Composition and activity of nitrifier communities in soil are unresponsive to elevated temperature and CO2, but strongly affected by drought
1.
Foley JA, DeFries R, Asner GP, Barford C, Bonan G, Carpenter SR, et al. Global consequences of land use. Science. 2005;309:570–4.
CAS PubMed Google Scholar
2.
Rockström J, Steffen W, Noone K, Persson Å, Chapin FS, Lambin EF, et al. A safe operating space for humanity. Nature. 2009;461:472–5.
Google Scholar
3.
Graham EB, Knelman JE, Schindlbacher A, Siciliano S, Breulmann M, Yannarell A, et al. Microbes as engines of ecosystem function: when does community structure enhance predictions of ecosystem processes? Front Microbiol. 2016;7:1–10.
Google Scholar
4.
Cavicchioli R, Ripple WJ, Timmis KN, Azam F, Bakken LR, Baylis M, et al. Scientists’ warning to humanity: microorganisms and climate change. Nat Rev Microbiol. 2019;17:569–86.
CAS PubMed PubMed Central Google Scholar
5.
Hoegh-Guldberg O, Jacob D, Taylor M, Bindi M, Brown S, Camilloni I, et al. Impacts of 1.5 °C global warming on natural and human systems. In: Masson-Delmotte V, Zhai P, Pörtner HO, Roberts D, Skea J, Shukla PR, et al., editors. Geneva, Switzerland: World Meteorological Organization Technical Document; 2018.
6.
Dieleman WIJ, Vicca S, Tingey D, De Angelis P, Hagedorn F, Morgan JA, et al. Simple additive effects are rare: a quantitative review of plant biomass and soil process responses to combined manipulations of CO 2 and temperature. Glob Chang Biol. 2012;18:2681–93.
PubMed Google Scholar
7.
Song J, Wan S, Piao S, Knapp AK, Classen AT, Vicca S, et al. A meta-analysis of 1,119 manipulative experiments on terrestrial carbon-cycling responses to global change. Nat Ecol Evol. 2019;3:1309–20.
PubMed Google Scholar
8.
Kuypers MMM, Marchant HK, Kartal B. The microbial nitrogen-cycling network. Nat Rev Microbiol. 2018;16:263–76. Nature Publishing Group.
CAS PubMed Google Scholar
9.
Prosser JI, Nicol GW. Archaeal and bacterial ammonia-oxidisers in soil: the quest for niche specialisation and differentiation. Trends Microbiol. 2012;20:523–31.
10.
Martens-Habbena W, Berube PM, Urakawa H, De La Torre JR, Stahl DA. Ammonia oxidation kinetics determine niche separation of nitrifying Archaea and Bacteria. Nature. 2009;461:976–9.
CAS PubMed Google Scholar
11.
Fuchslueger L, Kastl EM, Bauer F, Kienzl S, Hasibeder R, Ladreiter-Knauss T, et al. Effects of drought on nitrogen turnover and abundances of ammonia-oxidizers in mountain grassland. Biogeosciences. 2014;11:6003–15.
Google Scholar
12.
Kits KD, Pjevac P, Daebeler A, Han P, Albertsen M, Romano S, et al. Kinetic analysis of a complete nitrifier reveals an oligotrophic lifestyle. Nature. 2017;549:269–72.
CAS PubMed PubMed Central Google Scholar
13.
Di HJ, Cameron KC, Shen JP, Winefield CS, Ocallaghan M, Bowatte S, et al. Nitrification driven by bacteria and not archaea in nitrogen-rich grassland soils. Nat Geosci. 2009;2:621–4.
CAS Google Scholar
14.
Jia Z, Conrad R. Bacteria rather than Archaea dominate microbial ammonia oxidation in an agricultural soil. Environ Microbiol. 2009;11:1658–71.
CAS PubMed Google Scholar
15.
Zhalnina K, Dörr de Quadros P, Camargo FAO, Triplett EW. Drivers of archaeal ammonia-oxidizing communities in soil. Front Microbiol. 2012;3:1–9.
