More stories

  • in

    Composition and activity of nitrifier communities in soil are unresponsive to elevated temperature and CO2, but strongly affected by drought

    1.
    Foley JA, DeFries R, Asner GP, Barford C, Bonan G, Carpenter SR, et al. Global consequences of land use. Science. 2005;309:570–4.
    CAS  PubMed  Google Scholar 
    2.
    Rockström J, Steffen W, Noone K, Persson Å, Chapin FS, Lambin EF, et al. A safe operating space for humanity. Nature. 2009;461:472–5.
    Google Scholar 

    3.
    Graham EB, Knelman JE, Schindlbacher A, Siciliano S, Breulmann M, Yannarell A, et al. Microbes as engines of ecosystem function: when does community structure enhance predictions of ecosystem processes? Front Microbiol. 2016;7:1–10.
    Google Scholar 

    4.
    Cavicchioli R, Ripple WJ, Timmis KN, Azam F, Bakken LR, Baylis M, et al. Scientists’ warning to humanity: microorganisms and climate change. Nat Rev Microbiol. 2019;17:569–86.
    CAS  PubMed  PubMed Central  Google Scholar 

    5.
    Hoegh-Guldberg O, Jacob D, Taylor M, Bindi M, Brown S, Camilloni I, et al. Impacts of 1.5 °C global warming on natural and human systems. In: Masson-Delmotte V, Zhai P, Pörtner HO, Roberts D, Skea J, Shukla PR, et al., editors. Geneva, Switzerland: World Meteorological Organization Technical Document; 2018.

    6.
    Dieleman WIJ, Vicca S, Tingey D, De Angelis P, Hagedorn F, Morgan JA, et al. Simple additive effects are rare: a quantitative review of plant biomass and soil process responses to combined manipulations of CO 2 and temperature. Glob Chang Biol. 2012;18:2681–93.
    PubMed  Google Scholar 

    7.
    Song J, Wan S, Piao S, Knapp AK, Classen AT, Vicca S, et al. A meta-analysis of 1,119 manipulative experiments on terrestrial carbon-cycling responses to global change. Nat Ecol Evol. 2019;3:1309–20.
    PubMed  Google Scholar 

    8.
    Kuypers MMM, Marchant HK, Kartal B. The microbial nitrogen-cycling network. Nat Rev Microbiol. 2018;16:263–76. Nature Publishing Group.
    CAS  PubMed  Google Scholar 

    9.
    Prosser JI, Nicol GW. Archaeal and bacterial ammonia-oxidisers in soil: the quest for niche specialisation and differentiation. Trends Microbiol. 2012;20:523–31.

    10.
    Martens-Habbena W, Berube PM, Urakawa H, De La Torre JR, Stahl DA. Ammonia oxidation kinetics determine niche separation of nitrifying Archaea and Bacteria. Nature. 2009;461:976–9.
    CAS  PubMed  Google Scholar 

    11.
    Fuchslueger L, Kastl EM, Bauer F, Kienzl S, Hasibeder R, Ladreiter-Knauss T, et al. Effects of drought on nitrogen turnover and abundances of ammonia-oxidizers in mountain grassland. Biogeosciences. 2014;11:6003–15.
    Google Scholar 

    12.
    Kits KD, Pjevac P, Daebeler A, Han P, Albertsen M, Romano S, et al. Kinetic analysis of a complete nitrifier reveals an oligotrophic lifestyle. Nature. 2017;549:269–72.
    CAS  PubMed  PubMed Central  Google Scholar 

    13.
    Di HJ, Cameron KC, Shen JP, Winefield CS, Ocallaghan M, Bowatte S, et al. Nitrification driven by bacteria and not archaea in nitrogen-rich grassland soils. Nat Geosci. 2009;2:621–4.
    CAS  Google Scholar 

    14.
    Jia Z, Conrad R. Bacteria rather than Archaea dominate microbial ammonia oxidation in an agricultural soil. Environ Microbiol. 2009;11:1658–71.
    CAS  PubMed  Google Scholar 

    15.
    Zhalnina K, Dörr de Quadros P, Camargo FAO, Triplett EW. Drivers of archaeal ammonia-oxidizing communities in soil. Front Microbiol. 2012;3:1–9.
    Google Scholar 

    16.
    Gruber-Dorninger C, Pester M, Kitzinger K, Savio DF, Loy A, Rattei T, et al. Functionally relevant diversity of closely related Nitrospira in activated sludge. ISME J. 2015;9:643–55.
    CAS  PubMed  Google Scholar 

    17.
    Daims H, Lebedeva EV, Pjevac P, Han P, Herbold C, Albertsen M, et al. Complete nitrification by Nitrospira bacteria. Nature. 2015;528:504–9.
    CAS  PubMed  PubMed Central  Google Scholar 

    18.
    van Kessel MAHJ, Kartal B, MSM Jetten, Albertsen M, Op den Camp HJM, Lücker S, et al. Complete nitrification by a single microorganism. Nature. 2015;528:555–9.
    PubMed  PubMed Central  Google Scholar 

    19.
    Poghosyan L, Koch H, Lavy A, Frank J, van Kessel MAHJ, Jetten MSM, et al. Metagenomic recovery of two distinct comammox Nitrospira from the terrestrial subsurface. Environ Microbiol. 2019;00:1–11.
    Google Scholar 

    20.
    Wang Z, Cao Y, Zhu-Barker X, Nicol GW, Wright AL, Jia Z, et al. Comammox Nitrospira clade B contributes to nitrification in soil. Soil Biol Biochem. 2019;135:392–5.
    CAS  Google Scholar 

    21.
    Dusenge ME, Duarte AG, Way DA. Plant carbon metabolism and climate change: elevated CO2 and temperature impacts on photosynthesis, photorespiration and respiration. N. Phytol. 2019;221:32–49. John Wiley & Sons, Ltd.
    CAS  Google Scholar 

    22.
    de Graaff MA, van Groenigen KJ, Six J, Hungate B, van Kessel C. Interactions between plant growth and soil nutrient cycling under elevated CO2: a meta-analysis. Glob Chang Biol. 2006;12:2077–91.
    Google Scholar 

    23.
    Kuzyakov Y, Horwath WR, Dorodnikov M, Blagodatskaya E. Review and synthesis of the effects of elevated atmospheric CO2 on soil processes: No changes in pools, but increased fluxes and accelerated cycles. Soil Biol Biochem. 2019;128:66–78.
    CAS  Google Scholar 

    24.
    Luo Y, Su B, Currie WS, Dukes J. Progressive nitrogen limitation of ecosystem responses to rising atmospheric carbon dioxide. Bioscience. 2004;54:731–9.

    25.
    Liang J, Qi X, Souza L, Luo Y. Processes regulating progressive nitrogen limitation under elevated carbon dioxide: a meta-analysis. Biogeosciences. 2016;13:2689–99.
    CAS  Google Scholar 

    26.
    He Z, Xu M, Deng Y, Kang S, Kellogg L, Wu L, et al. Metagenomic analysis reveals a marked divergence in the structure of belowground microbial communities at elevated CO2. Ecol Lett. 2010;13:564–75.
    PubMed  Google Scholar 

    27.
    Horz HP, Barbrook A, Field CB, Bohannan BJM. Ammonia-oxidizing bacteria respond to multifactorial global change. Proc Natl Acad Sci USA. 2004;101:15136–41.
    CAS  PubMed  Google Scholar 

    28.
    Bradford MA, Davies CA, Frey SD, Maddox TR, Melillo JM, Mohan JE, et al. Thermal adaptation of soil microbial respiration to elevated temperature. Ecol Lett. 2008;11:1316–27.
    PubMed  Google Scholar 

    29.
    Liu Q, Piao S, Janssens IA, Fu Y, Peng S, Lian X, et al. Extension of the growing season increases vegetation exposure to frost. Nat Commun. 2018;9:426.
    PubMed  PubMed Central  Google Scholar 

    30.
    Lax S, Abreu CI, Gore J. Higher temperatures generically favour slower-growing bacterial species in multispecies communities. Nat Ecol Evol. 2020;4:560–657.
    PubMed  Google Scholar 

    31.
    Tourna M, Freitag TE, Nicol GW, Prosser JI. Growth, activity and temperature responses of ammonia-oxidizing archaea and bacteria in soil microcosms. Environ Microbiol. 2008;10:1357–64.
    CAS  PubMed  Google Scholar 

    32.
    Fierer N, Carney KM, Horner-Devine MC, Megonigal JP. The biogeography of ammonia-oxidizing bacterial communities in soil. Micro Ecol. 2009;58:435–45.
    Google Scholar 

    33.
    Schimel JP. Life in dry soils: effects of drought on soil microbial communities and processes. Annu Rev Ecol Evol Syst. 2018;49:409–32.
    Google Scholar 

    34.
    Kuzyakov Y, Horwath WR, Dorodnikov M, Blagodatskaya E. Review and synthesis of the effects of elevated atmospheric CO2 on soil processes: No changes in pools, but increased fluxes and accelerated cycles. Soil Biol Biochem. 2019;128:66–78.

    35.
    Yue K, Peng Y, Fornara DA, Van Meerbeek K, Vesterdal L, Yang W, et al. Responses of nitrogen concentrations and pools to multiple environmental change drivers: a meta-analysis across terrestrial ecosystems. Glob Ecol Biogeogr. 2019;28:690–724.
    Google Scholar 

    36.
    Bai E, Li S, Xu W, Li W, Dai W, Jiang P. A meta-analysis of experimental warming effects on terrestrial nitrogen pools and dynamics. N. Phytol. 2013;199:431–40.
    CAS  Google Scholar 

    37.
    Piepho HP, Herndl M, Pötsch EM, Bahn M. Designing an experiment with quantitative treatment factors to study the effects of climate change. J Agron Crop Sci. 2017;203:584–92.
    CAS  Google Scholar 

    38.
    Vance ED, Brookes PC, Jenkinson DS. An extraction method for measuring soil microbial biomass C. Soil Biol Biochem. 1987;19:703–7.
    CAS  Google Scholar 

    39.
    Hood-Nowotny R, Umana NH-N, Inselbacher E, Oswald- Lachouani P, Wanek W. Alternative methods for measuring inorganic, organic, and total dissolved nitrogen in soil. Soil Sci Soc Am J. 2010;74:1018–27.
    CAS  Google Scholar 

    40.
    Wanek W, Mooshammer M, Blöchl A, Hanreich A, Richter A. Determination of gross rates of amino acid production and immobilization in decomposing leaf litter by a novel 15N isotope pool dilution technique. Soil Biol Biochem. 2010;42:1293–302.
    CAS  Google Scholar 

    41.
    Sørensen P, Jensen ES. Sequential diffusion of ammonium and nitrate from soil extracts to a polytetrafluoroethylene trap for 15N determination. Anal Chim Acta. 1991;252:201–3.
    Google Scholar 

    42.
    Lachouani P, Frank AH, Wanek W. A suite of sensitive chemical methods to determine the δ 15N of ammonium, nitrate and total dissolved N in soil extracts. Rapid Commun Mass Spectrom. 2010;24:3615–23.
    CAS  PubMed  Google Scholar 

    43.
    Angel R, Claus P, Conrad R. Methanogenic archaea are globally ubiquitous in aerated soils and become active under wet anoxic conditions. ISME J. 2012;6:847–62.
    CAS  PubMed  Google Scholar 

    44.
    Apprill A, McNally S, Parsons R, Weber L. Minor revision to V4 region SSU rRNA 806R gene primer greatly increases detection of SAR11 bacterioplankton. Aquat Micro Ecol. 2015;75:129–37.
    Google Scholar 

    45.
    Parada AE, Needham DM, Fuhrman JA. Every base matters: assessing small subunit rRNA primers for marine microbiomes with mock communities, time series and global field samples. Environ Microbiol. 2016;18:1403–14.
    CAS  PubMed  Google Scholar 

    46.
    Herbold CW, Pelikan C, Kuzyk O, Hausmann B, Angel R, Berry D, et al. A flexible and economical barcoding approach for highly multiplexed amplicon sequencing of diverse target genes. Front Microbiol. 2015;6:1–8.
    Google Scholar 

    47.
    Purkhold U, Wagner M, Timmermann G, Pommerening-Röser A, Koops HP. 16S rRNA and amoA-based phylogeny of 12 novel betaproteobacterial ammonia-oxidizing isolates: extension of the dataset and proposal of a new lineage within the nitrosomonads. Int J Syst Evol Microbiol. 2003;53:1485–94.
    CAS  PubMed  Google Scholar 

    48.
    Alves RJE, Minh BQ, Urich T, Von Haeseler A, Schleper C. Unifying the global phylogeny and environmental distribution of ammonia-oxidising archaea based on amoA genes. Nat Commun. 2018;9:1–17.
    CAS  Google Scholar 

    49.
    Berger SA, Krompass D, Stamatakis A. Performance, accuracy, and web server for evolutionary placement of short sequence reads under maximum likelihood. Syst Biol. 2011;60:291–302.
    PubMed  PubMed Central  Google Scholar 

    50.
    Stamatakis A. RAxML version 8: a tool for phylogenetic analysis and post-analysis of large phylogenies. Bioinformatics. 2014;30:1312–3.
    CAS  PubMed  PubMed Central  Google Scholar 

    51.
    Aigle A, Prosser JI, Gubry-Rangin C. The application of high-throughput sequencing technology to analysis of amoA phylogeny and environmental niche specialisation of terrestrial bacterial ammonia-oxidisers. Environ Microbiome. 2019;14:3.
    Google Scholar 

    52.
    Pjevac P, Schauberger C, Poghosyan L, Herbold CW, van Kessel MAHJ, Daebeler A, et al. AmoA-targeted polymerase chain reaction primers for the specific detection and quantification of comammox Nitrospira in the environment. Front Microbiol. 2017;8:1–11.
    Google Scholar 

    53.
    Pruesse E, Peplies J, Glöckner FO. SINA: accurate high-throughput multiple sequence alignment of ribosomal RNA genes. Bioinformatics. 2012;28:1823–9.
    CAS  PubMed  PubMed Central  Google Scholar 

    54.
    Trifinopoulos J, Nguyen L-T, von Haeseler A, Minh BQ. W-IQ-TREE: a fast online phylogenetic tool for maximum likelihood analysis. Nucleic Acids Res. 2016;44:W232–5.
    CAS  PubMed  PubMed Central  Google Scholar 

    55.
    Kalyaanamoorthy S, Minh BQ, Wong TKF, von Haeseler A, Jermiin LS. ModelFinder: fast model selection for accurate phylogenetic estimates. Nat Methods. 2017;14:587–9.
    CAS  PubMed  PubMed Central  Google Scholar 

    56.
    Letunic I, Bork P. Interactive Tree Of Life (iTOL) v4: recent updates and new developments. Nucleic Acids Res. 2019;47:W256–9.
    CAS  PubMed  PubMed Central  Google Scholar 

    57.
    Katoh K, Standley DM. MAFFT multiple sequence alignment software version 7: improvements in performance and usability. Mol Biol Evol. 2013;30:772–80.
    CAS  PubMed  PubMed Central  Google Scholar 

    58.
    Pester M, Maixner F, Berry D, Rattei T, Koch H, Lücker S, et al. NxrB encoding the beta subunit of nitrite oxidoreductase as functional and phylogenetic marker for nitrite-oxidizing Nitrospira. Environ Microbiol. 2014;16:3055–71.
    CAS  PubMed  Google Scholar 

    59.
    Sauder LA, Albertsen M, Engel K, Schwarz J, Nielsen PH, Wagner M, et al. Correction: cultivation and characterization of Candidatus nitrosocosmicus exaquare, an ammonia-oxidizing archaeon from a municipal wastewater treatment system. ISME J. 2020.

