More stories

  • in

    Extreme hyperthermia tolerance in the world’s most abundant wild bird

    1.
    Sears, M. W., Raskin, E. & Angilletta, M. J. Jr. The world is not flat: defining relevant thermal landscapes in the context of climate change. Integr. Comp. Biol. 51, 666–675 (2011).
    PubMed  Google Scholar 
    2.
    du Plessis, K. L., Martin, R. O., Hockey, P. A. R., Cunningham, S. J. & Ridley, A. R. The costs of keeping cool in a warming world: implications of high temperatures for foraging, thermoregulation and body condition of an arid-zone bird. Glob. Change Biol. 18, 3063–3070 (2012).
    ADS  Google Scholar 

    3.
    Araújo, M. B. et al. Heat freezes niche evolution. Ecol. Lett. 16, 1206–1219 (2013).
    PubMed  Google Scholar 

    4.
    Speakman, J. R. & Król, E. Maximal heat dissipation capacity and hyperthermia risk: neglected key factors in the ecology of endotherms. J. Anim. Ecol. 79, 726–746 (2010).
    PubMed  Google Scholar 

    5.
    Daghir, N. J. Poultry production in hot climates 2nd edn. (CAB International, Wallingford, 2008).
    Google Scholar 

    6.
    Nyoni, N. M. B., Grab, S. & Archer, E. R. M. Heat stress and chickens: climate risk effects on rural poultry farming in low-income countries. Clim. Dev. 11, 83–90. https://doi.org/10.1080/17565529.2018.1442792 (2018).
    Article  Google Scholar 

    7.
    Laszlo, A. The effects of hyperthermia on mammalian cell structure and function. Cell Prolif. 25, 59–87 (1992).
    CAS  PubMed  Google Scholar 

    8.
    Roti Roti, J. L. Cellular responses to hyperthermia (40–46 C): Cell killing and molecular events. Int. J. Hyperthermia 24, 3–15 (2008).
    ADS  PubMed  Google Scholar 

    9.
    Feder, M. E. & Hofmann, G. E. Heat-shock proteins, molecular chaperones, and the stress response: evolutionary and ecological physiology. Annu. Rev. Physiol. 61, 243–282 (1999).
    CAS  PubMed  Google Scholar 

    10.
    Hochachka, P. W. & Somero, G. N. Biochemical Adaptation (Princeton University Press, Princeton, 1984).
    Google Scholar 

    11.
    Pörtner, H. Climate change and temperature-dependent biogeography: oxygen limitation of thermal tolerance in animals. Naturwissenschaften 88, 137–146 (2001).
    ADS  PubMed  Google Scholar 

    12.
    Pörtner, H.-O. Oxygen-and capacity-limitation of thermal tolerance: a matrix for integrating climate-related stressor effects in marine ecosystems. J. Exp. Biol. 213, 881–893 (2010).
    PubMed  Google Scholar 

    13.
    Clusella-Trullas, S., Blackburn, T. M. & Chown, S. L. Climatic predictors of temperature performance curve parameters in ectotherms imply complex responses to climate change. Am. Nat. 177, 738–751 (2011).
    PubMed  Google Scholar 

    14.
    McKechnie, A. E. & Wolf, B. O. The physiology of heat tolerance in small endotherms. Physiology 34, 302–313 (2019).
    CAS  PubMed  Google Scholar 

    15.
    Arad, Z. & Marder, J. Strain differences in heat resistance to acute heat stress, between the bedouin desert fowl, the white leghorn and their crossbreeds. Comp. Biochem. Physiol. A 72, 191–193 (1982).
    Google Scholar 

    16.
    Randall, W. C. Factors influencing the temperature regulation of birds. Am. J. Physiol. 139, 56–63 (1943).
    Google Scholar 

    17.
    Tieleman, B. I., Williams, J. B., LaCroix, F. & Paillat, P. Physiological responses of Houbara bustards to high ambient temperatures. J. Exp. Biol. 205, 503–511 (2002).
    PubMed  Google Scholar 

    18.
    Chappell, M. A. & Bartholomew, G. A. Activity and thermoregulation of the antelope ground squirrel Ammospermophilus leucurus in winter and summer. Physiol. Zool. 54, 215–223 (1981).
    Google Scholar 

    19.
    Lovegrove, B. G., Heldmaier, G. & Ruf, T. Perspectives of endothermy revisited: the endothermic temperature range. J. Therm. Biol 16, 185–197 (1991).
    Google Scholar 

    20.
    Cory Toussaint, D. & McKechnie, A. E. Interspecific variation in thermoregulation among three sympatric bats inhabiting a hot, semi-arid environment. J. Comp. Physiol. B 182, 1129–1140 (2012).
    PubMed  Google Scholar 

    21.
    Dawson, W. R. In University of California Publications in Zoology Vol. 59 (eds Bartholomew, G. A. et al.) 81–123 (University of California Press, California, 1954).
    Google Scholar 

    22.
    Paulissen, M. A. Ontogenetic comparison of body temperature selection and thermal tolerance of Cnemidophorus sexlineatus. J. Herpetol. 22, 473–476 (1988).
    Google Scholar 

    23.
    Weathers, W. W. Energetics and thermoregulation by small passerines of the humid, lowland tropics. Auk 114, 341–353 (1997).
    Google Scholar 

    24.
    Southwick, E. E. Remote sensing of body temperature in a captive 25-g bird. Condor 75, 464–466 (1973).
    Google Scholar 

    25.
    Elliott, C. C. H. In Quelea quelea: Africa’s bird pest (eds Bruggers, R. L. & Elliott, C. C. H.) (Oxford University Press, Oxford, 1989).
    Google Scholar 

    26.
    Craig, A. J. F. K. In Roberts birds of southern Africa (eds Hockey, P. A. R. et al.) 1025–1026 (The Trustees of the John Voelcker Bird Book Fund, Cape Town, 2005).
    Google Scholar 

