new timeline of life’s early evolution. Nat. Rev. Microbiol.16, 582–583 (2018).
    CAS  PubMed  Google Scholar 

    3.
    Chattopadhyay, P. K., Roederer, M. & Bolton, D. L. A deadly dance: the choreography of host–pathogen interactions, as revealed by single-cell technologies. Nat. Commun.9, 4638 (2018).
    ADS  PubMed  PubMed Central  Google Scholar 

    4.
    Davis, F. P., Barkan, D. T., Eswar, N., McKerrow, J. H. & Sali, A. Host-pathogen protein interactions predicted by comparative modeling. Protein Sci.16, 2585–2596 (2007).
    CAS  PubMed  PubMed Central  Google Scholar 

    5.
    Böcker, U., Wubshet, S. G., Lindberg, D. & Afseth, N. K. Fourier-transform infrared spectroscopy for characterization of protein chain reductions in enzymatic reactions. Analyst142, 2812–2818 (2017).
    ADS  PubMed  Google Scholar 

    6.
    Bouhekka, A. & Bürgi, T. In situ ATR-IR spectroscopy study of adsorbed protein: Visible light denaturation of bovine serum albumin on TiO2. Appl. Surf. Sci.261, 369–374 (2012).
    ADS  CAS  Google Scholar 

    7.
    Cohen, P. The role of protein phosphorylation in human health and disease. Eur. J. Biochem.268, 5001–5010 (2001).
    CAS  PubMed  Google Scholar 

    8.
    Mavropoulos, E. et al. Adsorption and bioactivity studies of albumin onto hydroxyapatite surface. Colloids Surf. B Biointerfaces83, 1–9 (2011).
    CAS  PubMed  Google Scholar 

    9.
    Ribeiro, A. R. et al. Trojan-like internalization of anatase titanium dioxide nanoparticles by human osteoblast cells. Sci. Rep.6, 23615 (2016).
    ADS  CAS  PubMed  PubMed Central  Google Scholar 

    10.
    Rual, J.-F. et al. Towards a proteome-scale map of the human protein–protein interaction network. Nature437, 1173–1178 (2005).
    ADS  CAS  PubMed  Google Scholar 

    11.
    Bernal, C., Rodríguez, K. & Martínez, R. Integrating enzyme immobilization and protein engineering: an alternative path for the development of novel and improved industrial biocatalysts. Biotechnol. Adv.36, 1470–1480 (2018).
    CAS  PubMed  Google Scholar 

    12.
    Choi, J.-M., Han, S.-S. & Kim, H.-S. Industrial applications of enzyme biocatalysis: current status and future aspects. Biotechnol. Adv.33, 1443–1454 (2015).
    CAS  PubMed  Google Scholar 

    13.
    Mateo, C., Palomo, J. M., Fernandez-Lorente, G., Guisan, J. M. & Fernandez-Lafuente, R. Improvement of enzyme activity, stability and selectivity via immobilization techniques. Enzyme Microb. Technol.40, 1451–1463 (2007).
    CAS  Google Scholar 

    14.
    Estey, T., Kang, J., Schwendeman, S. P. & Carpenter, J. F. BSA degradation under acidic conditions: a model for protein instability during release from PLGA delivery systems. J. Pharm. Sci.95, 1626–1639 (2006).
    CAS  PubMed  Google Scholar 

    15.
    Huang, J. et al. Layer-by-layer assembled milk protein coated magnetic nanoparticle enabled oral drug delivery with high stability in stomach and enzyme-responsive release in small intestine. Biomaterials39, 105–113 (2015).
    CAS  PubMed  Google Scholar 

    16.
    Hwang, A. A., Lu, J., Tamanoi, F. & Zink, J. I. Functional nanovalves on protein-coated nanoparticles for in vitro and in vivo controlled drug delivery. Small11, 319–328 (2015).
    CAS  PubMed  Google Scholar 

    17.
    Cai, P., Huang, Q. & Walker, S. L. Deposition and survival of Escherichia coli O157:H7 on clay minerals in a parallel plate flow system. Environ. Sci. Technol.47, 1896–1903 (2013).
    ADS  CAS  PubMed  Google Scholar 

    18.
    Cai, P., Lin, D., Peacock, C. L., Peng, W. & Huang, Q. EPS adsorption to goethite: molecular level adsorption mechanisms using 2D correlation spectroscopy. Chem. Geol.494, 127–135 (2018).
    ADS  CAS  Google Scholar 

    19.
    Donlan, R. M. Biofilms: microbial life on surfaces. Emerg. Infect. Dis.8, 881–890 (2002).
    PubMed  PubMed Central  Google Scholar 

    20.
    Hori, K. & Matsumoto, S. Bacterial adhesion: from mechanism to control. Biochem. Eng. J.48, 424–434 (2010).
    CAS  Google Scholar 

    21.
    Liu, Z., Wang, H., Li, J., Hong, Z. & Xu, R. Adhesion of Escherichia coli and Bacillus subtilis to amorphous Fe and Al hydroxides and their effects on the surface charges of the hydroxides. J. Soils Sedim.15, 2293–2303 (2015).
    CAS  Google Scholar 

    22.
    Lorite, G. S. et al. Surface physicochemical properties at the micro and nano length scales: role on bacterial adhesion and Xylella fastidiosa biofilm development. PLoS ONE8, e75247 (2013).
    ADS  CAS  PubMed  PubMed Central  Google Scholar 

    23.
    Mudunkotuwa, I. A. & Grassian, V. H. Biological and environmental media control oxide nanoparticle surface composition: the roles of biological components (proteins and amino acids), inorganic oxyanions and humic acid. Environ. Sci. Nano2, 429–439 (2015).
    CAS  Google Scholar 

    24.
    Bowles, T. M., Acosta-Martínez, V., Calderón, F. & Jackson, L. E. Soil enzyme activities, microbial communities, and carbon and nitrogen availability in organic agroecosystems across an intensively-managed agricultural landscape. Soil Biol. Biochem.68, 252–262 (2014).
    CAS  Google Scholar 

    25.
    Fatemi, F. R., Fernandez, I. J., Simon, K. S. & Dail, D. B. Nitrogen and phosphorus regulation of soil enzyme activities in acid forest soils. Soil Biol. Biochem.98, 171–179 (2016).
    CAS  Google Scholar 

    26.
    Jian, S. et al. Soil extracellular enzyme activities, soil carbon and nitrogen storage under nitrogen fertilization: a meta-analysis. Soil Biol. Biochem.101, 32–43 (2016).
    CAS  Google Scholar 

    27.
    Jarosch, K. A. et al. Characterisation of soil organic phosphorus in NaOH-EDTA extracts: a comparison of 31P NMR spectroscopy and enzyme addition assays. Soil Biol. Biochem.91, 298–309 (2015).
    CAS  Google Scholar 

    28.
    Saha, B. et al. Microbial transformation of sulphur: an approach to combat the sulphur deficiencies in agricultural soils. In: Role of Rhizospheric Microbes in Soil 77–97 (Springer Singapore, 2018). https://doi.org/10.1007/978-981-13-0044-8_3

    29.
    Trivedi, P. et al. Microbial regulation of the soil carbon cycle: evidence from gene–enzyme relationships. ISME J.10, 2593–2604 (2016).
    CAS  PubMed  PubMed Central  Google Scholar 

    30.
    Kallenbach, C. M., Frey, S. D. & Grandy, A. S. Direct evidence for microbial-derived soil organic matter formation and its ecophysiological controls. Nat. Commun.7, 13630 (2016).
    ADS  CAS  PubMed  PubMed Central  Google Scholar 

    31.
    Newcomb, C. J., Qafoku, N. P., Grate, J. W., Bailey, V. L. & De Yoreo, J. J. Developing a molecular picture of soil organic matter–mineral interactions by quantifying organo–mineral binding. Nat. Commun.8, 396 (2017).
    ADS  CAS  PubMed  PubMed Central  Google Scholar 

    32.
    Moon, J., Xia, K. & Williams, M. A. Consistent proteinaceous organic matter partitioning into mineral and organic soil fractions during pedogenesis in diverse ecosystems. Biogeochemistry1, 1–19. https://doi.org/10.1007/s10533-018-0523-1 (2018).
    CAS  Article  Google Scholar 

    33.
    Huang, Q., Liang, W. & Cai, P. Adsorption, desorption and activities of acid phosphatase on various colloidal particles from an Ultisol. Colloids Surf. B Biointerfaces45, 209–214 (2005).
    CAS  PubMed  Google Scholar 

    34.
    Nannipieri, P. et al. Soil enzymology: classical and molecular approaches. Biol. Fertil. Soils48, 743–762 (2012).
    Google Scholar 

    35.
    Tietjen, T. & Wetzel, G. Extracellular enzyme-clay mineral complexes: Enzyme adsorption, alteration of enzyme activity, and protection from photodegradation. Aquat. Ecol.37, 331–339 (2003).
    CAS  Google Scholar 

    36.
    Vogler, E. A. Protein adsorption in three dimensions. Biomaterials33, 1201–1237 (2012).
    CAS  PubMed  Google Scholar 

    37.
    Nakanishi, K., Sakiyama, T. & Imamura, K. On the adsorption of proteins on solid surfaces, a common but very complicated phenomenon. J. Biosci. Bioeng.91, 233–244 (2001).
    CAS  PubMed  Google Scholar 

    38.
    Baker, M. J. et al. Using Fourier transform IR spectroscopy to analyze biological materials. Nat. Protoc.9, 1771–1791 (2014).
    CAS  PubMed  PubMed Central  Google Scholar 

    39.
    Yang, H., Yang, S., Kong, J., Dong, A. & Yu, S. Obtaining information about protein secondary structures in aqueous solution using Fourier transform IR spectroscopy. Nat. Protoc.10, 382–396 (2015).
    CAS  PubMed  Google Scholar 

    40.
    Giacomelli, C. E., Avena, M. J. & De Pauli, C. P. Adsorption of Bovine Serum Albumin onto TiO2Particles. J. Colloid Interface Sci.188, 387–395 (1997).
    ADS  CAS  Google Scholar 

    41.
    Gilmanshin, R., Williams, S., Callender, R. H., Woodruff, W. H. & Dyer, R. B. Fast events in protein folding: relaxation dynamics of secondary and tertiary structure in native apomyoglobin. Proc. Natl. Acad. Sci. U. S. A.94, 3709–3713 (1997).
    ADS  CAS  PubMed  PubMed Central  Google Scholar 

    42.
    Lu, R. et al. Probing the secondary structure of bovine serum albumin during heat-induced denaturation using mid-infrared fiberoptic sensors. Analyst140, 765–770 (2015).
    ADS  CAS  PubMed  Google Scholar 

    43.
    Militello, V. et al. Aggregation kinetics of bovine serum albumin studied by FTIR spectroscopy and light scattering. Biophys. Chem.107, 175–187 (2004).
    CAS  PubMed  Google Scholar 

    44.
    Schmidt, M. P. & Martínez, C. E. Kinetic and conformational insights of protein adsorption onto montmorillonite revealed using in situ ATR-FTIR/2D-COS. Langmuir32, 7719–7729 (2016).
    CAS  PubMed  Google Scholar 

    45.
    Vermonden, T., Giacomelli, C. E. & Norde, W. Reversibility of structural rearrangements in bovine serum albumin during homomolecular exchange from AgI particles. Langmuir https://doi.org/10.1021/la010162o (2002).
    Article  Google Scholar 

    46.
    Liu, F. et al. Kinetics and mechanisms of protein adsorption and conformational change on hematite particles. Environ. Sci. Technol.53, 10157–10165 (2019).
    ADS  CAS  PubMed  Google Scholar 

    47.
    He, X. M. & Carter, D. C. Atomic structure and chemistry of human serum albumin. Nature358, 209–215 (1992).
    ADS  CAS  PubMed  Google Scholar 

    48.
    Chi, Z. et al. Investigation on the conformational changes of bovine serum albumin in a wide pH range from 2 to 12. Spectrosc. Lett.51, 279–286 (2018).
    ADS  CAS  Google Scholar 

    49.
    Güler, G., Vorob’ev, M. M., Vogel, V. & Mäntele, W. Proteolytically-induced changes of secondary structural protein conformation of bovine serum albumin monitored by Fourier transform infrared (FT-IR) and UV-circular dichroism spectroscopy. Spectrochim. Acta Part A Mol. Biomol. Spectrosc.161, 8–18 (2016).