    60.
    Kozak M, Piepho HP. What’s normal anyway? Residual plots are more telling than significance tests when checking ANOVA assumptions. J Agron Crop Sci. 2018;204:86–98.
    Google Scholar 

    61.
    Langsrud Ø. ANOVA for unbalanced data: use type II instead of Type III sums of squares. Stat Comput. 2003;13:163–7.
    Google Scholar 

    62.
    McMurdie PJ, Holmes S. phyloseq: an R Package for reproducible interactive analysis and graphics of microbiome census data. PLoS ONE. 2013;8:e61217.
    CAS  PubMed  PubMed Central  Google Scholar 

    63.
    Oksanen J, Blanchet FG, Friendly M, Kindt R, Legendre P, McGlinn D, et al. vegan: Community Ecology Package. R package version 2.5-6. https://CRAN.R-project.org/package=vegan.

    64.
    Stier AC, Geange SW, Hanson KM, Bolker BM. Predator density and timing of arrival affect reef fish community assembly. Ecology. 2013;94:1057–68.
    PubMed  Google Scholar 

    65.
    Anderson MJ. Permutational multivariate analysis of variance (PERMANOVA). Wiley StatsRef: Statistics Reference Online. Chichester, UK: John Wiley & Sons, Ltd; 2017. p 1–15.

    66.
    Fierer N, Schimel JP. A proposed mechanism for the pulse in carbon dioxide production commonly observed following the rapid rewetting of a dry soil. Soil Sci Soc Am J. 2010;67:798.
    Google Scholar 

    67.
    Lehtovirta-Morley LE. Ammonia oxidation: ecology, physiology, biochemistry and why they must all come together. FEMS Microbiol Lett. 2018;365:1–9.
    Google Scholar 

    68.
    Schimel JP, Schaeffer SM. Microbial control over carbon cycling in soil. Front Microbiol. 2012;3:1–11.
    Google Scholar 

    69.
    Fierer N. Embracing the unknown: disentangling the complexities of the soil microbiome. Nat Rev Microbiol. 2017;15:579–90.
    CAS  PubMed  Google Scholar 

    70.
    Larsen KS, Andresen LC, Beier C, Jonasson S, Albert KR, Ambus P, et al. Reduced N cycling in response to elevated CO2, warming, and drought in a Danish heathland: synthesizing results of the CLIMAITE project after two years of treatments. Glob Chang Biol. 2011;17:1884–99.
    Google Scholar 

    71.
    Brenzinger K, Kujala K, Horn MA, Moser G, Guillet C, Kammann C, et al. Soil conditions rather than long-term exposure to elevated CO2 affect soil microbial communities associated with N-cycling. Front Microbiol. 2017;8:1–14.
    Google Scholar 

    72.
    Rütting T, Hovenden MJ. Soil nitrogen cycle unresponsive to decadal long climate change in a Tasmanian grassland. Biogeochemistry. 2020;147:99–107.
    Google Scholar 

    73.
    Rustad LE, Campbell JL, Marion GM, Norby RJ, Mitchell MJ, Hartley AE, et al. A meta-analysis of the response of soil respiration, net nitrogen mineralization, and aboveground plant growth to experimental ecosystem warming. Oecologia. 2001;126:543–62.
    CAS  PubMed  Google Scholar 

    74.
    Fuchslueger L, Wild B, Mooshammer M, Takriti M, Kienzl S, Knoltsch A, et al. Microbial carbon and nitrogen cycling responses to drought and temperature in differently managed mountain grasslands. Soil Biol Biochem. 2019;135:144–53.
    CAS  Google Scholar 

    75.
    Coskun D, Britto DT, Shi W, Kronzucker HJ. Nitrogen transformations in modern agriculture and the role of biological nitrification inhibition. Nat Plants. 2017;3:17074.
    CAS  PubMed  Google Scholar 

    76.
    Subbarao GV, Yoshihashi T, Worthington M, Nakahara K, Ando Y, Sahrawat KL, et al. Suppression of soil nitrification by plants. Plant Sci. 2015;233:155–64.
    CAS  PubMed  Google Scholar 

    77.
    Canarini A, Dijkstra FA. Dry-rewetting cycles regulate wheat carbon rhizodeposition, stabilization and nitrogen cycling. Soil Biol Biochem. 2015;81:195–203.
    CAS  Google Scholar 

    78.
    Karlowsky S, Augusti A, Ingrisch J, Akanda MKU, Bahn M, Gleixner G. Drought-induced accumulation of root exudates supports post-drought recovery of microbes in mountain grassland. Front Plant Sci. 2018;871:1–16.
    Google Scholar 

    79.
    Manzoni S, Schimel JP, Barbara S. Results from a responses of soil microbial communities to water stress: results from a meta-analysis. Ecology. 2017;93:930–8.
    Google Scholar 

    80.
    Canarini A, Merchant A, Dijkstra FA. Drought effects on Helianthus annuus and Glycine max metabolites: from phloem to root exudates. Rhizosphere. 2016;2:85–97.
    Google Scholar 

    81.
    Hashem A, Kumar A, Al-Dbass AM, Alqarawi AA, Al-Arjani A-BF, Singh G, et al. Arbuscular mycorrhizal fungi and biochar improves drought tolerance in chickpea. Saudi J Biol Sci. 2019;26:614–24.
    CAS  PubMed  Google Scholar 

    82.
    Williams A, de Vries FT. Plant root exudation under drought: implications for ecosystem functioning. N. Phytol. 2020;225:1899–1905.
    Google Scholar 

    83.
    Subbarao GV, Rondon M, Ito O, Ishikawa T, Rao IM, Nakahara K, et al. Biological nitrification inhibition (BNI)—Is it a widespread phenomenon? Plant Soil. 2007;294:5–18.
    CAS  Google Scholar 

    84.
    Homyak PM, Allison SD, Huxman TE, Goulden ML, Treseder KK. Effects of drought manipulation on soil nitrogen cycling: a meta-analysis. J Geophys Res Biogeosci. 2017;122:3260–72.
    CAS  Google Scholar 

    85.
    Fuchslueger L, Bahn M, Fritz K, Hasibeder R, Richter A. Experimental drought reduces the transfer of recently fixed plant carbon to soil microbes and alters the bacterial community composition in a mountain meadow. N. Phytol. 2014;201:916–27.
    CAS  Google Scholar 

    86.
    Thion C, Prosser JI. Differential response of nonadapted ammonia-oxidising archaea and bacteria to drying-rewetting stress. FEMS Microbiol Ecol. 2014;90:380–9.
    CAS  PubMed  Google Scholar 

    87.
    Norton JM, Klotz MG, Stein LY, Arp DJ, Bottomley PJ, Chain PSG, et al. Complete genome sequence of Nitrosospira multiformis, an ammonia-oxidizing bacterium from the soil environment. Appl Environ Microbiol. 2008;74:3559–72.
    CAS  PubMed  PubMed Central  Google Scholar 

    88.
    Spang A, Poehlein A, Offre P, Zumbrägel S, Haider S, Rychlik N, et al. The genome of the ammonia-oxidizing CandidatusNitrososphaera gargensis: Insights into metabolic versatility and environmental adaptations. Environ Microbiol. 2012;14:3122–45.
    CAS  PubMed  Google Scholar 

    89.
    Kerou M, Offre P, Valledor L, Abby SS, Melcher M, Nagler M, et al. Proteomics and comparative genomics of Nitrososphaera viennensis reveal the core genome and adaptations of archaeal ammonia oxidizers. Proc Natl Acad Sci USA. 2016;113:E7937–46.
    CAS  PubMed  Google Scholar 

    90.
    Nicol GW, Hink L, Gubry-Rangin C, Prosser JI, Lehtovirta-Morley LE. Genome Sequence of “ Candidatus Nitrosocosmicus franklandus” C13, a terrestrial ammonia-oxidizing archaeon. Microbiol Resour Announc. 2019;8:1–3.
    Google Scholar 

    91.
    Sauder LA, Albertsen M, Engel K, Schwarz J, Nielsen PH, Wagner M, et al. Cultivation and characterization of Candidatus Nitrosocosmicus exaquare, an ammonia-oxidizing archaeon from a municipal wastewater treatment system. ISME J. 2017;11:1142–57.
    CAS  PubMed  PubMed Central  Google Scholar 

    92.
    Lehtovirta-Morley LE, Ge C, Ross J, Yao H, Nicol GW, Prosser JI. Characterisation of terrestrial acidophilic archaeal ammonia oxidisers and their inhibition and stimulation by organic compounds. FEMS Microbiol Ecol. 2014;89:542–52.
    CAS  PubMed  PubMed Central  Google Scholar 

    93.
    Stieglmeier M, Klingl A, Alves RJE, Rittmann SKMR, Melcher M, Leisch N, et al. Nitrososphaera viennensis gen. nov., sp. nov., an aerobic and mesophilic, ammonia-oxidizing archaeon from soil and a member of the archaeal phylum Thaumarchaeota. Int J Syst Evol Microbiol. 2014;64:2738–52.
    CAS  PubMed  PubMed Central  Google Scholar 

    94.
    Jung MY, Kim JG, Sinninghe Damsté JS, Rijpstra WIC, Madsen EL, Kim SJ, et al. A hydrophobic ammonia-oxidizing archaeon of the Nitrosocosmicus clade isolated from coal tar-contaminated sediment. Environ Microbiol Rep. 2016;8:983–92.
    CAS  PubMed  Google Scholar 

    95.
    Gwak JH, Jung MY, Hong H, Kim JG, Quan ZX, Reinfelder JR, et al. Archaeal nitrification is constrained by copper complexation with organic matter in municipal wastewater treatment plants. ISME J. 2020;14:335–46.
    CAS  PubMed  Google Scholar 

    96.
    Nowka B, Daims H, Spieck E. Comparison of oxidation kinetics of nitrite-oxidizing bacteria: nitrite availability as a key factor in niche differentiation. Appl Environ Microbiol. 2015;81:745–53.
    PubMed  PubMed Central  Google Scholar 

    97.
    Prosser JI. The ecology of nitrifying bacteria. In: Bothe H, Ferguson SJ, editors. Newton WEBT-B of the NC. Biology of the Nitrogen Cycle. Amsterdam: Elsevier; 2007. p 223–43.

    98.
    Norton JM, Stark JM. Regulation and measurement of nitrification in terrestrial systems. In: Klotz MGBT-M in E. Research on nitrification and related processes, Part A. 2011. Academic Press, United States, p 343–68.

    99.
    Koch H, Galushko A, Albertsen M, Schintlmeister A, Gruber-Dorninger C, Lücker S, et al. Growth of nitrite-oxidizing bacteria by aerobic hydrogen oxidation. Science. 2014;345:1052 LP–1054.
    Google Scholar 

    100.
    Koch H, Lücker S, Albertsen M, Kitzinger K, Herbold C, Spieck E, et al. Expanded metabolic versatility of ubiquitous nitrite-oxidizing bacteria from the genus Nitrospira. Proc Natl Acad Sci USA. 2015;112:11371–6.
    CAS  PubMed  Google Scholar 

    101.
    Daebeler A, Bodelier PLE, Yan Z, Hefting MM, Jia Z, Laanbroek HJ. Interactions between Thaumarchaea, Nitrospira and methanotrophs modulate autotrophic nitrification in volcanic grassland soil. ISME J. 2014;8:2397–410.
    CAS  PubMed  PubMed Central  Google Scholar 

    102.
    Kim DG, Vargas R, Bond-Lamberty B, Turetsky MR. Effects of soil rewetting and thawing on soil gas fluxes: a review of current literature and suggestions for future research. Biogeosciences. 2012;9:2459–83.
    CAS  Google Scholar 

    103.
    Wrage N, Velthof GL, Van Beusichem ML, Oenema O. Role of nitrifier denitrification in the production of nitrous oxide. Soil Biol Biochem. 2001;33:1723–32.
    CAS  Google Scholar 

    104.
    Stein LY. Surveying N2O-producing pathways in bacteria. In: Klotz MGBT-M in E. Research on nitrification and related processes, Part A. 2011. Academic Press, United States, pp 131–52.

    105.
    Kozlowski JA, Stieglmeier M, Schleper C, Klotz MG, Stein LY. Pathways and key intermediates required for obligate aerobic ammonia-dependent chemolithotrophy in bacteria and Thaumarchaeota. ISME J. 2016;10:1836–45.
    CAS  PubMed  PubMed Central  Google Scholar 

    106.
    Kits KD, Jung MY, Vierheilig J, Pjevac P, Sedlacek CJ, Liu S, et al. Low yield and abiotic origin of N2O formed by the complete nitrifier Nitrospira inopinata. Nat Commun. 2019;10:1–12.
    CAS  Google Scholar  More

  • in

    Cumulative impact of cover crops on soil carbon sequestration and profitability in a temperate humid climate

    1.
    Lal, R. Soil carbon sequestration impacts on global climate change and food security. Science304, 1623–1627 (2004).
    ADS  CAS  PubMed  Google Scholar 
    2.
    Post, W. M. et al. Enhancement of carbon sequestration in the US soils. Bioscience54, 895–908 (2004).
    Google Scholar 

    3.
    Smith, P. et al. Greenhouse gas mitigation in agriculture. Philos. T. R. Soc. B.363, 789–813 (2008).
    CAS  Google Scholar 

    4.
    Lal, R. Carbon sequestration. Philos. T. R. Soc. Lond. B. Biol. Sci.363, 815–830 (2008).
    CAS  Google Scholar 

    5.
    Lal, R. Managing soils and ecosystems for mitigating anthropogenic carbon emissions and advancing global food security. Bioscience60, 708–721 (2010).
    Google Scholar 

    6.
    West, P. C. et al. Trading carbon for food: global comparison of carbon stocks vs. crop yields on agricultural land. Proc. Natl. Acad. Sci. USA107, 19645–19648 (2010).
    ADS  CAS  PubMed  Google Scholar 

    7.
    Kremen, C. et al. Economic incentives for rain forest conservation across scales. Science288, 1828–1831 (2000).
    ADS  CAS  PubMed  Google Scholar 

    8.
    Portela, R. & Rademacher, I. A dynamic model of patterns of deforestation and their effect on the ability of the Brazilian Amazonia to provide ecosystem services. Ecol. Model.143, 115–146 (2001).
    Google Scholar 

    9.
    Brar, B. S., Singh, K., Dheri, G. S. & Kumar, B. Carbon sequestration and soil carbon pools in a rice-wheat cropping system: effect of long-term use of inorganic fertilizer and organic manure. Soil Till. Res.128, 30–36 (2013).
    Google Scholar 

    10.
    Environment and Climate Change Canada. Pricing carbon pollution in Canada: how it will work. https://www.canada.ca/en/environment-climate-change/news/2017/05/pricing_carbon_pollutionincanadahowitwillwork.html (2017)

    11.
    Mazzoncini, M., Sapkota, T. B., Barberi, P., Antichi, D. & Risaliti, R. Long-term effect of tillage, nitrogen fertilization and cover crops on soil organic carbon and total nitrogen content. Soil Till. Res.114, 165–174 (2011).
    Google Scholar 

    12.
    Ketterings, Q. M. et al. Integrating cover crops for nitrogen management in corn systems on northeastern U.S. dairies. Agron. J.107, 1365–1376 (2015).
    Google Scholar 

    13.
    Chahal, I. & Van Eerd, L. L. Evaluation of commercial soil health tests using a medium-term cover crop experiment in a humid, temperate climate. Plant Soil.427, 351–367 (2018).
    CAS  Google Scholar 

    14.
    Chahal, I. & Van Eerd, L. L. Quantifying soil quality in a horticultural cover cropping system. Geoderma352, 38–48 (2019).
    ADS  CAS  Google Scholar 

    15.
    Tonitto, C., David, M. B. & Drinkwater, L. E. Replacing bare fallows with cover crops in fertilizer-intensive cropping systems: a meta-analysis of crop yield and N dynamics. Agric. Ecosyst. Environ.112, 58–72 (2006).
    Google Scholar 

    16.
    Schipanski, M. et al. A conceptual framework for evaluating ecosystem services provided by cover crops in agroecosystems. Agric. Syst.125, 12–22 (2014).
    Google Scholar 

