1.
Lamarque, J.-F. et al. Multi-model mean nitrogen and sulfur deposition from the Atmospheric Chemistry and Climate Model Intercomparison Project (ACCMIP): evaluation of historical and projected future changes. Atmos. Chem. Phys. 13, 6247–6294 (2013).
Google Scholar
2.
Galloway, J. N. Anthropogenic mobilization of sulphur and nitrogen: immediate and delayed consequences. Annu. Rev. Energy Env. 21, 261–292 (1996).
Google Scholar
3.
Cowling, E. B. Acid precipitation in historical perspective. Environ. Sci. Technol. 16, 110A–123A (1982).
Google Scholar
4.
Gorham, E. On the acidity and salinity of rain. Geochim. Cosmochim. Acta 7, 231–239 (1955).
Google Scholar
5.
Likens, G. E. & Bormann, F. H. Acid rain: a serious regional environmental problem. Science 184, 1176–1179 (1974).
Google Scholar
6.
Goyer, R. A. et al. Potential human health effects of acid rain: report of a workshop. Environ. Health Perspect. 60, 355–368 (1985).
Google Scholar
7.
Likens, G. E., Driscoll, C. T. & Buso, D. C. Long-term effects of acid rain: response and recovery of a forest ecosystem. Science 272, 244–246 (1996).
Google Scholar
8.
Johnson, A. H. & Siccama, T. G. Acid deposition and forest decline. Environ. Sci. Technol. 17, 294A–305A (1983).
Google Scholar
9.
Schulze, E.-D. Air pollution and forest decline in a spruce (Picea abies) forest. Science 244, 776–783 (1989).
Google Scholar
10.
Driscoll, C. T. et al. Acidic deposition in the northeastern United States: sources and inputs, ecosystem effects and management strategies. BioScience 51, 180–198 (2001).
Google Scholar
11.
Mitchell, M. J. & Likens, G. E. Watershed sulfur biogeochemistry: shift from atmospheric deposition dominance to climatic regulation. Environ. Sci. Technol. 45, 5267–5271 (2011).
Google Scholar
12.
EPA Air Emissions Data (EPA, accessed 14 April 2020); https://go.nature.com/3fiYt3p
13.
Klimont, Z., Smith, S. J. & Cofala, J. The last decade of global anthropogenic sulfur dioxide: 2000–2011 emissions. Environ. Res. Lett. 8, 014003 (2013).
Google Scholar
14.
Learn More About Sulphur (The Sulphur Institute, 2020); https://go.nature.com/32OHX87
15.
China Statistical Yearbook 2017 (National Bureau of Statistics of China, accessed 1 March 2019); https://go.nature.com/2E7z6E2
16.
Thompson, J. F. Sulfur metabolism in plants. Annu. Rev. Plant Physiol. 18, 59–84 (1967).
Google Scholar
17.
Anderson, J. W. in The Biochemistry of Plants Vol. 16 (ed. Miflin, B. J.) 327–381 (Academic Press, 1990).
18.
Canfield, D. E. & Raiswell, R. The evolution of the sulfur cycle. Am. J. Sci. 299, 697–723 (1999).
Google Scholar
19.
Jackson, G. D. Effects of nitrogen and sulfur on canola yield and nutrient uptake. Agron. J. 92, 644–649 (2000).
Google Scholar
20.
Ma, B.-L. et al. Growth, yield, and yield components of canola as affected by nitrogen, sulfur, and boron application. J. Plant Nutr. Soil Sci. 178, 658–670 (2015).
Google Scholar
21.
Clark, N., Orloff, S. & Ottman, M. Fertilizing high yielding alfalfa in California and Arizona. Better Crops with Plant Food 101, 21–23 (2017).
Google Scholar
22.
Haneklaus, S., Bloem, E., Schnug, E., de Kok, L. J. & Stulen, I. in Handbook of Plant Nutrition (eds Barker, A. V. & Pilbeam, D. J.) Ch. 7 (CRC Press, 2006).
23.
Chien, S. H. et al. Agronomic effectiveness of granular nitrogen/phosphorus fertilizers containing elemental sulfur with and without ammonium sulfate: a review. Agron. J. 108, 1203–1213 (2016).
Google Scholar
24.
Dick, W. A., Kost, D. & Chen, L. in Sulfur: A Missing Link Between Soils, Crops, and Nutrition (ed. Jez, J.) Ch. 5 (ASA, CSSA, SSSA, 2008).
