More stories

  • in

    Author Correction: Climate-smart sustainable agriculture in low-to-intermediate shade agroforests

    Affiliations

    Sustainable Agroecosystems Group, Department of Environmental Systems Science, ETH Zurich, Zurich, Switzerland
    W. J. Blaser, J. Landolt & J. Six

    Council for Scientific and Industrial Research – Soil Research Institute, Kwadaso, Kumasi, Ghana
    J. Oppong & E. Yeboah

    Institute of Integrative Biology, Department of Environmental Systems Science, ETH Zurich, Zurich, Switzerland
    S. P. Hart

    Authors
    W. J. Blaser

    J. Oppong

    S. P. Hart

    J. Landolt

    E. Yeboah

    J. Six

    Corresponding author
    Correspondence to W. J. Blaser. More

  • in

    A negative covariation between toxoplasmosis and CoVID-19 with alternative interpretations

    Coronaviruses are positive-stranded RNA viruses that may exert severely negative effects on the mortality and morbidity of a broad range of birds and mammals including humans and domestic animals. The strain called SARS-CoV-2 host-switched from bats to humans in Wuhan, China in November 2019 and subsequently gave rise to a devastating global pandemic called CoVID-191,2,3. Susceptibility of human societies appear to be markedly heterogeneous ranging from modest to very high morbidity. Contrary to general expectations, more developed, wealthier communities living under better hygienic conditions appear to be more threatened than others. Thus, Austria is seemingly more severely hit than Hungary, the Czech Republic than Slovakia, and Israel than Palestine or Jordan.
    Evidently, the first step to search for factors influencing this pandemic is to identify environmental correlates of different populations’ susceptibility. Sala and Miyakawa4 suggested that the different BCG vaccination policies across countries may partly explain differences in susceptibility to CoVID-19. Indeed, higher morbidity and mortality is observed in societies with no obligatory BCG vaccination. However, vaccination schemes tend to be uniform within countries, thus this hypothesis cannot explain the huge within-country differences that are often observed, such as those between Northern vs. Southern Italy. Zhu et al.5 described a covariation between exposure to air pollution and CoVID-19 infection.
    We hypothesize that certain common infections coming together with a less hygienic lifestyle may trigger the human immune system and thus facilitate some protection against CoVID-19, an argument similar to the so-called ‘hygiene hypothesis’6. Toxoplasmosis is a candidate infection for this purpose because of two reasons. First, it is one of the most widespread latent infections of humanity7,8. As it does not transmit from human to human, its prevalence can be interpreted as a generalized index of group hygiene. Second, its causative agent, the eukaryotic protozoan Toxoplasma gondii, is known to exhibit at least some antiviral effects9.
    Toxoplasma gondii is an intracellular parasite that infects birds and mammals as intermediate hosts, while the sexual phase of its life cycle can only be completed in feline definitive hosts, most often in domestic cats. It is distributed in human societies mostly by semi-domestic, partly-feral cats that depredate on infected rodents and birds and then eat their prey. Subsequently, the infective spores are released through their faeces and may get into direct contact with humans to cause infections. Alternatively, domestic animals may be infected by these spores and the consumption of their infected meat transmits T. gondii to humans. Thus, humans act like intermediate hosts, although they are not depredated by cats, and thus this is a dead-end for the parasites. ‘Luxury cats’ living on canned pet-food throughout their life may not transmit this infection. Asymptomatic infections are common in humans, especially among those living in the proximity of semi-feral domestic cats10.
    Toxoplasma gondii excretes Dense Granule Protein-7 (GRA-7) into the host cell that inhibits viral replication. Its effect has been proven both in vitro and in vivo against indiana vesiculovirus, influenza A virus, Coxsackie virus, and herpes simplex virus. Overall, GRA-7 exhibits immune-stimulatory and a broad spectrum of antiviral activities via type I interferons signaling9. Moreover, in response to T. gondii infection, laboratory mice highly upregulate Immune Responsive Gene 1 in their lungs11. This is an interferon-stimulated gene that mediates antiviral effects against RNA viruses like the West Nile and Zika viruses through its product named itaconate12. It has been established that GRA-7 could be serve as alternative to treat tuberculosis13.
    We need to emphasize, however, that the antiviral activities of Toxoplasma gondii are limited to the first, short and virulent phase of the infection, and not known to operate through the subsequent latent period that may last through the whole life of the host. Therefore, even in societies where a large proportion of the population carries latent toxoplasmosis, the proportion of infections actually expressing antiviral activities is very low. Thus we only claim that Toxoplasma gondii expresses at least some antiviral adaptations. Moreover, the apicoplast proteins of Toxoplasma are known to have immunogenic potential14.
    Finally, we chose toxoplasmosis out of the candidate human infections partly because the availability of prevalence data from as many countries as possible. Unfortunately, as in the case of all other human infections, the methodologies of gathering and evaluating epidemiological data can be quite heterogeneous across countries. Below we set out to test whether there is a negative co-variation between levels of toxoplasmosis and CoVID-19 pandemic at a global scale. More

