1.
Larson, G. et al. Rethinking dog domestication by integrating genetics, archaeology, and biogeography. Proc. Natl. Acad. Sci. U. S. A.109, 8878–8883 (2012).
ADS CAS PubMed PubMed Central Google Scholar
2.
Shannon, L. M. Genetic structure in village dogs reveals a Central Asian domestication origin. Proc. Natl. Acad. Sci. U. S. A.112, 13639–13644 (2015).
ADS CAS PubMed PubMed Central Google Scholar
3.
Skoglund, P., Ersmark, E., Palkopoulou, E. & Dalén, L. Ancient wolf genome reveals an early divergence of domestic dog ancestors and admixture into high-latitude breeds. Curr. Biol.25, 1–5 (2015).
Google Scholar
4.
Thalmann, O. et al. Complete mitochondrial genomes of ancient canids suggest a European origin of domestic dogs. Science342, 871–874 (2013).
ADS CAS PubMed Google Scholar
5.
Frantz, L. A. et al. Genomic and archaeological evidence suggests a dual origin of domestic dogs. Science352, 1228–1231 (2016).
ADS CAS PubMed Google Scholar
6.
Germonpré, M. et al. Fossil dogs and wolves from Palaeolithic sites in Belgium, the Ukraine and Russia: osteometry, ancient DNA and stable isotopes. J. Archaeol. Sci.36, 473–490 (2009).
Google Scholar
7.
Germonpré, M. et al. Palaeolithic dogs and the early domestication of the wolf: a reply to the comments of Crockford and Kuzmin (2012). J. Archaeol. Sci.40, 786–792 (2013).
Google Scholar
8.
Gremonpré, M. et al. Palaeolithic dogs and Pleistocene wolves revisited: a reply to Morey (2014). J. Archaeol. Sci.54, 210–216 (2015).
Google Scholar
9.
Germonpré, M. et al. Palaeolithic and prehistoric dogs and Pleistocene wolves from Yakutia: identification of isolated skulls. J. Archaeol. Sci.78, 1–19 (2017).
Google Scholar
10.
Crockford, S. J. & Kuzmin, Y. V. Comments on Germonpré et al. (2012) Journal of Archaeological Science 36, 2009 “Fossil dogs and wolves from Palaeolithic sites in Belgium, the Ukraine and Russia: osteometry, ancient DNA and stable isotopes”, and Germonpré, Lázki cková-Galetová, and Sablin, Journal of Archaeological Science 39, 2012 “Palaeolithic dog skulls at the Gravettian Predmostí site, the Czech Republic”. J. Archaeol. Sci.39, 2797–2801 (2012).
Google Scholar
11.
Morey, D. F. In search of Paleolithic dogs: a quest with mixed results. J. Archaeol. Sci.52, 300–307 (2014).
CAS Google Scholar
12.
Botigué, L. R. et al. Ancient European dog genomes reveal continuity since the Early Neolithic. Nat. Commun.8, 16082 (2017).
ADS PubMed PubMed Central Google Scholar
13.
Camarós, E., Münzel, S. C., Cueto, M., Rivals, F. & Conard, N. J. The evolution of Paleolithic hominin–carnivore interaction written in teeth: stories from the Swabian Jura (Germany). J. Archaeol. Sci.6, 798–809 (2016).
Google Scholar
14.
Ovodov, N. D. et al. A 33,000-year-old incipient dog from the Altai Mountains of Siberia: evidence of the earliest domestication disrupted by the Last Glacial Maximum. PLoS ONE6, e22821 (2011).
ADS CAS PubMed PubMed Central Google Scholar
15.
Sablin, M. & Khlopachev, G. The earliest Ice Age dogs: evidence from Eliseevichi. Curr. Anthropol.43, 795–799 (2002).
Google Scholar
16.
Boudadi-Maligne, M. & Escarguel, G. A biometric re-evaluation of recent claims for Early Upper Palaeolithic wolf domestication in Eurasia. J. Archaeol. Sci.45, 80–89 (2014).
Google Scholar
17.
Drake, A. G., Coquerelle, M. & Colombeau, G. 3D morphometric analysis of fossil canid skulls contradicts the suggested domestication of dogs during the late Paleolithic. Sci. Rep.5, 8299 (2015).
ADS CAS PubMed PubMed Central Google Scholar
18.
Morey, D. F. & Jeger, R. Paleolithic dogs: why sustained domestication then?. J. Archaeol. Sci.3, 420–428 (2015).
Google Scholar
19.
Napierala, H. & Uerpmann, H. P. A ‘new’ palaeolithic dog from central Europe. Intl. J. Osteoarchaeol.22, 127–137 (2012).