25.
Schnug, E. & Evans, E. J. Monitoring of the sulfur supply of agricultural crops in northern Europe. Phyton 32, 119–122 (1992).
Google Scholar
26.
Gaspar, A. P., Laboski, C. A. M., Naeve, S. L. & Conley, S. P. Secondary and micronutrient uptake, partitioning, and removal across a wide range of soybean seed yield levels. Agron. J. 110, 1328–1338 (2008).
Google Scholar
27.
Fernández, F. G., Ebelhar, S., Greer, K. & Brown, H. Corn response to sulfur in Illinois FREC 2011 Report (FREC, 2012); https://go.nature.com/32PDORh
28.
Steinke, K., Rutan, J. & Thurgood, L. Corn response to nitrogen at multiple sulfur rates. Agron. J. 107, 1347–1354 (2015).
Google Scholar
29.
Sutradhar, A. K., Kaiser, D. E. & Fernández, F. G. Does total nitrogen/sulfur ratio predict nitrogen or sulfur requirement for corn? Soil Sci. Soc. Am. J. 81, 564–577 (2017).
Google Scholar
30.
Kurbondski, A. J., Kaiser, D. E., Rosen, C. J. & Sutradhar, A. K. Does irrigated corn require multiple applications of sulfur? Soil Sci. Soc. Am. J. 83, 1124–1136 (2019).
Google Scholar
31.
Ketterings, Q. M. et al. Soil and tissue testing for sulfur management of alfalfa in New York State. Soil Sci. Soc. Am. J. 76, 298–306 (2012).
Google Scholar
32.
Haupt, G., Lauzon, J. & Hall, B. Sulfur fertilization: improving alfalfa yield and quality. Crops Soils 48, 26–30 (2015).
Google Scholar
33.
Data and Statistics (USDA NASS, accessed 20 May 2019); https://go.nature.com/3hxxAcK
34.
California Pesticide Information Portal (CalPIP) (California Department of Pesticide Regulation, accessed 20 May 2019); https://calpip.cdpr.ca.gov/main.cfm
35.
Orem, W. et al. Sulfur in the South Florida ecosystem: distribution, sources, biogeochemistry, impacts, and management for restoration. Crit. Rev. Environ. Sci. Technol. 41, 249–288 (2011).
Google Scholar
36.
Gabriel, M., Redfield, G. & Rumbold, D. Sulfur as a regional water quality concern in South Florida 2008 South Florida Environmental Report, Appendix 3B-2 (South Florida Water Management District, 2008).
37.
Shainberg, I. et al. in Advances in Soil Science (ed. Stewart, B. A.) 1–111 (Springer, 1989).
38.
DeSutter, T. M. & Cihacek, L. J. Potential agricultural uses of flue gas desulfurization gypsum in the Northern Great Plains. Agron. J. 101, 817–825 (2009).
Google Scholar
39.
Ritchey, K. D., Feldhake, C. M., Clark, R. B. & de Sousa, D. M. G. in Agricultural Utilization of Urban and Industrial By-Products Vol. 58 (eds Karlen, D. L. et al.) Ch. 8 (ASA, CSSA, SSSA, 1995).
40.
Driscoll, C. T., Driscoll, K. M., Fakhraei, H. & Civerolo, K. Long-term temporal trends and spatial patterns in the acid-base chemistry of lakes in the Adirondack region of New York in response to decreases in acidic deposition. Atmos. Environ. 146, 5–14 (2016).
Google Scholar
41.
Rice, K. C., Scanlon, T. M., Lynch, J. A. & Cosby, B. J. Decreased atmospheric sulfur deposition across the southeastern U.S.: when will watersheds release stored sulfate. Environ. Sci. Technol. 48, 10071–10078 (2014).
Google Scholar
42.
Beaton, J. D. Sulfur requirements of cereals, tree fruits, vegetables, and other crops. Soil Sci. 101, 267–282 (1966).
Google Scholar
43.
Rehm, G. W. & Clapp, J. G. in Sulfur: A Missing Link between Soils, Crops, and Nutrition (ed. Jez, J.) Ch. 9 (ASA, CSSA, SSSA, 2008).
44.
Kaiser, D. E. & Kim, K.-I. Soybean response to sulfur fertilizer applied as a broadcast or starter using replicated strip trials. Agron. J. 105, 1189–1198 (2013).