  • in

    Persistence of soil organic carbon caused by functional complexity

    1.
    Paustian, K. et al. Climate-smart soils. Nature 532, 49–57 (2016).
    Google Scholar 
    2.
    Todd-Brown, K. E. O. et al. Causes of variation in soil carbon simulations from CMIP5 Earth system models and comparison with observations. Biogeosciences 10, 1717–1736 (2013).
    Google Scholar 

    3.
    Bradford, M. A. et al. Managing uncertainty in soil carbon feedbacks to climate change. Nat. Clim. Change 6, 751–758 (2016).
    Google Scholar 

    4.
    Koven, C. D., Hugelius, G., Lawrence, D. M. & Wieder, W. R. Higher climatological temperature sensitivity of soil carbon in cold than warm climates. Nat. Clim. Change 7, 817–822 (2017).
    Google Scholar 

    5.
    Jenkinson, D. S. & Rayner, J. H. The turnover of soil organic matter in some of the Rothamsted classical experiments. Soil Sci. 123, 298–305 (1977).
    Google Scholar 

    6.
    Parton, W. J., Schimel, D. S., Cole, C. V. & Ojima, D. S. Analysis of factors controlling soil organic matter levels in Great Plains Grasslands. Soil Sci. Soc. Am. J. 51, 1173–1179 (1987).
    Google Scholar 

    7.
    Schmidt, M. W. I. et al. Persistence of soil organic matter as an ecosystem property. Nature 478, 49–56 (2011).
    Google Scholar 

    8.
    Lehmann, J. & Kleber, M. The contentious nature of soil organic matter. Nature 528, 60–68 (2015).
    Google Scholar 

    9.
    Vetter, Y. A., Deming, J. W., Jumars, P. A. & Krieger-Brockett, B. B. A predictive model of bacterial foraging by means of freely released extracellular enzymes. Microb. Ecol. 36, 75–92 (1998).
    Google Scholar 

    10.
    Sugai, S. F. & Schimel, J. P. Decomposition and biomass incorporation of 14C-labeled glucose and phenolics in taiga forest floor: effect of substrate quality, successional state, and season. Soil Biol. Biochem. 25, 1379–1389 (1993).
    Google Scholar 

    11.
    Lane, N. & Martin, W. The energetics of genome complexity. Nature 467, 929–934 (2010).
    Google Scholar 

    12.
    Kästner, M. & Miltner, A. Application of compost for effective bioremediation of organic contaminants and pollutants in soil. Appl. Microbiol. Biotechnol. 100, 3433–3449 (2016).
    Google Scholar 

    13.
    Mentges, A., Feenders, C., Seibt, M., Blasius, B. & Dittmar, T. Functional molecular diversity of marine dissolved organic matter is reduced during degradation. Front. Mar. Sci. 4, 194 (2017).
    Google Scholar 

    14.
    Hemingway, J. D. et al. Mineral protection regulates long-term global preservation of natural organic carbon. Nature 570, 228–231 (2019).
    Google Scholar 

    15.
    Cotrufo, M. F., Wallenstein, M. D., Boot, C. M., Denef, K. & Paul, E. The Microbial Efficiency-Matrix Stabilization (MEMS) framework integrates plant litter decomposition with soil organic matter stabilization: do labile plant inputs form stable soil organic matter? Glob. Change Biol. 19, 988–995 (2013).
    Google Scholar 

    16.
    Roth, V. N. et al. Persistence of dissolved organic matter explained by molecular changes during its passage through soil. Nat. Geosci. 12, 755–761 (2019).
    Google Scholar 

    17.
    Kögel-Knabner, I. The macromolecular organic composition of plant and microbial residues as inputs to soil organic matter: fourteen years on. Soil Biol. Biochem. 105, A3–A8 (2017).
    Google Scholar 

    18.
    Kallenbach, C. M., Frey, S. D. & Grandy, A. S. Direct evidence for microbial-derived soil organic matter formation and its ecophysiological controls. Nat. Commun. 7, 13630 (2016).
    Google Scholar 

    19.
    Jiménez-González, M. A., Álvarez, A. M., Hernández, Z. & Almendros, G. Soil carbon storage predicted from the diversity of pyrolytic alkanes. Biol. Fertil. Soils 54, 617–629 (2018).
    Google Scholar 

    20.
    Young, I. M. & Crawford, J. W. Interactions and self-organization in the soil-microbe complex. Science 304, 1634–1637 (2004).
    Google Scholar 

    21.
    Rawlins, B. G. et al. Three-dimensional soil organic matter distribution, accessibility and microbial respiration in macroaggregates using osmium staining and synchrotron X-ray computed tomography. Soil 2, 659–671 (2016).
    Google Scholar 

    22.
    Rovira, A. D. & Greacen, E. L. The effect of aggregate disruption on the activity of microorganisms in the soil. Aust. J. Agric. Res. 8, 659–673 (1957).
    Google Scholar 

    23.
    Dignac, M.-F. et al. Increasing soil carbon storage: mechanisms, effects of agricultural practices and proxies. A review. Agron. Sustain. Dev. 37, 14 (2017).
    Google Scholar 

    24.
    Peng, X., Zhu, Q., Zhang, Z. & Hallett, P. D. Combined turnover of carbon and soil aggregates using rare earth oxides and isotopically labelled carbon as tracers. Soil Biol. Biochem. 109, 81–94 (2017).
    Google Scholar 