Google Scholar
20.
Perri, A. R. A wolf in dog’s clothing: initial dog domestication and Pleistocene wolf variation. J. Archaeol. Sci.68, 1–4 (2016).
Google Scholar
21.
Janssens, L. et al. A new look at an old dog: Bonn-Oberkassel reconsidered. J. Archaeol. Sci.92, 126–138 (2018).
Google Scholar
22.
Pionnier-Capitan, M. et al. New evidence for Upper Palaeolithic small domestic dogs in South-Western Europe. J. Archaeol. Sci.38, 2123–2140 (2011).
Google Scholar
23.
Boudadi-Maligne, M., Mallye, J. B., Langlais, M. & Barshay-Szdmit, C. Des restes de chiens magdaléniens à l’abri du Morin (Gironde, France) Implications socio-économiques d’une innovation zootechnique. Paleo23, 39–54 (2012).
Google Scholar
24.
Thalmann, O. & Perri, A. R. Paleogenomics 273–306 (Springer, Cham, 2018).
Google Scholar
25.
Mariotti Lippi, M., Foggi, B., Aranguren, B., Ronchitelli, A. & Revedin, A. Multistep food plant processing at Grotta Paglicci (Southern Italy) around 32,600 cal B.P.. Proc. Natl. Acad. Sci. U. S. A.112, 12075–12080 (2015).
ADS PubMed PubMed Central Google Scholar
26.
Mezzena, F. & Palma di Cesnola, A. Industria acheulena “in situ” nei depositi esterni della Grotta Paglicci (Rignano Garganico – Foggia). Riv. Sci. Preist.26, 3–30 (1971).
Google Scholar
27.
Crezzini, J. et al. A spotted hyaena den in the Middle Palaeolithic of Grotta Paglicci (Gargano promontory, Apulia, Southern Italy). Archaeol. Anthropol. Sci.8, 227–240 (2016).
Google Scholar
28.
Palma di Cesnola, A. L’Aurignacien et le Gravettien ancien de la grotte Paglicci au Mont Gargano. L’Anthropologie110, 355–370 (2006).
Google Scholar
29.
PalmadiCesnola, A. Le Paléolithique supérieur en Italie (Jérôme Millon, Grenoble, 2001).
Google Scholar
30.
Berto, C., Boscato, P., Boschin, F., Luzi, E. & Ronchitelli, A. Paleoenvironmental and paleoclimatic context during the Upper Paleolithic (late Upper Pleistocene) in the Italian Peninsula. The small mammal record from Grotta Paglicci (Rignano Garganico, Foggia, Southern Italy). Quat. Sci. Rev.168, 30–41 (2017).
ADS Google Scholar
31.
Boschin, F. et al. The palaeoecological meaning of macromammal remains from archaeological sites exemplified by the case study of Grotta Paglicci (Upper Palaeolithic, southern Italy). Quat. Res.90, 470–482 (2018).
CAS Google Scholar
32.
Borgia, V., Boschin, F. & Ronchitelli, A. Bone and antler working at Grotta Paglicci (Rignano Garganico, Foggia, southern Italy). Quat. Int.403, 23–39 (2016).
Google Scholar
33.
Condemi, S. et al. I resti umani rinvenuti a Paglicci (Rignano Garganico – FG): nota preliminare. Annali dell’Uiversità di Ferrara, Museologia Scientifica e Naturalistica10(2), 233–238 (2014).
Google Scholar
34.
Arrighi, S., Borgia, V., d’Errico, F. & Ronchitelli, A. I ciottoli decorati di Paglicci: raffigurazioni e utilizzo. Riv. Sci. Preist.58, 39–58 (2008).
Google Scholar
35.
Arrighi, S., Borgia, V., d’Errico, F., Ricci, S. & Ronchitelli, A. Manifestazioni d’arte inedite e analisi tecnologica dell’arte mobiliare di Grotta Paglicci (Rignano Garganico – Foggia). Preist. Alpina46, 49–58 (2012).
Google Scholar
36.
Arrighi, S. et al. Grotta Paglicci (Rignano Garganico, Foggia): analisi sulle materie coloranti. Preist. Alpina46, 91–92 (2012).
Google Scholar
37.
Ronchitelli, A. et al. When technology joins symbolic behaviour: the gravettian burials at Grotta Paglicci (Rignano Garganico – Foggia – southern Italy). Quat. Int.359–360, 423–441 (2015).
Google Scholar
38.
