1.
Altshuler, D. et al. An SNP map of the human genome generated by reduced representation shotgun sequencing. Nature 407, 513–516. https://doi.org/10.1038/35035083 (2000).
ADS CAS Article PubMed Google Scholar
2.
Ali, O. A. et al. RAD capture (Rapture): flexible and efficient sequence-based genotyping. Genetics 202, 389 (2016).
CAS PubMed Google Scholar
3.
Hoffberg, S. L. et al. RADcap: sequence capture of dual-digest RADseq libraries with identifiable duplicates and reduced missing data. Mol. Ecol. Resour. 16, 1264–1278. https://doi.org/10.1111/1755-0998.12566 (2016).
CAS Article PubMed Google Scholar
4.
Franchini, P., Monné Parera, D., Kautt, A. F. & Meyer, A. quaddRAD: a new high-multiplexing and PCR duplicate removal ddRAD protocol produces novel evolutionary insights in a nonradiating cichlid lineage. Mol. Ecol. 26, 2783–2795 (2017).
CAS PubMed Google Scholar
5.
Darrier, B. et al. A comparison of mainstream genotyping platforms for the evaluation and use of barley genetic resources. Front. Plant Sci. 10, 544 (2019).
PubMed PubMed Central Google Scholar
6.
Palti, Y. et al. The development and characterization of a 57 K single nucleotide polymorphism array for rainbow trout. Mol. Ecol. Resour. 15, 662–672 (2015).
CAS PubMed Google Scholar
7.
Moragues, M. et al. Effects of ascertainment bias and marker number on estimations of barley diversity from high-throughput SNP genotype data. Theor. Appl. Genet. 120, 1525–1534 (2010).
CAS PubMed Google Scholar
8.
Malomane, D. K. et al. Efficiency of different strategies to mitigate ascertainment bias when using SNP panels in diversity studies. BMC Genomics 19, 22 (2018).
PubMed PubMed Central Google Scholar
9.
Lachance, J. & Tishkoff, S. A. SNP ascertainment bias in population genetic analyses: why it is important, and how to correct it. BioEssays 35, 780–786 (2013).
CAS PubMed PubMed Central Google Scholar
10.
Afgan, E. et al. The Galaxy platform for accessible, reproducible and collaborative biomedical analyses: 2018 update. Nucleic Acids Res. 46, W537–W544 (2018).
CAS PubMed PubMed Central Google Scholar
11.
Whitaker, K. Genetic evidence for mixed modes of reproduction in the coral Pocillopora damicornis and its effect on population structure. Mar. Ecol. Prog. Ser. 306, 115–124 (2006).
ADS Google Scholar
12.
Miller, K. J. & Ayre, D. J. The role of sexual and asexual reproduction in structuring high latitude populations of the reef coral Pocillopora damicornis. Heredity 92, 557–568 (2004).
CAS PubMed Google Scholar
13.
Stoddart, J. A. Asexual production of planulae in the coral Pocillopora damicornis. Mar. Biol. 76, 279–284 (1983).
Google Scholar
14.
Ayre, D. J. & Hughes, T. P. Genotypic diversity and gene flow in brooding and spawning corals along the Great Barrier Reef, Australia. Evolution 54, 1590–1605 (2000).
CAS PubMed Google Scholar
15.
Adjeroud, M. & Tsuchiya, M. Genetic variation and clonal structure in the scleractinian coral Pocillopora damicornis in the Ryukyu Archipelago, southern Japan. Mar. Biol. 134, 753–760 (1999).
Google Scholar
16.
Foster, N. L., Baums, I. B. & Mumby, P. J. Sexual vs. asexual reproduction in an ecosystem engineer: the massive coral Montastraea annularis. J. Anim. Ecol. 76, 384–391. https://doi.org/10.1111/j.1365-2656.2006.01207.x (2007).
Article PubMed Google Scholar
17.