Google Scholar
16.
Gruber-Dorninger C, Pester M, Kitzinger K, Savio DF, Loy A, Rattei T, et al. Functionally relevant diversity of closely related Nitrospira in activated sludge. ISME J. 2015;9:643–55.
CAS PubMed Google Scholar
17.
Daims H, Lebedeva EV, Pjevac P, Han P, Herbold C, Albertsen M, et al. Complete nitrification by Nitrospira bacteria. Nature. 2015;528:504–9.
CAS PubMed PubMed Central Google Scholar
18.
van Kessel MAHJ, Kartal B, MSM Jetten, Albertsen M, Op den Camp HJM, Lücker S, et al. Complete nitrification by a single microorganism. Nature. 2015;528:555–9.
PubMed PubMed Central Google Scholar
19.
Poghosyan L, Koch H, Lavy A, Frank J, van Kessel MAHJ, Jetten MSM, et al. Metagenomic recovery of two distinct comammox Nitrospira from the terrestrial subsurface. Environ Microbiol. 2019;00:1–11.
Google Scholar
20.
Wang Z, Cao Y, Zhu-Barker X, Nicol GW, Wright AL, Jia Z, et al. Comammox Nitrospira clade B contributes to nitrification in soil. Soil Biol Biochem. 2019;135:392–5.
CAS Google Scholar
21.
Dusenge ME, Duarte AG, Way DA. Plant carbon metabolism and climate change: elevated CO2 and temperature impacts on photosynthesis, photorespiration and respiration. N. Phytol. 2019;221:32–49. John Wiley & Sons, Ltd.
CAS Google Scholar
22.
de Graaff MA, van Groenigen KJ, Six J, Hungate B, van Kessel C. Interactions between plant growth and soil nutrient cycling under elevated CO2: a meta-analysis. Glob Chang Biol. 2006;12:2077–91.
Google Scholar
23.
Kuzyakov Y, Horwath WR, Dorodnikov M, Blagodatskaya E. Review and synthesis of the effects of elevated atmospheric CO2 on soil processes: No changes in pools, but increased fluxes and accelerated cycles. Soil Biol Biochem. 2019;128:66–78.
CAS Google Scholar
24.
Luo Y, Su B, Currie WS, Dukes J. Progressive nitrogen limitation of ecosystem responses to rising atmospheric carbon dioxide. Bioscience. 2004;54:731–9.
25.
Liang J, Qi X, Souza L, Luo Y. Processes regulating progressive nitrogen limitation under elevated carbon dioxide: a meta-analysis. Biogeosciences. 2016;13:2689–99.
CAS Google Scholar
26.
He Z, Xu M, Deng Y, Kang S, Kellogg L, Wu L, et al. Metagenomic analysis reveals a marked divergence in the structure of belowground microbial communities at elevated CO2. Ecol Lett. 2010;13:564–75.
PubMed Google Scholar
27.
Horz HP, Barbrook A, Field CB, Bohannan BJM. Ammonia-oxidizing bacteria respond to multifactorial global change. Proc Natl Acad Sci USA. 2004;101:15136–41.
CAS PubMed Google Scholar
28.
Bradford MA, Davies CA, Frey SD, Maddox TR, Melillo JM, Mohan JE, et al. Thermal adaptation of soil microbial respiration to elevated temperature. Ecol Lett. 2008;11:1316–27.
PubMed Google Scholar
29.
Liu Q, Piao S, Janssens IA, Fu Y, Peng S, Lian X, et al. Extension of the growing season increases vegetation exposure to frost. Nat Commun. 2018;9:426.
PubMed PubMed Central Google Scholar
30.
Lax S, Abreu CI, Gore J. Higher temperatures generically favour slower-growing bacterial species in multispecies communities. Nat Ecol Evol. 2020;4:560–657.
PubMed Google Scholar
31.