    25.
    Chakrawal, A. et al. Dynamic upscaling of decomposition kinetics for carbon cycling models. Geosci. Model Dev. 13, 1399–1429 (2020).
    Google Scholar 

    26.
    Or, D., Smets, B. F., Wraith, J. M., Dechesne, A. & Friedman, S. P. Physical constraints affecting bacterial habitats and activity in unsaturated porous media — a review. Adv. Water Resour. 30, 1505–1527 (2007).
    Google Scholar 

    27.
    Watt, M., Silk, W. K. & Passioura, J. B. Rates of root and organism growth, soil conditions, and temporal and spatial development of the rhizosphere. Ann. Bot. 97, 839–855 (2006).
    Google Scholar 

    28.
    Oyewole, O. A., Inselsbacher, E. & Näsholm, T. Direct estimation of mass flow and diffusion of nitrogen compounds in solution and soil. New Phytol. 201, 1056–1064 (2014).
    Google Scholar 

    29.
    Schimel, J. P., Wetterstedt, J. Å. M., Holden, P. A. & Trumbore, S. E. Drying/rewetting cycles mobilize old C from deep soils from a California annual grassland. Soil Biol. Biochem. 43, 1101–1103 (2011).
    Google Scholar 

    30.
    Homyak, P. M. et al. Effects of altered dry season length and plant inputs on soluble soil carbon. Ecology 99, 2348–2362 (2018).
    Google Scholar 

    31.
    Bouskill, N. J. et al. Belowground response to drought in a tropical forest soil. I. Changes in microbial functional potential and metabolism. Front. Microbiol. 7, 525 (2016).
    Google Scholar 

    32.
    Dacal, M., Bradford, M. A., Plaza, C., Maestre, F. T. & García-Palacios, P. Soil microbial respiration adapts to ambient temperature in global drylands. Nat. Ecol. Evol. 3, 232–238 (2019).
    Google Scholar 

    33.
    Maynard, D. S. et al. Consistent trade-offs in fungal trait expression across broad spatial scales. Nat. Microbiol. 4, 846–853 (2019).
    Google Scholar 

    34.
    Şimşek, E. & Kim, M. The emergence of metabolic heterogeneity and diverse growth responses in isogenic bacterial cells. ISME J. 12, 1199–1209 (2018).
    Google Scholar 

    35.
    German, D. P., Chacon, S. S. & Allison, S. D. Substrate concentration and enzyme allocation can affect rates of microbial decomposition. Ecology 92, 1471–1480 (2011).
    Google Scholar 

    36.
    MacLean, R. C. & Bell, G. Experimental adaptive radiation in Pseudomonas. Am. Nat. 160, 569–581 (2002).
    Google Scholar 

    37.
    Thurner, S., Hanel, R. & Klimek, P. Introduction to the Theory of Complex Systems (Oxford Univ. Press, 2018).

    38.
    Konopka, A., Lindemann, S. & Fredrickson, J. Dynamics in microbial communities: unraveling mechanisms to identify principles. ISME J. 9, 1488–1495 (2015).
    Google Scholar 

    39.
    Nadell, C. D., Drescher, K. & Foster, K. R. Spatial structure, cooperation and competition in biofilms. Nat. Rev. Microbiol. 14, 589–600 (2016).
    Google Scholar 

    40.
    Kaiser, C., Franklin, O., Richter, A. & Dieckmann, U. Social dynamics within decomposer communities lead to nitrogen retention and organic matter build-up in soils. Nat. Commun. 6, 8960 (2015).
    Google Scholar 

    41.
    Borer, B., Tecon, R. & Or, D. Spatial organization of bacterial populations in response to oxygen and carbon counter-gradients in pore networks. Nat. Commun. 9, 769 (2018).
    Google Scholar 

    42.
    Tang, J. & Riley, W. J. Weaker soil carbon–climate feedbacks resulting from microbial and abiotic interactions. Nat. Clim. Change 5, 56–60 (2015).
    Google Scholar 

    43.
    Reichstein, M. et al. Deep learning and process understanding for data-driven Earth system science. Nature 566, 195–204 (2019).
    Google Scholar 

    44.
    Chen, X. et al. Effects of plant diversity on soil carbon in diverse ecosystems: a global meta‐analysis. Biol. Rev. 95, 167–183 (2020).
    Google Scholar 

    45.
    Lange, M. et al. Plant diversity increases soil microbial activity and soil carbon storage. Nat. Commun. 6, 6707 (2015).
    Google Scholar 

    46.
    Vermeulen, S. et al. A global agenda for collective action on soil carbon. Nat. Sustain. 2, 2–4 (2019).
    Google Scholar 

    47.
    Vlachos, D. G., Mhadeshwar, A. B. & Kaisare, N. S. Hierarchical multiscale model-based design of experiments, catalysts, and reactors for fuel processing. Comput. Aided Chem. Eng. 21, 9–27 (2006).
    Google Scholar 

    48.
    Fan, J. et al. Improving representation of convective transport for scale-aware parameterization: 1. Convection and cloud properties simulated with spectral bin and bulk microphysics. J. Geophys. Res. Atmospheres 120, 3485–3509 (2015).
    Google Scholar 