Neigel, J. E. & Avise, J. C. Clonal diversity and population structure in a reef-building coral, Acropora cervicornis: self-recognition analysis and demographic interpretation. Evolution 37, 437–453. https://doi.org/10.1111/j.1558-5646.1983.tb05561.x (1983).
Article PubMed Google Scholar
18.
Baums, I. B., Miller, M. W. & Hellberg, M. E. Geographic variation in clonal structure in a reef building Caribbean coral, Acropora palmata. Ecol. Monogr. 76, 503–519. https://doi.org/10.1890/0012-9615 (2006).
Article Google Scholar
19.
Pinzón, J., Reyes-Bonilla, H., Baums, I. & LaJeunesse, T. Contrasting clonal structure among Pocillopora (Scleractinia) communities at two environmentally distinct sites in the Gulf of California. Coral Reefs 3, 765–777. https://doi.org/10.1007/s00338-012-0887-y (2012).
ADS Article Google Scholar
20.
Parkinson, J. E. & Baums, I. B. The extended phenotypes of marine symbioses: ecological and evolutionary consequences of intraspecific genetic diversity in coral-algal associations. Front. Microbiol. https://doi.org/10.3389/fmicb.2014.00445 (2014).
Article PubMed PubMed Central Google Scholar
21.
Polato, N. R., Altman, N. S. & Baums, I. B. Variation in the transcriptional response of threatened coral larvae to elevated temperatures. Mol. Ecol. 22, 1366–1382 (2013).
CAS PubMed Google Scholar
22.
Baums, I. et al. Genotypic variation influences reproductive success and thermal stress tolerance in the reef building coral, Acropora palmata. Coral Reefs 32, 703–717 (2013).
ADS Google Scholar
23.
Randall, C. J. & Szmant, A. M. Elevated temperature affects development, survivorship, and settlement of the Elkhorn coral, Acropora palmata (Lamarck 1816). Biol. Bull. 217, 269–282 (2009).
PubMed Google Scholar
24.
Meyer, E. et al. Genetic variation in responses to a settlement cue and elevated temperature in the reef-building coral Acropora millepora. Mar. Ecol. Prog. Ser. 392, 81–92 (2009).
ADS CAS Google Scholar
25.
Baums, I. B., Hughes, C. R. & Hellberg, M. H. Mendelian microsatellite loci for the Caribbean coral Acropora palmata. Mar. Ecol. Prog. Ser. 288, 115–127. https://doi.org/10.3354/meps288115 (2005).
ADS CAS Article Google Scholar
26.
Fogarty, N. D., Vollmer, S. V. & Levitan, D. R. Weak Prezygotic isolating mechanisms in threatened Caribbean Acropora corals. PLoS ONE 7, e30486. https://doi.org/10.1371/journal.pone.0030486 (2012).
ADS CAS Article PubMed PubMed Central Google Scholar
27.
Baums, I. B. et al. Considerations for maximizing the adaptive potential of restored coral populations in the western Atlantic. Ecol. Appl. 19, e01978 (2019).
Google Scholar
28.
Muscatine, L. & Cernichiari, E. Assimilation of photosynthetic products of zooxanthellae by a reef coral. Biol. Bull. 137, 506–523 (1969).
CAS PubMed Google Scholar
29.
Davies, P. S. Effect of daylight variations on the energy budgets of shallow-water corals. Mar. Biol. 108, 137–144 (1991).
Google Scholar
30.
Santos, S. R. & Coffroth, M. A. Molecular genetic evidence that dinoflagellates belonging to the genus Symbiodinium Freudenthal are haploid. Biol. Bull. 204, 10–20 (2003).
CAS PubMed Google Scholar
31.
Pettay, D. T. LaJeunesse TC (2007) Microsatellites from clade B Symbiodinium spp. specialized for Caribbean corals in the genus Madracis. Mol. Ecol. Notes 7, 1271–1274. https://doi.org/10.1111/j.1471-8286.2007.01852.x (2007).