Tourna M, Freitag TE, Nicol GW, Prosser JI. Growth, activity and temperature responses of ammonia-oxidizing archaea and bacteria in soil microcosms. Environ Microbiol. 2008;10:1357–64.
CAS PubMed Google Scholar
32.
Fierer N, Carney KM, Horner-Devine MC, Megonigal JP. The biogeography of ammonia-oxidizing bacterial communities in soil. Micro Ecol. 2009;58:435–45.
Google Scholar
33.
Schimel JP. Life in dry soils: effects of drought on soil microbial communities and processes. Annu Rev Ecol Evol Syst. 2018;49:409–32.
Google Scholar
34.
Kuzyakov Y, Horwath WR, Dorodnikov M, Blagodatskaya E. Review and synthesis of the effects of elevated atmospheric CO2 on soil processes: No changes in pools, but increased fluxes and accelerated cycles. Soil Biol Biochem. 2019;128:66–78.
35.
Yue K, Peng Y, Fornara DA, Van Meerbeek K, Vesterdal L, Yang W, et al. Responses of nitrogen concentrations and pools to multiple environmental change drivers: a meta-analysis across terrestrial ecosystems. Glob Ecol Biogeogr. 2019;28:690–724.
Google Scholar
36.
Bai E, Li S, Xu W, Li W, Dai W, Jiang P. A meta-analysis of experimental warming effects on terrestrial nitrogen pools and dynamics. N. Phytol. 2013;199:431–40.
CAS Google Scholar
37.
Piepho HP, Herndl M, Pötsch EM, Bahn M. Designing an experiment with quantitative treatment factors to study the effects of climate change. J Agron Crop Sci. 2017;203:584–92.
CAS Google Scholar
38.
Vance ED, Brookes PC, Jenkinson DS. An extraction method for measuring soil microbial biomass C. Soil Biol Biochem. 1987;19:703–7.
CAS Google Scholar
39.
Hood-Nowotny R, Umana NH-N, Inselbacher E, Oswald- Lachouani P, Wanek W. Alternative methods for measuring inorganic, organic, and total dissolved nitrogen in soil. Soil Sci Soc Am J. 2010;74:1018–27.
CAS Google Scholar
40.
Wanek W, Mooshammer M, Blöchl A, Hanreich A, Richter A. Determination of gross rates of amino acid production and immobilization in decomposing leaf litter by a novel 15N isotope pool dilution technique. Soil Biol Biochem. 2010;42:1293–302.
CAS Google Scholar
41.
Sørensen P, Jensen ES. Sequential diffusion of ammonium and nitrate from soil extracts to a polytetrafluoroethylene trap for 15N determination. Anal Chim Acta. 1991;252:201–3.
Google Scholar
42.
Lachouani P, Frank AH, Wanek W. A suite of sensitive chemical methods to determine the δ 15N of ammonium, nitrate and total dissolved N in soil extracts. Rapid Commun Mass Spectrom. 2010;24:3615–23.
CAS PubMed Google Scholar
43.
Angel R, Claus P, Conrad R. Methanogenic archaea are globally ubiquitous in aerated soils and become active under wet anoxic conditions. ISME J. 2012;6:847–62.
CAS PubMed Google Scholar
44.
Apprill A, McNally S, Parsons R, Weber L. Minor revision to V4 region SSU rRNA 806R gene primer greatly increases detection of SAR11 bacterioplankton. Aquat Micro Ecol. 2015;75:129–37.
Google Scholar
45.
Parada AE, Needham DM, Fuhrman JA. Every base matters: assessing small subunit rRNA primers for marine microbiomes with mock communities, time series and global field samples. Environ Microbiol. 2016;18:1403–14.
CAS PubMed Google Scholar
46.
Herbold CW, Pelikan C, Kuzyk O, Hausmann B, Angel R, Berry D, et al. A flexible and economical barcoding approach for highly multiplexed amplicon sequencing of diverse target genes. Front Microbiol. 2015;6:1–8.
Google Scholar
47.