    17.
    Abdollahi, L. & Munkholm, L. J. Tillage system and cover crop effects on soil quality: I. Chemical, mechanical, and biological properties. Soil Sci. Soc. Am. J.78, 262–270 (2014).
    ADS  Google Scholar 

    18.
    Belfry, K. D., Trueman, C., Vyn, R. J., Loewen, S. A. & Van Eerd, L. L. Winter cover crops on processing tomato yield, quality, pest pressure, nitrogen availability, and profit margins. PLoS ONE12, e0180500 (2017).
    PubMed  PubMed Central  Google Scholar 

    19.
    O’Reilly, K. A., Robinson, D. E., Vyn, R. J. & Van Eerd, L. L. Weed populations, sweet corn yield, and economics following fall cover crops. Weed Technol.25, 374–384 (2011).
    Google Scholar 

    20.
    O’Reilly, K. A., Lauzon, J. D., Vyn, R. J. & Van Eerd, L. L. Nitrogen cycling, profit margins and sweet corn yield under fall cover crop systems. Can. J. Soil Sci.92, 353–365 (2012).
    CAS  Google Scholar 

    21.
    Buchi, L., Wendling, M., Amosse, C., Necpalova, M. & Charles, R. Importance of cover crops in alleviating negative effects of reduced soil tillage and promoting soil fertility in a winter wheat cropping system. Agric. Ecosyst. Environ.256, 92–104 (2018).
    Google Scholar 

    22.
    Hunter, M. C. et al. Cover crop mixture effects on maize, soybean, and wheat yield in rotation. Agric. Environ. Lett.4, 180051 (2019).
    Google Scholar 

    23.
    Blanco-Canqui, H. et al. Cover crops and ecosystem services: insights from studies in temperate soils. Agron. J.107, 2449–2474 (2015).
    CAS  Google Scholar 

    24.
    Kuo, S., Sainju, U. & Jellum, E. J. Winter cover crop effects on soil organic C and carbohydrate in soil. Soil Sci. Soc. Am. J.61, 145–152 (1997).
    ADS  CAS  Google Scholar 

    25.
    Abdalla, M. et al. A critical review of the impacts of cover crops on nitrogen leaching, net greenhouse gas balance and crop productivity. Glob. Change Biol.25, 2530–2543 (2019).
    ADS  Google Scholar 

    26.
    Ghimire, R., Bista, P. & Machado, S. Long-term management effects and temperature sensitivity of soil organic carbon in grassland and agricultural soils. Sci. Rep.9, 12151 (2019).
    ADS  PubMed  PubMed Central  Google Scholar 

    27.
    Jagadamma, S., Essington, M. E., Xu, S. & Yin, X. Total and active soil organic carbon from long-term agricultural management practices in West Tennessee. Agric. Environ. Lett.4, 180062 (2019).
    Google Scholar 

    28.
    Calegari, A. et al. Impact of long-term no-tillage and cropping system management on soil organic carbon in an Oxisol: a model for sustainability. Agron. J.100, 1013–1019 (2008).
    CAS  Google Scholar 

    29.
    Poeplau, C. & Don, A. Carbon sequestration in agricultural soils via cultivation of cover crops—a meta-analysis. Agric. Ecosyst. Environ.200, 33–41 (2015).
    CAS  Google Scholar 

    30.
    West, T. O. et al. Carbon management response curves: estimates of temporal soil carbon dynamics. Environ. Manag.33, 507–518 (2004).
    Google Scholar 

    31.
    Balkcom, K. S. & Reeves, D. W. Sunn-hemp utilized as a legume cover crop for corn production. Agron. J.97, 26–31 (2005).
    Google Scholar 

    32.
    Maughan, M. W. et al. Soil quality and corn yield under crop-livestock integration in Illinois. Agron. J.101, 1503–1510 (2009).
    CAS  Google Scholar 

    33.
    Acuna, J. & Villamil, M. B. Short-term effects of cover crops and compaction on soil properties and soybean production in Illinois. Agron. J.106, 860–870 (2014).
    CAS  Google Scholar 

    34.
    Reese, C. L. et al. Winter cover crops impact on corn production in semiarid regions. Agron. J.106, 1479–1488 (2014).
    Google Scholar 

    35.
    Nielsen, D. C. & Vigil, M. F. Legume green fallow effect on soil water content at wheat planting and wheat yield. Agron. J.97, 684–689 (2005).
    Google Scholar 

    36.
    Nielsen, D. C. et al. Cover crop mixtures do not use water differently than single-species plantings. Agron. J.107, 1025–1038 (2015).
    Google Scholar 

    37.
    Schomberg, H. H. et al. Grazing winter rye cover crop in a cotton no-till system: yield and economics. Agron. J.106, 1041–1050 (2014).
    CAS  Google Scholar 

    38.
    Flower, K. C., Cordingley, N., Ward, P. R. & Weeks, C. Nitrogen, weed management and economics with cover crops in conservation agriculture in a Mediterranean climate. Field Crops Res.132, 63–75 (2012).
    Google Scholar 

    39.
    Zhou, X. V., Larson, J. A., Boyer, C. N., Roberts, R. K. & Tyler, D. D. Tillage and cover crop impacts on economics of cotton production in Tennessee. Agron. J.109, 2087–2096 (2017).
    Google Scholar 

    40.
    Ouellette, L., Voroney, R. P. & Van Eerd, L. L. DRIFT spectroscopy to assess cover crop and corn Stover decomposition in lab-incubated soil. Soil Sci. Soc. Am. J.80, 284–293 (2016).
    ADS  CAS  Google Scholar 

    41.
    Garcia-Gonzalez, I., Hontoria, C., Gabriel, J. L., Alonso-Ayuso, M. & Quemada, M. Cover crops to mitigate soil degradation and enhance soil functionality in irrigated land. Geoderma322, 81–88 (2018).
    ADS  CAS  Google Scholar 

    42.
    Sainju, U. M., Singh, B. P. & Whithead, W. F. Long-term effects of tillage, cover crops, and nitrogen fertilization on organic carbon and nitrogen concentrations in sandy loam soils in Georgia, USA. Soil Till. Res.63, 167–179 (2002).
    Google Scholar 

    43.
    Sapkota, T. B., Mazzoncini, M., Barberi, P., Antichi, D. & Silvestri, N. Fifteen years of no till increase soil organic matter, microbial biomass and arthropod diversity in cover crop based arable cropping systems. Agron. Sustain. Dev.32, 853–863 (2012).
    Google Scholar 

    44.
    Kaye, J. P. & Quemada, M. Using cover crops to mitigate and adapt to climate change: a review. Agron. Sustain. Dev.7, 4 (2017).
    Google Scholar 

    45.
    McDaniel, M., Tiemann, L. & Grandy, A. S. Does agricultural crop diversity enhance soil microbial biomass and organic matter dynamics? A meta-analysis. Ecol. Appl.24, 560–570 (2014).
    CAS  PubMed  Google Scholar 

    46.
    Gijsman, A. J., Hoogenboom, G., Parton, W. J. & Kerridge, P. C. Modifying DSSAT crop models for low-input agricultural systems using a soil organic matter-residue module from CENTURY. Agron. J.94, 462–474 (2002).
    Google Scholar 

    47.
    Ackroyd, V.J. The use of fall-planted brassicaceae cover crop mono- and bicultures for nutrient cycling and weed suppression. Doctoral dissertation. Michigan State University, USA. p 114 (2015).

    48.
    Ketterings, Q. M. et al. Cover crop carbon and nitrogen content: fall 2011 sampling. What’s Cropping Up21, 1–4 (2011).
    Google Scholar 

    49.
    Ort, S. B. et al. Carbon and nitrogen uptake of cereal cover crops following corn silage. What’s Cropping Up23, 1–3 (2013).
    Google Scholar 

    50.
    Kong, A. Y. Y. & Six, J. Tracing root vs residue carbon into soils from conventional and alternative cropping systems. Soil Sci. Soc. Am. J.74, 1201–1210 (2010).
    ADS  CAS  Google Scholar 

    51.
    Bertgold, J. S., Ramsey, S., Maddy, L. & Williams, J. R. A review of economic considerations for cover crops as a conservation practice. Ren. Agric. Food Syst.34, 62–76 (2017).
    Google Scholar 

    52.
    Fageria, N. K., Baligar, V. C. & Bailey, B. A. Role of cover crops in improving soil and row crop productivity. Commun. Soil Sci. Plant Anal.36, 2733–2757 (2005).
    CAS  Google Scholar 

    53.
    Mat Hassan, H., Hasbullah, H. & Marschner, P. Growth and rhizosphere P pools of legume-wheat rotations at low P supply. Biol. Fertil. Soils49, 41–49 (2013).
    CAS  Google Scholar 

    54.
    Van Eerd, L. L. Nitrogen dynamics and yields of fresh bean and sweet corn with different cover crops and planting dates. Nutr. Cycl. Agroecosyst.111, 33–46 (2018).
    Google Scholar 

    55.
    Norris, C. & Congreves, K. A. Alternative management practices improve soil health indices in intensive vegetable cropping systems: a review. Front. Environ. Sci.6, 50. https://doi.org/10.3389/fenvs.2018.00050 (2018).
    Article  Google Scholar 

    56.
    Plastina, A., Liu, F., Sawadgo, W. Additionality in Cover-Crop Cost-Share Programs in Iowa: A Matching Assessment. In Agricultural and Applied Economics. Association Annual Meeting, 18. Washington, DC (2018).

    57.
    Bollero, G. & Bullock, D. Cover cropping systems for the central corn belt. J. Prod. Agric.7, 55–58 (1994).
    Google Scholar 

    58.
    Nkoa, R., Kendall, K. & Deen, B. Ecozone dynamics of crop residue biomass, macronutrient removals, replacement costs, and bioenergy potential in corn soybean winter wheat cropping systems in southern Ontario. Can. J. Plant Sci.94, 981993 (2014).
    Google Scholar 

    59.
    Statistics Canada. Table 32–10-0411-01: Land Practices and Land Features (Statistics Canada, Ottawa, 2016).
    Google Scholar 

    60.
    Soil classification working group. The Canadian System of Soil Classification. Agric and Agri-Food Can. Publ. 1646 (Revised), 187 (1998).

    61.
    Carter, M. R. & Gregorich, E. G. Measuring change in soil organic carbon storage. In Soil Sampling and Methods of Analysis (eds Carter, M. R. & Gregorich, E. G.) 25–38 (CRC Press, Boca Raton, 2008).
    Google Scholar 

    62.
    Ontario Ministry of Agriculture, Food, and Rural Affairs. https://www.omafra.gov.on.ca/english/stats/hort/index.html, https://www.omafra.gov.on.ca/english/stats/crops/index.html (2019)

    63.
    Molenhuis, J. Table 8. Survey of Custom Farmwork Rates Charged in 2015. https://www.omafra.gov.on.ca/english/busdev/2015customratesa1.htm (2016)

    64.
    Environment and Climate Change Canada. Pan-Canadian Framework on Clean Growth and Climate Change: Canada’s plan to address climate change and grow the economy. https://www.canada.ca/en/services/environment/weather/climatechange/pan-canadian-framework.html (2016)

    65.
    Bowley, S.R. A hitchhiker’s Guide to Statistics in Biology. Generalized Linear Mixed Model Edition. In Plants, Kincardine ON 978–0–9685500–4–5 (2015). More

  • in

    Thermal niche helps to explain the ability of dung beetles to exploit disturbed habitats

    1.
    Angilletta, M. J. Thermal Adaptation: A Theoretical and Empirical Analysis (Oxford University Press, Oxford, 2009).
    Google Scholar 
    2.
    Giménez Gómez, V. C., Verdú, J. R., Guerra Alonso, C. B. & Zurita, G. A. Relationship between land uses and diversity of dung beetles (Coleoptera: Scarabaeinae) in the southern Atlantic forest of Argentina: which are the key factors?. Biodivers. Conserv.27, 3201–3213 (2018).
    Google Scholar 

    3.
    Nichols, E. et al. Global dung beetle response to tropical forest modification and fragmentation: a quantitative literature review and meta-analysis. Biol. Conserv.137, 1–19 (2007).
    Google Scholar 

    4.
    Barragán, F., Moreno, C. E., Escobar, F., Halffter, G. & Navarrete, D. Negative impacts of human land use on dung beetle functional diversity. PLoS ONE6, e17976. https://doi.org/10.1371/journal.pone.0017976 (2011).
    ADS  CAS  Article  PubMed  PubMed Central  Google Scholar 

    5.
    Giménez Gómez, V. C., Verdú, J. R., Gómez-Cifuentes, A., Vaz-de-Mello, F. Z. & Zurita, G. A. Influence of land use on the trophic niche overlap of dung beetles in the semideciduous Atlantic forest of Argentina. Insect Conserv. Divers.11, 554–564 (2018).
    Google Scholar 

    6.
    Gómez-Cifuentes, A., Munevar, A., Gimenez, V. C., Gatti, M. G. & Zurita, G. A. Influence of land use on the taxonomic and functional diversity of dung beetles (Coleoptera: Scarabaeinae) in the southern Atlantic forest of Argentina. J. Insect Conserv.21, 147–156 (2017).
    Google Scholar 

    7.
    Gómez-Cifuentes, A., Giménez Gómez, V. C., Moreno, C. & Zurita, G. A. Tree retention in cattle ranching systems partially preserves dung beetle diversity and functional groups in the semideciduous Atlantic forest. Basic Appl. Ecol.34, 64–74 (2019).
    Google Scholar 

    8.
    Halffter, G. & Arellano, L. Response of dung beetle diversity to human-induced changes in a tropical landscape. Biotropica34, 144–154 (2002).
    Google Scholar 

    9.
    Gardner, T. A., Hernández, M. I. M., Barlow, J. & Peres, C. A. Understanding the biodiversity consequences of habitat change: the value of secondary and plantation forests for neotropical dung beetles. J. Appl. Ecol45, 883–893 (2008).
    Google Scholar 

    10.
    Nichols, E. et al. Trait-dependent response of dung beetle populations to tropical forest conversion at local and regional scales. Ecology94, 180–189 (2013).
    PubMed  Google Scholar 

    11.
    Sowig, P. Habitat selection and offspring survival rate in three paracoprid dung beetles: the influence of soil type and soil moisture. Ecography18, 147–154 (1995).
    Google Scholar 

    12.
    Davis, A. L. V., Van Aarde, R. J., Scholtz, C. H. & Delport, J. H. Increasing representation of localized dung beetles across a chronosequence of regenerating vegetation and natural dune forest in South Africa. Glob. Ecol. Biogeogr.11, 191–209 (2002).
    Google Scholar 

    13.
    Almeida, S., Louzada, J., Sperber, C. & Barlow, J. Subtle land use change and tropical biodiversity: dung beetle communities in Cerrado grasslands and exotic pastures. Biotropica43, 704–710 (2011).
    Google Scholar 

    14.
    Piccini, I. et al. Dung beetles as drivers of ecosystem multifunctionality: are response and effect traits interwoven?. Sci. Total Environ.616–617, 1440–1448 (2018).
    ADS  PubMed  Google Scholar 

    15.
    Di Bitetti, M. S., Placci, G. & Dietz, L. A. A Biodiversity Vision for the Upper Paraná Atlantic Forest Ecoregion: Designing a Biodiversity Conservation Landscape and Setting Priorities for Conservation Action (World Wild life Fund, Gland, 2003).
    Google Scholar 

    16.
    Ribeiro, M. C., Metzger, J. P., Camargo Martensen, A., Ponzoni, F. J. & Hirota, M. M. The Brazilian Atlantic Forest: how much is left, and how is the remaining forest distributed? Implications for conservation. Biol. Conserv.142, 1141–1153 (2009).
    Google Scholar 

    17.
    Salomão, R. P. & Lannuzzi, L. Dung beetle (Coleoptera, Scarabaeidae) assemblage of a highly fragmented landscape of Atlantic forest: from small to the largest fragments of northeastern Brazilian region. Rev. Bras. Entomol.59, 126–131 (2015).
    Google Scholar 