    49.
    Molins, S. & Knabner, P. Multiscale approaches in reactive transport modeling. Rev. Mineral. Geochem. 85, 27–48 (2019).
    Google Scholar 

    50.
    Rillig, M. C. et al. The role of multiple global change factors in driving soil functions and microbial biodiversity. Science 366, 886–890 (2019).
    Google Scholar 

    51.
    Petrakis, S., Barba, J., Bond-Lamberty, B. & Vargas, R. Using greenhouse gas fluxes to define soil functional types. Plant Soil 423, 285–294 (2018).
    Google Scholar 

    52.
    Rossel, R. A. V. & Bouma, J. Soil sensing: a new paradigm for agriculture. Agric. Syst. 148, 71–74 (2016).
    Google Scholar 

    53.
    Wieder, W. R. et al. Carbon cycle confidence and uncertainty: exploring variation among soil biogeochemical models. Glob. Change Biol. 24, 1563–1579 (2018).
    Google Scholar  More

  • in

    Biologically important artificial light at night on the seafloor

    1.
    Ludvigsen, M. et al. Use of an autonomous surface vehicle reveals small-scale diel vertical migrations of zooplankton and susceptibility to light pollution under low solar irradiance. Sci. Adv. 4, 1–9 (2018).
    Google Scholar 
    2.
    Duarte, C. et al. Artificial light pollution at night (ALAN) disrupts the distribution and circadian rhythm of a sandy beach isopod. Environ. Pollut. 248, 565–573 (2019).
    CAS  PubMed  Google Scholar 

    3.
    Ayalon, I., Barros Marangoni, L. F., Benichou, J. I. C., Avisar, D. & Levy, O. Red sea corals under artificial light pollution at night (ALAN) undergo oxidative stress and photosynthetic impairment. Glob. Change Biol. 25, 4194–4207 (2019).
    ADS  Google Scholar 

    4.
    Berge, J. et al. Artificial light during the polar night disrupts Arctic fish and zooplankton behaviour down to 200 m depth. Commun. Biol. 3, 102 (2020).
    PubMed  PubMed Central  Google Scholar 

    5.
    Davies, T. W., Duffy, J. P., Bennie, J. & Gaston, K. J. The nature, extent, and ecological implications of marine light pollution. Front. Ecol. Environ. 12, 347–355 (2014).
    Google Scholar 

    6.
    Neumann, B., Vafeidis, A. T., Zimmermann, J. & Nicholls, R. J. Future coastal population growth and exposure to sea-level rise and coastal flooding—A global assessment. PLoS ONE 10, e0118571 (2015).
    PubMed  PubMed Central  Google Scholar 

    7.
    Båtnes, A. S., Miljeteig, C., Berge, J., Greenacre, M. & Johnsen, G. Quantifying the light sensitivity of Calanus spp. during the polar night: potential for orchestrated migrations conducted by ambient light from the sun, moon, or aurora borealis?. Polar Biol. 38, 51–65 (2015).
    Google Scholar 

    8.
    Last, K. S., Hobbs, L., Berge, J., Brierley, A. S. & Cottier, F. Moonlight drives ocean-scale mass vertical migration of zooplankton during the Arctic winter. Curr. Biol. 26, 244–251 (2016).
    CAS  PubMed  Google Scholar 

    9.
    Crisp, D. J. & Ritz, D. A. Responses of cirripede larvae to light. I. Experiments with white light. Mar. Biol. 23, 327–335 (1973).
    Google Scholar 

    10.
    Naylor, E. Marine animal behaviour in relation to lunar phase. Earth. Moon. Planets 85–86, 291–302 (1999).
    ADS  Google Scholar 

    11.
    Davies, T. W. & Smyth, T. Why artificial light at night should be a focus for global change research in the 21st century. Glob. Change Biol. 24, 872–882 (2018).
    ADS  Google Scholar 

    12.
    Bertoldi, G. Status of LED-Lighting World Market in 2017 (European Commission, Brussels, 2018).
    Google Scholar 

    13.
    Tamir, R., Lerner, A., Haspel, C., Dubinsky, Z. & Iluz, D. The spectral and spatial distribution of light pollution in the waters of the northern Gulf of Aqaba (Eilat). Sci. Rep. 7, 42329 (2017).
    ADS  CAS  PubMed  PubMed Central  Google Scholar 

    14.
    Marshall, J., Carleton, K. L. & Cronin, T. Colour vision in marine organisms. Curr. Opin. Neurobiol. 34, 86–94 (2015).
    CAS  PubMed  Google Scholar 

    15.
    Luijendijk, A., Hagenaars, G., Ranasinghe, R. & Baart, F. The state of the world’ s beaches. Sci. Rep. 8, 6641 (2018).
    ADS  PubMed  PubMed Central  Google Scholar 

    16.
    Davies, T. W., Coleman, M., Griffith, K. M. & Jenkins, S. R. Night-time lighting alters the composition of marine epifaunal communities. Biol. Lett. 11, 20150080 (2015).
    PubMed  PubMed Central  Google Scholar 

    17.
    Garratt, M. J., Jenkins, S. R. & Davies, T. W. Mapping the consequences of artificial light at night for intertidal ecosystems. Sci. Total Environ. 691, 760–768 (2019).
    ADS  CAS  PubMed  Google Scholar 