    27.
    Whitfield, M. C., Smit, B., McKechnie, A. E. & Wolf, B. O. Avian thermoregulation in the heat: scaling of heat tolerance and evaporative cooling capacity in three southern African arid-zone passerines. J. Exp. Biol. 218, 1705–1714 (2015).
    PubMed  Google Scholar 

    28.
    McKechnie, A. E. et al. Avian thermoregulation in the heat: efficient evaporative cooling allows for extreme heat tolerance in four southern Hemisphere columbids. J. Exp. Biol. 219, 2145–2155 (2016).
    PubMed  Google Scholar 

    29.
    Smith, E. K., O’Neill, J. J., Gerson, A. R., McKechnie, A. E. & Wolf, B. O. Avian thermoregulation in the heat: resting metabolism, evaporative cooling and heat tolerance in Sonoran Desert songbirds. J. Exp. Biol. 220, 3290–3300 (2017).
    PubMed  Google Scholar 

    30.
    Smit, B. et al. Avian thermoregulation in the heat: phylogenetic variation among avian orders in evaporative cooling capacity and heat tolerance. J. Exp. Biol. 221, jeb174870 (2018).
    PubMed  Google Scholar 

    31.
    Karasov, W. H. In Studies in Avian Biology (eds Morrison, M. L. et al.) 391–415 (Cooper Ornithological Society, California, 1990).
    Google Scholar 

    32.
    Swanson, D. L., Drymalski, M. W. & Brown, J. R. Sliding vs static cold exposure and the measurement of summit metabolism in birds. J. Therm. Biol 21, 221–226 (1996).
    Google Scholar 

    33.
    Kemp, R. & McKechnie, A. E. Thermal physiology of a range-restricted desert lark. J. Comp. Physiol. B 189, 131–141. https://doi.org/10.1007/s00360-018-1190-1 (2019).
    Article  PubMed  Google Scholar 

    34.
    Lighton, J. R. B. Measuring Metabolic Rates: A Manual for Scientists (Oxford University Press, Oxford, 2008).
    Google Scholar 

    35.
    Walsberg, G. E. & Wolf, B. O. Variation in the respirometry quotient of birds and implications for indirect calorimetry using measurements of carbon dioxide production. J. Exp. Biol. 198, 213–219 (1995).
    CAS  PubMed  Google Scholar 

    36.
    Tracy, C. R., Welch, W. R., Pinshow, B. & Porter, W. P. Properties of air: a manual for use in biophysical ecology. 4th Ed. The University of Wisconsin Laboratory for Biophysical Ecology: Technical Report (2010).

    37.
    R Core Team R: A Language and Environment for Statistical Computing (R Foundation for Statistical Computing, Vienna, Austria, 2019).

    38.
    Pinheiro, J., Bates, D., DebRoy, S., Sarkar, D. & R Core Team. nlme: Linear and Nonlinear Mixed Effects Models. R Package Version 3. 57. (2009).

    39.
    Muggeo, V. M. R. Segmented: an R package to fit regression models with broken-line relationships. R News 8(1), 20–25 (2008).
    Google Scholar 

    40.
    McKechnie, A. E. et al. Avian thermoregulation in the heat: evaporative cooling in five Australian passerines reveals within-order biogeographic variation in heat tolerance. J. Exp. Biol. 220, 2436–2444 (2017).
    PubMed  Google Scholar 

    41.
    O’Connor, R. S., Wolf, B. O., Brigham, R. M. & McKechnie, A. E. Avian thermoregulation in the heat: efficient evaporative cooling in two southern African nightjars. J Comp Physiol B 187, 477–491 (2017).
    PubMed  Google Scholar 

    42.
    Hoffmann, A. A., Chown, S. L. & Clusella-Trullas, S. Upper thermal limits in terrestrial ectotherms: how constrained are they? Funct. Ecol. 27, 934–949 (2013).
    Google Scholar 

    43.
    Tieleman, B. I., Williams, J. B. & Bloomer, P. Adaptation of metabolic rate and evaporative water loss along an aridity gradient. Proc. R. Soc. Lond. 270, 207–214 (2003).
    Google Scholar 

    44.
    Xie, S., Tearle, R. & McWhorter, T. J. Heat shock protein expression is upregulated after acute heat exposure in three species of Australian desert birds. Avian Biol. Res. 11, 263–273 (2018).
    Google Scholar 

    45.
    Czenze, Z. J. et al. Regularly-drinking desert birds have greater evaporative cooling capacity and higher heat tolerance limits than non-drinking species. Funct. Ecol. https://doi.org/10.1111/1365-2435.13573 (2020).
    Article  Google Scholar 

    46.
    Midtgård, U. Scaling of the brain and the eye cooling system in birds: a morphometric analysis of the rete ophthalmicum. J. Exp. Zool. 225, 197–207 (1983).
    PubMed  Google Scholar 

    47.
    Kilgore, D. L., Bernstein, M. H. & Hudson, D. M. Brain temperatures in birds. J Comp Physiol 110, 209–215 (1976).
    Google Scholar 

    48.
    Bernstein, M. H., Curtis, M. B. & Hudson, D. M. Independence of brain and body temperatures in flying American kestrels, Falco sparverius. Am. J. Physiol. 237, R58–R62 (1979).
    CAS  PubMed  Google Scholar 

    49.
    Kregel, K. C. Invited review: heat shock proteins: modifying factors in physiological stress responses and acquired thermotolerance. J. Appl. Physiol. 92, 2177–2186 (2002).
    CAS  PubMed  Google Scholar 

    50.
    McKechnie, A. E. et al. Avian thermoregulation in the heat: evaporative cooling capacity in an archetypal desert specialist, Burchell’s sandgrouse (Pterocles burchelli). J. Exp. Biol. 219, 2137–2144 (2016).
    PubMed  Google Scholar 