Cassoli, P. F., Fiore, I. & Tagliacozzo, A. Butchering and exploitation of large mammals in the Epigravettian levels of Grotta Romanelli (Apulia, Italy). Anthropozoologica25–26, 309–318 (1997).
Google Scholar
39.
Sardella, R. et al. Grotta Romanelli (southern Italy, Apulia): legacies and issues in excavating a key site for the Pleistocene of the Mediterranean. Riv. Ital. Paleontol. Strat.124, 247–264 (2018).
Google Scholar
40.
Sardella, R. et al. Grotta Romanelli (Lecce, Southern Italy) between past and future: new studies and perspectives for an archaeo-geosite symbol of the Palaeolithic in Europe. Geoheritage11, 1413–1432 (2019).
Google Scholar
41.
Calcagnile, L. et al. New radiocarbon dating results from the Upper Paleolithic–Mesolithic levels in Grotta Romanelli (Apulia, southern Italy). Radiocarbon61, 1211–1220 (2019).
CAS Google Scholar
42.
Cassoli, P.F., Gala, M. & Tagliacozzo, A. In Grotta Romanelli nel centenario della sua scoperta (1900–2000). Conference Proceedings (eds Fabbri, P.F., Ingravallo, E., Mangia, A.) 91–111 (Congedo Editore, Galatina, 2003).
43.
Tagliacozzo, A. Grotta Romanelli nel centenario della sua scoperta (1900–2000). Conference Proceedings (eds Fabbri, P.F., Ingravallo, E., Mangia, A.) 169–216 (Congedo Editore, Galatina, 2003).
44.
Boschin, F., Bernardini, F., Zanolli, C. & Tuniz, C. MicroCT imaging of red fox talus: a non-invasive approach to evaluate age at death. Archaeometry57, 194–211 (2015).
CAS Google Scholar
45.
Boschin, F., Zanolli, C., Bernardini, F., Princivalle, F. & Tuniz, C. A Look from the inside: MicroCT analysis of burned bones. Ethnobiol. Lett.6, 41–49 (2015).
Google Scholar
46.
Geiger, M. et al. Unaltered sequence of dental, skeletal, and sexual maturity in domestic dogs compared to the wolf. Zool. Lett.2, 16 (2016).
Google Scholar
47.
Payne, S. & Bull, G. Components of variation in measurements of pig bones and teeth, and the use of measurements to distinguish wild from domestic pig remains. Archaeozoologia2, 27–66 (1988).
Google Scholar
48.
Zanolli, C. et al. Inner tooth morphology of Homo erectus from Zhoukoudian. New evidence from an old collection housed at Uppsala University, Sweden. J. Hum. Evol.116, 1–13 (2018).
PubMed Google Scholar
49.
Zanolli, C. et al. Evidence for increased hominid diversity in the Early to Middle Pleistocene of Indonesia. Nat. Ecol. Evol. https://doi.org/10.1038/s41559-019-0860-z (2019).
Article PubMed Google Scholar
50.
Maricic, T., Whitten, M. & Pääbo, S. Multiplexed DNA sequence capture of mitochondrial genomes using PCR products. PLoS ONE5, e14004 (2010).
ADS PubMed PubMed Central Google Scholar
51.
Hefner, R. & Geffen, E. Group size and home range of the Arabian wolf (Canis lupus) in Southern Israel. J. Mammal.80, 611–619 (1999).
Google Scholar
52.
Gaubert, P. et al. Reviving the African Wolf Canis lupus lupaster in North and West Africa: a mitochondrial lineage ranging more than 6,000 km wide. PLoS ONE7, e42740 (2012).
ADS CAS PubMed PubMed Central Google Scholar
53.
Prothero, D. R. et al. Size and shape stasis in late Pleistocene mammals and birds from Rancho La Brea during the Last Glacial-Interglacial cycle. Quat. Sci. Rev.56, 1–10 (2012).
ADS Google Scholar
54.
Payne, S. Paleolithic site of Douara Cave and Paleogeography of Palmyra Basin in Syria, part III: animal bones and further analysis of archeological materials 1–108 (University of Tokyo Press, Tokyo, 1983).
Google Scholar
55.
Mecozzi, B. & Lucenti, S. B. The Late Pleistocene Canis lupus (Canidae, Mammalia) from Avetrana (Apulia, Italy): reappraisal and new insights on the European glacial wolves, I. J. Geosci.137, 138–150 (2018).
Google Scholar
56.
Rustioni, M., Ferretti, M. P., Mazza, P., Pavia, M. & Varola, A. The vertebrate fauna from Cardamone (Apulia, southern Italy): an example of Mediterranean mammoth fauna. Deinsea9, 395–404 (2003).