    18.
    Bartholomew, G. A. & Heinrich, B. Endothermy in African dung beetles during flight, ball making, and ball rolling. J. Exp. Biol.73, 65–83 (1978).
    Google Scholar 

    19.
    Verdú, J. R., Arellano, L., Numa, C. & Micó, E. Roles of endothermy in niche differentiation for ball-rolling dung beetles (Coleoptera: Scarabaeidae) along an altitudinal gradient. Ecol. Entomol.32, 544–551 (2007).
    Google Scholar 

    20.
    Caveney, S., Scholtz, C. H. & McIntyre, P. Patterns of daily flight activity in onitine dung beetles (Scarabaeinae: Onitini). Oecologia103, 444–452 (1995).
    ADS  PubMed  Google Scholar 

    21.
    Verdú, J. R., Díaz, A. & Galante, E. Thermoregulatory strategies in two closery related sympatric Scarabaeus species (Coleoptera: Scarabaeinae). Physiol. Entomol.29, 32–38 (2004).
    Google Scholar 

    22.
    Kingsolver, J. G. The well-temperatured biologist. Am. Nat.174, 755–768 (2009).
    PubMed  Google Scholar 

    23.
    Reis, M. et al. A comparative study of the short term cold resistance response in distantly related Drosophila species: the role of regucalcin and frost. PLoS ONE6, e25520. https://doi.org/10.1371/journal.pone.0025520 (2011).
    ADS  CAS  Article  PubMed  PubMed Central  Google Scholar 

    24.
    Harrison, J. F., Woods, H. A. & Roberts, S. P. Ecological and Environmental Physiology of Insects (Oxford University Press, Oxford, 2012).
    Google Scholar 

    25.
    Chown, S. L., Scholtz, C. H., Klok, C. J., Jourbet, F. J. & Coles, K. S. Ecophysiology, range contraction and survival of a geographically restricted African dung beetle (Coleoptera: Scarabaeidae). Funct. Ecol.9, 30–39 (1995).
    Google Scholar 

    26.
    Heath, J. E., Hanegan, J. L., Wilkin, P. J. & Heath, M. S. Adaptation to the thermal responses of insects. Integr. Comp. Biol.11, 147–158 (1971).
    Google Scholar 

    27.
    Kristensen, T. N., Loeschcke, V. & Hoffmann, A. A. Can artificially selected phenotypes influence a component of field fitness? Thermal selection and fly performance under thermal extremes. Proc. R. Soc. Lond. B Biol. Sci.274, 771–778 (2007).
    Google Scholar 

    28.
    Verdú, J. R. & Lobo, J. M. Ecophysiology of thermorregulation in endothermic dung beetles: ecological and geographical implication. In Insect Ecology and Conservation (ed. Fattorini, S.) 1–28 (Research Singnpost, Trivandrum, 2008).
    Google Scholar 

    29.
    Krogh, A. & Zeuthen, E. The mechanism of flight preparation in some insects. J. Exp. Biol.18, 1–10 (1941).
    Google Scholar 

    30.
    Heinrich, B. Thermoregulation of African and European honeybees during foraging, attack, and hive exits and returns. J. Exp. Biol.80, 217–229 (1979).
    Google Scholar 

    31.
    Verdú, J. R., Alba-Tercedor, J. & Jiménez-Manrique, M. Evidence of different thermoregulatory mechanisms between two sympatric Scarabaeus species using infrared thermography and microcomputer tomography. PLoS ONE7, e33914. https://doi.org/10.1371/journal.pone.0033914 (2012).
    ADS  CAS  Article  PubMed  PubMed Central  Google Scholar 

    32.
    Chown, S. L. & Terblanche, J. S. Physiological diversity in insects: ecological and evolutionary contexts. Adv. Insect. Physiol.33, 50–152 (2006).
    Google Scholar 

    33.
    Terblanche, J. S., Deere, J. A., Clusells-Trullas, S., Janion, C. & Chown, S. L. Critical thermal limits depend on methodological context. Proc. R. Soc. Lond. B Biol. Sci.274, 2935–2942 (2007).
    Google Scholar 

    34.
    Vorhees, A. S., Gray, E. M. & Bradley, T. J. Thermal resistance and performance correlate with climate in populations of a widespread mosquito. Physiol. Biochem. Zool.86, 73–81 (2013).
    PubMed  Google Scholar 

    35.
    Gates, D. M. Biophysical Ecology (Springer, Berlin, 1980).
    Google Scholar 

    36.
    Bartholomew, G. A. & Casey, T. M. Endothermy during terrestrial activity in large beetles. Science195, 882–883 (1977).
    ADS  CAS  PubMed  Google Scholar 

    37.
    Verdú, J. R., Arellano, L. & Numa, C. Thermoregulation in endotermic dung beetles (Coleoptera: Scarabaeidae): effect of body size and ecophysiological constraints in flight. J. Insect Physiol.52, 854–860 (2006).
    PubMed  Google Scholar 

    38.
    Chown, S. L. & Klok, C. J. The ecological implications of physiological diversity in dung beetles. In Ecology and Evolution of Dung Beetles (eds Simmons, L. W. & Ridsdill-Smith, T. J.) 200–219 (Blackweel Publishing Ltd, Hoboken, 2011).
    Google Scholar 

    39.
    Oliveira-Filho, A. T. & Fontes, I. A. M. Patterns of floristic differentiation among Atlantic forests in Southeastern Brazil and the influence of climate. Biotropica32, 793–810 (2000).
    Google Scholar 

    40.
    Izquierdo, A. E., De Angelo, C. D. & Aide, T. M. Thirty years of human demography and land use change in the Atlantic Forest of Misiones, Argentina: an evaluation of the forest transition model. Ecol. Soc.13, 3 (2008).
    Google Scholar 

    41.
    Zurita, G. A. & Bellocq, M. I. Bird assemblages in anthropogenic habitats: identifying a suitability gradient for native species in the Atlantic forest. Biotropica44, 412 (2012).
    Google Scholar 

    42.
    Cabrera, A. L. Fitogeografía de Argentina. Boletín de sociedad Argentina de Botánica14, 1–42 (1971).
    Google Scholar 

    43.
    Campanello, P. I., Montti, L., Goldstein, G. & Mac Donagh, P. Reduced impact logging and post-harvesting forest management in the Atlantic Forest: alternative approaches to enhance canopy tree growth and regeneration and to reduce the impact of invasive species. In Forest Management (ed. Grossberg, S. P.) 39–59 (Nova Science, New York, 2009).
    Google Scholar 

    44.
    Dufrene, M. & Legendre, P. Species assemblages and indicator species: the need for a flexible asymmetrical approach. Ecol. Monogr.67, 345–366 (1997).
    Google Scholar 

    45.
    McGeoch, M. A. & Chown, S. L. Scaling up the value of bioindicators. Trends Ecol. Evol.13, 46–47 (1998).
    CAS  PubMed  Google Scholar 

    46.
    McGeoch, M. A., van Rensburg, B. J. & Botes, A. The verification and application of bioindicators: a case of study of dung beetles in a savanna ecosystem. J. Appl. Ecol.39, 661–672 (2002).
    Google Scholar 

    47.
    McCune, B. & Mefford, M. J. Multivariate Analysis of Ecological Data, Version 4.0. MjM Software, Gleneden Beach, Oregon, U.S.A. (1999).

    48.
    Hernández, M. I. M. The night and day of dung beetles (Coleoptera, Scarabaeidae) in the Serra do Japi, Brazil: elytra colour related to daily activity. Rev. Bras. Entomol.46, 597–600 (2002).
    Google Scholar 

    49.
    Hernández, M. I. M., Monteiro, L. R. & Favila, M. E. The role of body size and shape in understanding competitive interactions within a community of neotropical dung beetles. J. Insect Sci.11, 1–14 (2011).
    Google Scholar 

    50.
    Heinrich, B. Hot-blooded Insects: Strategies and Mechanisms of Thermoregulation (Harvard University Press, Cambridge, 1993).
    Google Scholar 

    51.
    Vannier, G. The thermobiological limits of some freezing intolerant insects: the supercooling and thermostupor points. Acta Oecol.15, 31–41 (1994).
    Google Scholar 

    52.
    Chown, S. L. & Nicolson, S. W. Insect Physiological Ecology: Mechanisms and Patterns (Oxford University Press, Oxford, 2004).
    Google Scholar 

    53.
    Gallego, B., Verdú, J. R., Carrascal, L. M. & Lobo, J. M. A protocol for analyzing thermal stress in insects using infrared thermography. J. Therm. Biol.56, 113–121 (2016).
    PubMed  Google Scholar 

    54.
    Merrick, M. Temperature regulation in burying beetles (Nicrophorus spp.: Coleoptera: Silphidae): effects of body size, morphology and environmental temperature. J. Exp. Biol.207, 723–733 (2004).
    PubMed  Google Scholar 

    55.
    Tyndale-Biscoe, M. Age-grading methods in adult insects: a review. Bull. Entomol. Res.74, 341–377 (1984).
    Google Scholar 

    56.
    Verdú, J. R., Casa, J. L., Lobo, J. M. & Numa, C. Dung beetles eat acorns to increase their ovarian development and thermal tolerance. PLoS ONE5, e10114. https://doi.org/10.1371/journal.pone.0010114 (2010).
    ADS  CAS  Article  PubMed  PubMed Central  Google Scholar 

    57.
    StatsDirect Ltd StatsDirect Statistical Software, StatsDirect, U.K.

    58.
    May, M. L. Thermoregulation and adaptation to temperature in dragonflies (Odonata: Anisoptera). Ecol. Monogr.46, 1–32 (1976).
    Google Scholar 

    59.
    Fox, J. & Weisberg, S. An {R} Companion to Applied Regression, Second Edition. Thousand Oaks CA: Sage. https://socserv.socsci.mcmaster.ca/jfox/Books/Companion (2011).

    60.
    Bates, D., Maechler, M., Bolker, B. & Walker, S. Fitting linear mixed-effects models using lme4. J. Stat. Softw.67, 1–48 (2015).
    Google Scholar 

    61.
    Length, R. Emmeans: Estimated Marginal Means, aka Least-Squares Means. R package version 1.2.3. https://CRAN.R-project.org/package=emmeans (2018).

    62.
    Dinno, A. Conover.test: conover-iman test of multiple comparisons using rank sums. R package version 1.1.4. https://CRAN.R-project.org/package=conover.test (2017).

    63.
    Di Rienzo, J. A. et al. W. InfoStat version 3241 2016. Grupo InfoStat, FCA, Universidad Nacional de Córdoba, Argentina (2016).

    64.
    Moran, D. M. Arguments for rejecting the sequential Bonferroni in ecological studies. Oikos100, 403–405 (2013).
    Google Scholar 

    65.
    Campos, R. C. & Hernández, M. I. M. The importance of maize management on dung beetle communities in Atlantic forest fragment. PLoS ONE10, e0145000. https://doi.org/10.1371/journal.pone.0145000 (2015).
    CAS  Article  PubMed  PubMed Central  Google Scholar 

    66.
    Filgueiras, B. K. C., Tabarelli, M., Leal, I., Vaz-De-Mello, F. Z. & Iannuzzi, L. Dung beetle persistence in human-modified landscapes: combining indicator species with anthropogenic land uses and fragmentation- related effects. Ecol. Indic.55, 65–73 (2015).
    Google Scholar 

    67.
    Tavares, A. et al. Eucalyptus plantations as hybrid ecosystems: implications for species conservation in the Brazilian Atlantic forest. For. Ecol. Manag.433, 131–139 (2019).
    Google Scholar 

    68.
    Smolka, J. et al. Dung beetles use their dung ball as a mobile thermal refuge. Curr. Biol.22, 863–864 (2012).
    Google Scholar 

    69.
    Verdú, J. R., Cortez, V., Oliva, D. & Giménez-Gómez, V. Thermoregulatory syndromes of two sympatric dung beetles with low energy costs. J. Insect Physiol.118, 103945. https://doi.org/10.1016/j.jinsphys.2019.103945 (2019).
    CAS  Article  PubMed  Google Scholar 

    70.
    Heinrich, B. & Bartholomew, G. A. Roles of endothermy and size in inter- and intraspecific competition for elephant dung in an African dung beetle, Scarabaeus laevistriatus. Physiol. Zool.52, 484–496 (1979).
    Google Scholar 

    71.
    Da Silva, P. G. & Hernández, M. I. M. Spatial variation of dung beetle assemblages associated with forest structure in remnants of southern Brazilian Atlantic Forest. Rev. Bras. Entomol.60, 73–81 (2016).
    Google Scholar 

    72.
    May, M. L. Insect thermoregulation. Annu. Rev. Entomol.24, 313–349 (1979).
    Google Scholar 

    73.
    Young, O. P. Perching of neotropical dung beetles on leaf surfaces: an example of behavioral thermoregulation?. Biotropica16, 324–327 (1984).
    Google Scholar 

    74.
    Heinrich, B. Insect thermoregulation. Endeavour19, 28–33 (1995).
    Google Scholar 

    75.
    Edney, E. B. Body temperatures of tenebrionid beetles in the Namib Desert of Southern Africa. J. Exp. Biol.55, 253–272 (1971).
    Google Scholar 

    76.
    Casey, T. M. Thermoregulation and heat exchange. Adv. Insect Physiol.20, 119–146 (1988).
    Google Scholar 

    77.
    Halffter, G. & Matthews, E. G. The natural history of dung beetles of the subfamily Scarabaeinae (Coleoptera: Scarabaeidae). Soc. Mex. Entomol.14, 1–312 (1966).
    Google Scholar 

    78.
    Audino, L. D., Louzada, J. & Comita, L. Dung beetles as indicators of tropical forest restoration success: is it possible to recover species and functional diversity?. Biol. Conserv.169, 248–257 (2014).
    Google Scholar 

    79.
    Beiroz, W. et al. Spatial and temporal shifts in functional and taxonomic diversity of dung beetles in a human-modified tropical forest landscape. Ecol. Indic.95, 518–526 (2018).
    Google Scholar 

    80.
    Gómez-Cifuentes, A., Vespa, N., Semmanrtín, M. & Zurita, G. A. Canopy cover is a key factor to preserve the ecological functions of dung beetles in the southern Atlantic Forest. Appl. Soil Ecol.154, 103652. https://doi.org/10.1016/j.apsoil.2020.103652 (2020).
    Article  Google Scholar  More

  • in

    Genomic and enzymatic evidence of acetogenesis by anaerobic methanotrophic archaea

    1.
    Luff, R. & Wallmann, K. Fluid flow, methane fluxes, carbonate precipitation and biogeochemical turnover in gas hydrate-bearing sediments at Hydrate Ridge, Cascadia Margin: numerical modeling and mass balances. Geochim. et. Cosmochim. Acta67, 3403–3421 (2003).
    CAS  ADS  Google Scholar 
    2.
    Brown, K. et al. Correlated transient fluid pulsing and seismic tremor in the Costa Rica subduction zone. Earth Planet. Sci. Lett.238, 189–203 (2005).
    CAS  ADS  Google Scholar 

    3.
    Ruff, S. E. et al. Microbial communities of deep-sea methane seeps at Hikurangi continental margin (New Zealand). PLoS ONE8, e72627 (2013).
    CAS  PubMed  PubMed Central  ADS  Google Scholar 

    4.
    Felden, J. et al. Anaerobic methanotrophic community of a 5346-m-deep vesicomyid clam colony in the Japan Trench. Geobiology12, 183–199 (2014).
    CAS  PubMed  PubMed Central  Google Scholar 

    5.
    Pop Ristova, P. et al. Bacterial diversity and biogeochemistry of different chemosynthetic habitats of the REGAB cold seep (West African margin, 3160 m water depth). Biogeosciences9, 5031–5048 (2012).
    ADS  Google Scholar 

    6.
    Knittel, K. & Boetius, A. Anaerobic oxidation of methane: progress with an unknown process. Annu. Rev. Microbiol.63, 311–334 (2009).
    CAS  PubMed  Google Scholar 