    50.
    Zhang, Y.-Z., Dai, J., Xiang, X., Li, W.-W. & Liu, Y. Studies on the interaction between benzidine and bovine serum albumin by spectroscopic methods. Mol. Biol. Rep.37, 1541–1549 (2010).
    CAS  PubMed  Google Scholar 

    51.
    Kim, J. & Cremer, P. S. Elucidating changes in interfacial water structure upon protein adsorption. ChemPhysChem2, 543–546 (2001).
    CAS  PubMed  Google Scholar 

    52.
    Limo, M. J. et al. Interactions between metal oxides and biomolecules: from fundamental understanding to applications. Chem. Rev.118, 1 (2018).
    ADS  Google Scholar 

    53.
    Lyklema, J. Proteins at solid—liquid interfaces A colloid-chemical review. Colloids Surf.10, 33–42 (1984).
    CAS  Google Scholar 

    54.
    McClellan, S. J. & Franses, E. I. Adsorption of bovine serum albumin at solid/aqueous interfaces. Colloids Surf. A Physicochem. Eng. Asp.260, 265–275 (2005).
    CAS  Google Scholar 

    55.
    Roach, P., Farrar, D., Perry C. C. Interpretation of protein adsorption: surface-induced conformational changes. (2005). https://doi.org/10.1021/JA042898O

    56.
    Rabe, M., Verdes, D. & Seeger, S. Understanding protein adsorption phenomena at solid surfaces. Adv. Colloid Interface Sci.162, 87–106 (2011).
    CAS  PubMed  Google Scholar 

    57.
    Sanfeld, A., Royer, C. & Steinchen, A. Thermodynamic, kinetic and conformational analysis of proteins diffusion–sorption on a solid surface. Adv. Colloid Interface Sci.222, 639–660 (2015).
    CAS  PubMed  Google Scholar 

    58.
    Topală, T., Bodoki, A., Oprean, L. & Oprean, R. Bovine serum albumin interactions with metal complexes. Clujul Med.87, 215 (2014).
    PubMed  PubMed Central  Google Scholar 

    59.
    Navrotsky, A., Mazeina, L. & Majzlan, J. Size-driven structural and thermodynamic complexity in iron oxides. Science (80-).319, 1635–1638 (2008).
    ADS  CAS  Google Scholar 

    60.
    Schwertmann, U. Iron oxides. in Encyclopedia of earth sciences series (2008). https://doi.org/10.1002/9783527613229.ch01

    61.
    Rufus, A., Sreeju, N. & Philip, D. Size tunable biosynthesis and luminescence quenching of nanostructured hematite (α-Fe2O3) for catalytic degradation of organic pollutants. J. Phys. Chem. Solids124, 221–234 (2019).
    ADS  CAS  Google Scholar 

    62.
    Sherman, D. M. & Randall, S. R. Surface complexation of arsenic(V) to iron(III) (hydr)oxides: structural mechanism from ab initio molecular geometries and EXAFS spectroscopy. Geochim. Cosmochim. Acta67, 4223–4230 (2003).
    ADS  CAS  Google Scholar 

    63.
    Fontes, M. P. F. & Weed, S. B. Phosphate adsorption by clays from Brazilian Oxisols: relationships with specific surface area and mineralogy. Geoderma72, 37–51 (1996).
    ADS  CAS  Google Scholar 

    64.
    Schaefer, C. E. G. R., Fabris, J. D. & Ker, J. C. Minerals in the clay fraction of Brazilian Latosols (Oxisols): a review. Clay Miner.43, 137–154 (2008).
    ADS  CAS  Google Scholar 

    65.
    Fink, J. R. et al. Adsorption and desorption of phosphorus in subtropical soils as affected by management system and mineralogy. Soil Tillage Res.155, 62–68 (2016).
    Google Scholar 

    66.
    Mazeina, L. & Navrotsky, A. Enthalpy of water adsorption and surface enthalpy of goethite (α-FeOOH) and hematite (α-Fe 2 O 3). Chem. Mater.19, 825–833 (2007).
    CAS  Google Scholar 

    67.
    Kubiak-Ossowska, K., Tokarczyk, K., Jachimska, B. & Mulheran, P. A. Bovine serum albumin adsorption at a silica surface explored by simulation and experiment. J. Phys. Chem. B121, 3975–3986 (2017).
    CAS  PubMed  Google Scholar 

    68.
    Phan, H. T. M., Bartelt-Hunt, S., Rodenhausen, K. B., Schubert, M. & Bartz, J. C. Investigation of bovine serum albumin (BSA) attachment onto self-assembled monolayers (SAMs) using combinatorial quartz crystal microbalance with dissipation (QCM-d) and spectroscopic ellipsometry (SE). PLoS ONE10, e0141282 (2015).
    PubMed  PubMed Central  Google Scholar 

    69.
    Scarangella, A. et al. Adsorption properties of BSA and DsRed proteins deposited on thin SiO 2 layers: optically non-absorbing versus absorbing proteins. Nanotechnology29, 115101 (2018).
    ADS  CAS  PubMed  Google Scholar 

    70.
    Lefèvre, G. In situ Fourier-transform infrared spectroscopy studies of inorganic ions adsorption on metal oxides and hydroxides. Adv. Colloid Interface Sci.107, 109–123 (2004).
    PubMed  Google Scholar 

    71.
    Elzinga, E. J. & Sparks, D. L. Phosphate adsorption onto hematite: An in situ ATR-FTIR investigation of the effects of pH and loading level on the mode of phosphate surface complexation. J. Colloid Interface Sci.308, 53–70 (2007).
    ADS  CAS  PubMed  Google Scholar 

    72.
    Wu, Y., Zhang, L., Jung, Y. M. & Ozaki, Y. Two-dimensional correlation spectroscopy in protein science, a summary for past 20 years. Spectrochim. Acta Part A Mol. Biomol. Spectrosc.189, 291–299 (2018).

    73.
    Tao, Y., Wu, Y. & Zhang, L. Advancements of two dimensional correlation spectroscopy in protein researches. Spectrochim. Acta Part A Mol. Biomol. Spectrosc.197, 185–193 (2018).

    74.
    Gomaa, A. I., Sedman, J. & Ismail, A. A. An investigation of the effect of microwave treatment on the structure and unfolding pathways of β-lactoglobulin using FTIR spectroscopy with the application of two-dimensional correlation spectroscopy (2D-COS). Vib. Spectrosc.65, 101–109 (2013).
    CAS  Google Scholar 

    75.
    Zhou, J., Rao, X., Tian, J., Wang, J. & Liu, S. Two-Dimensional terahertz correlation spectroscopic study on the conformation change of protein induced by pH. in 2017 42nd International Conference on Infrared, Millimeter, and Terahertz Waves (IRMMW-THz) 1–2 (IEEE, 2017). https://doi.org/10.1109/IRMMW-THz.2017.8067155

    76.
    Sugimoto, T., Sakata, K. & Muramatsu, A. Formation mechanism of monodisperse pseudocubic α-Fe2O3 particles from condensed ferric hydroxide gel. J. Colloid Interface Sci.159, 372–382 (1993).
    ADS  CAS  Google Scholar 

    77.
    Elzinga, E. J. & Kretzschmar, R. In situ ATR-FTIR spectroscopic analysis of the co-adsorption of orthophosphate and Cd(II) onto hematite. Geochim. Cosmochim. Acta117, 53–64 (2013).
    ADS  CAS  Google Scholar 

    78.
    Brechbühl, Y., Christl, I., Elzinga, E. J. & Kretzschmar, R. Competitive sorption of carbonate and arsenic to hematite: combined ATR-FTIR and batch experiments. J. Colloid Interface Sci.377, 313–321 (2012).
    ADS  PubMed  Google Scholar 

    79.
    Jachimska, B. & Pajor, A. Physico-chemical characterization of bovine serum albumin in solution and as deposited on surfaces. Bioelectrochemistry87, 138–146 (2012).
    CAS  PubMed  Google Scholar 

    80.
    Barreto, M. S. C., Elzinga, E. J. & Alleoni, L. R. F. Hausmannite as potential As(V) filter. Macroscopic and spectroscopic study of As(V) adsorption and desorption by citric acid. Environ. Pollut.262, 114196 (2020).

    81.
    Barreto, M. S. C., Elzinga, E. J. & Alleoni, L. R. F. Attenuated total reflectance: Fourier transform infrared study of the effects of citrate on the adsorption of phosphate at the hematite surface. Soil Sci. Soc. Am. J.84, 57–67 (2020).
    ADS  CAS  Google Scholar 

    82.
    Kemmer, G. & Keller, S. Nonlinear least-squares data fitting in Excel spreadsheets. Nat. Protoc.5, 267–281 (2010).
    CAS  PubMed  Google Scholar 

    83.
    Fabian, H., Yu, Z., Wang, Y. & Naumann, D. Generalized 2D and time-resolved FTIR studies of protein unfolding events. J. Mol. Struct.974, 203–209 (2010).
    ADS  CAS  Google Scholar 

    84.
    Wang, Y. et al. Two-dimensional Fourier transform near-infrared spectroscopy study of heat denaturation of ovalbumin in aqueous solutions. J. Phys. Chem. B https://doi.org/10.1021/jp9816115 (1998).
    Article  Google Scholar 

    85.
    Noda, I. Vibrational two-dimensional correlation spectroscopy (2DCOS) study of proteins. Spectrochim Acta Part A Mol. Biomol. Spectrosc.187, 119–129 (2017).
    ADS  CAS  Google Scholar 

    86.
    Noda, I. Generalized two-dimensional correlation spectroscopy. in Frontiers of Molecular Spectroscopy (2009). https://doi.org/10.1016/B978-0-444-53175-9.00013-1

    87.
    Zhang, J., Zhang, X., Zhang, F. & Yu, S. Solid-film sampling method for the determination of protein secondary structure by Fourier transform infrared spectroscopy. Anal. Bioanal. Chem.409, 4459–4465 (2017).
    CAS  PubMed  Google Scholar 

    88.
    Jeon, J. S., Raghavan, S. & Sperline, R. P. Quantitative analysis of albumin adsorption onto uncoated and poly(ether)urethane-coated ZnSe surfaces using the attenuated total reflection FTIR technique. Colloids Surf. A Physicochem. Eng. Asp.92, 255–265 (1994).
    CAS  Google Scholar 