CAS Article Google Scholar
32.
Pettay, D. T. & LaJeunesse, T. C. Microsatellite loci for assessing genetic diversity, dispersal and clonality of coral symbionts in ‘stress-tolerant’ clade D Symbiodinium. Mol. Ecol. Resour. 9, 1022–1025. https://doi.org/10.1111/j.1755-0998.2009.02561.x (2009).
CAS Article PubMed Google Scholar
33.
Pinzón, J. H., Devlin-Durante, M. K., Weber, M. X., Baums, I. B. & LaJeunesse, T. C. Microsatellite loci for Symbiodinium A3 (S. fitti) a common algal symbiont among Caribbean Acropora (stony corals) and Indo-Pacific giant clams (Tridacna). Conserv. Genet. Resour. 3, 45–47. https://doi.org/10.1007/s12686-010-9283-5 (2011).
Article Google Scholar
34.
Baums, I. B., Devlin-Durante, M. K. & LaJeunesse, T. C. New insights into the dynamics between reef corals and their associated dinoflagellate endosymbionts from population genetic studies. Mol. Ecol. 23, 4203–4215. https://doi.org/10.1111/mec.12788 (2014).
Article PubMed Google Scholar
35.
Wham, D. C., Pettay, D. T. & LaJeunesse, T. C. Microsatellite loci for the host-generalist “zooxanthella” Symbiodinium trenchi and other Clade D Symbiodinium. Conserv. Genet. Resour. 3, 541–544. https://doi.org/10.1007/s12686-011-9399-2 (2011).
Article Google Scholar
36.
Grupstra, C. G. et al. Evidence for coral range expansion accompanied by reduced diversity of Symbiodinium genotypes. Coral Reefs 36, 981–985 (2017).
ADS Google Scholar
37.
Chan, A. N., Lewis, C. L., Neely, K. L. & Baums, I. B. Fallen pillars: the past, present, and future population dynamics of a rare, specialist coral-algal symbiosis. Front. Mar. Sci. 6, 218 (2019).
ADS Google Scholar
38.
Andras, J. P., Kirk, N. L., Coffroth, M. A. & Harvell, C. D. Isolation and characterization of microsatellite loci in Symbiodinium B1/B184, the dinoflagellate symbiont of the Caribbean sea fan coral, Gorgonia ventalina. Mol. Ecol. Resour. 9, 989–993 (2009).
CAS PubMed Google Scholar
39.
Veron, J. E. N. Corals of the World (Australian Institute of Marine Science, Townsville, 2000).
Google Scholar
40.
Wallace, C. C. Staghorn Corals of the World: A Revision of the Coral Genus Acropora (Scleractinia; Astrocoeniina; Acroporidae) Worldwide, with Emphasis on Morphology, Phylogeny and Biogeography (CSIRO publishing, Clayton, 1999).
Google Scholar
41.
van Oppen, M. J. H., Willis, B. L., van Vugt, J. A. & Miller, D. J. Examination of species boundaries in the Acropora cervicornis group (Scleractinia, Cnidaria) using nuclear DNA sequence analyses. Mol. Ecol. 9, 1363–1373 (2000).
CAS Google Scholar
42.
Vollmer, S. V. & Palumbi, S. R. Hybridization and the evolution of reef coral diversity. Science 296, 2023–2025 (2002).
ADS CAS PubMed Google Scholar
43.
de Lamarck, J. B. P. A. Histoire Naturelle des Animaux sans Vertebres Vol. 2 (Verdiere, Paris, 1816).
Google Scholar
44.
Li, H. A statistical framework for SNP calling, mutation discovery, association mapping and population genetical parameter estimation from sequencing data. Bioinformatics 27, 2987–2993 (2011).
CAS PubMed PubMed Central Google Scholar
45.
45Garrison, E. & Marth, G. Haplotype-based variant detection from short-read sequencing. arXiv:1207.3907 (2012).