    18.
    Bolton, D. et al. Coastal urban lighting has ecological consequences for multiple trophic levels under the sea. Sci. Total Environ. 576, 1–9 (2017).
    ADS  CAS  PubMed  Google Scholar 

    19.
    Underwood, C. N., Davies, T. W. & Queirós, A. M. Artificial light at night alters trophic interactions of intertidal invertebrates. J. Anim. Ecol. 86, 781–789 (2017).
    PubMed  Google Scholar 

    20.
    Becker, A., Whitfield, A. K., Cowley, P. D., Järnegren, J. & Næsje, T. F. Potential effects of artificial light associated with anthropogenic infrastructure on the abundance and foraging behaviour of estuary-associated fishes. J. Appl. Ecol. 50, 43–50 (2013).
    Google Scholar 

    21.
    Szekeres, P. et al. Does coastal light pollution alter the nocturnal behavior and blood physiology of juvenile bonefish (Albula vulpes)?. Bull. Mar. Sci. 93, 491–505 (2017).
    Google Scholar 

    22.
    Kamrowski, R. L., Limpus, C., Moloney, J. & Hamann, M. Coastal light pollution and marine turtles: Assessing the magnitude of the problem. Endanger. Species Res. 19, 85–98 (2012).
    Google Scholar 

    23.
    Witherington, B. E. & Bjorndal, K. A. Influences of artificial lighting on the seaward orientation of hatchling loggerhead turtles Caretta caretta. Biol. Conserv. 55, 139–149 (1991).
    Google Scholar 

    24.
    Dwyer, R. G., Bearhop, S., Campbell, H. A. & Bryant, D. M. Shedding light on light: benefits of anthropogenic illumination to a nocturnally foraging shorebird. J. Anim. Ecol. 82, 478–485 (2013).
    PubMed  Google Scholar 

    25.
    Manríquez, P. H. et al. Artificial light pollution influences behavioral and physiological traits in a keystone predator species, Concholepas concholepas. Sci. Total Environ. 661, 543–552 (2019).
    ADS  PubMed  Google Scholar 

    26.
    Kyba, C. C. M., Ruhtz, T., Fischer, J. & Hölker, F. Cloud coverage acts as an amplifier for ecological light pollution in urban ecosystems. PLoS ONE 6, e17307 (2011).
    ADS  CAS  PubMed  PubMed Central  Google Scholar 

    27.
    Rebke, M. et al. Attraction of nocturnally migrating birds to artificial light: The influence of colour, intensity and blinking mode under different cloud cover conditions. Biol. Conserv. 233, 220–227 (2019).
    Google Scholar 

    28.
    Torres, D., Tidau, S., Jenkins, S. & Davies, T. W. Artificial skyglow disrupts celestial migration at night. Curr Biol. 30, R696-R697 (2020).

    29.
    Falchi, F. et al. The new world atlas of artificial night sky brightness. Sci. Adv. 2, 1–26 (2016).
    Google Scholar 

    30.
    Aubrecht, C. et al. A global inventory of coral reef stressors based on satellite observed nighttime lights. Geocarto Int. 23, 467–479 (2008).
    Google Scholar 

    31.
    Smyth, T. et al. A broad spatio-temporal view of the Western English Channel observatory. J. Plankt. Res. Res. 32, 585–601 (2010).
    ADS  Google Scholar 

    32.
    Longcore, T. et al. Rapid assessment of lamp spectrum to quantify ecological effects of light at night. J. Exp. Zool. Part A Ecol. Integr. Physiol. 329, 511–521 (2018).
    Google Scholar 

    33.
    Rivas, M. L., Santidrián Tomillo, P., Diéguez Uribeondo, J. & Marco, A. Leatherback hatchling sea-finding in response to artificial lighting: Interaction between wavelength and moonlight. J. Exp. Mar. Biol. Ecol. 463, 143–149 (2015).
    Google Scholar 

    34.
    Duanmu, D. et al. Marine algae and land plants share conserved phytochrome signaling systems. Proc. Natl. Acad. Sci. U.S.A. 111, 15827–15832 (2014).
    ADS  CAS  PubMed  PubMed Central  Google Scholar 

    35.
    Mason, B. M. & Cohen, J. H. Long-wavelength photosensitivity in coral planula larvae. Biol. Bull. 222, 88–92 (2012).
    PubMed  Google Scholar 

    36.
    Davies, T. W., Duffy, J. P., Bennie, J. & Gaston, K. J. Stemming the tide of light pollution encroaching into marine protected areas. Conserv. Lett. 9, 164–171 (2016).
    Google Scholar 

    37.
    Falchi, F. et al. Supplement to: The new world atlas of artificial night sky brightness. GFZ Data Serv. https://doi.org/10.5880/GFZ.1.4.2016.001 (2016).
    Article  Google Scholar 

    38.
    Mobley, C. D. HYDROLIGHT 3.0 User’s Guide. (1995).

    39.
    Smith, R. C. & Baker, K. S. Optical properties of the clearest natural waters (200–800 nm). Appl. Opt. 20, 177–184 (1981).
    ADS  CAS  PubMed  Google Scholar 