    89.
    Gao, X. & Chorover, J. Adsorption of sodium dodecyl sulfate (SDS) at ZnSe and α-Fe2O3 surfaces: combining infrared spectroscopy and batch uptake studies. J. Colloid Interface Sci.348, 167–176 (2010).
    ADS  CAS  PubMed  Google Scholar 

    90.
    Givens, B. E., Xu, Z., Fiegel, J. & Grassian, V. H. Bovine serum albumin adsorption on SiO2 and TiO2 nanoparticle surfaces at circumneutral and acidic pH: A tale of two nano-bio surface interactions. J. Colloid Interface Sci.493, 334–341 (2017).
    ADS  CAS  PubMed  Google Scholar 

    91.
    Márquez, A. et al. Bovine serum albumin adsorption on TiO2 colloids: the effect of particle agglomeration and surface composition. Langmuir33, 2551–2558 (2017).
    PubMed  Google Scholar 

    92.
    Alkan, M., Demirbaş, Ö, Doğan, M. & Arslan, O. Surface properties of bovine serum albumin—adsorbed oxides: adsorption, adsorption kinetics and electrokinetic properties. Microporous Mesoporous Mater.96, 331–340 (2006).
    CAS  Google Scholar 

    93.
    Fukuzaki, S., Urano, H. & Nagata, K. Adsorption of bovine serum albumin onto metal oxide surfaces. J. Ferment. Bioeng.81, 163–167 (1996).
    CAS  Google Scholar 

    94.
    Song, L., Yang, K., Jiang, W., Du, P. & Xing, B. Adsorption of bovine serum albumin on nano and bulk oxide particles in deionized water. Colloids Surf. B Biointerfaces94, 341–346 (2012).
    CAS  PubMed  Google Scholar 

    95.
    Andersen, A. et al. Protein-mineral interactions: molecular dynamics simulations capture importance of variations in mineral surface composition and structure. Langmuir32, 6194–6209 (2016).
    CAS  PubMed  Google Scholar 

    96.
    Barral, S., Villa-García, M. A., Rendueles, M. & Díaz, M. Interactions between whey proteins and kaolinite surfaces. Acta Mater.56, 2784–2790 (2008).
    CAS  Google Scholar 

    97.
    Duarte-Silva, R., Villa-García, M. A., Rendueles, M. & Díaz, M. Structural, textural and protein adsorption properties of kaolinite and surface modified kaolinite adsorbents. Appl. Clay Sci.90, 73–80 (2014).
    CAS  Google Scholar 

    98.
    Scheufele, F. B. et al. Monolayer–multilayer adsorption phenomenological model: kinetics, equilibrium and thermodynamics. Chem. Eng. J.284, 1328–1341 (2016).
    CAS  Google Scholar 

    99.
    Latour, R. A. The langmuir isotherm: a commonly applied but misleading approach for the analysis of protein adsorption behavior. J. Biomed. Mater. Res. Part A103, 949–958 (2015).
    Google Scholar 

    100.
    Coglitore, D., Janot, J.-M. & Balme, S. Protein at liquid solid interfaces: toward a new paradigm to change the approach to design hybrid protein/solid-state materials. Adv. Colloid Interface Sci.270, 278–292 (2019).
    CAS  PubMed  Google Scholar 

    101.
    Binazadeh, M., Zeng, H. & Unsworth, L. D. Effect of peptide secondary structure on adsorption and adsorbed film properties. Acta Biomater.9, 6403–6413 (2013).
    CAS  PubMed  Google Scholar 

    102.
    Chi, E. Y., Krishnan, S., Randolph, T. W. & Carpenter, J. F. Physical stability of proteins in aqueous solution: mechanism and driving forces in nonnative protein aggregation. Pharm. Res. https://doi.org/10.1023/A:1025771421906 (2003).
    Article  PubMed  Google Scholar 

    103.
    Noda, I. & Ozaki, Y. Principle of Two-Dimensional Correlation Spectroscopy. in Two-Dimensional Correlation Spectroscopy: Applications in Vibrational and Optical Spectroscopy 15–38 (John Wiley & Sons, Ltd, 2005). https://doi.org/10.1002/0470012404.ch2

    104.
    Meissner, J., Prause, A., Bharti, B. & Findenegg, G. H. Characterization of protein adsorption onto silica nanoparticles: influence of pH and ionic strength. Colloid Polym. Sci.293, 3381–3391 (2015).
    CAS  PubMed  PubMed Central  Google Scholar 

    105.
    Barbosa, L. R. S. et al. The importance of protein-protein interactions on the pH-induced conformational changes of bovine serum albumin: a small-angle X-ray scattering study. Biophys. J.98, 147–157 (2010).
    ADS  CAS  PubMed  PubMed Central  Google Scholar 

    106.
    Wendorf, J. R., Radke, C. J. & Blanch, H. W. The role of electrolytes on protein adsorption at a hydrophilic solid–water interface. Colloids Surf. B Biointerfaces75, 100–106 (2010).
    CAS  PubMed  Google Scholar 

    107.
    Rowley, M. C., Grand, S. & Verrecchia, ÉP. Calcium-mediated stabilisation of soil organic carbon. Biogeochemistry137, 27–49 (2018).
    CAS  Google Scholar 

    108.
    Simons, J.-W.F., Kosters, H. A., Visschers, R. W. & de Jongh, H. H. Role of calcium as trigger in thermal β-lactoglobulin aggregation. Arch. Biochem. Biophys.406, 143–152 (2002).
    CAS  PubMed  Google Scholar 

    109.
    Li, R., Wu, Z., Wangb, Y., Ding, L. & Wang, Y. Role of pH-induced structural change in protein aggregation in foam fractionation of bovine serum albumin. Biotechnol. Rep.9, 46–52 (2016).
    Google Scholar 

    110.
    Bolt, G. H. The surface chemistry of soils. Clays Clay Miner.33, 367–367 (1985).
    ADS  Google Scholar 

    111.
    Eklouh-Molinier, C. et al. Investigating the relationship between changes in collagen fiber orientation during skin aging and collagen/water interactions by polarized-FTIR microimaging. Analyst140, 6260–6268 (2015).
    ADS  CAS  PubMed  Google Scholar 

    112.
    Lin, S., Jiang, X., Wang, L., Li, G. & Guo, L. Adsorption orientation of horse heart cytochrome c on a bare gold electrode hampers its electron transfer. J. Phys. Chem. C116, 637–642 (2012).
    CAS  Google Scholar 

    113.
    Lu, J. R., Su, T. J. & Thomas, R. K. Structural conformation of bovine serum albumin layers at the air-water interface studied by neutron reflection. J. Colloid Interface Sci.213, 426–437 (1999).
    ADS  CAS  PubMed  Google Scholar 

    114.
    Chittur, K. K. FTIR/ATR for protein adsorption to biomaterial surfaces. Biomaterials19, 357–369 (1998).
    CAS  PubMed  Google Scholar  More

  • in

    Mesmerized by maritime marvels

    WHERE I WORK
    10 August 2020

    Marine biologist Greg Rouse is elated to have been on a research cruise that discovered the world’s longest creature.

    Chris Woolston

    Chris Woolston is a freelance writer in Billings, Montana.

    Search for this author in:

    Greg Rouse is a marine biologist at the Scripps Institution of Oceanography at the University of California, San Diego. Credit: Schmidt Ocean Institute

    I had sea worms on my mind during a March expedition through the Ningaloo Canyons off the northwest coast of Australia. Cruising aboard the RV Falkor, a research ship operated by the Schmidt Ocean Institute in Palo Alto, California, I was hoping to collect and sequence new deep-sea worm species. Everyone on board knew they were in for surprises, but nobody could have imagined the creature that suddenly appeared on our screen one day.
    Here, in a moment of pure excitement, I’m standing with Nerida Wilson, a marine biologist at the Western Australian Museum in Perth and the expedition’s chief scientist. Kaycee Handley, a master’s student in Macquarie University in Sydney, is sitting in rapt attention. The Falkor’s remote submersible had just spotted a massive siphonophore, a colonial organism related to corals, sea anemones and jellyfish. We’re still working on modelling the creature, but it’s clearly well over 100 metres long, much longer than any animal previously recorded.
    The screen shows the submersible’s robot arm using a suction tube to collect a sample from the siphonophore. We’re still sequencing the DNA to confirm the species. The description of the organism will be the first paper to come out of this cruise.
    I also found my worms, including a new species of ‘green bomber’ that sheds glowing spheres to distract predators, and a new species of squid worm (genus Teuthidodrilus), so named because it has ten ‘tentacles’, including two for feeding.
    As an Australian working in California, it was gratifying to be doing fieldwork in my home country. The oceans off Australia are an undiscovered world, and I’d hoped to be on the entire month-long cruise. But I had to go back to my laboratory halfway through, when the coronavirus began interrupting travel.
    The Falkor is an amazing ship with an amazing crew. It offers a wonderful combination of science and outreach. I felt privileged to be on board.

    Nature 584, 318 (2020)
    doi: 10.1038/d41586-020-02340-2

    Latest on:

    Biodiversity

    Ocean sciences

    An essential round-up of science news, opinion and analysis, delivered to your inbox every weekday.

    Related Articles More

  • in

    Ecosystem-level carbon storage and its links to diversity, structural and environmental drivers in tropical forests of Western Ghats, India

    1.
    CO2 now. Earth’s CO Home Page. https://www.co2.earth/ (2020).
    2.
    Pan, Y. et al. A large and persistent carbon sink in the world’s forests. Science333, 988–993. https://doi.org/10.1126/science.1201609 (2011).
    ADS  CAS  Article  PubMed  Google Scholar 

    3.
    Allen, C. D. et al. A global overview of drought and heat-induced tree mortality reveals emerging climate change risks for forests. For. Ecol. Manage.259, 660–684. https://doi.org/10.1016/j.foreco.2009.09.001 (2010).
    Article  Google Scholar 

    4.
    Scharlemann, J. P., Tanner, E. V., Hiederer, R. & Kapos, V. Global soil carbon, understanding and managing the largest terrestrial carbon pool. Carbon Manage.5, 81–91. https://doi.org/10.4155/cmt.13.77 (2014).
    CAS  Article  Google Scholar 

    5.
    Lal, R. Forest soils and carbon sequestration. For. Ecol. Manage.220, 242–258. https://doi.org/10.1016/j.foreco.2005.08.015 (2005).
    Article  Google Scholar 

    6.
    Slik, J. W. F. et al. An estimate of the number of tropical tree species. Proc. Natl. Acad. Sci.112, E4628–E4629. https://doi.org/10.1073/pnas.1423147112 (2015).
    ADS  CAS  Article  Google Scholar 

    7.
    Sullivan, M. J. et al. Diversity and carbon storage across the tropical forest biome. Sci. Rep.7, 39102. https://doi.org/10.1038/srep39102 (2017).
    ADS  CAS  Article  PubMed  PubMed Central  Google Scholar 

    8.
    Poorter, L. et al. Diversity enhances carbon storage in tropical forests. Glob. Ecol. Biogeogr.24, 1314–1328. https://doi.org/10.1111/geb.12364 (2015).
    Article  Google Scholar 

    9.
    Malhi, Y. A., Baldocchi, D. D. & Jarvis, P. G. The carbon balance of tropical, temperate and boreal forests. Plant Cell Environ.22, 715–740. https://doi.org/10.1046/j.1365-3040.1999.00453.x (1999).
    CAS  Article  Google Scholar 