Purkhold U, Wagner M, Timmermann G, Pommerening-Röser A, Koops HP. 16S rRNA and amoA-based phylogeny of 12 novel betaproteobacterial ammonia-oxidizing isolates: extension of the dataset and proposal of a new lineage within the nitrosomonads. Int J Syst Evol Microbiol. 2003;53:1485–94.
CAS PubMed Google Scholar
48.
Alves RJE, Minh BQ, Urich T, Von Haeseler A, Schleper C. Unifying the global phylogeny and environmental distribution of ammonia-oxidising archaea based on amoA genes. Nat Commun. 2018;9:1–17.
CAS Google Scholar
49.
Berger SA, Krompass D, Stamatakis A. Performance, accuracy, and web server for evolutionary placement of short sequence reads under maximum likelihood. Syst Biol. 2011;60:291–302.
PubMed PubMed Central Google Scholar
50.
Stamatakis A. RAxML version 8: a tool for phylogenetic analysis and post-analysis of large phylogenies. Bioinformatics. 2014;30:1312–3.
CAS PubMed PubMed Central Google Scholar
51.
Aigle A, Prosser JI, Gubry-Rangin C. The application of high-throughput sequencing technology to analysis of amoA phylogeny and environmental niche specialisation of terrestrial bacterial ammonia-oxidisers. Environ Microbiome. 2019;14:3.
Google Scholar
52.
Pjevac P, Schauberger C, Poghosyan L, Herbold CW, van Kessel MAHJ, Daebeler A, et al. AmoA-targeted polymerase chain reaction primers for the specific detection and quantification of comammox Nitrospira in the environment. Front Microbiol. 2017;8:1–11.
Google Scholar
53.
Pruesse E, Peplies J, Glöckner FO. SINA: accurate high-throughput multiple sequence alignment of ribosomal RNA genes. Bioinformatics. 2012;28:1823–9.
CAS PubMed PubMed Central Google Scholar
54.
Trifinopoulos J, Nguyen L-T, von Haeseler A, Minh BQ. W-IQ-TREE: a fast online phylogenetic tool for maximum likelihood analysis. Nucleic Acids Res. 2016;44:W232–5.
CAS PubMed PubMed Central Google Scholar
55.
Kalyaanamoorthy S, Minh BQ, Wong TKF, von Haeseler A, Jermiin LS. ModelFinder: fast model selection for accurate phylogenetic estimates. Nat Methods. 2017;14:587–9.
CAS PubMed PubMed Central Google Scholar
56.
Letunic I, Bork P. Interactive Tree Of Life (iTOL) v4: recent updates and new developments. Nucleic Acids Res. 2019;47:W256–9.
CAS PubMed PubMed Central Google Scholar
57.
Katoh K, Standley DM. MAFFT multiple sequence alignment software version 7: improvements in performance and usability. Mol Biol Evol. 2013;30:772–80.
CAS PubMed PubMed Central Google Scholar
58.
Pester M, Maixner F, Berry D, Rattei T, Koch H, Lücker S, et al. NxrB encoding the beta subunit of nitrite oxidoreductase as functional and phylogenetic marker for nitrite-oxidizing Nitrospira. Environ Microbiol. 2014;16:3055–71.
CAS PubMed Google Scholar
59.
Sauder LA, Albertsen M, Engel K, Schwarz J, Nielsen PH, Wagner M, et al. Correction: cultivation and characterization of Candidatus nitrosocosmicus exaquare, an ammonia-oxidizing archaeon from a municipal wastewater treatment system. ISME J. 2020.
60.
Kozak M, Piepho HP. What’s normal anyway? Residual plots are more telling than significance tests when checking ANOVA assumptions. J Agron Crop Sci. 2018;204:86–98.
Google Scholar
61.
Langsrud Ø. ANOVA for unbalanced data: use type II instead of Type III sums of squares. Stat Comput. 2003;13:163–7.
Google Scholar
62.
McMurdie PJ, Holmes S. phyloseq: an R Package for reproducible interactive analysis and graphics of microbiome census data. PLoS ONE. 2013;8:e61217.