    40.
    Mobley, C. D. Light and Water, Radiative Transfer in Natural Waters (Academic Press, Cambridge, 1994).
    Google Scholar 

    41.
    Morel, A. & Maritorena, S. Bio-optical properties of oceanic waters: A reappraisal. J. Geophys. Res. Ocean. 106, 7163–7180 (2001).
    ADS  Google Scholar 

    42.
    Kowalczuk, P., Zablocka, M., Sagan, S. & Kulinski, K. Fluorescence measured in situ as a proxy of CDOM absorption and DOC concentration in the Baltic Sea. Oceanologia 52, 431–471 (2010).
    Google Scholar 

    43.
    Smyth, T. J., Moore, G. F., Hirata, T. & Aiken, J. Semianalytical model for the derivation of ocean color inherent optical properties: Description, implementation, and performance assessment: erratum. Appl. Opt. 46, 429–430 (2007).
    ADS  Google Scholar 

    44.
    Petzold, T. J. Volume scattering functions for selected natural waters (Scripps Institution of Oceanography, San Diego, 1972).
    Google Scholar  More

  • in

    Environmental heterogeneity determines the ecological processes that govern bacterial metacommunity assembly in a floodplain river system

    1.
    Hubbell SP. The unified neutral theory of biodiversity and biogeography. Princeton: Princeton University Press; 2001.
    Google Scholar 
    2.
    Martiny JBH, Bohannan BJM, Brown JH, Colwell RK, Fuhrman JA, Green JL, et al. Microbial biogeography: putting microorganisms on the map. Nat Rev Microbiol. 2006;4:102–12.
    CAS  PubMed  Google Scholar 

    3.
    Vellend M. The theory of ecological communities. 1st ed. Woodstock, UK: Princeton University Press; 2016.
    Google Scholar 

    4.
    McGill BJ. Towards a unification of unified theories of biodiversity. Ecol Lett. 2010;13:627–42.
    PubMed  Google Scholar 

    5.
    Gilbert B. Joint consequences of dispersal and niche overlap on local diversity and resource use. J Ecol. 2012;100:287–96.
    Google Scholar 

    6.
    Chase JM, Leibold MA. Ecological niches: linking classical and contemporary approaches. Biodivers Conserv. 2004;13:1791–3.
    Google Scholar 

    7.
    Rosindell J, Hubbell SP, Etienne RS. The unified neutral theory of biodiversity and biogeography at age ten. Trends Ecol Evol. 2011;26:340–8.
    PubMed  Google Scholar 

    8.
    Bell G. Neutral macroecology. Science 2001;293:2413–8.
    CAS  PubMed  Google Scholar 

    9.
    Leibold MA, Holyoak M, Mouquet N, Amarasekare P, Chase JM, Hoopes MF, et al. The metacommunity concept: a framework for multi-scale community ecology. Ecol Lett. 2004;7:601–13.
    Google Scholar 

    10.
    Wilson DS. Complex interactions in metacommunities, with implications for biodiversity and higher levels of selection. Ecology. 1992;73:1984–2000.
    Google Scholar 

    11.
    Vellend M. Conceptual synthesis in community ecology. Q Rev Biol. 2010;85:183–206.
    PubMed  Google Scholar 

    12.
    Stegen JC, Lin X, Fredrickson JK, Chen X, Kennedy DW, Murray CJ, et al. Quantifying community assembly processes and identifying features that impose them. ISME J. 2013;7:2069–79.
    PubMed  PubMed Central  Google Scholar 

    13.
    MacArthur RH, Wilson EO. The theory of island biogeography. Woodstock, UK: Princeton University Press; 2001.
    Google Scholar 

    14.
    Dini-Andreote F, Stegen JC, Van Elsas JD, Salles JF. Disentangling mechanisms that mediate the balance between stochastic and deterministic processes in microbial succession. Proc Natl Acad Sci USA. 2015;112:E1326–E1332.
    CAS  PubMed  Google Scholar 

    15.
    Lowe WH, McPeek MA. Is dispersal neutral? Trends Ecol Evol. 2014;29:444–50.
    PubMed  Google Scholar 

    16.
    Vellend M, Srivastava DS, Anderson KM, Brown CD, Jankowski JE, Kleynhans EJ, et al. Assessing the relative importance of neutral stochasticity in ecological communities. Oikos. 2014;123:1420–30.
    Google Scholar 

    17.
    Rundle HD, Nosil P. Ecological speciation. Ecol Lett. 2005;8:336–52.
    Google Scholar 

    18.
    Graham EB, Knelman JE, Schindlbacher A, Siciliano S, Breulmann M, Yannarell A, et al. Microbes as engines of ecosystem function: when does community structure enhance predictions of ecosystem processes? Front Microbiol. 2016;7:214. https://doi.org/10.3389/fmicb.2016.00214.
    Article  PubMed  PubMed Central  Google Scholar 

    19.
    Lindström ES, Langenheder S. Local and regional factors influencing bacterial community assembly. Environ Microbiol Rep. 2012;4:1–9.
    PubMed  Google Scholar 

    20.
    Isabwe A, Ren K, Wang Y, Peng F, Chen H. Community assembly mechanisms underlying the core and random bacterioplankton and microeukaryotes in a river–reservoir system. Water. 2019;11:1–17.
    Google Scholar 