    51.
    Talbot, W. A., McWhorter, T. J., Gerson, A. R., McKechnie, A. E. & Wolf, B. O. Avian thermoregulation in the heat: evaporative cooling capacity of arid-zone Caprimulgiformes from two continents. J. Exp. Biol. 220, 3488–3498 (2017).
    PubMed  Google Scholar 

    52.
    McWhorter, T. J. et al. Avian thermoregulation in the heat: evaporative cooling capacity and thermal tolerance in two Australian parrots. J. Exp. Biol. 221, jeb168930 (2018).
    PubMed  Google Scholar 

    53.
    Talbot, W. A., Gerson, A. R., Smith, E. K., McKechnie, A. E. & Wolf, B. O. Avian thermoregulation in the heat: metabolism, evaporative cooling and gular flutter in two small owls. J. Exp. Biol. 221, jeb171108 (2018).
    PubMed  Google Scholar 

    54.
    Smith, E. K., O’Neill, J., Gerson, A. R. & Wolf, B. O. Avian thermoregulation in the heat: resting metabolism, evaporative cooling and heat tolerance in Sonoran Desert doves and quail. J. Exp. Biol. 218, 3636–3646 (2015).
    PubMed  Google Scholar  More

  • in

    Sediment microbial fuel cells as a barrier to sulfide accumulation and their potential for sediment remediation beneath aquaculture pens

    1.
    El-Naggar, M. Y. et al. Electrical transport along bacterial nanowires from Shewanella oneidensis MR-1. Proc. Natl. Acad. Sci. USA 107, 18127–18131 (2010).
    ADS  CAS  PubMed  Google Scholar 
    2.
    Du Toit, A. Exporting electrons. Nat. Rev. Microbiol. 16, 657 (2018).
    PubMed  Google Scholar 

    3.
    Lovley, D. R. Microbial fuel cells: novel microbial physiologies and engineering approaches. Curr. Opin. Biotechnol. 17, 327–332 (2006).
    CAS  PubMed  Google Scholar 

    4.
    Myers, J. M. & Myers, C. R. Role for outer membrane cytochromes OmcA and OmcB of Shewanella putrefaciens MR-1 in reduction of manganese dioxide. Appl. Environ. Microbiol. 67, 260–269 (2001).
    CAS  PubMed  PubMed Central  Google Scholar 

    5.
    Bond, D. R. & Lovley, D. R. Electricity production by Geobacter sulfurreducens attached to electrodes. Appl. Environ. Microbiol. 69, 1548–1555 (2003).
    CAS  PubMed  PubMed Central  Google Scholar 

    6.
    Rabaey, K., Boon, N., Siciliano, S. D., Verhaege, M. & Verstraete, W. Biofuel cells select for microbial consortia that self-mediate electron transfer. Appl. Environ. Microbiol. 70, 5373–5382 (2004).
    CAS  PubMed  PubMed Central  Google Scholar 

    7.
    Rabaey, K., Boon, N., Höfte, M. & Verstraete, W. Microbial phenazine production enhances electron transfer in biofuel cells. Environ. Sci. Technol. 39, 3401–3408 (2005).
    ADS  CAS  PubMed  Google Scholar 

    8.
    Potter, M. C. Electrical effects accompanying the decomposition of organic compounds. Proc. R. Soc. B Biol. Sci. 84, 260–276 (1911).
    ADS  Google Scholar 

    9.
    Logan, B. E. & Regan, J. M. Microbial fuel cells—challenges and applications. Environ. Sci. Technol. 40, 5172–5180 (2006).
    ADS  CAS  PubMed  Google Scholar 

    10.
    Trapero, J. R., Horcajada, L., Linares, J. J. & Lobato, J. Is microbial fuel cell technology ready? An economic answer towards industrial commercialization. Appl. Energy 185, 698–707 (2017).
    CAS  Google Scholar 

    11.
    Reimers, C. E., Tender, L. M., Fertig, S. & Wang, W. Harvesting energy from the marine sediment−water interface. Environ. Sci. Technol. 35, 192–195 (2001).
    ADS  CAS  PubMed  Google Scholar 

    12.
    Tender, L. M. et al. Harnessing microbially generated power on the seafloor. Nat. Biotechnol. 20, 821–825 (2002).
    CAS  PubMed  Google Scholar 

    13.
    Kubota, K. et al. Operation of sediment microbial fuel cells in Tokyo Bay, an extremely eutrophicated coastal sea. Bioresour. Technol. Rep. 6, 39–45 (2019).
    Google Scholar 

    14.
    Chun, C. L., Payne, R. B., Sowers, K. R. & May, H. D. Electrical stimulation of microbial PCB degradation in sediment. Water Res. 47, 141–152 (2013).
    CAS  PubMed  Google Scholar 

    15.
    Gajda, I., Greenman, J. & Ieropoulos, I. A. Recent advancements in real-world microbial fuel cell applications. Curr. Opin. Electrochem. 11, 78–83 (2018).
    CAS  PubMed  PubMed Central  Google Scholar 

    16.
    Bond, D. R., Holmes, D. E., Tender, L. M. & Lovley, D. R. Electrode-reducing microorganisms that harvest energy from marine sediments. Science 295, 483–485 (2002).
    ADS  CAS  PubMed  Google Scholar 

    17.
    Froelich, P. N. et al. Early oxidation of organic matter in pelagic sediments of the eastern equatorial Atlantic: suboxic diagenesis. Geochim. Cosmochim. Acta 43, 1075–1090 (1979).
    ADS  CAS  Google Scholar 

    18.
    Hasvold, Ø et al. Sea-water battery for subsea control systems. J. Power Sources 65, 253–261 (1997).
    ADS  CAS  Google Scholar 

    19.
    Li, H. et al. Pilot-scale benthic microbial electrochemical system (BMES) for the bioremediation of polluted river sediment. J. Power Sources 356, 430–437 (2017).
    ADS  CAS  Google Scholar 