Google Scholar
45.
David, M. B., Gentry, L. E. & Mitchell, C. A. Riverine response of sulfate to declining atmospheric sulfur deposition in agricultural watersheds. J. Environ. Qual. 45, 1313–1319 (2016).
Google Scholar
46.
Wine (Agricultural Marketing Resource Center, 2019); https://go.nature.com/2WO6eHl
47.
Hinckley, E. L. S. & Matson, P. A. Transformations, transport, and potential unintended consequences of high sulfur inputs to Napa Valley vineyards. Proc. Natl Acad. Sci. USA 108, 14005–14010 (2011).
Google Scholar
48.
Williams, J. S. & Cooper, R. M. The oldest fungicide and newest phytoalexin – a reappraisal of the fungitoxicity of elemental sulphur. Plant Pathol. 53, 263–279 (2004).
Google Scholar
49.
Grape Acreage Reports Listing (USDA National Agricultural Statistics Service, accessed 21 May 2019); https://go.nature.com/38pHlXb
50.
US Drought Portal (NIDIS, accessed 21 May 2019); https://go.nature.com/39pyo0w
51.
Rice, R. W., Gilbert, R. A. & McCray, J. M. Nutritional requirements for Florida sugarcane Sugarcane Cultural Practices (Sugarcane Handbook), UF-IFAS Extension SS-AGR-228 (Univ. of Florida, 2006).
52.
McCray, J. M. Elemental sulfur recommendations for sugarcane on Florida organic soils Sugarcane Cultural Practices (Sugarcane Handbook), UF-IFAS Extension SS-AGR-429 (Univ. of Florida, 2019); http://edis.ifas.ufl.edu/ag429
53.
National Research Council Progress Toward Restoring the Everglades: The Fifth Biennial Review: 2014 (The National Academies Press, 2014).
54.
Schueneman, T. J. Characterization of sulfur sources in the EAA. Annu. Proc. Soil Crop Sci. Soc. Florida 60, 49–52 (2001).
Google Scholar
55.
Lanning, M. et al. Intensified vegetation water use under acid deposition. Sci. Adv. 5, eaav5168 (2019).
Google Scholar
56.
Lu, X. et al. Plant acclimation to long-term high nitrogen deposition in an N-rich tropical forest. Proc. Natl Acad. Sci. USA 115, 5187–5192 (2018).
Google Scholar
57.
Podar, M. et al. Global prevalence and distribution of genes and microorganisms involved in mercury methylation. Sci. Adv. 1, e1500675 (2015).
Google Scholar
58.
Driscoll, C. T., Mason, R. P., Chan, H. M., Jacob, D. J. & Pirrone, N. Mercury as a global pollutant: Sources, pathways, and effects. Environ. Sci. Technol. 47, 4967–4983 (2013).
Google Scholar
59.
Schmeltz, D. et al. MercNet: a national monitoring network to assess responses to changing mercury emissions in the United States. Ecotoxicology 20, 1713–1725 (2011).
Google Scholar
60.
US Environmental Protection Agency 2011 National Listing of Fisheries Advisories EPA-820-F-13-058 (EPA, 2013).
61.
Gilmour, C. C. et al. Methylmercury concentrations and production rates across a trophic gradient in the northern Everglades. Biogeochemistry 40, 327–345 (1998).
Google Scholar
62.
Bailey, L. T. et al. Influence of porewater sulfide on methylmercury production and partitioning in sulfate-impacted lake sediments. Sci. Total Environ. 580, 1197–1204 (2017).
Google Scholar
63.
Wasik, J. K. C. et al. The effects of hydrologic fluctuation and sulfate regeneration on mercury cycling in an experimental peatland. J. Geophys. Res. Biogeosciences 120, 1697–1715 (2015).
Google Scholar
64.
Benoit, J. M. et al. in Biogeochemistry of Environmentally Important Trace Elements (eds Cai, Y. & Braids, O. C.) 262–297 (ACS, 2002).
65.
Chen, C. Y., Driscoll, C. T. & Kamman, N. C. in Mercury in the Environment: Pattern and Process (ed. Bank, M.) 143–166 (Univ. of California Press, 2012).
66.
Robinson, A., Richey, A., Slotton, D., Collins, J. & Davis, J. North Bay Mercury Biosentinel Project 2016–2017 Contribution # 868 (San Francisco Estuary Institute, Aquatic Science Center, 2018).