46.
Kitchen, S. A. et al. Genomic variants among threatened Acropora corals. G3: Genes Genomes Genet. https://doi.org/10.1534/g3.119.400125 (2019).
Article Google Scholar
47.
Liew, Y. J., Aranda, M. & Voolstra, C. R. Reefgenomics.org—a repository for marine genomics data. Database https://doi.org/10.1093/database/baw152 (2016).
Article PubMed PubMed Central Google Scholar
48.
Fuller, Z. L. et al. Population genetics of the coral Acropora millepora: towards a genomic predictor of bleaching. bioRxiv https://doi.org/10.1101/2020.02.10.943092 (2019).
Article Google Scholar
49.
49Hong, H. et al. in BMC Bioinformatics. (BioMed Central).
50.
Hong, H. et al. Technical reproducibility of genotyping SNP arrays used in genome-wide association studies. PLoS ONE 7, e44483 (2012).
ADS CAS PubMed PubMed Central Google Scholar
51.
Lee, Y. G. et al. Development, validation and genetic analysis of a large soybean SNP genotyping array. Plant J. 81, 625–636 (2015).
CAS PubMed Google Scholar
52.
Marrano, A. et al. A new genomic tool for walnut (Juglans regia L.): development and validation of the high-density Axiom™ J. regia 700K SNP genotyping array. Plant Biotechnol. J. 17, 1027–1036 (2019).
CAS PubMed Google Scholar
53.
Baums, I. B., Johnson, M. E., Devlin-Durante, M. K. & Miller, M. W. Host population genetic structure and zooxanthellae diversity of two reef-building coral species along the Florida Reef Tract and wider Caribbean. Coral Reefs 29, 835–842. https://doi.org/10.1007/s00338-010-0645-y (2010).
ADS Article Google Scholar
54.
Hemond, E. M. & Vollmer, S. V. Genetic diversity and connectivity in the threatened Staghorn coral (Acropora cervicornis) in Florida. PLoS ONE 5, e8652 (2010).
ADS PubMed PubMed Central Google Scholar
55.
Vollmer, S. V. & Palumbi, S. R. Restricted gene flow in the Caribbean staghorn coral Acropora cervicomis: Implications for the recovery of endangered reefs. J. Hered. 98, 40–50 (2007).
CAS PubMed Google Scholar
56.
Drury, C. et al. Genomic variation among populations of threatened coral: Acropora cervicornis. BMC Genomics 17, 286. https://doi.org/10.1186/s12864-016-2583-8 (2016).
CAS Article PubMed PubMed Central Google Scholar
57.
Porto-Hannes, I. et al. Population structure of the corals Orbicella faveolata and Acropora palmata in the Mesoamerican Barrier Reef System with comparisons over Caribbean basin-wide spatial scale. Mar. Biol. https://doi.org/10.1007/s00227-014-2560-1 (2014).
Article Google Scholar
58.
Baums, I. B., Miller, M. W. & Hellberg, M. E. Regionally isolated populations of an imperiled Caribbean coral, Acropora palmata. Mol. Ecol. 14, 1377–1390 (2005).
CAS PubMed Google Scholar
59.
Devlin-Durante, M. K. & Baums, I. B. Genome-wide survey of single-nucleotide polymorphisms reveals fine-scale population structure and signs of selection in the threatened Caribbean elkhorn coral, Acropora palmata. PeerJ 5, e4077 (2017).
PubMed PubMed Central Google Scholar
60.
Palumbi, S. R., Vollmer, S., Romano, S., Oliver, T. & Ladner, J. The role of genes in understanding the evolutionary ecology of reef building corals. Evol. Ecol. 26, 317–335. https://doi.org/10.1007/s10682-011-9517-3 (2012).
Article Google Scholar
61.
Miller, D. J. & Van Oppen, M. J. H. A “fair go” for coral hybridization. Mol. Ecol. 12, 805–807 (2003).