    7.
    Niemann, H. et al. Novel microbial communities of the Haakon Mosby mud volcano and their role as a methane sink. Nature443, 854–858 (2006).
    CAS  PubMed  ADS  Google Scholar 

    8.
    Schreiber, L. et al. Identification of the dominant sulfate-reducing bacterial partner of anaerobic methanotrophs of the ANME-2 clade. Environ. Microbiol.56, 2327–2340 (2010).
    Google Scholar 

    9.
    Holler, T. et al. Carbon and sulfur back flux during anaerobic microbial oxidation of methane and coupled sulfate reduction. Proc. Natl Acad. Sci.109, 21170–21170 (2012).
    CAS  Google Scholar 

    10.
    Michaelis, W. Microbial reefs in the black sea fueled by anaerobic oxidation of methane. Science297, 1013–1015 (2002).
    CAS  PubMed  ADS  Google Scholar 

    11.
    Treude, T. et al. Consumption of methane and CO2 by methanotrophic microbial mats from gas seeps of the anoxic black sea. Appl. Environ. Microbiol.73, 3770–3770 (2007).
    CAS  PubMed Central  Google Scholar 

    12.
    Jørgensen, B. B. & Boetius, A. Feast and famine—microbial life in the deep-sea bed. Nat. Rev. Microbiol.5, 770–781 (2007).
    PubMed  Google Scholar 

    13.
    Reeburgh, W. S. Oceanic methane biogeochemistry. Chem. Rev.107, 486–513 (2007).
    CAS  PubMed  Google Scholar 

    14.
    Lee, J.-W. et al. Microbial community structures of methane hydrate-bearing sediments in the Ulleung Basin, East Sea of Korea. Mar. Pet. Geol.47, 136–146 (2013).
    CAS  Google Scholar 

    15.
    Lee, Y. M. et al. Genomic insight into the predominance of candidate phylum atribacteria JS1 lineage in marine sediments. Front. Microbiol.9, 198 (2018).
    Google Scholar 

    16.
    Cui, H. et al. Microbial diversity of two cold seep systems in gas hydrate-bearing sediments in the South China Sea. Mar. Environ. Res.144, 230–239 (2019).
    CAS  PubMed  Google Scholar 

    17.
    Wang, F.-P. et al. Methanotrophic archaea possessing diverging methane-oxidizing and electron-transporting pathways. ISME J.8, 1069–1078 (2013).
    PubMed  PubMed Central  Google Scholar 

    18.
    Soo, V. W. C. et al. Reversing methanogenesis to capture methane for liquid biofuel precursors. Microb. Cell Factor.15, 621 (2016).
    Google Scholar 

    19.
    Zhang, Y., Henriet, J.-P., Bursens, J. & Boon, N. Stimulation of in vitro anaerobic oxidation of methane rate in a continuous high-pressure bioreactor. Bioresour. Technol.101, 3132–3138 (2010).
    CAS  PubMed  Google Scholar 

    20.
    Ingram-Smith, C., Woods, B. I. & Smith, K. S. Characterization of the acyl substrate binding pocket of acetyl-CoA synthetase. Biochemistry45, 11482–11490 (2006).
    CAS  PubMed  Google Scholar 

    21.
    Schmidt, M. & Schönheit, P. Acetate formation in the photoheterotrophic bacterium Chloroflexus aurantiacus involves an archaeal type ADP-forming acetyl-CoA synthetase isoenzyme I. FEMS Microbiol. Lett.349, 171–179 (2013).
    CAS  PubMed  Google Scholar 

    22.
    Parizzi, L. P. et al. The genome sequence of Propionibacterium acidipropionici provides insights into its biotechnological and industrial potential. BMC Genomics13, 562 (2012).
    CAS  PubMed  PubMed Central  Google Scholar 

    23.
    Musfeldt, M. & Schonheit, P. Novel type of ADP-forming acetyl coenzyme A synthetase in hyperthermophilic archaea: heterologous expression and characterization of isoenzymes from the sulfate reducer Archaeoglobus fulgidus and the methanogen Methanococcus jannaschii. J. Bacteriol.184, 636–644 (2002).
    CAS  PubMed  PubMed Central  Google Scholar 

    24.
    Mai, X. & Adams, M. W. Purification and characterization of two reversible and ADP-dependent acetyl coenzyme A synthetases from the hyperthermophilic archaeon Pyrococcus furiosus. J. Bacteriol.178, 5897–5903 (1996).
    CAS  PubMed  PubMed Central  Google Scholar 

    25.
    Glasemacher, J., Bock, A. K., Schmid, R. & Schonheit, P. Purification and properties of acetyl-CoA synthetase (ADP-forming), an archaeal enzyme of acetate formation and ATP synthesis, from the hyperthermophile Pyrococcus furiosus. Eur. J. Biochem.244, 561–567 (1997).
    CAS  PubMed  Google Scholar 

    26.
    Musfeldt, M., Selig, M. & Schonheit, P. Acetyl coenzyme A synthetase (ADP forming) from the hyperthermophilic Archaeon pyrococcus furiosus: identification, cloning, separate expression of the encoding genes, acdAI and acdBI, in Escherichia coli, and in vitro reconstitution of the active heterotetrameric enzyme from its recombinant subunits. J. Bacteriol.181, 5885–5888 (1999).
    CAS  PubMed  PubMed Central  Google Scholar 

    27.
    Jones, W. J. et al. Methanococcus jannaschii sp. nov., an extremely thermophilic methanogen from a submarine hydrothermal vent. Arch. Microbiol.136, 254–261 (1983).
    CAS  Google Scholar 

    28.
    Bräsen, C. & Schönheit, P. AMP-forming acetyl-CoA synthetase from the extremely halophilic archaeon Haloarcula marismortui: purification, identification and expression of the encoding gene, and phylogenetic affiliation. Extremophiles9, 355–365 (2005).
    PubMed  Google Scholar 

    29.
    Bräsen, C., Urbanke, C. & Schönheit, P. A novel octameric AMP-forming acetyl-CoA synthetase from the hyperthermophilic crenarchaeon Pyrobaculum aerophilum. FEBS Lett.579, 477–482 (2004).
    Google Scholar 

    30.
    Rabus, R. & Heider, J. Initial reactions of anaerobic metabolism of alkylbenzenes in denitrifying and sulfate-reducing bacteria. Arch. Microbiol.170, 377–384 (1998).
    CAS  Google Scholar 

    31.
    Ruff, S. E. et al. Global dispersion and local diversification of the methane seep microbiome. Proc. Natl Acad. Sci.112, 4015–4020 (2015).
    CAS  PubMed  ADS  Google Scholar 

    32.
    Zhuang, G.-C. et al. Significance of acetate as a microbial carbon and energy source in the water column of Gulf of Mexico: implications for marine carbon cycling. Glob. Biogeochem. Cycles33, 223–235 (2019).
    CAS  ADS  Google Scholar 

    33.
    Zhuang, G.-C., Montgomery, A. & Joye, S. B. Heterotrophic metabolism of C1 and C2 low molecular weight compounds in northern Gulf of Mexico sediments: controlling factors and implications for organic carbon degradation. Geochim. et. Cosmochim. Acta247, 243–260 (2019).
    CAS  ADS  Google Scholar 

    34.
    Bräsen, C., Schmidt, M., Grötzinger, J. & Schönheit, P. Reaction mechanism and structural model of ADP-forming acetyl-CoA synthetase from the hyperthermophilic archaeon Pyrococcus furiosus. J. Biol. Chem.283, 15409–15418 (2008).
    PubMed  PubMed Central  Google Scholar 

    35.
    Haroon, M. F. et al. Anaerobic oxidation of methane coupled to nitrate reduction in a novel archaeal lineage. Nature500, 567–570 (2013).
    CAS  PubMed  ADS  Google Scholar 

    36.
    Ino, K. et al. Ecological and genomic profiling of anaerobic methane-oxidizing archaea in a deep granitic environment. ISME J.12, 31–47 (2017).
    PubMed  PubMed Central  Google Scholar 

    37.
    Wegener, G. et al. Metabolic capabilities of microorganisms involved in and associated with the anaerobic oxidation of methane. Front. Microbiol.7, 869 (2016).
    Google Scholar 

    38.
    Cai, C. et al. Acetate production from anaerobic oxidation of methane via intracellular storage compounds. Environ. Sci. Technol.53, 7371–7379 (2019).
    CAS  PubMed  ADS  Google Scholar 

    39.
    Valentine, D. L. & Reeburgh, W. S. New perspectives on anaerobic methane oxidation. Environ. Microbiol.2, 477–484 (2000).
    CAS  PubMed  Google Scholar 

    40.
    Stams, A. J. M. & Plugge, C. M. Electron transfer in syntrophic communities of anaerobic bacteria and archaea. Nat. Rev. Microbiol.7, 568–577 (2009).
    CAS  PubMed  Google Scholar 

    41.
    Deusner, C., Meyer, V. & Ferdelman, T. G. High-pressure systems for gas-phase free continuous incubation of enriched marine microbial communities performing anaerobic oxidation of methane. Biotechnol. Bioeng.105, 524–533 (2010).
    CAS  PubMed  Google Scholar 

    42.
    Timmers, P. H. A. et al. Growth of anaerobic methane-oxidizing archaea and sulfate-reducing bacteria in a high-pressure membrane capsule bioreactor. Appl. Environ. Microbiol.81, 1286–1296 (2015).
    PubMed  PubMed Central  Google Scholar 

    43.
    Weber, T., Wiseman, N. A. & Kock, A. Global ocean methane emissions dominated by shallow coastal waters. Nat. Commun.10, 4584–4510 (2019).
    PubMed  PubMed Central  ADS  Google Scholar 

    44.
    Zhang, Y. et al. Enrichment of a microbial community performing anaerobic oxidation of methane in a continuous high-pressure bioreactor. BMC Microbiol.11, 137 (2011).
    CAS  PubMed  PubMed Central  Google Scholar 

    45.
    Zhang, Y., Li, X., Bartlett, D. H. & Xiao, X. Current developments in marine microbiology: high-pressure biotechnology and the genetic engineering of piezophiles. Curr. Opin. Biotechnol.33, 157–164 (2015).
    PubMed  Google Scholar 

    46.
    Widdel, F. & Bak, F. Gram-negative mesophilic sulfate-reducing bacteria. Prokaryotes4, 3352–3378 (1992).
    Google Scholar 

    47.
    Natarajan, V. P. et al. A modified SDS-based DNA extraction method for high quality environmental DNA from seafloor environments. Front. Microbiol.07, 1281 (2016).
    Google Scholar 

    48.
    Klindworth, A. et al. Evaluation of general 16S ribosomal RNA gene PCR primers for classical and next-generation sequencing-based diversity studies. Nucleic Acids Res.41, e1–e1 (2012).
    PubMed  PubMed Central  Google Scholar 

    49.
    Magoc, T. & Salzberg, S. L. FLASH: fast length adjustment of short reads to improve genome assemblies. Bioinformatics27, 2957–2963 (2011).
    CAS  PubMed  PubMed Central  Google Scholar 

    50.
    Caporaso, J. G. et al. QIIME allows analysis of high-throughput community sequencing data. Nat. Publ. Group7, 335–336 (2010).
    CAS  Google Scholar 

    51.
    Edgar, R. C. et al. UCHIME improves sensitivity and speed of chimera detection. Bioinformatics27, 2194–2200 (2011).
    CAS  PubMed  PubMed Central  Google Scholar 

    52.
    Quast, C. et al. The SILVA ribosomal RNA gene database project: improved data processing and web-based tools. Nucleic Acids Res.41, D590–D596 (2013).
    CAS  PubMed  PubMed Central  Google Scholar 

    53.
    Jorgensen, S. L. et al. Correlating microbial community profiles with geochemical data in highly stratified sediments from the Arctic Mid-Ocean Ridge. Proc. Natl Acad. Sci.109, 2846–2855 (2012).
    Google Scholar 

    54.
    Langille, M. G. I. et al. Predictive functional profiling of microbial communities using 16S rRNA marker gene sequences. Nat. Biotechnol.31, 814–821 (2013).
    CAS  PubMed  PubMed Central  Google Scholar 

    55.
    Peng, Y., Leung, H. C. M., Yiu, S. M. & Chin, F. Y. L. IDBA-UD: a de novo assembler for single-cell and metagenomic sequencing data with highly uneven depth. Bioinformatics28, 1420–1428 (2012).
    CAS  PubMed  Google Scholar 

    56.
    Buchfink, B., Xie, C. & Huson, D. H. Fast and sensitive protein alignment using DIAMOND. Nat. Methods12, 59–60 (2014).
    PubMed  Google Scholar 

    57.
    Li, H. et al. The sequence Alignment/Map format and SAMtools. Bioinformatics25, 2078–2079 (2009).
    PubMed  PubMed Central  Google Scholar 

    58.
    Kang, D. D. et al. MetaBAT 2: an adaptive binning algorithm for robust and efficient genome reconstruction from metagenome assemblies. PeerJ7, e7359 (2019).
    PubMed  PubMed Central  Google Scholar 

    59.
    Lin, H.-H. & Liao, Y.-C. Accurate binning of metagenomic contigs via automated clustering sequences using information of genomic signatures and marker genes. Sci. Rep.6, 463 (2016).
    Google Scholar 

    60.
    Parks, D. H. et al. CheckM: assessing the quality of microbial genomes recovered from isolates, single cells, and metagenomes. Genome Res.25, 1043–1055 (2015).
    CAS  PubMed  PubMed Central  Google Scholar 

    61.
    Karst, S. M., Kirkegaard, R. H. & Albertsen, M. mmgenome: a toolbox for reproducible genome extraction from metagenomes. bioRxiv https://doi.org/10.1101/059121 (2016).