    10.
    Jhariya, M. K. Vegetation ecology and carbon sequestration potential of shrubs in tropics of Chhattisgarh, India. Environ. Monit. Assess.189, 518. https://doi.org/10.1007/s10661-017-6246-2 (2017).
    CAS  Article  PubMed  Google Scholar 

    11.
    Mattsson, E., Ostwald, M., Wallin, G. & Nissanka, S. P. Heterogeneity and assessment uncertainties in forest characteristics and biomass carbon stocks: Important considerations for climate mitigation policies. Land Use Policy59, 84–94. https://doi.org/10.1016/j.landusepol.2016.08.026 (2016).
    Article  Google Scholar 

    12.
    Brown, S. & Lugo, A. E. Biomass of tropical forests, a new estimate based on forest volumes. Science223, 1290–1293. https://doi.org/10.1126/science.223.4642.1290 (1984).
    ADS  CAS  Article  PubMed  Google Scholar 

    13.
    Dar, J. A. & Sundarapandian, S. Variation of biomass and carbon pools with forest type in temperate forests of Kashmir Himalaya, India. Environ. Monit. Assess.187, 55. https://doi.org/10.1007/s10661-015-4299-7 (2015).
    CAS  Article  PubMed  Google Scholar 

    14.
    Dar, J. A., Rather, M. Y., Subashree, K., Sundarapandian, S. & Khan, M. L. Distribution patterns of tree, understorey, and detritus biomass in coniferous and broad-leaved forests of Western Himalaya, India. J. Sust. For.36, 787–805. https://doi.org/10.1080/10549811.2017.1363055 (2017).
    Article  Google Scholar 

    15.
    Gandhi, D. S. & Sundarapandian, S. Large-scale carbon stock assessment of woody vegetation in tropical dry deciduous forest of Sathanur reserve forest, Eastern Ghats. India. Environ. Monit. Assess.189, 187. https://doi.org/10.1007/s10661-017-5899-1 (2017).
    CAS  Article  PubMed  Google Scholar 

    16.
    Ruiz-Benito, P. et al. Diversity increases carbon storage and tree productivity in Spanish forests. Glob. Ecol. Biogeogr.23, 311–322. https://doi.org/10.1111/geb.12126 (2014).
    Article  Google Scholar 

    17.
    Huang, Y. et al. Positive effects of tree species diversity on litterfall quantity and quality along a secondary successional chronosequence in a subtropical forest. J. Plant Ecol.10, 28–35. https://doi.org/10.1093/jpe/rtw115 (2017).
    Article  Google Scholar 

    18.
    Gamfeldt, L. et al. Higher levels of multiple ecosystem services are found in forests with more tree species. Nat. Commun.4, 1340. https://doi.org/10.1038/ncomms2328 (2013).
    ADS  CAS  Article  PubMed  PubMed Central  Google Scholar 

    19.
    Chisholm, R. A. et al. Scale-dependent relationships between tree species richness and ecosystem function in forests. J. Ecol.101, 1214–1224. https://doi.org/10.1111/1365-2745.12132 (2013).
    Article  Google Scholar 

    20.
    Ferreira, J. et al. Carbon-focused conservation may fail to protect the most biodiverse tropical forests. Nat. Clim. Chang. https://doi.org/10.1038/s41558-018-0225-7 (2018).
    Article  Google Scholar 

    21.
    Sullivan, T. P., Sullivan, D. S. & Lindgren, P. M. F. Influence of variable retention harvests on forest ecosystems. I. Diversity of stand structure. J. Appl. Ecol.38, 1221–1233. https://doi.org/10.1046/j.0021-8901.2001.00671.x (2001).
    Article  Google Scholar 

    22.
    van der Sande, M. T. et al. Biodiversity in species, traits, and structure determines carbon stocks and uptake in tropical forests. Biotropica49, 593–603. https://doi.org/10.1111/btp.12453 (2017).
    Article  Google Scholar 

    23.
    Bastin, J. F. et al. The global tree restoration potential. Science365, 76–79. https://doi.org/10.1126/science.aax0848 (2019).
    ADS  CAS  Article  PubMed  Google Scholar 

    24.
    Chazdon, R. & Brancalion, P. Restoring forests as a means to many ends. Science365, 24–25. https://doi.org/10.1126/science.aax9539 (2019).
    ADS  CAS  Article  PubMed  Google Scholar 

    25.
    Sierra, C. A. et al. Total carbon stocks in a tropical forest landscape of the Porce region, Colombia. For. Ecol. Manage.243, 299–309. https://doi.org/10.1016/j.foreco.2007.03.026 (2007).
    Article  Google Scholar 

    26.
    Vayreda, J. et al. Spatial patterns and predictors of forest carbon stocks in Western Mediterranean. Ecosystems15, 1258–1270. https://doi.org/10.1007/s10021-012-9582-7 (2012).
    CAS  Article  Google Scholar 

    27.
    Behera, S. K. et al. Aboveground biomass and carbon stock assessment in Indian tropical deciduous forest and relationship with stand structural attributes. Ecol. Eng.99, 513–524. https://doi.org/10.1016/j.ecoleng.2016.11.046 (2017).
    Article  Google Scholar 

    28.
    Poorter, L. et al. Biodiversity and climate determine the functioning of Neotropical forests. Glob. Ecol. Biogeogr.26, 1423–1434. https://doi.org/10.1111/geb.12668 (2017).
    Article  Google Scholar 

    29.
    Liu, X. et al. Tree species richness increases ecosystem carbon storage in subtropical forests. Proc. R. Soc. B Biol. Sci.285, 20181240. https://doi.org/10.1098/rspb.2018.1240 (2018).
    CAS  Article  Google Scholar 

    30.
    Amara, E. et al. Relationship between carbon stocks and tree species diversity in a humid Guinean Savanna landscape in northern Sierra Leone. South For. https://doi.org/10.2989/20702620.2018.1555947 (2019).
    Article  Google Scholar 

    31.
    Li, Y. et al. Drivers of tree carbon storage in subtropical forests. Sci. Total Environ.654, 684–693. https://doi.org/10.1016/j.scitotenv.2018.11.024 (2019).
    ADS  CAS  Article  PubMed  Google Scholar 

    32.
    Muntean, M. et al.Fossil CO2emissions of all world countries—2018 report emissions of all world countries—2018 report (Publications Office of the European Union, Luxembourg, 2018). https://doi.org/10.2760/30158
    Google Scholar 

    33.
    India State of Forest Report 2019. Forest Survey of India, Edition 16, Ministry of Environment, Forest & Climate Change, Government of India. https://www.fsi.nic.in/forest-report-2019 (2019).

    34.
    Puyravaud, J. P., Davidar, P. & Laurance, W. F. Cryptic destruction of India’s native forests. Cons. Lett.3, 390–394. https://doi.org/10.1111/j.1755-263X.2010.00141.x (2010).
    Article  Google Scholar 

    35.
    Seen, D. L. et al. Soil carbon stocks, deforestation and land-cover changes in the Western Ghats biodiversity hotspot (India). Glob. Change Biol.16, 1777–1792. https://doi.org/10.1111/j.1365-2486.2009.02127.x (2010).
    ADS  Article  Google Scholar 

    36.
    Osuri, A. M., Kumar, V. S. & Sankaran, M. Altered stand structure and tree allometry reduce carbon storage in evergreen forest fragments in India’s Western Ghats. For. Ecol. Manage.329, 375–383. https://doi.org/10.1016/j.foreco.2014.01.039 (2014).
    Article  Google Scholar 

    37.
    Padmakumar, B. et al. Tree biomass and carbon density estimation in the tropical dry forest of Southern Western Ghats, India. iForest11, 534–541. https://doi.org/10.3832/ifor2190-011 (2018).
    Article  Google Scholar 

    38.
    Lewis, S. L. et al. Above-ground biomass and structure of 260 African tropical forests. Philos. Trans. R. Soc. B Biol. Sci.368, 20120295–20120295. https://doi.org/10.1098/rstb.2012.0295 (2013).
    Article  Google Scholar 

    39.
    Slik, J. W. F. et al. Environmental correlates of tree biomass, basal area, wood specific gravity and stem density gradients in Borneo’s tropical forests. Glob. Ecol. Biogeogr.19, 50–60. https://doi.org/10.1111/j.1466-8238.2009.00489.x (2010).
    Article  Google Scholar 

    40.
    Baker, T. R. et al. Variation in wood density determines spatial patterns in Amazonian forest biomass. Glob. Change Biol.10, 545–562. https://doi.org/10.1111/j.1365-2486.2004.00751.x (2004).
    ADS  Article  Google Scholar 

    41.
    Haripriya, G. S. Estimates of biomass in Indian forests. Biomass Bioenergy19, 245–258. https://doi.org/10.1016/S0961-9534(00)00040-4 (2000).
    Article  Google Scholar 

    42.
    Zhao, J. et al. Patterns of biomass and carbon distribution across a chronosequence of Chinese pine (Pinus tabulaeformis) forests. PLoS ONE9, e94966. https://doi.org/10.1371/journal.pone.0094966 (2014).
    ADS  CAS  Article  PubMed  PubMed Central  Google Scholar 

    43.
    Cairns, M. A., Olmsted, I., Granados, J. & Argaez, J. Composition and aboveground tree biomass of a dry semi-evergreen forest on Mexico’s Yucatan Peninsula. For. Ecol. Manage.186, 125–132. https://doi.org/10.1016/S0378-1127(03)00229-9 (2003).
    Article  Google Scholar 

    44.
    Zimudzi, C. & Chapano, C. Diversity, population structure, and above ground biomass in woody species on Ngomakurira Mountain, Domboshawa, Zimbabwe. Int. J. Biodivers. https://doi.org/10.1155/2016/4909158 (2016).
    Article  Google Scholar 

    45.
    Abere, F., Belete, Y., Kefalew, A. & Soromessa, T. Carbon stock of Banja forest in Banja district, Amhara region, Ethiopia: An implication for climate change mitigation. J. Sust. For.36, 604–622. https://doi.org/10.1080/10549811.2017.1332646 (2017).
    Article  Google Scholar 

    46.
    Sun, W. & Liu, X. Review on carbon storage estimation of forest ecosystem and applications in China. For. Ecosyst.7, 4. https://doi.org/10.1186/s40663-019-0210-2 (2020).
    Article  Google Scholar 

    47.
    Worldclim. Global climate and weather data. https://www.worldclim.org/ (2019).

    48.
    Alvarez-Davila, E. et al. Forest biomass density across large climate gradients in northern South America is related to water availability but not with temperature. PLoS ONE12, e0171072. https://doi.org/10.1371/journal.pone.0171072 (2017).
    CAS  Article  PubMed  PubMed Central  Google Scholar 

    49.
    Solomon, N., Pabi, O., Annang, T., Asante, I. K. & Birhane, E. The effects of land cover change on carbon stock dynamics in a dry Afromontane forest in northern Ethiopia. Carbon Balance Manage.13, 14. https://doi.org/10.1186/s13021-018-0103-7 (2018).
    CAS  Article  Google Scholar 

    50.
    McNicol, I. M., Ryan, C. M., Dexter, K. G., Ball, S. M. J. & Williams, M. Aboveground carbon storage and its links to stand structure, tree diversity and floristic composition in South-Eastern Tanzania. Ecosystems21, 740–754. https://doi.org/10.1007/s10021-017-0180-6 (2018).
    Article  PubMed  Google Scholar 