CAS PubMed Google Scholar
62.
Japaud, A., Bouchon, C., Magalon, H. & Fauvelot, C. Geographic distances and ocean currents influence Caribbean Acropora palmata population connectivity in the Lesser Antilles. Conserv. Genet. 20, 447–466 (2019).
Google Scholar
63.
Liu, H. et al. Symbiodinium genomes reveal adaptive evolution of functions related to coral-dinoflagellate symbiosis. Commun. Biol. 1, 95. https://doi.org/10.1038/s42003-018-0098-3 (2018).
Article PubMed PubMed Central Google Scholar
64.
Thornhill, D. J., LaJeunesse, T. C., Kemp, D. W., Fitt, W. K. & Schmidt, G. W. Multi-year, seasonal genotypic surveys of coral-algal symbioses reveal prevalent stability or post-bleaching reversion. Mar. Biol. 148, 711–722 (2006).
Google Scholar
65.
Hoadley, K. D. et al. Host–symbiont combinations dictate the photo-physiological response of reef-building corals to thermal stress. Sci. Rep. 9, 1–15 (2019).
CAS Google Scholar
66.
Rosser, N. L. et al. Phylogenomics provides new insight into evolutionary relationships and genealogical discordance in the reef-building coral genus Acropora. Proc. Roy. Soc. B: Biol. Sci. 284, 20162182 (2017).
Google Scholar
67.
Hatta, M. et al. Reproductive and genetic evidence for a reticulate evolutionary history of mass-spawning corals. Mol. Biol. Evol. 16, 1607–1613 (1999).
CAS PubMed Google Scholar
68.
Danecek, P. et al. The variant call format and VCFtools. Bioinformatics 27, 2156–2158 (2011).
CAS PubMed PubMed Central Google Scholar
69.
Shinzato, C. et al. Using the Acropora digitifera genome to understand coral responses to environmental change. Nature 476, 320–323. https://doi.org/10.1038/nature10249 (2011).
ADS CAS Article PubMed PubMed Central Google Scholar
70.
Quinlan, A. R. & Hall, I. M. BEDTools: a flexible suite of utilities for comparing genomic features. Bioinformatics 26, 841–842 (2010).
CAS PubMed PubMed Central Google Scholar
71.
Shoguchi, E. et al. Two divergent Symbiodinium genomes reveal conservation of a gene cluster for sunscreen biosynthesis and recently lost genes. BMC Genomics 19, 458 (2018).
PubMed PubMed Central Google Scholar
72.
Takishita, K., Ishikura, M., Koike, K. & Maruyama, T. Comparison of phylogenies based on nuclear-encoded SSU rDNA and plastid-encoded psbA in the symbiotic dinoflagellate genus Symbiodinium. Phycologia 42, 285–291 (2003).
Google Scholar
73.
Pochon, X., Putnam, H. M., Burki, F. & Gates, R. D. Identifying and characterizing alternative molecular markers for the symbiotic and free-living dinoflagellate genus Symbiodinium. PLoS ONE 7, e29816 (2012).
ADS CAS PubMed PubMed Central Google Scholar
74.
Arif, C. et al. Assessing Symbiodinium diversity in scleractinian corals via next-generation sequencing-based genotyping of the ITS2 rDNA region. Mol. Ecol. 23, 4418–4433. https://doi.org/10.1111/mec.12869 (2014).
CAS Article PubMed PubMed Central Google Scholar
75.
LaJeunesse, T. C. Diversity and community structure of symbiotic dinoflagellates from Caribbean coral reefs. Mar. Biol. 141, 387–400 (2002).
Google Scholar
76.
LaJeunesse, T. C. Investigating the biodiversity, ecology, and phylogeny of endosymbiotic dinoflagellates in the genus Symbiodinium using the ITS region: in search of a “species” level marker. J. Phycol. 37, 866–880 (2001).