Google Scholar
57.
Sardella, R. et al. The wolf from Grotta Romanelli (Apulia, Italy) and its implications in the evolutionary history of Canis lupus in the Late Pleistocene of Southern Italy. Quat. Int.328–329, 179–195 (2014).
Google Scholar
58.
Trut, L. N. The Genetics of the Dog 15–42 (CABI Publishing, New York, 2001).
Google Scholar
59.
Hare, B., Wobber, V. & Wrangham, R. The self-domestication hypothesis: evolution of bonobo psychology is due to selection against aggression. Anim. Behav.83, 573–585 (2012).
Google Scholar
60.
Lord, K. A., Larson, G., Coppinger, R. P. & Karlsson, E. The history of farm foxes undermines the animal domestication syndrome. Trends Ecol.35, 125–136 (2020).
Google Scholar
61.
Marshall-Pescini, S., Cafazzo, S., Virány, Z. & Range, F. Integrating social ecology in explanation of wolf-dog behavioural differences. Curr. Opin. Behav. Sci.16, 80–86 (2017).
Google Scholar
62.
Leonard, J. A., Vilà, C., Fox-Dobbs, K., Koch, P. L. & Wayne, R. K. Megafaunal extinctions and the disappearance of a specialized wolf ecomorph. Curr. Biol.17, 1146–1150 (2007).
CAS PubMed Google Scholar
63.
Hare, B., Brown, M., Williamson, C. & Tommasello, M. The domestication of social cognition in dogs. Science298, 1634–1636 (2002).
ADS CAS PubMed Google Scholar
64.
Wobber, V. et al. Breed differences in domestic dogs’ (Canis familiaris) comprehension of human communicative signals. Interact. Stud.10, 206–224 (2009).
Google Scholar
65.
Riedel, A. I resti animali della grotta delle Ossa (Škocjan). Atti del Museo Civico di Storia Naturale di Trieste30, 125–208 (1977).
Google Scholar
66.
Detry, C. & Cardoso, J. L. On some remains of dog (Canis familiaris) from the Mesolithic shell-middens of Muge, Portugal. J. Archaeol. Sci.37, 2762–2774 (2010).
Google Scholar
67.
von den Driesch, A. A guide to measurement of animal bones from archaeological sites. Peabody Mus. Bull.1, 1–148 (1976).
Google Scholar
68.
Tuniz, C. et al. The ICTP-Elettra X-ray laboratory for cultural heritage and archaeology. Nucl. Instrum. Methods Phys. Res. A711, 106–110 (2013).
ADS CAS Google Scholar
69.
Fajardo, R. J., Ryan, T. M. & Kappelman, J. Assessing the accuracy of high resolution X-ray computed tomography of primate trabecular bone by comparisons with histological sections. Am. J. Phys. Anthropol.118, 1–10 (2002).
PubMed Google Scholar
70.
Coleman, M. N. & Colbert, M. W. CT thresholding protocols for taking measurements on three-dimensional models. Am. J. Phys. Anthropol.133, 723–725 (2007).
PubMed Google Scholar
71.
Bouxsein, M. et al. Guidelines for assessment of bone microstructure in rodents using micro-computed tomography. J. Bone Miner. Res.25, 1468–1486 (2010).
PubMed Google Scholar
72.
Shipman, P., Foster, G. & Schoeninger, M. Burnt bones and teeth: an experimental study of color, morphology, crystal structure and shrinkage. J. Archaeol. Sci.11, 307–325 (1984).
Google Scholar
73.
Ghezzo, E. & Rook, L. Cuon alpinus (Pallas, 1811) (Mammalia, Carnivora) from Equi (Late Pleistocene, Massa-Carrara, Italy): anatomical analysis and palaeoethological contextualisation. Rend. Fis. Acc. Lincei25, 492–504 (2014).
Google Scholar
74.
Gunz, P. & Mitteroecker, P. Semilandmarks: a method for quantifying curves and surfaces. Hystrix24, 103–109 (2013).
Google Scholar
75.
Adams, D.C., Collyer, D.L., Kaliontzopoulou, A. & Sherratt, E. Geomorph: software for geometric morphometric analyses. R package version 3.0.5. https://cran.r-project.org/package=geomorph (2017).
76.
Schlager, S. Statistical Shape and Deformation Analysis 217–256 (Academic Press, London, 2017).
Google Scholar
77.
Mitteroecker, P. & Bookstein, F. L. Linear discrimination, ordination, and the visualization of selection gradients in modern morphometrics. Evol. Biol.38, 100–114 (2011).