    51.
    Dimobe, K. et al. Predicting the Potential Impact of Climate Change on Carbon Stock in Semi-Arid West African Savannas. Land7, 124. https://doi.org/10.3390/land7040124 (2018).
    Article  Google Scholar 

    52.
    Raha, D. et al. Variation in tree biomass and carbon stocks in three tropical dry deciduous forest types of Madhya Pradesh, India. Carbon Manage.11, 109–120. https://doi.org/10.1080/17583004.2020.1712181 (2020).
    CAS  Article  Google Scholar 

    53.
    Lutz, J. A. et al. Global importance of large-diameter trees. Glob. Ecol. Biogeogr.27, 849–864. https://doi.org/10.1111/geb.12747 (2018).
    Article  Google Scholar 

    54.
    Duran, S. M. & Gianoli, E. Carbon stocks in tropical forests decrease with liana diversity. Biol. Lett.9, 20130301. https://doi.org/10.1098/rsbl.2013.0301 (2013).
    Article  PubMed  PubMed Central  Google Scholar 

    55.
    Brown, S., Iverson, L. R., Prasad, A. & Liu, D. Geographical distributions of carbon in biomass and soils of tropical Asian forests. Geocarto. Int.8, 45–59. https://doi.org/10.1080/10106049309354429 (1993).
    Article  Google Scholar 

    56.
    Tang, J. W., Yin, J. X., Qi, J. F., Jepsen, M. R. & Lü, X. T. Ecosystem carbon storage of tropical forests over limestone in Xishuangbanna, SW China. J. Trop. For. Sci. 24, 399–407 (2012).
    Google Scholar 

    57.
    Slik, J. W. F. et al. Large trees drive forest aboveground biomass variation in moist lowland forests across the tropics. Glob. Ecol. Biogeogr.22, 1261–1271. https://doi.org/10.1111/geb.12092 (2013).
    Article  Google Scholar 

    58.
    DeWalt, S. J. et al. Biogeographical patterns of liana abundance and diversity. In The Ecology of Lianas (eds Schnitzer, S. A. et al.) 131–146 (Wiley-Blackwell Publishing, Oxford, 2015).
    Google Scholar 

    59.
    Yuen, J. Q., Fung, T. & Ziegler, A. D. Carbon stocks in bamboo ecosystems worldwide: Estimates and uncertainties. For. Ecol. Manage.393, 113–138. https://doi.org/10.1016/j.foreco.2017.01.017 (2017).
    Article  Google Scholar 

    60.
    Goodman, R. C. et al. Amazon palm biomass and allometry. For. Ecol. Manage.310, 994–1004. https://doi.org/10.1016/j.foreco.2013.09.045 (2013).
    Article  Google Scholar 

    61.
    Petrokofsky, G. et al. Comparison of methods for measuring and assessing carbon stocks and carbon stock changes in terrestrial carbon pools. How do the accuracy and precision of current methods compare? A systematic review protocol. Environ. Evid.1, 6. https://doi.org/10.1186/2047-2382-1-6 (2012).
    Article  Google Scholar 

    62.
    Brown, S. & Lugo, A. E. The storage and production of organic matter in tropical forests and their role in the global carbon cycle. Biotropica14, 161–187. https://doi.org/10.2307/2388024 (1982).
    Article  Google Scholar 

    63.
    Pregitzer, K. S. & Euskirchen, E. S. Carbon cycling and storage in world forests: biome patterns related to forest age. Glob. Change Biol.10, 2052–2077. https://doi.org/10.1111/j.1365-2486.2004.00866.x (2004).
    ADS  Article  Google Scholar 

    64.
    Pfeifer, M. et al. Deadwood biomass: An underestimated carbon stock in degraded tropical forests?. Environ. Res. Lett.10, 044019. https://doi.org/10.1088/1748-9326/10/4/044019 (2015).
    ADS  CAS  Article  Google Scholar 

    65.
    Tran, D. B. & Dargusch, P. Melaleuca forests in Australia have globally significant carbon stocks. For. Ecol. Manage.375, 230–237. https://doi.org/10.1016/j.foreco.2016.05.028 (2016).
    Article  Google Scholar 

    66.
    Lü, X. T., Yin, J. X., Jepsen, M. R. & Tang, J. W. Ecosystem carbon storage and partitioning in a tropical seasonal forest in Southwestern China. For. Ecol. Manage.260, 1798–1803. https://doi.org/10.1016/j.foreco.2010.08.024 (2010).
    Article  Google Scholar 

    67.
    Yue, J. W. et al. Allocation pattern and accumulation potential of carbon stock in natural spruce forests in northwest China. Peer J.6, e4859. https://doi.org/10.7717/peerj.4859 (2018).
    CAS  Article  PubMed  Google Scholar 

    68.
    Palm, C. A., Houghton, R. A., Melillo, J. M. & Skole, D. L. Atmospheric carbon dioxide from deforestation in southeast Asia. Biotropica18, 177–188. https://doi.org/10.2307/2388482 (1986).
    Article  Google Scholar 

    69.
    Sreekanth, N. P., Prabha, S. V., Padmakumar, B. & Thomas, A. P. Soil carbon alterations of selected forest types as an environmental feedback to climate change. Int. J. Environ. Sci.3, 1516–1530. https://doi.org/10.6088/ijes.2013030500022 (2013).
    CAS  Article  Google Scholar 

    70.
    Shukla, G., Pala, N. A. & Chakravarty, S. Quantification of organic carbon and primary nutrients in litter and soil in a foothill forest plantation of eastern Himalaya. J. For. Res.28, 1195–1202. https://doi.org/10.1007/s11676-017-0394-7 (2017).
    CAS  Article  Google Scholar 

    71.
    Ma, L., Shen, C., Lou, D., Fu, S. & Guan, D. Patterns of ecosystem carbon density in edge-affected fengshui forests. Ecol. Eng.107, 216–223. https://doi.org/10.1016/j.ecoleng.2017.07.037 (2017).
    Article  Google Scholar 

    72.
    Dar, J. A. & Sundarapandian, S. Altitudinal variation of soil organic carbon stocks in temperate forests of Kashmir Himalayas, India. Environ. Monit. Assess.187, 11. https://doi.org/10.1007/s10661-014-4204-9 (2015).
    CAS  Article  Google Scholar 

    73.
    Ngo, K. M. et al. Carbon stocks in primary and secondary tropical forests in Singapore. For. Ecol. Manage.296, 81–89. https://doi.org/10.1016/j.foreco.2013.02.004 (2013).
    Article  Google Scholar 

    74.
    Bazezew, M. N., Soromessa, T. & Bayable, E. Carbon stock in Adaba-Dodola community forest of Danaba District, West-Arsi zone of Oromia Region, Ethiopia: An implication for climate change mitigation. J. Ecol. Nat. Environ.7, 14–22. https://doi.org/10.5897/jene2014.0493 (2015).
    Article  Google Scholar 

    75.
    Skutsch, M., McCall, K. & Lovett, J. Carbon emissions: Dry forests may be easier to manage. Nature7273, 462. https://doi.org/10.1038/462567b (2009).
    CAS  Article  Google Scholar 

    76.
    Corona-Núñez, R. O., Campo, J. & Williams, M. Aboveground carbon storage in tropical dry forest plots in Oaxaca, Mexico. For. Ecol. Manage.409, 202–214. https://doi.org/10.1016/j.foreco.2017.11.014 (2018).
    Article  Google Scholar 

    77.
    Miles, L. et al. A global overview of the conservation status of tropical dry forests. J. Biogeogr.33, 491–505. https://doi.org/10.1111/j.1365-2699.2005.01424.x (2006).
    Article  Google Scholar 

    78.
    Fotis, A. T. et al. Above-ground biomass is driven by mass-ratio effects and stand structural attributes in a temperate deciduous forest. J. Ecol.106, 561–570. https://doi.org/10.1111/1365-2745.12847 (2017).
    CAS  Article  Google Scholar 

    79.
    Morin, X. Species richness promotes canopy packing: A promising step towards a better understanding of the mechanisms driving the diversity effects on forest functioning. Funct. Ecol.29, 993–994. https://doi.org/10.1111/1365-2435.12473 (2015).
    Article  Google Scholar 

    80.
    Labriere, N. et al. Spatial congruence between carbon and biodiversity across forest landscapes of northern Borneo. Glob. Ecol. Conserv.6, 105–120. https://doi.org/10.1016/j.gecco.2016.01.005 (2016).
    Article  Google Scholar 

    81.
    Jucker, T., Bouriaud, O. & Coomes, D. A. Crown plasticity enables trees to optimize canopy packing in mixed species forests. Funct. Ecol.29, 1078–1086. https://doi.org/10.1111/1365-2435.12428 (2015).
    Article  Google Scholar 

    82.
    Toledo, M. et al. Distribution patterns of tropical woody species in response to climatic and edaphic gradients. J. Ecol.100, 253–263. https://doi.org/10.1111/j.1365-2745.2011.01890.x (2012).
    Article  Google Scholar 

    83.
    Lugo, A. E. & Brown, S. Tropical forests as sinks of atmospheric carbon. For. Ecol. Manage.54, 239–255. https://doi.org/10.1016/0378-1127(92)90016-3 (1992).
    Article  Google Scholar 

    84.
    van der Heijden, G. M. et al. Liana impacts on carbon cycling, storage and sequestration in tropical forests. Biotropica45, 682–692. https://doi.org/10.1111/btp.12060 (2013).
    Article  Google Scholar 

    85.
    Nath, A. J., Lal, R. & Das, A. K. Managing woody bamboos for carbon farming and carbon trading. Glob. Ecol. Conserv.3, 654–663. https://doi.org/10.1016/j.gecco.2015.03.002 (2015).
    Article  Google Scholar 

    86.
    Ali, A. et al. Big-sized trees overrule remaining trees’ attributes and species richness as determinants of aboveground biomass in tropical forests. Glob. Change Biol.25, 2810–2824. https://doi.org/10.1111/gcb.14707 (2019).
    ADS  Article  Google Scholar 

    87.
    Bastin, J. F. et al. Pan-tropical prediction of forest structure from the largest trees. Glob. Ecol. Biogeogr.27, 1366–1383. https://doi.org/10.1111/geb.12803 (2018).
    Article  Google Scholar 

    88.
    Allen, K. et al. Will seasonally dry tropical forests be sensitive or resistant to future changes in rainfall regimes?. Environ. Res. Lett.12, 023001. https://doi.org/10.1088/1748-9326/aa5968 (2017).
    ADS  Article  Google Scholar 

    89.
    ENVIS Centre: Tamil Nadu State of Environment and Related Issues. http://tnenvis.nic.in/files/KANYAKUMARI%20%20.pdf (2018).