    20.
    Sherafatmand, M. & Ng, H. Y. Using sediment microbial fuel cells (SMFCs) for bioremediation of polycyclic aromatic hydrocarbons (PAHs). Bioresour. Technol. 195, 122–130 (2015).
    CAS  PubMed  Google Scholar 

    21.
    Sajana, T. K., Ghangrekar, M. M. & Mitra, A. Application of sediment microbial fuel cell for in situ reclamation of aquaculture pond water quality. Aquac. Eng. 57, 101–107 (2013).
    Google Scholar 

    22.
    Sajana, T. K., Ghangrekar, M. M. & Mitra, A. Effect of operating parameters on the performance of sediment microbial fuel cell treating aquaculture water. Aquac. Eng. 61, 17–26 (2014).
    Google Scholar 

    23.
    Giles, H. Using Bayesian networks to examine consistent trends in fish farm benthic impact studies. Aquaculture 274, 181–195 (2008).
    Google Scholar 

    24.
    Karakassis, I., Tsapakis, M., Hatziyanni, E., Papadopoulou, K. N. & Plaiti, W. Impact of cage farming of fish on the seabed in three Mediterranean coastal areas. ICES J. Mar. Sci. 57, 1462–1471 (2000).
    Google Scholar 

    25.
    Nøhr Glud, R., Gundersen, J. K., Barker Jørgensen, B., Revsbech, N. P. & Schulz, H. D. Diffusive and total oxygen uptake of deep-sea sediments in the eastern South Atlantic Ocean: in situ and laboratory measurements. Deep. Res. I 41, 1767–1788 (1994).
    Google Scholar 

    26.
    Van Duyl, F. C., Kop, A. J., Kok, A. & Sandee, A. J. J. The impact of organic matter and macrozoobenthos on bacterial and oxygen variables in marine sediment boxcosms. Neth. J. Sea Res. 29, 343–355 (1992).
    Google Scholar 

    27.
    Brooks, K. M. & Mahnken, C. V. Interactions of Atlantic salmon in the Pacific northwest environment II. Organic wastes. Fish. Res. 62, 255–293 (2003).
    Google Scholar 

    28.
    Mackin, J. E. & Swider, K. T. Organic matter decomposition pathways and oxygen consumption in coastal marine sediments. J. Mar. Res. 47, 681–716 (1989).
    CAS  Google Scholar 

    29.
    Holmer, M. & Kristensen, E. Impact of marine fish cage farming on metabolism and sulfate reduction of underlying sediments. Mar. Ecol. Prog. Ser. 80, 191–201 (1992).
    ADS  CAS  Google Scholar 

    30.
    Carroll, M. L., Cochrane, S., Fieler, R., Velvin, R. & White, P. Organic enrichment of sediments from salmon farming in Norway: Environmental factors, management practices, and monitoring techniques. Aquaculture https://doi.org/10.1016/S0044-8486(03)00475-7 (2003).
    Article  Google Scholar 

    31.
    Hargrave, B. T. Empirical relationships describing benthic impacts of salmon aquaculture. Aquac. Environ. Interact. 1, 33–46 (2010).
    Google Scholar 

    32.
    Bagarinao, T. Sulfide as an environmental factor and toxicant: tolerance and adaptations in aquatic organisms. Aquat. Toxicol. 24, 21–62 (1992).
    CAS  Google Scholar 

    33.
    Hargrave, B. T., Holmer, M. & Newcombe, C. P. Towards a classification of organic enrichment in marine sediments based on biogeochemical indicators. Mar. Pollut. Bull. 56, 810–824 (2008).
    CAS  PubMed  Google Scholar 

    34.
    Ryckelynck, N., Stecher, H. A. & Reimers, C. E. Understanding the anodic mechanism of a seafloor fuel cell: Interactions between geochemistry and microbial activity. Biogeochemistry 76, 113–139 (2005).
    Google Scholar 

    35.
    Ishii, S. et al. Identifying the microbial communities and operational conditions for optimized wastewater treatment in microbial fuel cells. Water Res. 47, 7120–7130 (2013).
    CAS  PubMed  Google Scholar 

    36.
    Fader, G.B.J. & Miller, R.O. Surficial Geology, Halifax Harbour, Nova Scotia. Bulletin of the Geological Survey of Canada (2008).

    37.
    Grant, J., Emerson, C. W., Hargrave, B. T. & Shortle, J. L. Benthic oxygen consumption on continental shelves off eastern Canada. Cont. Shelf Res. 11, 1083–1097 (1991).
    ADS  Google Scholar 

    38.
    Logan, B. E. Microbial fuel cells. In Treatise on Water Science, Vol. 4 (ed. Wilderer, P.) 641–665 (Wiley, New York, 2010).
    Google Scholar 

    39.
    Taillefert, M. et al. Early diagenesis in the sediments of the Congo deep-sea fan dominated by massive terrigenous deposits: part II—Iron—sulfur coupling. Deep. Res. II Top. Stud. Oceanogr. 142, 151–166 (2017).
    ADS  CAS  Google Scholar 

    40.
    Canfield, D. E., Raiswell, R. & Bottrell, S. The reactivity of sedimentary iron minerals toward sulfide. Am. J. Sci. 292, 659–683 (1992).
    ADS  CAS  Google Scholar 

    41.
    Boudreau, B. P. Diagenetic models and their implementation: modelling transport and reactions in aquatic sediments (Springer, Berlin Heidelberg, 1996).
    Google Scholar 

    42.
    Glud, R. N. Oxygen dynamics of marine sediments. Mar. Biol. Res. 4, 243–289 (2008).
    Google Scholar 

    43.
    Berg, P., Risgaard-petersen, N. & Silkeborg, D. Interpretation of measured concentration profiles in sediment pore water. Limnol. Oceanogr. 43, 1500–1510 (1998).
    ADS  CAS  Google Scholar 