    62.
    Hyatt, D., Locascio, P. F., Hauser, L. J. & Uberbacher, E. C. Gene and translation initiation site prediction in metagenomic sequences. Bioinformatics28, 2223–2230 (2012).
    CAS  PubMed  Google Scholar 

    63.
    Kanehisa, M. & Goto, S. KEGG: Kyoto encyclopedia of genes and genomes. Nucleic Acids Res.28, 27–30 (2000).
    CAS  PubMed  PubMed Central  Google Scholar 

    64.
    Galperin, M. Y., Makarova, K. S., Wolf, Y. I. & Koonin, E. V. Expanded microbial genome coverage and improved protein family annotation in the COG database. Nucleic Acids Res.43, D261–D269 (2014).
    PubMed  PubMed Central  Google Scholar 

    65.
    Srere, P. A., Brazil, H. & Gonen, L. The citrate condensing enzyme of Pigeon breast muscle and moth flight muscle. Acta Chem. Scand.17, 129–134 (1963).
    Google Scholar 

    66.
    Castaño-Cerezo, S., Bernal, V. & Cánovas, M. Acetyl-coenzyme A synthetase (Acs) assay. Bio-Protocol2, e256 (2012).
    Google Scholar 

    67.
    Sánchez, L. B., Galperin, M. Y. & Müller, M. Acetyl-CoA synthetase from the Amitochondriate eukaryote giardia lamblia belongs to the newly recognized superfamily of Acyl-CoA synthetases (Nucleoside Diphosphate-forming). J. Biol. Chem.275, 5794–5803 (2000).
    PubMed  Google Scholar 

    68.
    Katoh, K., Misawa, K., Kuma, K. I. & Miyata, T. MAFFT: a novel method for rapid multiple sequence alignment based on fast Fourier transform. Nucleic Acids Res.30, 3059–3066 (2002).
    CAS  PubMed  PubMed Central  Google Scholar 

    69.
    Capella-Gutierrez, S., Silla-Martinez, J. M. & Gabaldon, T. trimAl: a tool for automated alignment trimming in large-scale phylogenetic analyses. Bioinformatics25, 1972–1973 (2009).
    CAS  PubMed  PubMed Central  Google Scholar 

    70.
    Nguyen, L.-T., Schmidt, H. A., Von Haeseler, A. & Minh, B. Q. IQ-TREE: a fast and effective stochastic algorithm for estimating maximum-likelihood phylogenies. Mol. Biol. Evol.32, 268–274 (2014).
    PubMed  PubMed Central  Google Scholar 

    71.
    Bushnell, B. BBMap: A Fast, Accurate, Splice-Aware Aligner. (Lawrence Berkeley National Lab (LBNL), Berkeley, CA, 2014).
    Google Scholar 

    72.
    Huerta-Cepas, J. et al. Fast genome-wide functional annotation through orthology assignment by eggNOG-Mapper. Mol. Biol. Evol.34, 2115–2122 (2017).
    CAS  PubMed  PubMed Central  Google Scholar 

    73.
    Li, D. et al. MEGAHIT v1.0: a fast and scalable metagenome assembler driven by advanced methodologies and community practices. Methods102, 3–11 (2016).
    CAS  PubMed  Google Scholar 

    74.
    Liao, Y., Smyth, G. K. & Shi, W. featureCounts: an efficient general purpose program for assigning sequence reads to genomic features. Bioinformatics30, 923–930 (2014).
    CAS  PubMed  Google Scholar 

    75.
    Wu, Y.-W. et al. MaxBin: an automated binning method to recover individual genomes from metagenomes using an expectation-maximization algorithm. Microbiome2, 26–18 (2014).
    CAS  PubMed  PubMed Central  Google Scholar 

    76.
    Alneberg, J. et al. Binning metagenomic contigs by coverage and composition. Nat. Methods11, 1144–1146 (2014).
    CAS  PubMed  Google Scholar 

    77.
    Sieber, C. M. K. et al. Recovery of genomes from metagenomes via a dereplication, aggregation and scoring strategy. Nat. Microbiol.3, 836–843 (2018).
    CAS  PubMed  PubMed Central  Google Scholar 

    78.
    Chaumeil, P.-A., Mussig, A. J., Hugenholtz, P. & Parks, D. H. GTDB-Tk: a toolkit to classify genomes with the Genome Taxonomy Database. Bioinformatics36, 1925–1927 (2019).
    Google Scholar 

    79.
    Parks, D. H. et al. A standardized bacterial taxonomy based on genome phylogeny substantially revises the tree of life. Nat. Biotechnol.36, 996–1004 (2018).
    CAS  PubMed  Google Scholar  More

  • in

    Symbiotic cooperation between freshwater rock-boring bivalves and microorganisms promotes silicate bioerosion

    Overall, the characterizations detailed above point out that the contact between the bottom of the macroborings and the shells of the bivalves likely have represented a hotspot of microbial activity, which was not observed elsewhere at the surface of the siltstone devoid of macroborings. In the next two sections, we discuss how the association between Lignopholas fluminalis and microorganisms may have acted symbiotically to facilitate boring in siltstone.
    A possible strengthening of the mechanical abrasion thanks to microbial EPS
    As mentioned above, macroborings resulting from bioerosion are most often observed either in calcareous rocks, which are highly sensitive to bioweathering, or in soft substrates such as peat or clays, which are readily drilled through bioabrasion. Here, the siltstone is both chemically much more resistant than carbonates and harder than the substrates commonly subjected to bioabrasion.
    Bolotov et al.8 have reported that the mean hardness of the siltstone was 62 kgf mm−2, i.e., twice as much as clayey materials. In comparison, the compilation of Yang et al.17 indicates that the hardness of Bivalvia shell is an order of magnitude lower than that of quartz, and only slightly greater than that of the siltstone, ranging between 110 and 270 kgf mm−2. In addition, both the structure and hardness of the siltstone were found to be homogeneous, such that it is unlikely that Lignopholas fluminalis took advantage of any local weakness to bore into the rock. Finally, the macroboring walls did not exhibit any marks, as opposed to the experimental results obtained by Nederlof and Muller10 using the piddock Barnea candida, which is a close relative of Lignopholas fluminalis8. However, such scrap marks resulting from the abrasion of the substrate by the denticles of the piddocks were obtained by rotating the shells in a soft materials (wax). The bioabrasion ability of the shells of Barnea candida is thought to be limited to soft substrata such as clays or peat and most likely, they cannot abrade harder substrata such as chalk10.
    Similarly, we argue that the various features collected here suggest that there is no clear evidence that the direct contact between the shells of Lignopholas fluminalis and the substrate is responsible for the bioabrasion of the siltstone. Instead, single grains excavated from the borehole partly remained trapped at the surface of the shells, embedded into an organic matrix that we interpreted as a biofilm. It can reasonably be assumed that these single grains, which are essentially hard minerals such as quartz and feldspars, acted like abrasive materials that contributed to drill the siltstone through the rotation of the shells. Therefore, the presence of microorganisms in the interfacial region between the substrate and the borers possibly strengthened their boring ability, although at that point, it remains impossible to state whether this interaction is obligatory or facultative. In any case, from a mechanical standpoint, Lignopholas fluminalis bivalves likely took advantage of the biofilm attached to the surface of their shells to increase their boring ability.
    Enhancing the weakening of the rocks through microbially-induced weathering
    In addition to bioabrasion, some macroborers are also known for their ability to promote bioweathering5. This mechanism of bioerosion is suggested to be limited to calcareous substrates and not significant for substrates such as siltstones, whose rock-forming minerals have a dissolution rate that is between 6 and 8 orders of magnitude lower than that of calcite at circum-neutral pH conditions (according to rate data from18 for quartz19, for albite20, for chlorite and21 for calcite).
    Notwithstanding, we argue that mass transfer did occur during the process of boring discussed in the present study. We detail below the reasons why we think that this mass transfer cannot result from the abiotic dissolution of the grains by the bulk fluid, and suggest that microorganisms were responsible for the dissolution of the siltstone, which ultimately facilitated the formation of borings by Lignopholas fluminalis.
    The strongest evidence for mass transfer is the occurrence of secondary Mn-rich crystals found embedded in an organic matrix at the bottom of the macroborings. Because such minerals were not found elsewhere in the rock sample, this finding indicates that the contact region between the bivalves and the siltstone was not simply mechanically eroded, but also chemically weathered. The source of Mn is most likely chlorite, which represents the richest source of Mn among the rock-forming minerals (0.2 to 0.7 wt% according to quantitative EDX analyses). In addition, the location of the minerals (specifically embedded in the organic matrix) indirectly suggests that microbes were responsible for the dissolution of chlorite. This latter assertion can be further supported by comparing the residence time of a chlorite grain at the bottom of a pit to the time required to dissolve chlorite with a bulk aqueous fluid:
    First, several studies estimated the lifespan of bivalve piddocks of the family Pholadidae (to which Lignopholas fluminalis belongs) to be on the order of 10 years22. The deepest macroborings that we observed, possibly corresponding to the oldest bivalves, were on the order of 1 cm, leading to a mean erosion rate of Rerosion = 1 mm yr−1.
    Second, the grain size of the siltstone is comprised between 0.2 and 50 µm, with an average value around Ø = 10 µm8. The average time (t) required for a 10-µm grain to be excavated from the bottom of the pit and released to the environment can thus be estimated following:

    $$t= O cdot {{R}_{erosion}}^{-1}$$
    (1)

    yielding t = 10–2 year. This value indicates that Mn must be efficiently released from chlorite over a time interval as short as 10–2 year (~ 3.7 days) to be incorporated into secondary minerals.
    Finally, the radial retreat (∆h) of a hypothetical spherical grain of chlorite dissolved over a time interval of 3.7 days, can be calculated using:

    $$Delta h= frac{M}{rho }{R}_{chlorite} cdot t$$
    (2)

    where M , ρ, and Rchlorite stand for the molar mass, the density and the dissolution rate of chlorite, respectively. Considering the rate data from Lowson et al.20, the far-from-equilibrium dissolution rate of chlorite at room temperature and circum-neutral pH conditions can be estimated to be on the order of 10–17 mol cm−2 s−1. Considering a typical value of ρ = 3.0 g cm−3 for chlorite and a molar mass of M = 697 g mol−1, ∆h is on the order of 0.1 Å, i.e., much less than an atomic monolayer at the chlorite surface. These crude calculations illustrate that Mn mobilization through the dissolution of chlorite with a circum-neutral pH fluid is highly unlikely. Therefore, an alternative mechanism to explain this mass transfer requires the existence of a microenvironment with greater weathering properties, such as that provided by microbial biofilm.
    Several studies have demonstrated that microenvironments can be generated at the silicate-microbe contact23, where the local conditions in terms of pH and saturation state strongly differ from the bulk conditions24,25, with the development of surface biofilms further intensifying this effect through hydraulic decoupling26. Although the large-scale impact of chemical compounds secreted by microbes on silicate weathering rates remains an open and controversial question (e.g.27,28,29,30), several studies showed that chemically aggressive conditions (low pH, high concentration of organic acids) can result in a significant increase of silicate weathering rates, at least locally25,31. Here, an increase of the dissolution rate of chlorite by up to two orders of magnitude would have been required to get an appreciable release of Mn. According to the dissolution rate law developed by Lowson et al.20, such an increase can be reached if the local pH conditions in the vicinity of chlorite are on the order of 3, a value that is fully compatible with pH measured in some microbial biofilms in previous studies24.
    The microorganisms are the major catalysts of manganese cycling in the natural environment32 and manganese is a micronutrient essential for the development of microbial communities, for which rocks represent the main source33. As such, it might have been targeted by microbes for several reasons, which include Mn oxidation by chemolithoautotrophs32,33,34 or incorporation as enzyme cofactor35.
    One can wonder whether (i) the borers specifically targeted areas where microbes were already thriving at the surface of the siltstone and actively dissolving the crystals, or (ii) whether attachment of macroborers was a prerequisite to the establishment of microbial communities dissolving the siltstone. Supporting the first assertion, a few studies have proposed that microborings supposedly attributed to microbial weathering (e.g.,36) might weaken rocky substrates, eventually facilitating the subsequent drilling of microborings by bivalves14. However, all occurrence of silicate microborings that we are aware of dealt with volcanic rocks and more specifically, pre-fissured basalt glass15,36,37. As a matter of fact, our multiscale investigation of the rock substrate did not reveal the presence of any tubular microchannels, and biofilms were not observed anywhere other than in macroborings. As a consequence, we speculate that a nascent bioabrasion of the substrate by the bivalves was required to allow for the establishment of microbial communities and trigger the onset of microbial weathering. Supporting this assertion, freshwater mussels are known to concentrate limiting nutrients such as C, N and P in the benthos and stimulate biofilm growth (38 and references therein). In turn, microbially-induced rock weathering likely contributed to a greater dissolution along grain boundaries, ultimately facilitating grain detachment and rock-boring by Lignopholas fluminalis. Of note, this mechanism would be the biotic equivalent of the abiotic erosion and weathering of limestone39.
    To conclude, our study sheds new light on the possible mechanisms of silicate bioerosion by macroborers. On the one hand, we suggest that microorganisms likely benefited from the early stages of siltstone drilling by macroborers to thrive at the bottom of macroborings. On the other hand, we provide evidence that microbes contributed to bioerosion by actively dissolving minerals, while hard minerals (quartz and feldspars) trapped in biofilms at the surface of the shells further facilitated the development of macroborings via mechanical abrasion. Therefore, the association between Lignopholas fluminalis and microbes has the main characteristics of what is commonly defined as a symbiotic action. Finally, this finding also raises three main concluding remarks:
    (i)
    In addition to the increase in macrofaunal diversity previously reported7, the development of macroborings also likely contributed to an unexpected increase of microbial diversity that remains largely unexplored;

    (ii)
    Our study underlines that preventive strategies to mitigate bioerosion might have to target on suppression of bacterial biofilm development in order to achieve effective solutions;

    (iii)
    Finally, although the contribution of microbes to silicate weathering at large space and time scales remains unknown and debated, the present study suggests that this impact is far from negligible when coupled to macroborers in what appears as a symbiotic relation. As suggested here, such microbial communities may contain specific microorganisms with efficient weathering-ability, which would be worth investigating to possibly identify efficient bioinspired strategies of silicate weathering, of prime importance for a range of industrial and societal concerns including CO2 sequestration. More

  • in

    Versatile cyanobacteria control the timing and extent of sulfide production in a Proterozoic analog microbial mat

    Experimental design
    To enable simultaneous assessment of depth-resolved gross rates of light-driven sulfide consumption and O2 production, as well as the fate of freshly produced dissolved organic carbon (DOC), we sampled a cyanobacterial mat without the underlying sediment from the Frasassi sulfidic springs in September 2012 (Fig. S2). The mat was placed in a flow chamber that accommodated sufficient area for microsensor measurements and sub-sampling of the mat during defined conditions (Fig. S3) that are detailed in the following sections. The incubation started with exposure to darkness for 8 h. 13C-bicarbonate solution was added to the water column and to a spring water reservoir underneath the mat after ~5.5 h. During the following stepwise increase of light intensity (7, 19, 89, and 315 µmol photons m−2 s−1), net and gross rates of AP and OP were continuously monitored using microsensors in three replicate spots of the mat. Light intensity was only increased after a steady state had established for at least 30 min (determined from concentration depth profiles). Triplicate subsamples (1 cm2) of the mat were taken in regular intervals over the course of the experiment to (1) determine bulk rates of inorganic carbon assimilation, (2) identify the functional groups involved in this 13C assimilation based on fatty acids (FA), (3) follow the flow of assimilated carbon into the 13C-DOC pool, and (4) monitor changes in the active community based on 16S rRNA sequencing. To be able to differentiate between the effect of light intensity and photosynthetic O2 production, after exposure to 315 µmol photons m−2 s−1, DCMU (3-(3,4-dichlorophenyl)-1,1-dimethylurea; dissolved in ethanol), an inhibitor of OP [24], was added to the water column in the dark to a final concentration of ~10 µM. The mat was then again exposed to 315 µmol photons m−2 s−1 for 8 h. In a second incubation run with fresh mat material DCMU was added in the beginning, before addition of 13C-bicarbonate.
    Sampling and setup
    The cyanobacterial mat forms along the flow path of “Main Spring” that emerges from the Frasassi cave system (Fig. S2, 43°24′4″N, 12°57′56″E, [23]). The day before first mat sampling, water column samples for total sulfide determination were collected and conserved in 2% zinc acetate solution. Concentration was assessed on the same day according to Cline [25]. O2 concentration and pH were determined using microsensors (see below). Temperature at the mat surface was measured with a PT1000 mini-sensor (Umweltsensortechnik, Geschwenda, Germany). Spring water was collected from the outflow of main spring and transported to the laboratory facilities of the Osservatorio Geologico di Coldigioco (~45 min driving time) and immediately prepared for use in the flow chamber.
    The flow chamber was a larger version of what is described in [26] (Fig. S3). Briefly, the upper part of the flow chamber was separated from a bottom chamber using fibrous web and GF/F filters. The bottom chamber was filled with HEPES-buffered (pH 7.2) spring water that was then purged with N2 using needles penetrating the rubber stoppers on the wall of the chamber. The upper flow chamber was connected with tubing via five inlets to a water pump in a thermostated 20 L recycle of freshly sampled N2-bubbled spring water.
    The following day, a 30 × 40 cm piece of mat was carefully lifted off the sediment, transferred into a plastic container, and transported cooled and in the dark to the laboratory. A small subsection of the mat was flash-frozen for 16S rRNA analysis on site. Upon arrival in Coldigioco, the mat was immediately placed onto the GF/F filters in the flow chamber. Neutralized Na2S was slowly added to the 20 L recycle of the flow cell. After ~6 h of dark incubation, 12C- and 13C-sodium bicarbonate (13C-DIC final atom fraction of ≈6%) were injected into the bottom chamber and briefly stirred. Subsequently, 12C- and 13C-sodium bicarbonate (13C-DIC final atom fraction of ≈6%) was added to the recycle. To allow for homogeneous distribution of the label, the pumping speed was increased for 5–10 min. To minimize outgassing of H2S and exchange of 13CO2 with the atmosphere, the spring water in the 20 L recycle was covered with paraffin oil and the water column in the flow cell was covered with transparent plastic wrap. Small holes were kept in the wrap to allow microsensor measurements. Immediately after bicarbonate addition, the first mat and water column samples were taken. Homogenous illumination was achieved by using two large cold-white lamps (Envirolite), the distance of which to the mat was adjusted to change light conditions. Incident irradiance at the mat surface was determined using a cosine‐corrected quantum sensor connected to a LI‐250A light meter (both LI‐COR Biosciences GmbH, Germany).
    Microsensors
    O2, H2S, and pH microsensors with a tip diameter of 10, 20, and 50 µm, respectively, and response time of More

  • in

    Artificial eyespots on cattle reduce predation by large carnivores

    1.
    Ruxton, G. D., Sherratt, T. N. & Speed, M. P. Avoiding Attack: The Evolutionary Ecology of Crypsis, Warning Signals and Mimicry (Oxford University Press, 2004).
    2.
    Blest, A. D. The function of eyespot patterns in the Lepidoptera. Behaviour11, 209–256 (1957).
    Google Scholar 

    3.
    Poulton, E. B. The Colours of Animals: Their Meaning and Use Especially Considered In the Case of Insects. The Scientific Series (Appleton and Co., 1890).