CAS Google Scholar
77.
Kumar, S., Stecher, G., Li, M., Knyaz, C. & Tamura, K. MEGA X: molecular evolutionary genetics analysis across computing platforms. Mol. Biol. Evol. 35, 1547–1549 (2018).
CAS PubMed PubMed Central Google Scholar
78.
Cingolani, P. et al. A program for annotating and predicting the effects of single nucleotide polymorphisms, SnpEff: SNPs in the genome of Drosophila melanogaster strain w1118; iso-2; iso-3. Fly 6, 80–92 (2012).
CAS PubMed PubMed Central Google Scholar
79.
Affymetrix. (Affymetrix, 2007).
80.
R: a language and environment for statistical computing [Online] (R Foundation for Statistical Computing, Vienna, 2017).
81.
Knaus, B. J. & Grünwald, N. J. vcfr: a package to manipulate and visualize variant call format data in R. Mol. Ecol. Resour. 17, 44–53 (2017).
CAS PubMed Google Scholar
82.
Kamvar, Z. N., Brooks, J. C. & Grünwald, N. J. Novel R tools for analysis of genome-wide population genetic data with emphasis on clonality. Front. Genet. 6, 208 (2015).
PubMed PubMed Central Google Scholar
83.
Kamvar, Z. N., Tabima, J. F. & Grünwald, N. J. Poppr: an R package for genetic analysis of populations with clonal, partially clonal, and/or sexual reproduction. PeerJ 2, e281 (2014).
PubMed PubMed Central Google Scholar
84.
Prevosti, A., Ocana, J. & Alonso, G. Distances between populations of Drosophila subobscura, based on chromosome arrangement frequencies. Theor. Appl. Genet. 45, 231–241 (1975).
CAS PubMed Google Scholar
85.
Zheng, X. et al. A high-performance computing toolset for relatedness and principal component analysis of SNP data. Bioinformatics 28, 3326–3328 (2012).
CAS PubMed PubMed Central Google Scholar
86.
Alexander, D. H., Novembre, J. & Lange, K. Fast model-based estimation of ancestry in unrelated individuals. Genome Res. 19, 1655–1664 (2009).
CAS PubMed PubMed Central Google Scholar
87.
Chang, C. C. et al. Second-generation PLINK: rising to the challenge of larger and richer datasets. Gigascience 4, 7 (2015).
PubMed PubMed Central Google Scholar
88.
Kopelman, N. M., Mayzel, J., Jakobsson, M., Rosenberg, N. A. & Mayrose, I. Clumpak: a program for identifying clustering modes and packaging population structure inferences across K. Mol. Ecol. Resour. 15, 1179–1191 (2015).
CAS PubMed PubMed Central Google Scholar
89.
Venables, W. & Ripley, B. Modern Applied Statistics with S, 4th edn (Springer, New York, 2002).
Google Scholar
90.
Therneau, T. & Atkinson, B. rpart: Recursive Partitioning and Regression Trees. R package version 4.1-15 (2019). https://CRAN.R-project.org/package=rpart.
91.
Milborrow, S. rpart.plot: Plot ‘rpart’ Models: An Enhanced Version of ‘plot.rpart’. R package version 3.0.8 (2019). https://CRAN.R-project.org/package=rpart.plot.
92.
Kuhn, M. Building predictive models in R using the caret package. J. Stat. Softw. 28, 1–26 (2008).
Google Scholar
93.
González, M., Rosado-Falcón, O. & Rodríguez, J. D. ssc: Semi-Supervised Classification Methods. R package version 2.1-0 (2019). https://CRAN.R-project.org/package=ssc.
94.
Lirman, D. et al. Growth dynamics of the threatened Caribbean staghorn coral Acropora cervicornis: influence of host genotype, symbiont identity, colony size, and environmental setting. PLoS ONE 9, e107253 (2014).
ADS PubMed PubMed Central Google Scholar More