CAS PubMed PubMed Central Google Scholar
63.
Oksanen J, Blanchet FG, Friendly M, Kindt R, Legendre P, McGlinn D, et al. vegan: Community Ecology Package. R package version 2.5-6. https://CRAN.R-project.org/package=vegan.
64.
Stier AC, Geange SW, Hanson KM, Bolker BM. Predator density and timing of arrival affect reef fish community assembly. Ecology. 2013;94:1057–68.
PubMed Google Scholar
65.
Anderson MJ. Permutational multivariate analysis of variance (PERMANOVA). Wiley StatsRef: Statistics Reference Online. Chichester, UK: John Wiley & Sons, Ltd; 2017. p 1–15.
66.
Fierer N, Schimel JP. A proposed mechanism for the pulse in carbon dioxide production commonly observed following the rapid rewetting of a dry soil. Soil Sci Soc Am J. 2010;67:798.
Google Scholar
67.
Lehtovirta-Morley LE. Ammonia oxidation: ecology, physiology, biochemistry and why they must all come together. FEMS Microbiol Lett. 2018;365:1–9.
Google Scholar
68.
Schimel JP, Schaeffer SM. Microbial control over carbon cycling in soil. Front Microbiol. 2012;3:1–11.
Google Scholar
69.
Fierer N. Embracing the unknown: disentangling the complexities of the soil microbiome. Nat Rev Microbiol. 2017;15:579–90.
CAS PubMed Google Scholar
70.
Larsen KS, Andresen LC, Beier C, Jonasson S, Albert KR, Ambus P, et al. Reduced N cycling in response to elevated CO2, warming, and drought in a Danish heathland: synthesizing results of the CLIMAITE project after two years of treatments. Glob Chang Biol. 2011;17:1884–99.
Google Scholar
71.
Brenzinger K, Kujala K, Horn MA, Moser G, Guillet C, Kammann C, et al. Soil conditions rather than long-term exposure to elevated CO2 affect soil microbial communities associated with N-cycling. Front Microbiol. 2017;8:1–14.
Google Scholar
72.
Rütting T, Hovenden MJ. Soil nitrogen cycle unresponsive to decadal long climate change in a Tasmanian grassland. Biogeochemistry. 2020;147:99–107.
Google Scholar
73.
Rustad LE, Campbell JL, Marion GM, Norby RJ, Mitchell MJ, Hartley AE, et al. A meta-analysis of the response of soil respiration, net nitrogen mineralization, and aboveground plant growth to experimental ecosystem warming. Oecologia. 2001;126:543–62.
CAS PubMed Google Scholar
74.
Fuchslueger L, Wild B, Mooshammer M, Takriti M, Kienzl S, Knoltsch A, et al. Microbial carbon and nitrogen cycling responses to drought and temperature in differently managed mountain grasslands. Soil Biol Biochem. 2019;135:144–53.
CAS Google Scholar
75.
Coskun D, Britto DT, Shi W, Kronzucker HJ. Nitrogen transformations in modern agriculture and the role of biological nitrification inhibition. Nat Plants. 2017;3:17074.
CAS PubMed Google Scholar
76.
Subbarao GV, Yoshihashi T, Worthington M, Nakahara K, Ando Y, Sahrawat KL, et al. Suppression of soil nitrification by plants. Plant Sci. 2015;233:155–64.
CAS PubMed Google Scholar
77.
Canarini A, Dijkstra FA. Dry-rewetting cycles regulate wheat carbon rhizodeposition, stabilization and nitrogen cycling. Soil Biol Biochem. 2015;81:195–203.
CAS Google Scholar
78.
Karlowsky S, Augusti A, Ingrisch J, Akanda MKU, Bahn M, Gleixner G. Drought-induced accumulation of root exudates supports post-drought recovery of microbes in mountain grassland. Front Plant Sci. 2018;871:1–16.
Google Scholar
79.