Google Scholar
78.
Dray, S. & Dufour, A. B. The ade4 package: implementing the duality diagram for ecologists. J. Stat. Softw.22, 1–20 (2007).
Google Scholar
79.
Bookstein, F. L. Morphometric Tools for Landmark Data: Geometry and Biology (Cambridge University Press, Cambridge, 1991).
Google Scholar
80.
Dabney, J. et al. Complete mitochondrial genome sequence of a Middle Pleistocene cave bear reconstructed from ultrashort DNA fragments. Proc. Natl. Acad. Sci. U. S. A.110, 15758–15763 (2013).
ADS CAS PubMed PubMed Central Google Scholar
81.
Meyer, M. & Kircher, M. Illumina sequencing library preparation for highly multiplexed target capture and sequencing. Cold Spring Harb. Protoc. https://doi.org/10.1101/pdb.prot5448 (2010).
Article PubMed Google Scholar
82.
Peltzer, G. et al. EAGER: efficient ancient genome reconstruction. Genome Biol.17, 60 (2016).
PubMed PubMed Central Google Scholar
83.
Kim, K. S., Lee, S. E., Jeong, H. W. & Ha, J. H. The complete nucleotide sequence of the domestic dog (Canis familiaris) mitochondrial genome. Mol. Phylogenet. Evol.10, 210–220 (1998).
CAS PubMed Google Scholar
84.
Li, H. & Durbin, R. Fast and accurate short read alignment with Burrows–Wheeler transform. Bioinformatics25, 1754–1760 (2009).
CAS PubMed PubMed Central Google Scholar
85.
Schubert, M. et al. Improving ancient DNA read mapping against modern reference genomes. BMC Genom.13, 178 (2012).
CAS Google Scholar
86.
Li, H. et al. The sequence alignment/map format and SAMtools. Bioinformatics25, 2078–2079 (2009).
PubMed PubMed Central Google Scholar
87.
Jonsson, H., Ginolhac, A., Schubert, M., Johnson, P. L. & Orlando, L. mapDamage2.0: fast approximate Bayesian estimates of ancient DNA damage parameters. Bioinformatics29, 1682–1684 (2013).
CAS PubMed PubMed Central Google Scholar
88.
Loog, L. et al. Ancient DNA suggests modern wolves trace their origin to a Late Pleistocene expansion from Beringia. Mol Ecol.00, 1–15. https://doi.org/10.1111/mec.15329 (2019).
Article Google Scholar
89.
Kumar, S., Stecher, G. & Tamura, K. MEGA7: molecular evolutionary genetics analysis version 7.0 for bigger datasets. Mol. Biol. Evol.33, 1870–1874 (2016).
CAS PubMed Google Scholar
90.
Edgar, C. MUSCLE: multiple sequence alignment with high accuracy and high throughput. Nucleic Acids Res.32, 1792–1797 (2004).
CAS PubMed PubMed Central Google Scholar
91.
Bouckaert, R. et al. BEAST 2: a software platform for Bayesian evolutionary analysis. PLoS Comput. Biol.10, e1003537 (2014).
PubMed PubMed Central Google Scholar
92.
Rambaut, A., Suchard, M.A., Xie, D. & Drummond, A.J. Tracer v1.6. https://tree.bio.ed.ac.uk/software/tracer (2014)
93.
Bronk Ramsey, C. Bayesian analysis of radiocarbon dates. Radiocarbon51, 337–360 (2009).
Google Scholar
94.
Reimer, P. J. et al. IntCal13 and Marine13 radiocarbon age calibration curves 0–50,000 years cal BP. Radiocarbon55, 1869–1887 (2013).
CAS Google Scholar
95.
Street, M., Napierala, H. & Janssens, L. The late Palaeolithic dog from Bonn-Oberkassel in context. Rheinische Ausgrabungen72, 253–274 (2015).
Google Scholar
96.
Bronk Ramsey, C., Higham, T., Bowles, A. & Hedges, R. Improvements to the pretreatment of bones at Oxford. Radiocarbon46(1), 155–163 (2004).
Google Scholar
97.
Fedi, M. E., Cartocci, A., Manetti, M., Taccetti, F. & Mandò, P. A. The 14C AMS facility at LABEC, Florence. Nucl. Instrum. Methods Phys. Res. B259, 18–22 (2007).
ADS CAS Google Scholar
98.
Boschin, F. Exploitation of carnivores, lagomorphs and rodents at Grotta Paglicci during the Epigravettian: the dawn of a new subsistence strategy?. J. Archaeol. Sci. Rep.26, 101871 (2019).
Google Scholar More