    44.
    Hargrave, B. T. Seasonal changes in oxygen uptake by settled particulate matter and sediments in a marine bay. J. Fish. Res. Board Can. 35, 1621–1628 (1978).
    CAS  Google Scholar 

    45.
    Viggi, C. C. et al. Bridging spatially segregated redox zones with a microbial electrochemical snorkel triggers biogeochemical cycles in oil-contaminated River Tyne (UK) sediments. Water Res. 127, 11–21 (2017).
    CAS  PubMed  Google Scholar 

    46.
    Brüchert, V. & Arnosti, C. Anaerobic carbon transformation: Experimental studies with flow-through cells. Mar. Chem. 80, 171–183 (2003).
    Google Scholar 

    47.
    Arnosti, C. Microbial extracellular enzymes and their role in dissolved organic matter cycling. Aquat. Ecosyst. https://doi.org/10.1016/b978-012256371-3/50014-7 (2003).
    Article  Google Scholar 

    48.
    Lehman, R. M. & O’Connell, S. P. Comparison of extracellular enzyme activities and community composition of attached and free-living bacteria in porous medium columns. Appl. Environ. Microbiol. 68, 1569–1575 (2002).
    CAS  PubMed  PubMed Central  Google Scholar 

    49.
    Reimers, C. E. et al. Microbial fuel cell energy from an ocean cold seep. Geobiology 4, 123–136 (2006).
    CAS  Google Scholar 

    50.
    Jørgensen, B. B., Findlay, A. J. & Pellerin, A. The biogeochemical sulfur cycle of marine sediments. Front. Microbiol. 10, 849 (2019).
    PubMed  PubMed Central  Google Scholar 

    51.
    Lovley, D. R. Happy together: Microbial communities that hook up to swap electrons. ISME J. 11, 327–336 (2017).
    CAS  PubMed  Google Scholar 

    52.
    Finster, K., Liesack, W. & Thamdrup, B. Elemental sulfur and thiosulfate disproportionation by Desulfocapsa sulfoexigens sp. nov., a new anaerobic bacterium isolated from marine surface sediment. Appl. Environ. Microbiol. 64, 119–125 (1998).
    CAS  PubMed  PubMed Central  Google Scholar 

    53.
    Kelly, D. P., Shergill, J. K., Lu, W. P. & Wood, A. P. Oxidative metabolism of inorganic sulfur compounds by bacteria. Int. J. Gen. Mol. Microbiol. 71, 95–107 (1997).
    CAS  Google Scholar 

    54.
    Keeley, N. B., Forrest, B. M. & Macleod, C. K. Novel observations of benthic enrichment in contrasting flow regimes with implications for marine farm monitoring and management. Mar. Pollut. Bull. 66, 105–116 (2013).
    CAS  PubMed  Google Scholar 

    55.
    Cranford, P., Brager, L., Elvines, D., Wong, D. & Law, B. A revised classification system describing the ecological quality status of organically enriched marine sediments based on total dissolved sulfides. Mar. Pollut. Bull. 154, 111088 (2020).
    CAS  PubMed  Google Scholar 

    56.
    Soetaert, K., Hofmann, A. F., Middelburg, J. J., Meysman, F. J. R. & Greenwood, J. The effect of biogeochemical processes on pH. Mar. Chem. 105, 30–51 (2007).
    CAS  Google Scholar 

    57.
    Seitaj, D. et al. Cable bacteria generate a firewall against euxinia in seasonally hypoxic basins. Proc. Natl. Acad. Sci. USA 112, 13278–13283 (2015).
    ADS  CAS  PubMed  Google Scholar 

    58.
    Di Toro, D. M. et al. Acid volatile sulfide predicts the acute toxicity of cadmium and nickel in sediments. Environ. Sci. Technol. 26, 96–101 (1992).
    ADS  Google Scholar 

    59.
    Brooks, K. M. & Mahnken, C. V. W. Interactions of Atlantic salmon in the Pacific Northwest environment. III. Accumulation of zinc and copper. Fish. Res. 62, 295–305 (2003).
    Google Scholar 

    60.
    Fitridge, I., Dempster, T., Guenther, J. & de Nys, R. The impact and control of biofouling in marine aquaculture: A review. Biofouling 28, 649–669 (2012).
    PubMed  Google Scholar 

    61.
    FOA. The State of World Fisheries and Aquaculture 2016. Contributing to food security and nutrition for all (2016).

    62.
    Millero, F. J., Plese, T. & Fernandez, M. The dissociation of hydrogen sulfide in seawater. Limnol. Oceanogr. 33, 269–274 (1988).
    ADS  CAS  Google Scholar  More

  • in

    Lichen-like association of Chlamydomonas reinhardtii and Aspergillus nidulans protects algal cells from bacteria

    1.
    Taylor TN, Remy W, Hass H. Parasitism in a 400-million-year-old green alga. Nature. 1992;357:493–4.
    Google Scholar 
    2.
    Taylor TN, Hass H, Remy W, Kerp H. The oldest fossil lichen. Nature. 1995;378:244.
    CAS  Google Scholar 

    3.
    Honegger R, Edwards D, Axe L. The earliest records of internally stratified cyanobacterial and algal lichens from the lower devonian of the welsh borderland. N Phytol. 2013;197:264–75.
    Google Scholar 

    4.
    Selosse MA, Le Tacon F. The land flora: a phototroph-fungus partnership?. Trends Ecol Evol. 1998;13:15–20.
    CAS  PubMed  Google Scholar 

    5.
    Schwendener S. Die Algentypen der Flechtengonidien. Universitätsbuchdruckerei von C Schultze, Basel. 1869.

    6.
    Ahmadjian V, Jacobs JB. Relationship between fungus and alga in the lichen Cladonia cristatella Tuck. Nature. 1981;289:169–72.
    Google Scholar 