    90.
    Roy, P. S. et al.Biodiversity Characterization at Landscape Level: National Assessment (Indian Institute of Remote Sensing, Dehradun, 2012).
    Google Scholar 

    91.
    Sundarapandian, S. M. & Swamy, P. S. Forest ecosystem structure and composition along an altitudinal gradient in the Western Ghats, South India. J. Trop. For. Sci.12, 104–123 (2000).
    Google Scholar 

    92.
    Zanne, A. E. et al. Global wood density database. https://hdl.handle.net/10255/dryad.235 (2009).

    93.
    Alvarez, E. et al. Tree above-ground biomass allometries for carbon stocks estimation in the natural forests of Colombia. For. Ecol. Manage.267, 297–308. https://doi.org/10.1016/j.foreco.2011.12.013 (2012).
    Article  Google Scholar 

    94.
    Phillips, J. et al. Live aboveground carbon stocks in natural forests of Colombia. For. Ecol. Manage.374, 119–128. https://doi.org/10.1016/j.foreco.2016.05.009 (2016).
    Article  Google Scholar 

    95.
    Kaushal, R. et al. Predictive models for biomass and carbon stock estimation in male bamboo (Dendrocalamus strictus L.) in Doon valley, India. Acta Ecol. Sin.36, 469–476. https://doi.org/10.1016/j.chnaes.2016.07.003 (2016).
    Article  Google Scholar 

    96.
    Chaturvedi, R. K., Raghubanshi, A. S. & Singh, J. S. Biomass estimation of dry tropical woody species at juvenile stage. Sci. World J. https://doi.org/10.1100/2012/790219 (2012).
    Article  Google Scholar 

    97.
    Schnitzer, S. A., DeWalt, S. J. & Chave, J. Censusing and measuring lianas, a quantitative comparison of the common methods. Biotropica38, 581–591. https://doi.org/10.1111/j.1744-7429.2006.00187.x (2006).
    Article  Google Scholar 

    98.
    Cairns, M. A., Brown, S., Helmer, E. H. & Baumgardner, G. A. Root biomass allocation in the world’s upland forests. Oecologia111, 1–11. https://doi.org/10.1007/s004420050201 (1997).
    ADS  Article  PubMed  Google Scholar 

    99.
    Ravindranath, N. H. & Ostwald, M. Carbon Inventory Methods, Handbook for Greenhouse Gas Inventory, Carbon Mitigation and Roundwood Production Projects (Springer Science & Business Media, New York, 2008).
    Google Scholar 

    100.
    Junior, P. et al. Carbon stocks in a tropical dry forest in Brazil. Rev. Cienc. Agron.47, 32–40. https://doi.org/10.5935/1806-6690.20160004 (2016).
    Article  Google Scholar 

    101.
    Coleman, D. C. Soil carbon balance in a successional grassland. Oikos24, 195–199. https://doi.org/10.2307/3543875 (1973).
    CAS  Article  Google Scholar 

    102.
    Walkley, A. & Black, I. A. An examination of the Degtjareff method for determining soil organic matter, and a proposed modification of the chromic acid titration method. Soil Sci.37, 29–38 (1934).
    ADS  CAS  Article  Google Scholar 

    103.
    Pearson, T., Walker, S. & Brown, S. Sourcebook for land use, land-use change and forestry projects 29 (Winrock International and the BioCarbon Fund of the World Bank, 2005).

    104.
    Pebesma, E. J. & Bivand, R. S. Classes and methods for spatial data in R. the sp Package. R News5 (2005).

    105.
    Hijmans, R. J. Raster: Geographic Data Analysis and Modeling. R package version 3.1-5 (2020).

    106.
    R Core Team. R: A language and environment for statistical computing. R Foundation for Statistical Computing, Vienna, Austria. https://www.R-project.org/ (2019).

    107.
    Muthuramkumar, S. et al. Plant community structure in tropical rain forest fragments of the Western Ghats, India. Biotropica38, 143–160 (2006).
    Article  Google Scholar 

    108.
    IBM SPSS Statistics for Windows, Version 20.0. Armonk, NY: IBM Corp. (2011).

    109.
    Hammer, Ø., Harper, D. A. T. & Ryan, P. D. PAST: Paleontological statistics software package for education and data analysis. Palaeontol. Electron.4 (2001). More

  • in

    A policy-driven framework for conserving the best of Earth’s remaining moist tropical forests

    1.
    Turubanova, S., Potapov, P. V., Tyukavina, A. & Hansen, M. C. Ongoing primary forest loss in Brazil, Democratic Republic of the Congo, and Indonesia. Environ. Res. Lett. 13, 074028 (2018).
    Google Scholar 
    2.
    Watson, J. E. M. et al. The exceptional value of intact forest ecosystems. Nat. Ecol. Evol. 2, 599–610 (2018).
    PubMed  Google Scholar 

    3.
    COP 11 Decision X/2. Strategic Plan for Biodiversity 2011–2020 (Convention on Biological Diversity, 2010).

    4.
    Transforming Our World: The 2030 Agenda For Sustainable Development A/RES/70/1 Resolution adopted by the United Nations General Assembly (United Nations, 2015).

    5.
    Adoption of the Paris Agreement. Proposal by the President Draft Decision -/CP.21 (UNFCCC, 2015).

    6.
    Parks Canada Guide to Management Planning (Parks Canada Agency, 2008).

    7.
    Parrish, J. D., Braun, D. P. & Unnasch, R. S. Are we conserving what we say we are? Measuring ecological integrity within protected areas. BioScience 53, 851–860 (2003).
    Google Scholar 

    8.
    Anderson, J. E. A conceptual framework for evaluating and quantifying naturalness. Conserv. Biol. 5, 347–352 (1991).
    Google Scholar 

    9.
    Tierney, G. L., Faber-Langendoen, D., Mitchell, B. R., Shriver, W. G. & Gibbs, J. P. Monitoring and evaluating the ecological integrity of forest ecosystems. Front. Ecol. Environ. 7, 308–316 (2009).
    Google Scholar 

    10.
    Kricher, J. Tropical Ecology (Princeton Univ. Press, 2011).

    11.
    Lindenmayer, D. B. & Franklin, J. F. Conserving Forest Biodiversity: A Comprehensive Multiscaled Approach (Island Press, 2002).

    12.
    Rozendaal, D. M. A. et al. Biodiversity recovery of neotropical secondary forests. Sci. Adv. 5, eaau3114 (2019).
    PubMed  PubMed Central  Google Scholar 

    13.
    Cortés-Gómez, A. M., Castro-Herrera, F. & Urbina-Cardona, J. N. Small changes in vegetation structure create great changes in amphibian ensembles in the Colombian Pacific rainforest. Trop. Conserv. Sci. 6, 749–769 (2013).
    Google Scholar 

    14.
    Gibson, L. et al. Primary forests are irreplaceable for sustaining tropical biodiversity. Nature 478, 378–381 (2011).
    CAS  PubMed  Google Scholar 

    15.
    Poorter, L. et al. Diversity enhances carbon storage in tropical forests. Glob. Ecol. Biogeogr. 24, 1314–1328 (2015).
    Google Scholar 

    16.
    Running, S. W. et al. A continuous satellite-derived measure of global terrestrial primary production. BioScience 54, 547–560 (2004).
    Google Scholar 

    17.
    Bonan, G. B. & Doney, S. C. Climate, ecosystems, and planetary futures: the challenge to predict life in Earth system models. Science 359, eaam8328 (2018).
    PubMed  Google Scholar 

    18.
    Symes, W. S., Edwards, D. P., Miettinen, J., Rheindt, F. E. & Carrasco, L. R. Combined impacts of deforestation and wildlife trade on tropical biodiversity are severely underestimated. Nat. Commun. 9, 4052 (2018).
    PubMed  PubMed Central  Google Scholar 

    19.
    Lindenmayer, D. B., Laurance, W. F. & Franklin, J. F. Global decline in large old trees. Science 338, 1305–1306 (2012).
    CAS  PubMed  Google Scholar 

    20.
    Pfeifer, M. et al. Creation of forest edges has a global impact on forest vertebrates. Nature 551, 187–191 (2017).
    CAS  PubMed  PubMed Central  Google Scholar 

    21.
    Barlow, J. et al. Anthropogenic disturbance in tropical forests can double biodiversity loss from deforestation. Nature 535, 144–147 (2016).
    CAS  PubMed  Google Scholar 

    22.
    Hansen, A. et al. Global humid tropics forest structural condition and forest structural integrity maps. Sci. Data 6, 232 (2019).
    PubMed  PubMed Central  Google Scholar 

    23.
    Dinerstein, E. et al. An ecoregion-based approach to protecting half the terrestrial realm. BioScience 67, 534–545 (2017).
    PubMed  PubMed Central  Google Scholar 

    24.
    Hansen, M. C. et al. High-resolution global maps of 21st-century forest cover change. Science 342, 850–853 (2013).
    CAS  PubMed  Google Scholar 

    25.
    Venter, O. et al. Sixteen years of change in the global terrestrial human footprint and implications for biodiversity conservation. Nat. Commun. 7, 12558 (2016).
    CAS  PubMed  PubMed Central  Google Scholar 

    26.
    The World Database on Protected Areas (WDPA) (IUCN and UNEP-WCMC, 2019).

    27.
    Di Marco, M., Venter, O., Possingham, H. P. & Watson, J. E. M. Changes in human footprint drive changes in species extinction risk. Nat. Commun. 9, 4621 (2018).
    PubMed  PubMed Central  Google Scholar 

    28.
    Armenteras, D., Espelta, J. M., Rodríguez, N. & Retana, J. Deforestation dynamics and drivers in different forest types in Latin America: three decades of studies (1980–2010). Glob. Environ. Change 46, 139–147 (2017).
    Google Scholar 

    29.
    Lenton, T. M. et al. Climate tipping points—too risky to bet against. Nature 575, 592–595 (2019).
    CAS  PubMed  Google Scholar 

    30.
    Lovejoy, T. E. & Nobre, C. Amazon tipping point. Sci. Adv. 4, eaat2340 (2018).
    PubMed  PubMed Central  Google Scholar 

    31.
    Laurance, W. F. et al. A global strategy for road building. Nature 513, 229–232 (2014).
    CAS  PubMed  Google Scholar 

    32.
    Jones, K. R. et al. One-third of global protected land is under intense human pressure. Science 360, 788–791 (2018).
    CAS  PubMed  Google Scholar 

    33.
    Golden Kroner, R. E. et al. The uncertain future of protected lands and waters. Science 364, 881–886 (2019).
    CAS  PubMed  Google Scholar 

    34.
    Geldmann, J., Manica, A., Burgess, N. D., Coad, L. & Balmford, A. A global-level assessment of the effectiveness of protected areas at resisting anthropogenic pressures. Proc. Natl. Acad. Sci. USA 116, 23209–23215 (2019).
    CAS  PubMed  Google Scholar 

    35.
    DeFries, R., Karanth, K. K. & Pareeth, S. Interactions between protected areas and their surroundings in human-dominated tropical landscapes. Biol. Conserv. 143, 2870–2880 (2010).
    Google Scholar 

    36.
    Polak, T. et al. Efficient expansion of global protected areas requires simultaneous planning for species and ecosystems. R. Soc. Open Sci. 2, 150107 (2015).
    PubMed  PubMed Central  Google Scholar 

    37.
    Garnett, S. T. et al. A spatial overview of the global importance of indigenous lands for conservation. Nat. Sustain. 1, 369–374 (2018).
    Google Scholar 

    38.
    Jonas, H. D., Barbuto, V., Jonas, H. C., Kothari, A. & Nelson, F. New steps of change: looking beyond protected areas to consider other effective area-based conservation measures. Parks 20, 111–127 (2014).
    Google Scholar 

    39.
    Brancalion, P. H. S. et al. Global restoration opportunities in tropical rainforest landscapes. Sci. Adv. 5, eaav3223 (2019).
    PubMed  PubMed Central  Google Scholar 