    4.
    Cott, H. B. Adaptive Coloration in Animals (Methuen & Co. Ltd., 1940).

    5.
    Tinbergen, N. Curious Naturalists (Penguin Education Books., 1974).

    6.
    Duellman, W. E. & Trueb, L. Biology of Amphibians (The Johns Hopkins University Press).

    7.
    Stevens, M. The role of eyespots as anti-predator mechanisms, principally demonstrated in the Lepidoptera. Biol. Rev. Camb. Philos. Soc.80, 573–588 (2005).
    PubMed  Google Scholar 

    8.
    Kjernsmo, K. & Merilaita, S. Resemblance to the enemy’s eyes underlies the intimidating effect of eyespots. Am. Nat.190, 594–600 (2017).
    PubMed  Google Scholar 

    9.
    Kodandaramaiah, U. The evolutionary significance of butterfly eyespots. Behav. Ecol.22, 1264–1271 (2011).
    Google Scholar 

    10.
    Stevens, M. & Ruxton, G. D. Do animal eyespots really mimic eyes? Curr. Zool.60, 26–36 (2014).
    Google Scholar 

    11.
    Stevens, M. Anti-predator coloration and behaviour: a longstanding topic with many outstanding questions. Curr. Zool.61, 702–707 (2015).
    Google Scholar 

    12.
    Lyytinen, A., Brakefield, P. M., Lindström, L. & Mappes, J. Does predation maintain eyespot plasticity in Bicyclus anynana? Proc. R. Soc. B Biol. Sci.271, 279–283 (2004).
    Google Scholar 

    13.
    Hill, R. I. & Vaca, J. F. Differential wing strength in Pierella butterflies (Nymphalidae, Satyrinae) supports the deflection hypothesis1. Biotropica36, 362 (2004).
    CAS  Google Scholar 

    14.
    Olofsson, M., Vallin, A., Jakobsson, S. & Wiklund, C. Marginal eyespots on butterfly wings deflect bird attacks under low light intensities with UV wavelengths. PLoS ONE5, e10798 (2010).

    15.
    Vallin, A., Dimitrova, M., Kodandaramaiah, U. & Merilaita, S. Deflective effect and the effect of prey detectability on anti-predator function of eyespots. Behav. Ecol. Sociobiol.65, 1629–1636 (2011).
    Google Scholar 

    16.
    Deppe, C. et al. Effect of northern pygmy-owl (Glaucidium gnoma) eyespots on avian mobbing. Auk120, 765–771 (2012).
    Google Scholar 

    17.
    Pinheiro, C. E. G., Antezana, M. A. & Machado, L. P. Evidence for the deflective function of eyespots in wild junonia evarete cramer (Lepidoptera, Nymphalidae). Neotrop. Entomol.43, 39–47 (2014).
    CAS  PubMed  Google Scholar 

    18.
    Prudic, K. L., Stoehr, A. M., Wasik, B. R. & Monteiro, A. Eyespots deflect predator attack increasing fitness and promoting the evolution of phenotypic plasticity. Proc. R. Soc. B https://doi.org/10.1098/rspb.2014.1531 (2015).

    19.
    Vallin, A., Jakobsson, S. & Wiklund, C. ‘An eye for an eye?’—on the generality of the intimidating quality of eyespots in a butterfly and a hawkmoth. Behav. Ecol. Sociobiol.61, 1419–1424 (2007).
    Google Scholar 

    20.
    Merilaita, S. et al. Number of eyespots and their intimidating effect on naïve predators in the peacock butterfly. Behav. Ecol.22, 1326–1331 (2011).
    Google Scholar 

    21.
    Hossie, T. J. & Sherratt, T. N. Defensive posture and eyespots deter avian predators from attacking caterpillar models. Anim. Behav.86, 383–389 (2013).
    Google Scholar 

    22.
    Skelhorn, J., Dorrington, G., Hossie, T. J. & Sherratt, T. N. The position of eyespots and thickened segments influence their protective value to caterpillars. Behav. Ecol.25, 1417–1422 (2014).
    Google Scholar 

    23.
    De Bona, S., Valkonen, J. K., López-Sepulcre, A. & Mappes, J. Predator mimicry, not conspicuousness, explains the efficacy of butterfly eyespots. Proc. Biol. Sci.282, 20150202 (2015).
    PubMed  PubMed Central  Google Scholar 

    24.
    Stevens, M. et al. Field experiments on the effectiveness of ‘eyespots’ as predator deterrents. Anim. Behav.74, 1215–1227 (2007).
    Google Scholar 

    25.
    Stevens, M., Hardman, C. J. & Stubbins, C. L. Conspicuousness, not eye mimicry, makes ‘eyespots’ effective antipredator signals. Behav. Ecol.19, 525–531 (2008).
    Google Scholar 

    26.
    Stevens, M. & Winney, I. The function of animal’ eyespots’: conspicuousness but not eye mimicry is key. Curr. Zool.55, 319–326 (2009).
    Google Scholar 

    27.
    Yorzinski, J. L., Platt, M. L. & Adams, G. K. Eye-spots in Lepidoptera attract attention in humans. R. Soc. Open Sci.2, https://doi.org/10.1098/rsos.150155 (2015).

    28.
    Young, B. A. & Kardong, K. V. The functional morphology of hooding in cobras. J. Exp. Biol.213, 1521–1528 (2010).
    PubMed  Google Scholar 

    29.
    Mukherjee, R. & Kodandaramaiah, U. What makes eyespots intimidating-the importance of pairedness Evolutionary ecology and behaviour. BMC Evol. Biol.15, 28–31 (2015).
    Google Scholar 

    30.
    Scaife, M. The response to eye-like shapes by birds II. The importance of staring, pairedness and shape. Anim. Behav.24, 200–206 (1976).
    Google Scholar 

    31.
    Jones, R. B. Reactions of male domestic chicks to two-dimensional eye-like shapes. Anim. Behav.28, 212–218 (1980).
    Google Scholar 

    32.
    Balgooyen, T. G. Another possible function of the American kestrel’s deflection face. Jack-Pine Warbler 53, 115–116 (1975).

    33.
    Negro, J. J., Bortolotti, G. R. & Sarasola, J. H. Deceptive plumage signals in birds: Manipulation of predators or prey? Biol. J. Linn. Soc.90, 467–477 (2007).
    Google Scholar 

    34.
    Hasson, O. Pursuit-deterrent signals: communication between prey and predator. Trends Ecol. Evol.6, 325–329 (1991).
    CAS  PubMed  Google Scholar 

    35.
    Caro, T. M. Pursuit-deterrence revisited. Trends Ecol. Evol.10, 500–503 (1995).
    CAS  PubMed  Google Scholar 

    36.
    Powell, K. L., Roberts, G. & Nettle, D. Eye images increase charitable donations: evidence from an opportunistic field experiment in a supermarket. Ethology118, 1096–1101 (2012).
    Google Scholar 

    37.
    Nettle, D., Nott, K. & Bateson, M. ‘Cycle thieves, we are watching you’: impact of a simple signage intervention against bicycle theft. PLoS ONE7, 8–12 (2012).
    Google Scholar 

    38.
    Bateson, M. et al. Watching eyes on potential litter can reduce littering: evidence fromtwo field experiments. PeerJ2015, 1–15 (2015).
    Google Scholar 

    39.
    Miklosi, A. et al. A simple reason for a big difference: wolves do not look back at humans, but dogs do. Curr. Biol.13, 763–766 (2003).
    CAS  PubMed  Google Scholar 

    40.
    Wallis, L. J. et al. Training for eye contact modulates gaze following in dogs. Anim. Behav.106, 27–35 (2015).
    PubMed  PubMed Central  Google Scholar 

    41.
    Johnston, A. M., Turrin, C., Watson, L., Arre, A. M. & Santos, L. R. Uncovering the origins of dog–human eye contact: dingoes establish eye contact more than wolves, but less than dogs. Anim. Behav.133, 123–129 (2017).
    Google Scholar 

    42.
    Pongrácz, P., Szapu, J. S. & Faragó, T. Cats (Felis silvestris catus) read human gaze for referential information. Intelligence https://doi.org/10.1016/j.intell.2018.11.001 (2019)

    43.
    Simons, M. Face Masks Fool the Bengal Tigers (The New York Times, 1989).

    44.
    van Eeden, L. M. et al. Managing conflict between large carnivores and livestock. Conservation Biology. 32, 26–34 (2018).
    PubMed  Google Scholar 

    45.
    Paddle, R. The Last Tasmanian Tiger: The History and Extinction of the Thylacine (Cambridge University Press, 2000). https://doi.org/10.2307/4127234.

    46.
    Breitenmoser, U. Large predators in the Alps: the fall and rise of man’s competitors. Biol. Conserv.83, 279–289 (1998).
    Google Scholar 

    47.
    Ripple, W. J. et al. Status and ecological effects of the world’s largest carnivores. Science343, 1241484 (2014).
    PubMed  Google Scholar 

    48.
    Treves, A., Krofel, M. & McManus, J. Predator control should not be a shot in the dark. Front. Ecol. Environ.14, 380–388 (2016).
    Google Scholar 

    49.
    Weise, F. J. et al. Size, shape and maintenance matter: a critical appraisal of a global carnivore conflict mitigation strategy—livestock protection kraals in northern Botswana. Biol. Conserv.225, 88–97 (2018).
    Google Scholar 

    50.
    Holland, K. K., Larson, L. R. & Powell, R. B. Characterizing conflict between humans and big cats Panthera spp: A systematic review of research trends and management opportunities. PLoS ONE13, 1–19 (2018).
    Google Scholar 

    51.
    McNutt, J. W., Stein, A. B., McNutt, L. B. & Jordan, N. R. Living on the edge: Characteristics of human-wildlife conflict in a traditional livestock community in Botswana. Wildl. Res.44, 546–557 (2017).
    Google Scholar 

    52.
    Johnson, W. E., Eizirik, E. & Lento, G. M. in Carnivore Conservation (eds MacDonald, D. W. & Wayne, R. K.) 196–220 (Cambridge University Press, 2001).

    53.
    Holley, A. J. F. Do Brown Hares signal to foxes? Ethology94, 21–30 (1993).
    Google Scholar 

    54.
    Godin, J. G. J. & Davis, S. A. Who dares, benefits: predator approach behaviour in the guppy (Poecilia reticulata) deters predator pursuit. Proc. R. Soc. B Biol. Sci.259, 193–200 (1995).
    Google Scholar 

    55.
    Hunter, L. Cats of Africa: Behaviour, Ecology, and Conservation (Struik Publishers, 2005).

    56.
    Schaller, G. B. The Serengeti Lion: A Study of Predator-prey Relations (The University of Chicago Press, 1972).

    57.
    Stander, P. E. Cooperative hunting in lions: the role of the individual. Behav. Ecol. Sociobiol.29, 445–454 (1992).
    Google Scholar 

    58.
    McNamara, K., O’Kiely, P., Whelan, J., Forristal, P. D. & Lenehan, J. Preventing bird damage to wrapped baled silage during short- and long-term storage. Wildl. Soc. Bull.30, 809–815 (2002).
    Google Scholar 

    59.
    Gittleman, J. L. & Harvey, P. H. Why are distasteful prey not cryptic? Nature286, 149–150 (1980).
    Google Scholar 

    60.
    Roper, T. J. & Redston, S. Conspicuousness of distasteful prey affects the strength and durability of one-trial avoidance learning. Anim. Behav.35, 739–747 (1987).
    Google Scholar 

    61.
    Watson, F. G. R., Becker, M. S., Milanzi, J. & Nyirenda, M. Human encroachment into protected area networks in Zambia: implications for large carnivore conservation. Reg. Environ. Chang.15, 415–429 (2014).
    Google Scholar 

    62.
    Di Minin, E. et al. Global priorities for national carnivore conservation under land use change. Sci. Rep.6, 23814 (2016).
    PubMed  PubMed Central  Google Scholar 

    63.
    Gusset, M., Swarner, M. J., Mponwane, L., Keletile, K. & McNutt, J. W. Human–wildlife conflict in northern Botswana: livestock predation by Endangered African wild dog. Oryx43, 67–72 (2009).
    Google Scholar 

    64.
    Mosser, A. & Packer, C. Group territoriality and the benefits of sociality in the African lion, Panthera leo. Anim. Behav.78, 359–370 (2009).
    Google Scholar 

    65.
    Cozzi, G., Broekhuis, F., McNutt, J. W. & Schmid, B. Density and habitat use of lions and spotted hyenas in northern Botswana and the influence of survey and ecological variables on call-in survey estimation. Biodivers. Conserv.22, 2937–2956 (2013).
    Google Scholar 

    66.
    Joron, M., Carde, R. T. & Resh, V. H. in Encyclopedia of Insects 39–45 (New York Academic Press, 2003).

    67.
    Sunquist, M. & Sunquist, F. Wild Cats of the World (The University of Chicago Press, 2002).

    68.
    Therneau, T. M. coxme: Mixed effects cox models in R. R package version 3.2-3 (2020).

    69.
    Therneau, T. M. A Package for Survival Analysis in R. R package version 3.2-3. https://CRAN.R-project.org/package=survival (2020).

    70.
    Tang, Y., Horikoshi, M. & Li, W. ggfortify: Unified interface to visualise statistical result of popular R packages. R. J.8.2, 478–489 (2016).
    Google Scholar 

    71.
    Horikoshi, M. & Tang, Y. ggfortify: Data Visualization Tools for Statistical Analysis Results. https://CRAN.R-project.org/package=ggfortify.

    72.
    Heinze, G. & Schemper, M. A solution to the problem of separation in logistic regression. Stat. Med.21, 2409–2419 (2002).
    PubMed  Google Scholar 

    73.
    Benjamini, Y. & Hochberg, Y. Controlling the false discovery rate: a practical and powerful approach to multiple testing. J. R. Stat. Soc. B57, 289–300 (2017).
    Google Scholar 

    74.
    Grolemund, G. & Wickham, H. Dates and times made easy with lubridate. J. Stat. Softw.40, 1–25 (2011).
    Google Scholar 

    75.
    Wickham, H., Francois, R., Henry, L. & Muller, K. dplyr: A grammar of data manipulation. R package version 0.4 3 (2015).

    76.
    Brooks, M. E. et al. glmmTMB balances speed and flexibility among packages for zero-inflated generalized linear mixed modeling. R J. 9, 378–400 (2017).

    77.
    Bates, D., Mächler, M., Bolker, B. & Walker, S. Fitting Linear Mixed-Effects Models using lme4. https://doi.org/10.18637/jss.v067.i01 (2014).