    21.
    Fodelianakis S, Lorz A, Valenzuela-Cuevas A, Barozzi A, Booth JM, Daffonchio D. Dispersal homogenizes communities via immigration even at low rates in a simplified synthetic bacterial metacommunity. Nat Commun. 2019;10:1. https://doi.org/10.1038/s41467-019-09306-7.
    CAS  Article  Google Scholar 

    22.
    Jiao S, Yang Y, Xu Y, Zhang J, Lu Y. Balance between community assembly processes mediates species coexistence in agricultural soil microbiomes across eastern China. ISME J. 2020;14:202–16.
    PubMed  Google Scholar 

    23.
    Grosberg RK, Vermeij GJ, Wainwright PC. Biodiversity in water and on land. Curr Biol. 2012;22:R900–R903.
    CAS  PubMed  Google Scholar 

    24.
    Wang J, Shen J, Wu Y, Tu C, Soininen J, Stegen JC, et al. Phylogenetic beta diversity in bacterial assemblages across ecosystems: deterministic versus stochastic processes. ISME J. 2013;7:1310–21.
    CAS  PubMed  PubMed Central  Google Scholar 

    25.
    Zinger L, Amaral-Zettler LA, Fuhrman JA, Horner-Devine MC, Huse SM, Welch DBM, et al. Global patterns of bacterial beta-diversity in seafloor and seawater ecosystems. PLoS ONE. 2011;6:e24570.
    CAS  PubMed  PubMed Central  Google Scholar 

    26.
    Barberán A, Casamayor EO. Global phylogenetic community structure and β-diversity patterns in surface bacterioplankton metacommunities. Aquat Micro Ecol. 2010;59:1–10.
    Google Scholar 

    27.
    Nemergut DR, Schmidt SK, Fukami T, O’Neill SP, Bilinski TM, Stanish LF, et al. Patterns and processes of microbial community assembly. Microbiol Mol Biol Rev. 2013;77:342–56.
    PubMed  PubMed Central  Google Scholar 

    28.
    Ruiz-González C, Niño-García JP, del Giorgio PA. Terrestrial origin of bacterial communities in complex boreal freshwater networks. Ecol Lett. 2015;18:1198–206.
    PubMed  Google Scholar 

    29.
    Widder S, Besemer K, Singer GA, Ceola S, Bertuzzo E, Quince C, et al. Fluvial network organization imprints on microbial co-occurrence networks. Proc Natl Acad Sci USA. 2014;111:12799–804.
    CAS  PubMed  Google Scholar 

    30.
    Comte J, Lovejoy C, Crevecoeur S, Vincent WF. Co-occurrence patterns in aquatic bacterial communities across changing permafrost landscapes. Biogeosciences. 2016;13:175–90.
    CAS  Google Scholar 

    31.
    Heino J, Melo AS, Siqueira T, Soininen J, Valanko S, Bini LM. Metacommunity organisation, spatial extent and dispersal in aquatic systems: Patterns, processes and prospects. Freshw Biol 2015;60:845–69.
    Google Scholar 

    32.
    Logares R, Deutschmann IM, Giner CR, Krabberød AK. Different processes shape prokaryotic and picoeukaryotic assemblages in the sunlit ocean microbiome. Environ Microbiol. 2018;20:37–49.
    Google Scholar 

    33.
    Östman Ö, Drakare S, Kritzberg ES, Langenheder S, Logue JB, Lindström ES. Importance of space and the local environment for linking local and regional abundances of microbes. Aquat Micro Ecol. 2012;67:35–45.
    Google Scholar 

    34.
    Niño-García JP, Ruiz-González C, del Giorgio PA. Interactions between hydrology and water chemistry shape bacterioplankton biogeography across boreal freshwater networks. ISME J. 2016;1:1–12.
    Google Scholar 

    35.
    Ofiţeru ID, Lunn M, Curtis TP, Wells GF, Criddle CS, Francis CA, et al. Combined niche and neutral effects in a microbial wastewater treatment community. Proc Natl Acad Sci USA. 2010;107:15345–50.
    PubMed  Google Scholar 

    36.
    Evans S, Martiny JBH, Allison SD. Effects of dispersal and selection on stochastic assembly in microbial communities. ISME J. 2017;11:176–85.
    PubMed  Google Scholar 

    37.
    Declerck SAJ, Winter C, Shurin JB, Suttle CA, Matthews B. Effects of patch connectivity and heterogeneity on metacommunity structure of planktonic bacteria and viruses. ISME J. 2013;7:533–42.
    PubMed  Google Scholar 

    38.
    Fernandes IM, Henriques-Silva R, Penha J, Zuanon J, Peres-Neto PR. Spatiotemporal dynamics in a seasonal metacommunity structure is predictable: the case of floodplain-fish communities. Ecography. 2014;37:464–75.
    Google Scholar 

    39.
    José de Paggi SB, Paggi JC. Hydrological connectivity as a shaping force in the zooplankton community of two lakes in the Paraná River floodplain. Int Rev Hydrobiol. 2008;93:659–78.
    Google Scholar 