    7.
    Brakhage AA. Regulation of fungal secondary metabolism. Nat Rev Microbiol. 2013;11:21–32.
    CAS  PubMed  Google Scholar 

    8.
    Netzker T, Fischer J, Weber J, Mattern DJ, König CC, Valiante V, et al. Microbial communication leading to the activation of silent fungal secondary metabolite gene clusters. Front Microbiol. 2015;6:299.
    PubMed  PubMed Central  Google Scholar 

    9.
    Grube M, Cernava T, Soh J, Fuchs S, Aschenbrenner I, Lassek C, et al. Exploring functional contexts of symbiotic sustain within lichen-associated bacteria by comparative omics. ISME J. 2015;9:412–24.
    CAS  PubMed  Google Scholar 

    10.
    Grube M, Cardinale M, de Castro JV Jr, Müller H, Berg G. Species-specific structural and functional diversity of bacterial communities in lichen symbioses. ISME J. 2009;3:1105.
    PubMed  Google Scholar 

    11.
    Schneider O, Simic N, Aachmann FL, Rückert C, Kristiansen KA, Kalinowski J, et al. Genome mining of Streptomyces sp. YIM 130001 isolated from lichen affords new thiopeptide antibiotic. Front Microbiol. 2018;9:3139.
    PubMed  PubMed Central  Google Scholar 

    12.
    Liu C, Jiang Y, Lei H, Chen X, Ma Q, Han L, et al. Four new nanaomycins produced by Streptomyces hebeiensis derived from lichen. Chem Biodivers. 2017;14:e1700057.
    Google Scholar 

    13.
    Parrot D, Antony-Babu S, Intertaglia L, Grube M, Tomasi S, Suzuki MT. Littoral lichens as a novel source of potentially bioactive Actinobacteria. Sci Rep. 2015;5:15839.
    CAS  PubMed  PubMed Central  Google Scholar 

    14.
    Parrot D, Legrave N, Delmail D, Grube M, Suzuki M, Tomasi S. Review—Lichen-associated bacteria as a hot spot of chemodiversity: Focus on uncialamycin, a promising compound for future medicinal applications. Planta Med. 2016;82:1143–52.
    CAS  PubMed  Google Scholar 

    15.
    Netzker T, Flak M, Krespach MKC, Stroe MC, Weber J, Schroeckh V, et al. Microbial interactions trigger the production of antibiotics. Curr Opin Microbiol. 2018;45:117–23.
    CAS  PubMed  Google Scholar 

    16.
    Fischer J, Müller SY, Netzker T, Jäger N, Gacek-Matthews A, Scherlach K, et al. Chromatin mapping identifies BasR, a key regulator of bacteria-triggered production of fungal secondary metabolites. eLife. 2018;7:e40969.
    PubMed  PubMed Central  Google Scholar 

    17.
    Schroeckh V, Scherlach K, Nützmann HW, Shelest E, Schmidt-Heck W, Schuemann J, et al. Intimate bacterial-fungal interaction triggers biosynthesis of archetypal polyketides in Aspergillus nidulans. Proc Natl Acad Sci USA. 2009;106:14558–63.
    CAS  PubMed  Google Scholar 

    18.
    Stöcker-Worgötter E. Metabolic diversity of lichen-forming ascomycetous fungi: culturing, polyketide and shikimate metabolite production, and PKS genes. Nat Prod Rep. 2008;25:188–200.
    PubMed  Google Scholar 

    19.
    Hom EFY, Murray AW. Niche engineering demonstrates a latent capacity for fungal-algal mutualism. Science. 2014;345:94–8.
    CAS  PubMed  PubMed Central  Google Scholar 

    20.
    Netzker T, Schroeckh V, Gregory MA, Flak M, Krespach MKC, Leadlay PF, et al. An efficient method to generate gene deletion mutants of the rapamycin-producing bacterium Streptomyces iranensis HM 35. Appl Environ Microbiol. 2016;82:3481–92.
    CAS  PubMed  PubMed Central  Google Scholar 

    21.
    Xu W, Zhai G, Liu Y, Li Y, Shi Y, Hong K, et al. An iterative module in the azalomycin F polyketide synthase contains a switchable enoylreductase domain. Angew Chem Int Ed. 2017;56:5503–6.
    CAS  Google Scholar 

    22.
    Gorman D, Levine R. Cytochrome f and plastocyanin: their sequence in the photosynthetic electron transport chain of Chlamydomonas reinhardi. Proc Natl Acad Sci USA. 1965;54:1665–9.
    CAS  PubMed  Google Scholar 

    23.
    Sjoblad RD, Frederikse PH. Chemotactic responses of Chlamydomonas reinhardtii. Mol Cell Biol. 1981;1:1057–60.
    CAS  PubMed  PubMed Central  Google Scholar 

    24.
    Kessler RW, Weiss A, Kuegler S, Hermes C, Wichard T. Macroalgal-bacterial interactions: Role of dimethylsulfoniopropionate in microbial gardening by Ulva (Chlorophyta). Mol Ecol. 2018;27:1808–19.
    CAS  PubMed  Google Scholar 

    25.
    Paul C, Mausz MA, Pohnert G. A co-culturing/metabolomics approach to investigate chemically mediated interactions of planktonic organisms reveals influence of bacteria on diatom metabolism. Metabolomics. 2013;9:349–59.
    CAS  Google Scholar 

    26.
    Xu L, Xu X, Yuan G, Wang Y, Qu Y, Liu E. Mechanism of azalomycin F5a against methicillin-resistant Staphylococcus aureus. BioMed Res Int. 2018;2018:6942452.
    PubMed  PubMed Central  Google Scholar 

    27.
    Pouneva I. Evaluation of algal viability and physiology state by fluorescent microscopic methods. Bulgarian J Plant Physiol. 1997;23:67–76.
    Google Scholar 