    78.
    Kassambara, A. ggpubr: ‘ggplot2’ Based Publication Ready Plots. R package version 0.1.6 (2017).

    79.
    Wickham, H. ggplot2: Elegant Graphics for Data Analysis (Springer-Verlag New York, 2016).

    80.
    Jordan, N. R., Radford, C., Rogers, T., Maslen, B. & McNutt, J. W. (2020). Data & Code: Artificial eyespots on cattle reduce predation by large carnivores [Data set]. Zenodo. https://doi.org/10.5281/zenodo.3877999 (2020). More

  • in

    Winner–loser effects overrule aggressiveness during the early stages of contests between pigs

    1.
    Pellegrini, S., Condat, L., Caliva, J. M., Marin, R. H. & Guzman, D. A. Can Japanese quail male aggressions toward a female cagemate predict aggressiveness toward unknown conspecifics? Livest. Sci. 222, 65–70 (2019).
    Google Scholar 
    2.
    Fairbanks, L. A. Individual differences in response to a stranger: Social impulsivity as a dimension of temperament in vervet monkeys (Cercopithecus aethiops sabaeus). J. Comp. Psychol.115, 22–28 (2001).
    CAS  PubMed  Google Scholar 

    3.
    D’Eath, R. B. Consistency of aggressive temperament in domestic pigs: The effects of social experience and social disruption. Aggress. Behav.30, 435–448 (2004).
    Google Scholar 

    4.
    Cain, K. E., Rich, M. S., Ainsworth, K. & Ketterson, E. D. Two sides of the same coin? Consistency in aggression to conspecifics and predators in a female songbird. Ethology117, 786–795 (2011).
    CAS  PubMed  PubMed Central  Google Scholar 

    5.
    Clark, C. C. A. & D’Eath, R. B. Age over experience: Consistency of aggression and mounting behaviour in male and female pigs. Appl. Anim. Behav. Sci.147, 81–93 (2013).
    Google Scholar 

    6.
    D’Eath, R. B., Ormandy, E., Lawrence, A. B., Sumner, B. E. H. & Meddle, S. L. Resident−intruder trait aggression is associated with differences in lysine vasopressin and serotonin receptor 1A (5-HT 1A ) mRNA expression in the brain of pre-pubertal female domestic pigs (Sus scrofa). J. Neuroendocrinol.17, 679–686 (2005).
    PubMed  Google Scholar 

    7.
    Turner, S. P. et al. Bayesian analysis of genetic associations of skin lesions and behavioural traits to identify genetic components of individual aggressiveness in pigs. Behav. Genet.38, 67–75 (2008).
    CAS  PubMed  Google Scholar 

    8.
    Réale, D., Reader, S. M., Sol, D., McDougall, P. T. & Dingemanse, N. J. Integrating animal temperament within ecology and evolution. Biol. Rev.82, 291–318 (2007).
    PubMed  Google Scholar 

    9.
    Arnott, G. & Elwood, R. W. Information gathering and decision making about resource value in animal contests. Anim. Behav.76, 529–542 (2008).
    Google Scholar 

    10.
    Pinto, N. S., Palaoro, A. V. & Peixoto, P. E. C. All by myself? Meta-analysis of animal contests shows stronger support for self than for mutual assessment models. Rev. Biol. 94, 1430–1442 (2019).
    Google Scholar 

    11.
    Arnott, G. & Elwood, R. W. Assessment of fighting ability in animal contests. Anim. Behav.77, 991–1004 (2009).
    Google Scholar 

    12.
    Drummond, H. & Garcia Chavelas, C. Food shortage influences sibling aggression in the blue-footed booby. Anim. Behav.37, 806–819 (1989).
    Google Scholar 

    13.
    Hsu, Y., Earley, R. L. & Wolf, L. L. Modulating aggression through experience. In Fish Cognition and Behavior (eds Brown, C. et al.) 96–118 (Blackwell Publishing Ltd, Hoboken, 2007).
    Google Scholar 

    14.
    Rushen, J. Assessment of fighting ability or simple habituation: What causes young pigs (Sus scrofa) to stop fighting?. Aggress. Behav.14, 155–167 (1988).
    Google Scholar 

    15.
    Benus, R. F., Bohus, B., Koolhaas, J. M. & van Oortmerssen, G. A. Behavioural strategies of aggressive and non-aggressive male mice in response to inescapable shock. Behav. Processes21, 127–141 (1990).
    CAS  PubMed  Google Scholar 

    16.
    Bolhuis, J. E., Schouten, W. G. P., Schrama, J. W. & Wiegant, V. M. Individual coping characteristics, aggressiveness and fighting strategies in pigs. Anim. Behav.69, 1085–1091 (2005).
    Google Scholar 

    17.
    Hsu, Y. & Wolf, L. L. The winner and loser effect: Integrating multiple experiences. Anim. Behav.57, 903–910 (1999).
    CAS  PubMed  Google Scholar 

    18.
    Van Doorn, G. S., Weissing, F. & Hengeveld, G. The evolution of social dominance II: Multi-player models. Behaviour140, 1333–1358 (2003).
    Google Scholar 

    19.
    Hsu, Y., Lee, I. H. & Lu, C. K. Prior contest information: Mechanisms underlying winner and loser effects. Behav. Ecol. Sociobiol.63, 1247–1257 (2009).
    Google Scholar 

    20.
    Oyegbile, T. O. & Marler, C. A. Winning fights elevates testosterone levels in California mice and enhances future ability to win fights. Horm. Behav.48, 259–267 (2005).
    CAS  PubMed  Google Scholar 

    21.
    Camerlink, I., Turner, S. P., Farish, M. & Arnott, G. Aggressiveness as a component of fighting ability in pigs using a game-theoretical framework. Anim. Behav.108, 183–191 (2015).
    Google Scholar 

    22.
    Camerlink, I., Arnott, G., Farish, M. & Turner, S. P. Complex contests and the influence of aggressiveness in pigs. Anim. Behav.121, 71–78 (2016).
    Google Scholar 

    23.
    D’Eath, R. B. & Pickup, H. E. Behaviour of young growing pigs in a resident−intruder test designed to measure aggressiveness. Aggress. Behav.28, 401–415 (2002).
    Google Scholar 

    24.
    Graves, H. B., Graves, K. L. & Sherritt, G. W. Social behavior and growth of pigs following mixing during the growing—Finishing period. Appl. Anim. Ethol.4, 169–180 (1978).
    Google Scholar 

    25.
    Turner, S. P. et al. The accumulation of skin lesions and their use as a predictor of individual aggressiveness in pigs. Appl. Anim. Behav. Sci.96, 245–259 (2006).
    Google Scholar 

    26.
    Camerlink, I., Peijnenburg, M., Wemelsfelder, F. & Turner, S. P. Emotions after victory or defeat assessed through qualitative behavioural assessment, skin lesions and blood parameters in pigs. Appl. Anim. Behav. Sci.183, 28–34 (2016).
    Google Scholar 

    27.
    Death, R. B. & Lawrence, A. B. Early life predictors of the development of aggressive behaviour in the domestic pig. Anim. Behav.67, 501–509 (2004).
    Google Scholar 

    28.
    Favati, A., Løvlie, H. & Leimar, O. Individual aggression, but not winner–loser effects, predicts social rank in male domestic fowl. Behav. Ecol.28, 874–882 (2017).
    Google Scholar 

    29.
    Kar, F., Whiting, M. J. & Noble, D. W. A. Influence of prior contest experience and level of escalation on contest outcome. Behav. Ecol. Sociobiol.70, 1679–1687 (2016).
    Google Scholar 

    30.
    Bolhuis, J. E., Schouten, W. G. P., Leeuw, J. A. D., Schrama, J. W. & Wiegant, V. M. Individual coping characteristics, rearing conditions and behavioural flexibility in pigs. Behav. Brain Res.152, 351–360 (2004).
    PubMed  Google Scholar 

    31.
    Melotti, L., Oostindjer, M., Bolhuis, J. E., Held, S. & Mendl, M. Coping personality type and environmental enrichment affect aggression at weaning in pigs. Appl. Anim. Behav. Sci.133, 144–153 (2011).
    Google Scholar 

    32.
    Ruis, M. A. W. et al. Personalities in female domesticated pigs: Behavioural and physiological indications. Appl. Anim. Behav. Sci. 66, 31–47 (2000).
    Google Scholar 

    33.
    Meese, G. B. & Ewbank, R. The establishment and nature of the dominance hierarchy in the domesticated pig. Anim. Behav.21, 326–334 (1973).
    Google Scholar 

    34.
    Camerlink, I., Turner, S. P., Farish, M. & Arnott, G. The influence of experience on contest assessment strategies. Sci. Rep.7, 1–10 (2017).
    CAS  Google Scholar 

    35.
    D’Eath, R. B. Individual aggressiveness measured in a resident−intruder test predicts the persistence of aggressive behaviour and weight gain of young pigs after mixing. Appl. Anim. Behav. Sci.77, 267–283 (2002).
    Google Scholar 

    36.
    Kuo, J. H., Chang, Y. T., Chen, Y. J. & Hsu, Y. Influence of previous agonistic interactions with conspecifics on contest decisions. Ethology https://doi.org/10.1111/eth.12919 (2019).
    Article  Google Scholar 

    37.
    R Core Team. R: A language and environment for statistical computing. R Foundation for Statistical Computing, Vienna, Austria. https://www.R-project.org. (2017).

    38.
    Kuznetsova, A., Brockhoff, P. B. & Christensen, R. H. B. lmerTest package: tests in linear mixed effects models. J. Stat. Softw.82, 1–26 (2017).
    Google Scholar 

    39.
    Fox, J. et al. car: Companion to applied regression. In R Package Version 2.0-21 (2018).

    40.
    Kafadar, K., Koehler, J. R., Venables, W. N. & Ripley, B. D. Modern Applied Statistics with S-Plus. Am. Stat.53, 86 (1999).
    Google Scholar 

    41.
    Bates, D., Sarkar, D., Bates, M. D. & Matrix, L. The lme4 Package. October (2007).

    42.
    Fraser, D. The behaviour of growing pigs during experimental social encounters. J. Agric. Sci.82, 147–163 (1974).
    Google Scholar 

    43.
    Ruis, M. A. W. et al. Behavioural and physiological consequences of acute social defeat in growing gilts: Effects of the social environment. Appl. Anim. Behav. Sci.70, 201–225 (2001).
    CAS  PubMed  Google Scholar 

    44.
    Losey, G. S. & Sevenster, P. Can three-spined sticklebacks learn when to display? Rewarded displays. Anim. Behav.49, 137–150 (1995).
    Google Scholar 

    45.
    Losey, G. S. & Sevenster, P. Can threespine sticklebacks learn when to display? I. Punished displays. Ethology87, 45–58 (1991).
    Google Scholar 

    46.
    Earley, R. L., Lu, C. K., Lee, I. H., Wong, S. C. & Hsu, Y. Winner and loser effects are modulated by hormonal states. Front. Zool.10, 1–13 (2013).
    Google Scholar 

    47.
    Muráni, E. et al. Association of HPA axis-related genetic variation with stress reactivity and aggressive behaviour in pigs. BMC Genet.11, 74 (2010).
    PubMed  PubMed Central  Google Scholar 

    48.
    Taborsky, B., Arnold, C., Junker, J. & Tschopp, A. The early social environment affects social competence in a cooperative breeder. Anim. Behav.83, 1067–1074 (2012).
    PubMed  PubMed Central  Google Scholar 

    49.
    Tulogdi, Á et al. Effects of resocialization on post-weaning social isolation-induced abnormal aggression and social deficits in rats. Dev. Psychobiol.56, 49–57 (2014).
    PubMed  Google Scholar 

    50.
    Dorfman, H. M., Meyer-Lindenberg, A. & Buckholtz, J. W. Neuroscience of Aggression. Current Topics in Behavioral Neurosciences Vol. 17 (Springer, Berlin, 2014).
    Google Scholar 

    51.
    Trannoy, S., Penn, J., Lucey, K., Popovic, D. & Kravitz, E. A. Short and long-lasting behavioral consequences of agonistic encounters between male Drosophila melanogaster. Proc. Natl. Acad. Sci.113, 4818–4823 (2016).
    ADS  CAS  PubMed  Google Scholar 

    52.
    Carere, C., Welink, D., Drent, P. J., Koolhaas, J. M. & Groothuis, T. G. G. Effect of social defeat in a territorial bird (Parus major) selected for different coping styles. Physiol. Behav.73, 427–433 (2001).
    CAS  PubMed  Google Scholar 

    53.
    Rutherford, K. M. D., Haskell, M. J., Glasbey, C. & Lawrence, A. B. The responses of growing pigs to a chronic-intermittent stress treatment. Physiol. Behav. 89, 670–680 (2006).
    CAS  PubMed  Google Scholar 

    54.
    Laskowski, K. L., Wolf, M. & Bierbach, D. The making of winners (And losers): How early dominance interactions determine adult social structure in a clonal fish. Proc. R. Soc. B Biol. Sci.283, 20160183 (2016).
    Google Scholar 

    55.
    Lan, Y. T. & Hsu, Y. Prior contest experience exerts a long-term influence on subsequent winner and loser effects. Front. Zool.8, 1–12 (2011).
    Google Scholar 

    56.
    Meerlo, P., Overkamp, G. J. F. & Koolhaas, J. M. Behavioural and physiological consequences of a single social defeat in Roman high- and low-avoidance rats. Psychoneuroendocrinology22, 155–168 (1997).
    CAS  PubMed  Google Scholar 

    57.
    Meerlo, P., Overkamp, G. J. F., Benning, M. A., Koolhaas, J. M. & Van Den Hoofdakker, R. H. Long-term changes in open field behaviour following a single social defeat in rats can be reversed by sleep deprivation. Physiol. Behav.60, 115–119 (1996).
    CAS  PubMed  Google Scholar 

    58.
    Fuxjager, M. J. et al. Winning territorial disputes selectively enhances androgen sensitivity in neural pathways related to motivation and social aggression. Proc. Natl. Acad. Sci.107, 12393–12398 (2010).
    ADS  CAS  PubMed  Google Scholar 

    59.
    Reaney, L. T., Drayton, J. M. & Jennions, M. D. The role of body size and fighting experience in predicting contest behaviour in the black field cricket, Teleogryllus commodus. Behav. Ecol. Sociobiol.65, 217–225 (2011).
    Google Scholar 

    60.
    Büttner, K., Scheffler, K., Czycholl, I. & Krieter, J. Social network analysis – centrality parameters and individual network positions of agonistic behavior in pigs over three different age levels. Springerplus4, 185 (2015).
    PubMed  PubMed Central  Google Scholar 

    61.
    Arey, D. S. & Franklin, M. F. Effects of straw and unfamiliarity on fighting between newly mixed growing pigs. Appl. Anim. Behav. Sci.45, 23–30 (1995).
    Google Scholar 

    62.
    Moore, A. S., Gonyou, H. W. & Ghent, A. W. Integration of newly introduced and resident sows following grouping. Appl. Anim. Behav. Sci.38, 257–267 (1993).
    Google Scholar 

    63.
    Martin, F., Beaugrand, J. P. & Laguë, P. C. The role of recent experience and weight on hen’s agonistic behaviour during dyadic conflict resolution. Behav. Processes41, 159–170 (1997).
    CAS  PubMed  Google Scholar 

    64.
    Chen, Y. J. & Hsu, Y. Contest experience and body size affect different types of contest decisions. Anim. Cogn.19, 1183–1193 (2016).
    CAS  PubMed  Google Scholar 

    65.
    Camerlink, I., Turner, S. P., Farish, M. & Arnott, G. Advantages of social skills for contest resolution. R. Soc. Open Sci.6, 181456 (2019).
    ADS  PubMed  PubMed Central  Google Scholar 

    66.
    Bubak, A. N. et al. Assessment strategies and fighting patterns in animal contests: A role for serotonin?. Curr. Zool.62, 257–263 (2016).
    PubMed  PubMed Central  Google Scholar 

    67.
    Fradrich, H. A comparison of behaviour in the Suidae. In The behaviour of ungulates and its relation to management 133–143 (IUCN Publication, 1974). More