Manzoni S, Schimel JP, Barbara S. Results from a responses of soil microbial communities to water stress: results from a meta-analysis. Ecology. 2017;93:930–8.
Google Scholar
80.
Canarini A, Merchant A, Dijkstra FA. Drought effects on Helianthus annuus and Glycine max metabolites: from phloem to root exudates. Rhizosphere. 2016;2:85–97.
Google Scholar
81.
Hashem A, Kumar A, Al-Dbass AM, Alqarawi AA, Al-Arjani A-BF, Singh G, et al. Arbuscular mycorrhizal fungi and biochar improves drought tolerance in chickpea. Saudi J Biol Sci. 2019;26:614–24.
CAS PubMed Google Scholar
82.
Williams A, de Vries FT. Plant root exudation under drought: implications for ecosystem functioning. N. Phytol. 2020;225:1899–1905.
Google Scholar
83.
Subbarao GV, Rondon M, Ito O, Ishikawa T, Rao IM, Nakahara K, et al. Biological nitrification inhibition (BNI)—Is it a widespread phenomenon? Plant Soil. 2007;294:5–18.
CAS Google Scholar
84.
Homyak PM, Allison SD, Huxman TE, Goulden ML, Treseder KK. Effects of drought manipulation on soil nitrogen cycling: a meta-analysis. J Geophys Res Biogeosci. 2017;122:3260–72.
CAS Google Scholar
85.
Fuchslueger L, Bahn M, Fritz K, Hasibeder R, Richter A. Experimental drought reduces the transfer of recently fixed plant carbon to soil microbes and alters the bacterial community composition in a mountain meadow. N. Phytol. 2014;201:916–27.
CAS Google Scholar
86.
Thion C, Prosser JI. Differential response of nonadapted ammonia-oxidising archaea and bacteria to drying-rewetting stress. FEMS Microbiol Ecol. 2014;90:380–9.
CAS PubMed Google Scholar
87.
Norton JM, Klotz MG, Stein LY, Arp DJ, Bottomley PJ, Chain PSG, et al. Complete genome sequence of Nitrosospira multiformis, an ammonia-oxidizing bacterium from the soil environment. Appl Environ Microbiol. 2008;74:3559–72.
CAS PubMed PubMed Central Google Scholar
88.
Spang A, Poehlein A, Offre P, Zumbrägel S, Haider S, Rychlik N, et al. The genome of the ammonia-oxidizing CandidatusNitrososphaera gargensis: Insights into metabolic versatility and environmental adaptations. Environ Microbiol. 2012;14:3122–45.
CAS PubMed Google Scholar
89.
Kerou M, Offre P, Valledor L, Abby SS, Melcher M, Nagler M, et al. Proteomics and comparative genomics of Nitrososphaera viennensis reveal the core genome and adaptations of archaeal ammonia oxidizers. Proc Natl Acad Sci USA. 2016;113:E7937–46.
CAS PubMed Google Scholar
90.
Nicol GW, Hink L, Gubry-Rangin C, Prosser JI, Lehtovirta-Morley LE. Genome Sequence of “ Candidatus Nitrosocosmicus franklandus” C13, a terrestrial ammonia-oxidizing archaeon. Microbiol Resour Announc. 2019;8:1–3.
Google Scholar
91.
Sauder LA, Albertsen M, Engel K, Schwarz J, Nielsen PH, Wagner M, et al. Cultivation and characterization of Candidatus Nitrosocosmicus exaquare, an ammonia-oxidizing archaeon from a municipal wastewater treatment system. ISME J. 2017;11:1142–57.
CAS PubMed PubMed Central Google Scholar
92.
Lehtovirta-Morley LE, Ge C, Ross J, Yao H, Nicol GW, Prosser JI. Characterisation of terrestrial acidophilic archaeal ammonia oxidisers and their inhibition and stimulation by organic compounds. FEMS Microbiol Ecol. 2014;89:542–52.
CAS PubMed PubMed Central Google Scholar
93.