    28.
    Blin K, Wolf T, Chevrette MG, Lu X, Schwalen CJ, Kautsar SA, et al. antiSMASH 4.0—improvements in chemistry prediction and gene cluster boundary identification. Nucleic Acids Res. 2017;45:W36–41.
    CAS  PubMed  PubMed Central  Google Scholar 

    29.
    Arai M. Azalomycin F, an antibiotic against fungi and Trichomonas. Arzneimittelforschung. 1968;18:1396–9.
    CAS  PubMed  Google Scholar 

    30.
    Hong H, Sun Y, Zhou Y, Stephens E, Samborskyy M, Leadlay PF. Evidence for an iterative module in chain elongation on the azalomycin polyketide synthase. Beilstein J Org Chem. 2016;12:2164–72.
    CAS  PubMed  PubMed Central  Google Scholar 

    31.
    Yuan GJ, Li PB, Yang J, Pang HZ, Pei Y. Anti-methicillin-resistant Staphylococcus aureus assay of azalomycin F5a and its derivatives. Chin J Nat Med. 2014;12:309–13.
    CAS  PubMed  Google Scholar 

    32.
    Hong H, Fill T, Leadlay PF. A common origin for guanidinobutanoate starter units in antifungal natural products. Angew Chem Int Ed. 2013;52:13096–9.
    CAS  Google Scholar 

    33.
    Bennoun P, Spierer-Herz M, Erickson J, Girard-Bascou J, Pierre Y, Delosme M, et al. Characterization of photosystem II mutants of Chlamydomonas reinhardii lacking the psbA gene. Plant Mol Biol. 1986;6:151–60.
    CAS  PubMed  Google Scholar 

    34.
    Erickson JM, Rahire M, Malnoë P, Girard-Bascou J, Pierre Y, Bennoun P, et al. Lack of the D2 protein in a Chlamydomonas reinhardtii psbD mutant affects photosystem II stability and D1 expression. EMBO J. 1986;5:1745–54.
    CAS  PubMed  PubMed Central  Google Scholar 

    35.
    Masloff S, Pöggeler S, Kück U. The pro1 + gene from Sordaria macrospora encodes a C6 zinc finger transcription factor required for fruiting body development. Genetics. 1999;152:191–9.
    CAS  PubMed  PubMed Central  Google Scholar 

    36.
    Yuan G, Xu L, Xu X, Li P, Zhong Q, Xia H, et al. Azalomycin F5a, a polyhydroxy macrolide binding to the polar head of phospholipid and targeting to lipoteichoic acid to kill methicillin-resistant Staphylococcus aureus. Biomed Pharmacother. 2019;109:1940–50.
    CAS  PubMed  Google Scholar 

    37.
    Cheng J, Yang SH, Palaniyandi SA, Han JS, Yoon T-M, Kim T-J, et al. Azalomycin F complex is an antifungal substance produced by Streptomyces malaysiensis MJM1968 isolated from agricultural soil. J Korean Soc Appl Biol Chem. 2010;53:545–52.
    CAS  Google Scholar 

    38.
    Du ZY, Alvaro J, Hyden B, Zienkiewicz K, Benning N, Zienkiewicz A, et al. Enhancing oil production and harvest by combining the marine alga Nannochloropsis oceanica and the oleaginous fungus Mortierella elongata. Biotechnol Biofuels. 2018;11:174.
    PubMed  PubMed Central  Google Scholar 

    39.
    Du ZY, Zienkiewicz K, Vande Pol N, Ostrom NE, Benning C, Bonito GM. Algal-fungal symbiosis leads to photosynthetic mycelium. eLife. 2019;8:e47815.
    CAS  PubMed  PubMed Central  Google Scholar 

    40.
    Muggia L, Fernández-Brime S, Grube M, Wedin M. Schizoxylon as an experimental model for studying interkingdom symbiosis. FEMS Microbiol Ecol. 2016;92:fiw165.
    PubMed  Google Scholar 

    41.
    Grube M, Wedin M. Lichenized fungi and the evolution of symbiotic organization. Microbiol Spectr. 2016;4.

    42.
    Aschenbrenner IA, Cernava T, Berg G, Grube M. Understanding microbial multi-species symbioses. Front Microbiol. 2016;7:180.
    PubMed  PubMed Central  Google Scholar 

    43.
    Gershenzon J, Dudareva N. The function of terpene natural products in the natural world. Nat Chem Biol. 2007;3:408–14.
    CAS  PubMed  Google Scholar 

    44.
    Shabuer G, Ishida K, Pidot SJ, Roth M, Dahse H-M, Hertweck C. Plant pathogenic anaerobic bacteria use aromatic polyketides to access aerobic territory. Science. 2015;350:670–4.
    CAS  PubMed  Google Scholar 

    45.
    Kinsinger RF, Shirk MC, Fall R. Rapid surface motility in Bacillus subtilis is dependent on extracellular surfactin and potassium ion. J Bacteriol. 2003;185:5627–31.
    CAS  PubMed  PubMed Central  Google Scholar 

    46.
    Aiyar P, Schaeme D, García-Altares M, Carrasco Flores D, Dathe H, Hertweck C, et al. Antagonistic bacteria disrupt calcium homeostasis and immobilize algal cells. Nat Commun. 2017;8:1756.
    PubMed  PubMed Central  Google Scholar 

    47.
    Stroe MC, Netzker T, Scherlach K, Krüger T, Hertweck C, Valiante V, et al. Targeted induction of a silent fungal gene cluster encoding the bacteria-specific germination inhibitor fumigermin. eLife. 2020;9:e52541.
    PubMed  PubMed Central  Google Scholar 

    48.
    Harvey BM, Mironenko T, Sun Y, Hong H, Deng Z, Leadlay PF, et al. Insights into polyether biosynthesis from analysis of the nigericin biosynthetic gene cluster in Streptomyces sp. DSM4137. Cell Chem Biol. 2007;14:703–14.
    CAS  Google Scholar 