    40.
    Chazdon, R. L. et al. Rates of change in tree communities of secondary neotropical forests following major disturbances. Philos. Trans. R. Soc. Lond. B 362, 273–289 (2007).
    Google Scholar 

    41.
    Chazdon, R. L. Beyond deforestation: restoring forests and ecosystem services on degraded lands. Science 320, 1458–1460 (2008).
    CAS  PubMed  Google Scholar 

    42.
    Venter, O. et al. Harnessing carbon payments to protect biodiversity. Science 326, 1368–1369 (2009).
    CAS  PubMed  Google Scholar 

    43.
    Margules, C. R. & Pressey, R. L. Systematic conservation planning. Nature 405, 243–253 (2000).
    CAS  PubMed  Google Scholar 

    44.
    Griscom, B. W. et al. National mitigation potential from natural climate solutions in the tropics. Philos. Trans. R. Soc. B 375, 20190126 (2020).
    Google Scholar 

    45.
    Pereira, H. M. et al. Essential biodiversity variables. Science 339, 277–278 (2013).
    CAS  PubMed  Google Scholar 

    46.
    Olson, D. M. & Dinerstein, E. The Global 200: priority ecoregions for global conservation. Ann. Missouri Bot. Gard. 89, 199–224 (2002).
    Google Scholar 

    47.
    Pan, Y. et al. A large and persistent carbon sink in the world’s forests. Science 333, 988–993 (2011).
    CAS  PubMed  Google Scholar 

    48.
    Prevedello, J. A., Winck, G. R., Weber, M. M., Nichols, E. & Sinervo, B. Impacts of forestation and deforestation on local temperature across the globe. PLoS ONE 14, e0213368 (2019).
    CAS  PubMed  PubMed Central  Google Scholar 

    49.
    Gorelick, N. et al. Google Earth Engine: planetary-scale geospatial analysis for everyone. Remote Sens. Environ. 202, 18–27 (2017).
    Google Scholar 

    50.
    Šavrič, B., Patterson, T. & Jenny, B. The Equal Earth map projection. Int. J. Geogr. Inf. Sci. 33, 454–465 (2019).
    Google Scholar 

    51.
    Tyukavina, A. et al. Aboveground carbon loss in natural and managed tropical forests from 2000 to 2012. Environ. Res. Lett. 10, 074002 (2015).
    Google Scholar 

    52.
    Goetz, S. & Dubayah, R. Advances in remote sensing technology and implications for measuring and monitoring forest carbon stocks and change. Carbon Manag. 2, 231–244 (2011).
    Google Scholar 

    53.
    Hansen, A. J., Phillips, L. B., Dubayah, R., Goetz, S. & Hofton, M. Regional-scale application of lidar: variation in forest canopy structure across the southeastern US. For. Ecol. Manag. 329, 214–226 (2014).
    Google Scholar 

    54.
    Venter, O. et al. Global terrestrial Human Footprint maps for 1993 and 2009. Sci. Data 3, 160067 (2016).
    PubMed  PubMed Central  Google Scholar 

    55.
    Sanderson, E. W. et al. The human footprint and the last of the wild. BioScience 52, 891–904 (2002).
    Google Scholar 

    56.
    Tucker, M. A. et al. Moving in the Anthropocene: global reductions in terrestrial mammalian movements. Science 359, 466–469 (2018).
    CAS  PubMed  Google Scholar 

    57.
    Dudley, N. (ed.) Guidelines for Applying Protected Area Management Categories (IUCN, 2008).

    58.
    Dubayah, R. et al. The Global Ecosystem Dynamics Investigation: high-resolution laser ranging of the Earth’s forests and topography. Sci. Remote Sens. 1, 100002 (2020).
    Google Scholar  More

  • in

    Southern Ocean carbon export efficiency in relation to temperature and primary productivity

    1.
    Sabine, C. L. et al. The oceanic sink for anthropogenic CO2. Science305, 367–371 (2004).
    ADS  CAS  PubMed  Google Scholar 
    2.
    Sarmiento, J. L., Gruber, N., Brzezinski, M. A. & Dunne, J. P. High-latitude controls of thermocline nutrients and low latitude biological productivity. Nature427, 56–60 (2004).
    ADS  CAS  PubMed  Google Scholar 

    3.
    Devries, T., Primeau, F. & Deutsch, C. The sequestration efficiency of the biological pump. Geophys. Res. Lett.39, 1–5 (2012).
    Google Scholar 

    4.
    Sigman, D. M., Hain, M. P. & Haug, G. H. The polar ocean and glacial cycles in atmospheric CO2 concentration. Nature466, 47–55 (2010).
    ADS  CAS  PubMed  Google Scholar 

    5.
    Honjo, S. et al. Understanding the role of the biological pump in the global carbon cycle: An imperative for ocean science. Oceanography27, 10–16 (2014).
    Google Scholar 

    6.
    Moore, J. K. et al. Sustained climate warming drives declining marine biological productivity. Science359, 1139–1143 (2018).
    ADS  CAS  PubMed  Google Scholar 

    7.
    Laws, E. A., Falkowski, P. G., Smith, W. O. J., Ducklow, H. & McCarthy, J. J. Temperature effects on export production in the open ocean. Global Biogeochem. Cycles14, 1231–1246 (2000).
    ADS  CAS  Google Scholar 

    8.
    Dunne, J. P., Armstrong, R. A., Gnnadesikan, A. & Sarmiento, J. L. Empirical and mechanistic models for the particle export ratio. Global Biogeochem. Cycles19, 1–16 (2005).
    Google Scholar 

    9.
    Dunne, J. P., Sarmiento, J. L. & Gnanadesikan, A. A synthesis of global particle export from the surface ocean and cycling through the ocean interior and on the seafloor. Global Biogeochem. Cycles21, 1–16 (2007).
    Google Scholar 

    10.
    Henson, S. A. et al. A reduced estimate of the strength of the ocean’s biological carbon pump. Geophys. Res. Lett.38, 10–14 (2011).
    Google Scholar 

    11.
    Laws, E. A., D’Sa, E. & Naik, P. Simple equations to estimate ratios of new or export production to total production from satellite-derived estimates of sea surface temperature and primary production. Limnol. Oceanogr. Methods9, 593–601 (2011).
    Google Scholar 

    12.
    Maiti, K., Charette, M. A., Buesseler, K. O. & Kahru, M. An inverse relationship between production and export efficiency in the Southern Ocean. Geophys. Res. Lett.40, 1557–1561 (2013).
    ADS  Google Scholar 

    13.
    Siegel, D. A. et al. Global assessment of ocean carbon export by combining satellite observations and food-web models. Global Biogeochem. Cycles28, 181–196 (2014).
    ADS  CAS  Google Scholar 

    14.
    Britten, G. L., Wakamatsu, L. & Primeau, F. W. The temperature-ballast hypothesis explains carbon export efficiency observations in the Southern Ocean. Geophys. Res. Lett.44, 1831–1838 (2017).
    ADS  Google Scholar 

    15.
    Morris, P. J., Sanders, R., Turnewitsch, R. & Thomalla, S. 234Th-derived particulate organic carbon export from an island-induced phytoplankton bloom in the Southern Ocean. Deep. Res. Part II Top. Stud. Oceanogr.54, 2208–2232 (2007).

    16.
    Jacquet, S. H. M., Lam, P. J., Trull, T. & Dehairs, F. Carbon export production in the subantarctic zone and polar front zone south of Tasmania. Deep. Res. Part II Top. Stud. Oceanogr.58, 2277–2292 (2011).

    17.
    Laurenceau-Cornec, E. C. et al. The relative importance of phytoplankton aggregates and zooplankton fecal pellets to carbon export: Insights from free-drifting sediment trap deployments in naturally iron-fertilised waters near the Kerguelen Plateau. Biogeosciences12, 1007–1027 (2015).
    ADS  Google Scholar 

    18.
    Planchon, F. et al. Carbon export in the naturally iron-fertilized Kerguelen area of the Southern Ocean based on the 234Th approach. Biogeosciences12, 3831–3848 (2015).
    ADS  CAS  Google Scholar 

    19.
    Roca-Martí, M. et al. High particulate organic carbon export during the decline of a vast diatom bloom in the Atlantic sector of the Southern Ocean. Deep. Res. PartII(138), 102–115 (2017).
    Google Scholar 

    20.
    Henson, S. A., Yool, A. & Sanders, R. Variability in efficiency of particulate organic carbon export: A model study. Global Biogeochem. Cycles29, 33–45 (2015).
    ADS  CAS  Google Scholar 

    21.
    Savoye, N., Trull, T. W., Jacquet, S. H. M., Navez, J. & Dehairs, F. 234Th-based export fluxes during a natural iron fertilization experiment in the Southern Ocean (KEOPS). Deep. Res. Part II Top. Stud. Oceanogr.55, 841–855 (2008).

    22.
    Puigcorbé, V. et al. Particulate organic carbon export across the Antarctic Circumpolar Current at 10° E : Differences between north and south of the Antarctic Polar Front. Deep. Res. PartII(138), 86–101 (2017).
    Google Scholar 

    23.
    Le Moigne, F. A. C. et al. What causes the inverse relationship between primary production and export efficiency in the Southern Ocean?. Geophys. Res. Lett.43, 4457–4466 (2016).
    ADS  Google Scholar 

    24.
    Cavan, E. L. et al. Attenuation of particulate organic carbon flux in the Scotia Sea, Southern Ocean, is controlled by zooplankton fecal pellets. Geophys. Res. Lett.42, 821–830 (2015).
    ADS  CAS  Google Scholar 

    25.
    Cavan, E. L., Henson, S. A., Belcher, A. & Sanders, R. Role of zooplankton in determining the efficiency of the biological carbon pump. Biogeosciences14, 177–186 (2017).
    ADS  CAS  Google Scholar 

    26.
    Arteaga, L., Haëntjens, N., Boss, E., Johnson, K. S. & Sarmiento, J. L. Assessment of export efficiency equations in the southern ocean applied to satellite-based net primary production. J. Geophys. Res. Ocean.123, 2945–2964 (2018).
    ADS  Google Scholar 

    27.
    Cael, B. B., Bisson, K. & Follett, C. L. Can rates of ocean primary production and biological carbon export be related through their probability distributions?. Global Biogeochem. Cycles32, 954–970 (2018).
    ADS  CAS  PubMed  PubMed Central  Google Scholar 

    28.
    Le Moigne, F. A. C., Pabortsava, K., Marcinko, C. L. J., Martin, P. & Sanders, R. J. Where is mineral ballast important for surface export of particulate organic carbon in the ocean?. Geophys. Res. Lett.41, 8460–8468 (2014).
    ADS  PubMed  PubMed Central  Google Scholar 

    29.
    Passow, U. & Rocha, C. L. D. L. Accumulation of mineral ballast on organic aggregates. Global Biogeochem. Cycles20, GB1013 (2006).
    ADS  Google Scholar 

    30.
    De La Rocha, C. L., Nowald, N. & Passow, U. Interactions between diatom aggregates, minerals, particulate organic carbon, and dissolved organic matter: Further implications for the ballast hypothesis. Global Biogeochem. Cycles22, 1–10 (2008).
    Google Scholar 

    31.
    Fay, A. R. & McKinley, G. A. Global open-ocean biomes: Mean and temporal variability. Earth Syst. Sci. Data6, 273–284 (2014).
    ADS  Google Scholar 

    32.
    Lopez-Urrutia, A., Martin, E. S., Harris, R. P. & Irigoien, X. Scaling the metabolic balance of the oceans. Proc. Natl. Acad. Sci.103, 8739–8744 (2006).
    ADS  CAS  PubMed  Google Scholar 

    33.
    Wohlers, J. et al. Changes in biogenic carbon flow in response to sea surface warming. Proc. Natl. Acad. Sci.106, 7067–7072 (2009).
    ADS  CAS  PubMed  Google Scholar 

    34.
    Carranza, M. M. et al. When mixed layers are not mixed. Storm-driven mixing and bio-optical vertical gradients in mixed layers of the Southern Ocean. J. Geophys. Res. Ocean.123, 7264–7289 (2018).