67.
Marvin-DiPasquale, M., Agee, J. L., Bouse, R. M. & Jaffe, B. E. Microbial cycling of mercury in contaminated pelagic and wetland sediments of San Pablo Bay, California. Environ. Geol. 43, 260–267 (2003).
Google Scholar
68.
Wiener, J. G., Evers, D. C., Gay, D. A., Morrison, H. A. & Williams, K. A. Mercury contamination in the Laurentian Great Lakes region: introduction and overview. Environ. Pollut. 161, 243–251 (2012).
Google Scholar
69.
Smolders, A. J. P., Lamers, L. P. M., Lucassen, E. C. H. E. T., Van Dervelde, G. & Roelofs, J. G. M. Internal eutrophication: how it works and what to do about it–a review. Chem. Ecol. 22, 93–111 (2006).
Google Scholar
70.
Caraco, N. F., Cole, J. J. & Likens, G. E. Evidence for sulphate-controlled phosphorus release from sediments of aquatic systems. Nature 341, 316–318 (1989).
Google Scholar
71.
Smolders, A. J. P., Lucassen, E. C. H. E. T., Bobbink, R., Roelofs, J. G. M. & Lamers, L. P. M. How nitrate leaching from agricultural lands provokes phosphate eutrophication in groundwater fed wetlands: the sulphur bridge. Biogeochemistry 98, 1–7 (2010).
Google Scholar
72.
van der Welle, M. E. W., Roelofs, J. G. M. & Lamers, L. P. M. Multi-level effects of sulphur–iron interactions in freshwater wetlands in The Netherlands. Sci. Total Environ. 406, 426–429 (2008).
Google Scholar
73.
De Kok, L. J., Durenkamp, M., Yang, L. & Stulen, I. in Sulfur in Plants, An Ecological Perspective (eds Hawkesford, M. J. & De Kok, L. J.) Ch. 5 (Springer, 2007).
74.
Lamers, L. P. M. et al. Sulfide as a soil phytotoxin—a review. Front. Plant Sci. 4, 268 (2013).
Google Scholar
75.
Koch, M. S., Mendelssohn, I. A. & McKee, K. L. Mechanism for the hydrogen sulfide‐induced growth limitation in wetland macrophytes. Limnol. Oceanogr. 35, 399–408 (1990).
Google Scholar
76.
Gao, S., Tanji, K. K. & Scardaci, S. C. Impact of rice straw incorporation on soil redox status and sulfide toxicity. Agron. J. 96, 70–76 (2004).
Google Scholar
77.
Lamers, L. P. M., Tomassen, H. B. M. & Roelofs, J. G. M. Sulfate-induced eutrophication and phytotoxicity in freshwater wetlands. Environ. Sci. Technol. 32, 199–205 (1998).
Google Scholar
78.
Li, S., Mendelssohn, I. A., Chen, H. & Orem, W. H. Does sulphate enrichment promote the expansion of Typha domingensis (cattail) in the Florida Everglades? Freshw. Biol. 54, 1909–1923 (2009).
Google Scholar
79.
Ye, M., Beach, J., Martin, J. & Senthilselvan, A. Occupational pesticide exposures and respiratory health. Int. J. Environ. Res. Public Health 10, 6442–6471 (2013).
Google Scholar
80.
Hoppin, J. A., Umbach, D. M., London, S. J., Alavanja, M. C. R. & Sandler, D. P. Chemical predictors of wheeze among farmer pesticide applicators in the Agricultural Health Study. Am. J. Respir. Crit. Care Med. 165, 683–689 (2002).
Google Scholar
81.
Degryse, F., Ajiboye, B., Baird, R., da Silva, R. C. & McLaughlin, M. J. Oxidation of elemental sulfur in granular fertilizers depends on the soil-exposed surface area. Soil Sci. Soc. Am. J. 80, 294–305 (2016).
Google Scholar
82.
Guo, J. H. et al. Significant acidification in major Chinese croplands. Science 327, 1008–1010 (2010).
Google Scholar
83.
Clark, M. & Tilman, D. Comparative analysis of environmental impacts of agricultural production systems, agricultural input efficiency, and food choice. Environ. Res. Lett. 12, 064016 (2017).
Google Scholar
84.
Galloway, J. N. et al. The nitrogen cascade. BioScience 53, 341–356 (2003).
Google Scholar More