    49.
    Zheng X, Zhang B, Zhang J, Huang L, Lin J, Li X, et al. A marine algicidal actinomycete and its active substance against the harmful algal bloom species Phaeocystis globosa. Appl Microbiol Biotechnol. 2013;97:9207–15.
    CAS  PubMed  Google Scholar 

    50.
    Greiner A, Kelterborn S, Evers H, Kreimer G, Sizova I, Hegemann P. Targeting of photoreceptor genes in Chlamydomonas reinhardtii via zinc-finger nucleases and CRISPR/Cas9. Plant Cell. 2017;29:2498–518.
    CAS  PubMed  PubMed Central  Google Scholar 

    51.
    Le TB, Fiedler HP, den Hengst CD, Ahn SK, Maxwell A, Buttner MJ. Coupling of the biosynthesis and export of the DNA gyrase inhibitor simocyclinone in Streptomyces antibioticus. Mol Microbiol. 2009;72:1462–74.
    CAS  PubMed  Google Scholar 

    52.
    Xu Y, Willems A, Au-Yeung C, Tahlan K, Nodwell JR. A two-step mechanism for the activation of actinorhodin export and resistance in Streptomyces coelicolor. MBio. 2012;3:e00191–12.
    CAS  PubMed  PubMed Central  Google Scholar 

    53.
    Wymann MP, Pirola L. Structure and function of phosphoinositide 3-kinases. Biochim Biophys Acta. 1998;1436:127–50.
    CAS  PubMed  Google Scholar 

    54.
    Vanzela AP, Said S, Prade RA. Phosphatidylinositol phospholipase C mediates carbon sensing and vegetative nuclear duplication rates in Aspergillus nidulans. Can J Microbiol. 2011;57:611–6.
    PubMed  Google Scholar 

    55.
    Schink KO, Tan KW, Stenmark H. Phosphoinositides in control of membrane dynamics. Annu Rev Cell Dev Biol. 2016;32:143–71.
    CAS  PubMed  Google Scholar 

    56.
    Miller MB, Haubrich BA, Wang Q, Snell WJ, Nes WD. Evolutionarily conserved Δ25(27)-olefin ergosterol biosynthesis pathway in the alga Chlamydomonas reinhardtii. J Lipid Res. 2012;53:1636–45.
    CAS  PubMed  PubMed Central  Google Scholar 

    57.
    Shapiro BE, Gealt MA. Ergosterol and lanosterol from Aspergillus nidulans. Microbiology. 1982;128:1053–6.
    CAS  Google Scholar 

    58.
    Anderson TM, Clay MC, Cioffi AG, Diaz KA, Hisao GS, Tuttle MD, et al. Amphotericin forms an extramembranous and fungicidal sterol sponge. Nat Chem Biol. 2014;10:400–6.
    CAS  PubMed  PubMed Central  Google Scholar 

    59.
    Laterre P-F, Colin G, Dequin P-F, Dugernier T, Boulain T, Azeredo da Silveira S, et al. CAL02, a novel antitoxin liposomal agent, in severe pneumococcal pneumonia: a first-in-human, double-blind, placebo-controlled, randomised trial. Lancet Infect Dis. 2019;19:620–30.
    CAS  PubMed  Google Scholar 

    60.
    Pletz MW, Bauer M, Brakhage AA. One step closer to precision medicine for infectious diseases. Lancet Infect Dis. 2019;19:564–5.
    PubMed  Google Scholar 

    61.
    Miransari M. Arbuscular mycorrhizal fungi and nitrogen uptake. Arch Microbiol. 2011;193:77–81.
    CAS  PubMed  Google Scholar 

    62.
    Otto S, Bruni EP, Harms H, Wick LY. Catch me if you can: dispersal and foraging of Bdellovibrio bacteriovorus 109J along mycelia. ISME J. 2017;11:386–93.
    PubMed  Google Scholar 

    63.
    Pion M, Spangenberg JE, Simon A, Bindschedler S, Flury C, Chatelain A, et al. Bacterial farming by the fungus Morchella crassipes. Proc R Soc B Biol Sci. 2013;280:20132242.
    Google Scholar 

    64.
    Splivallo R, Deveau A, Valdez N, Kirchhoff N, Frey-Klett P, Karlovsky P. Bacteria associated with truffle-fruiting bodies contribute to truffle aroma. Environ Microbiol. 2015;17:2647–60.
    PubMed  Google Scholar 

    65.
    Lutzoni F, Pagel M, Reeb V. Major fungal lineages are derived from lichen symbiotic ancestors. Nature. 2001;411:937–40.
    CAS  PubMed  Google Scholar 

    66.
    Mukhin VA, Patova EN, Kiseleva IS, Neustroeva NV, Novakovskaya IV. Mycetobiont symbiotic algae of wood-decomposing fungi. Russ J Ecol. 2016;47:133–7.
    CAS  Google Scholar 

    67.
    Delaux P-M, Radhakrishnan GV, Jayaraman D, Cheema J, Malbreil M, Volkening JD, et al. Algal ancestor of land plants was preadapted for symbiosis. Proc Natl Acad Sci USA. 2015;112:13390–5.
    CAS  PubMed  Google Scholar 

    68.
    Lutzoni F, Nowak MD, Alfaro ME, Reeb V, Miadlikowska J, Krug M, et al. Contemporaneous radiations of fungi and plants linked to symbiosis. Nat Commun. 2018;9:5451.
    CAS  PubMed  PubMed Central  Google Scholar 

    69.
    Kranner I, Cram WJ, Zorn M, Wornik S, Yoshimura I, Stabentheiner E, et al. Antioxidants and photoprotection in a lichen as compared with its isolated symbiotic partners. Proc Natl Acad Sci USA. 2005;102:3141–6.
    CAS  PubMed  Google Scholar 

    70.
    Larson DW. Lichen water relations under drying conditions. N Phytol. 1979;82:713–31.
    Google Scholar  More