    35.
    Gregg, W. W. & Casey, N. W. Modeling coccolithophores in the global oceans. Deep Sea Res. Part II Top. Stud. Oceanogr.54, 447–477 (2007).

    36.
    Rousseaux, C. S. & Gregg, W. W. Recent decadal trends in global phytoplankton composition. Global Biogeochem. Cycles29, 1674–1688 (2015).
    ADS  CAS  Google Scholar 

    37.
    Rosengard, S. Z. et al. Carbon export and transfer to depth across the Southern Ocean Great Calcite Belt. Biogeosciences12, 3953–3971 (2015).
    ADS  Google Scholar 

    38.
    Buesseler, K. O. The decoupling of production and particle export in the surface ocean. Global Biogeochem. Cycles12, 297–310 (1998).
    ADS  CAS  Google Scholar 

    39.
    Ducklow, H. W. et al. Spring-summer net community production, new production, particle export and related water column biogeochemical processes in the marginal sea ice zone of the Western Antarctic Peninsula 2012–2014. Philos. Trans. R Soc. A376, 20170177 (2018).
    ADS  Google Scholar 

    40.
    Cael, B. B. & Follows, M. J. On the temperature dependence of oceanic carbon efficiency. Geophys. Res. Lett.43, 5170–5175 (2016).
    ADS  Google Scholar 

    41.
    Cael, B. B., Bisson, K. & Follows, M. J. How have recent temperature changes affected the efficiency of ocean biological carbon export?. Limnol. Oceanogr. Lett.2, 113–118 (2017).
    Google Scholar 

    42.
    Sigman, D. M. & Hain, M. P. The biological productivity of the ocean. Nat. Educ.3, 1–16 (2012).
    Google Scholar 

    43.
    Verdy, A. & Mazloff, M. R. A data assimilating model for estimating Southern Ocean biogeochemistry. J. Geophys. Res. Ocean.122, 6968–6988 (2017).
    ADS  CAS  Google Scholar 

    44.
    Moore, J. K., Lindsay, K., Doney, S. C., Long, M. C. & Misumi, K. Marine ecosystem dynamics and biogeochemical cycling in the community Earth system model [CESM1 (BGC)]: Comparison of the 1990s with the 2090s under the RCP4.5. J. Clim.26, 9291–9312 (2013).

    45.
    Llort, J. et al. Evaluating Southern Ocean carbon eddy-pump from biogeochemical-argo floats. J. Geophys. Res. Ocean.123, 971–984 (2018).
    ADS  Google Scholar 

    46.
    Belcher, A. et al. Krill faecal pellets drive hidden pulses of particulate organic carbon in the marginal ice zone. Nat. Commun.10, 889 (2019).
    ADS  CAS  PubMed  PubMed Central  Google Scholar 

    47.
    Belcher, A. et al. The potential role of Antarctic krill faecal pellets in efficient carbon export at the marginal ice zone of the South Orkney Islands in spring. Polar Biol.40, 2001–2013 (2017).
    CAS  PubMed  PubMed Central  Google Scholar 

    48.
    Irigoien, X. et al. Large mesopelagic fishes biomass and trophic efficiency in the open ocean. Nat. Commun.5, 3271 (2014).
    ADS  PubMed  PubMed Central  Google Scholar 

    49.
    Carlson, C. A. & Hansell, D. A. DOM sources, sinks, reactivity, and budgets. in Biogeochemistry of Marine Dissolved Organic Matter, 2nd Edn. 65–126 (2014).

    50.
    Letscher, R. T., Moore, J. K., Teng, Y. & Primeau, F. Variable C:N:P stoichiometry of dissolved organic matter cycling in the community Earth system model. Biogeosciences12, 209–221 (2015).
    ADS  CAS  Google Scholar 

    51.
    Roshan, S. & DeVries, T. Efficient dissolved organic carbon production and export in the oligotrophic ocean. Nat. Commun.8, 2036 (2017).
    ADS  PubMed  PubMed Central  Google Scholar 

    52.
    Schlitzer, R. Carbon export fluxes in the Southern Ocean: Results from inverse modeling and comparison with satellite-based estimates. Deep. Res. Part II Top. Stud. Oceanogr.49, 1623–1644 (2002).

    53.
    Nevison, C. et al. Net community production in the Southern Ocean: Insights from comparing atmospheric potential oxygen to satellite ocean color algorithms and ocean models. Geophys. Res. Lett.45, 10549–10559 (2018).
    ADS  CAS  Google Scholar 

    54.
    Letscher, R. T. et al. Microbial community composition and nitrogen availability influence DOC remineralization in the South Pacific Gyre. Mar. Chem.177, 325–334 (2015).
    CAS  Google Scholar 

    55.
    Boyd, P. W., Claustre, H., Levy, M., Siegel, D. A. & Weber, T. Multi-faceted particle pumps drive carbon sequestration in the ocean. Nature568, 327–335 (2019).
    ADS  CAS  PubMed  Google Scholar 

    56.
    Dall’Olmo, G., Dingle, J., Polimene, L., Brewin, R. J. W. & Claustre, H. Substantial energy input to the mesopelagic ecosystem from the seasonal mixed-layer pump. Nat. Geosci.9, 820–823 (2016).

    57.
    Stukel, M. R. & Ducklow, H. W. Stirring up the biological pump: Vertical mixing and carbon export in the Southern Ocean. Global Biogeochem. Cycles31, 1420–1434 (2017).
    ADS  CAS  Google Scholar 

    58.
    Riley, J. S. et al. The relative contribution of fast and slow sinking particles to ocean carbon export. Global Biogeochem. Cycles26, GB1026 (2012).
    ADS  Google Scholar 

    59.
    Baker, C. A. et al. Slow-sinking particulate organic carbon in the Atlantic Ocean: Magnitude, flux, and potential controls. Global Biogeochem. Cycles31, 1051–1065 (2017).
    ADS  CAS  Google Scholar 

    60.
    Sweeney, C. et al. Biogeochemical regimes, net community production and carbon export in the Ross Sea, Antarctica. Deep Sea Res.II(47), 3369–3394 (2000).
    ADS  Google Scholar 

    61.
    Yager, P. et al. A carbon budget for the Amundsen Sea Polynya, Antarctica: Estimating net community production and export in a highly productive polar ecosystem. Elem. Sci. Anthr.4, 140 (2016).
    Google Scholar 

    62.
    Morris, P. J. & Sanders, R. A carbon budget for a naturally iron fertilized bloom in the Southern Ocean. Global Biogeochem. Cycles25, 1–14 (2011).
    Google Scholar 

    63.
    Deppeler, S. L. & Davidson, A. T. Southern Ocean phytoplankton in a changing climate. Front. Mar. Sci.4, 40 (2017).
    Google Scholar 

    64.
    Lemaitre, N. et al. High variability of export fluxes along the North Atlantic GEOTRACES section GA01: Particulate organic carbon export deduced from the 234Th method. Biogeosciences15, 6417–6437 (2018).
    ADS  CAS  Google Scholar 

    65.
    Maiti, K. et al. Export fluxes in northern Gulf of Mexico—Comparative evaluation of direct, indirect and satellite-based estimates. Mar. Chem.184, 60–77 (2016).
    CAS  Google Scholar 

    66.
    Anand, S. S., Rengarajan, R. & Sarma, V. V. S. S. 234Th-based carbon export flux along the Indian GEOTRACES GI02 section in the Arabian Sea and the Indian Ocean. Global Biogeochem. Cycles32, 417–436 (2018).
    ADS  Google Scholar 

    67.
    Kelly, T. B., Kahru, M., Goericke, R., Song, H. & Stukel, M. R. Spatial and interannual variability in export efficiency and the biological pump in an eastern boundary current upwelling system with substantial lateral advection. Deep Sea Res. Part I Oceanogr. Res. Pap.140, 14–25 (2018).

    68.
    Treguer, P. et al. Influence of diatom diversity on the ocean biological carbon pump. Nat. Geosci.11, 27–37 (2018).
    ADS  CAS  Google Scholar 

    69.
    Palevsky, H. I. & Doney, S. C. How choice of depth horizon influences the estimated spatial patterns and global magnitude of ocean carbon export flux. Geophys. Res. Lett.45, 4171–4179 (2018).
    ADS  Google Scholar 

    70.
    Buesseler, K. O. et al. Thorium-234 as a tracer of spatial, temporal and vertical variability in particle flux in the North Pacific. Deep. Res. PartI(56), 1143–1167 (2009).
    Google Scholar 

    71.
    Buesseler, K. O., McDonnell, A. M. P., Schofield, O. M. E., Steinberg, D. K. & Ducklow, H. W. High particle export over the continental shelf of the west Antarctic Peninsula. Geophys. Res. Lett.37, 1–5 (2010).
    Google Scholar 

    72.
    Buesseler, K. O. & Boyd, P. W. Shedding light on processes that control particle export and flux attenuation in the twilight zone of the open ocean. Limnol. Oceanogr.54, 1210–1232 (2009).
    ADS  CAS  Google Scholar 

    73.
    Stange, P. et al. Quantifying the time lag between organic matter production and export in the surface ocean: Implications for estimates of export efficiency. Geophys. Res. Lett.44, 268–276 (2017).
    ADS  CAS  Google Scholar 

    74.
    Behrenfeld, M. J. & Falkowski, P. G. Photosynthetic rates derived from satellite-based chlorophyll concentration. Limnol. Oceanogr.42, 1–20 (1997).
    ADS  CAS  Google Scholar 

    75.
    Carr, M.-E. et al. A comparison of global estimates of marine primary production from ocean color. Deep Sea Res. Part II Top. Stud. Oceanogr.53, 741–770 (2006).

    76.
    Westberry, T., Behrenfeld, M. J., Siegel, D. A. & Boss, E. Carbon-based primary productivity modeling with vertically resolved photoacclimation. Global Biogeochem. Cycles22, GB2024 (2008).
    ADS  Google Scholar 

    77.
    Rohr, T., Long, M. C., Kavanaugh, M. T., Lindsay, K. & Doney, S. C. Variability in the mechanisms controlling Southern Ocean phytoplankton bloom phenology in an ocean model and satellite observations. Global Biogeochem. Cycles31, 922–940 (2017).
    ADS  CAS  Google Scholar 

    78.
    Negrete-garcía, G., Lovenduski, N. S., Hauri, C., Krumhardt, K. M. & Lauvset, S. K. Sudden emergence of a shallow aragonite saturation horizon in the Southern Ocean. Nat. Clim. Chang.9, 313–317 (2019).
    ADS  Google Scholar  More