Stieglmeier M, Klingl A, Alves RJE, Rittmann SKMR, Melcher M, Leisch N, et al. Nitrososphaera viennensis gen. nov., sp. nov., an aerobic and mesophilic, ammonia-oxidizing archaeon from soil and a member of the archaeal phylum Thaumarchaeota. Int J Syst Evol Microbiol. 2014;64:2738–52.
CAS PubMed PubMed Central Google Scholar
94.
Jung MY, Kim JG, Sinninghe Damsté JS, Rijpstra WIC, Madsen EL, Kim SJ, et al. A hydrophobic ammonia-oxidizing archaeon of the Nitrosocosmicus clade isolated from coal tar-contaminated sediment. Environ Microbiol Rep. 2016;8:983–92.
CAS PubMed Google Scholar
95.
Gwak JH, Jung MY, Hong H, Kim JG, Quan ZX, Reinfelder JR, et al. Archaeal nitrification is constrained by copper complexation with organic matter in municipal wastewater treatment plants. ISME J. 2020;14:335–46.
CAS PubMed Google Scholar
96.
Nowka B, Daims H, Spieck E. Comparison of oxidation kinetics of nitrite-oxidizing bacteria: nitrite availability as a key factor in niche differentiation. Appl Environ Microbiol. 2015;81:745–53.
PubMed PubMed Central Google Scholar
97.
Prosser JI. The ecology of nitrifying bacteria. In: Bothe H, Ferguson SJ, editors. Newton WEBT-B of the NC. Biology of the Nitrogen Cycle. Amsterdam: Elsevier; 2007. p 223–43.
98.
Norton JM, Stark JM. Regulation and measurement of nitrification in terrestrial systems. In: Klotz MGBT-M in E. Research on nitrification and related processes, Part A. 2011. Academic Press, United States, p 343–68.
99.
Koch H, Galushko A, Albertsen M, Schintlmeister A, Gruber-Dorninger C, Lücker S, et al. Growth of nitrite-oxidizing bacteria by aerobic hydrogen oxidation. Science. 2014;345:1052 LP–1054.
Google Scholar
100.
Koch H, Lücker S, Albertsen M, Kitzinger K, Herbold C, Spieck E, et al. Expanded metabolic versatility of ubiquitous nitrite-oxidizing bacteria from the genus Nitrospira. Proc Natl Acad Sci USA. 2015;112:11371–6.
CAS PubMed Google Scholar
101.
Daebeler A, Bodelier PLE, Yan Z, Hefting MM, Jia Z, Laanbroek HJ. Interactions between Thaumarchaea, Nitrospira and methanotrophs modulate autotrophic nitrification in volcanic grassland soil. ISME J. 2014;8:2397–410.
CAS PubMed PubMed Central Google Scholar
102.
Kim DG, Vargas R, Bond-Lamberty B, Turetsky MR. Effects of soil rewetting and thawing on soil gas fluxes: a review of current literature and suggestions for future research. Biogeosciences. 2012;9:2459–83.
CAS Google Scholar
103.
Wrage N, Velthof GL, Van Beusichem ML, Oenema O. Role of nitrifier denitrification in the production of nitrous oxide. Soil Biol Biochem. 2001;33:1723–32.
CAS Google Scholar
104.
Stein LY. Surveying N2O-producing pathways in bacteria. In: Klotz MGBT-M in E. Research on nitrification and related processes, Part A. 2011. Academic Press, United States, pp 131–52.
105.
Kozlowski JA, Stieglmeier M, Schleper C, Klotz MG, Stein LY. Pathways and key intermediates required for obligate aerobic ammonia-dependent chemolithotrophy in bacteria and Thaumarchaeota. ISME J. 2016;10:1836–45.
CAS PubMed PubMed Central Google Scholar
106.
Kits KD, Jung MY, Vierheilig J, Pjevac P, Sedlacek CJ, Liu S, et al. Low yield and abiotic origin of N2O formed by the complete nitrifier Nitrospira inopinata. Nat Commun. 2019;10:1–12.
CAS Google Scholar More