    40.
    Devercelli M, Scarabotti P, Mayora G, Schneider B, Giri F. Unravelling the role of determinism and stochasticity in structuring the phytoplanktonic metacommunity of the Paraná River floodplain. Hydrobiologia. 2016;764:139–56.
    CAS  Google Scholar 

    41.
    Devercelli M. Changes in phytoplankton morpho-functional groups induced by extreme hydroclimatic events in the Middle Paraná river (Argentina). Hydrobiologia. 2010;639:5–19.
    CAS  Google Scholar 

    42.
    Scarabotti PA, López JA, Pouilly M. Flood pulse and the dynamics of fish assemblage structure from neotropical floodplain lakes. Ecol Freshw Fish. 2011;20:605–18.
    Google Scholar 

    43.
    Weiss S, Van Treuren W, Lozupone C, Faust K, Friedman J, Deng Y, et al. Correlation detection strategies in microbial data sets vary widely in sensitivity and precision. ISME J. 2016;10:1669–81.
    CAS  PubMed  PubMed Central  Google Scholar 

    44.
    Fuhrman JA, Cram JA, Needham DM. Marine microbial community dynamics and their ecological interpretation. Nat Rev Microbiol. 2015;13:133–46.
    CAS  PubMed  Google Scholar 

    45.
    Faust K, Raes J. Microbial interactions: from networks to models. Nat Rev Microbiol. 2012;10:538–50.
    CAS  PubMed  PubMed Central  Google Scholar 

    46.
    Röttjers L, Faust K. From hairballs to hypotheses–biological insights from microbial networks. FEMS Microbiol Rev. 2018;42:761–80.
    PubMed  PubMed Central  Google Scholar 

    47.
    Duran-Pinedo AE, Paster B, Teles R, Frias-Lopez J. Correlation network analysis applied to complex biofilm communities. PLoS ONE. 2011;6:e28438.
    CAS  PubMed  PubMed Central  Google Scholar 

    48.
    Freilich MA, Wieters E, Broitman BR, Marquet PA, Navarrete SA. Species co-occurrence networks: can they reveal trophic and non-trophic interactions in ecological communities? Ecology. 2018;99:690–9.
    PubMed  Google Scholar 

    49.
    Sunagawa S, Coelho LP, Chaffron S, Kultima JR, Labadie K, Salazar G, et al. Structure and function of the global ocean microbiome. Science. 2015;348:1261359–1261359.
    PubMed  Google Scholar 

    50.
    Liu J, Zhu S, Liu X, Yao P, Ge T, Zhang XH. Spatiotemporal dynamics of the archaeal community in coastal sediments: assembly process and co-occurrence relationship. ISME J. 2020;14:1463–78.
    PubMed  Google Scholar 

    51.
    Layeghifard M, Hwang DM, Guttman DS. Disentangling interactions in the microbiome: a network perspective. Trends Microbiol. 2017;25:217–28.
    CAS  PubMed  Google Scholar 

    52.
    Agler MT, Ruhe J, Kroll S, Morhenn C, Kim ST, Weigel D, et al. Microbial hub taxa link host and abiotic factors to plant microbiome variation. PLoS Biol. 2016;14:1–31.
    Google Scholar 

    53.
    Banerjee S, Schlaeppi K, van der Heijden MGA. Keystone taxa as drivers of microbiome structure and functioning. Nat Rev Microbiol. 2018;16:567–76.
    CAS  Google Scholar 

    54.
    Berry D, Widder S. Deciphering microbial interactions and detecting keystone species with co-occurrence networks. Front Microbiol. 2014;5:1–14.
    Google Scholar 

    55.
    Herren CM, McMahon KD. Keystone taxa predict compositional change in microbial communities. Environ Microbiol. 2018;20:2207–17.
    PubMed  Google Scholar 

    56.
    Neiff JJ. Large rivers of South America: toward the new approach. Verh Intern Ver Limnol. 1996;26:167–80.
    Google Scholar 

    57.
    Drago EC. The physical dynamics of the river-lake floodplain system. In: The middle Paraná River: limnology of a subtropical wetland. Berlin, Heidelberg: Springer-Verlag; 2007. p. 83–122.
    Google Scholar 

    58.
    Mayora G, Devercelli M, Giri F. Spatial variability of chlorophyll-a and abiotic variables in a river-floodplain system during different hydrological phases. Hydrobiologia. 2013;717:51–63.
    CAS  Google Scholar 

    59.
    Mayora G, Scarabotti P, Schneider B, Alvarenga P, Marchese M. Multiscale environmental heterogeneity in a large river-floodplain system. J South Am Earth Sci. 2020;100:102546.
    Google Scholar 

    60.
    Thomaz SM, Bini LM, Bozelli RL. Floods increase similarity among aquatic habitats in river-floodplain systems. Hydrobiologia. 2007;579:1–13.
    Google Scholar 

    61.
    Camilloni IA, Barros VR. Extreme discharge events in the Paraná River and their climate forcing. J Hydrol. 2003;278:94–106.
    Google Scholar 

    62.
    Depetris PJ, Probst JL, Pasquini AI, Gaiero DM. The geochemical characteristics of the Paraná River suspended sediment load: an initial assessment. Hydrol Process. 2003;17:1267–77.
    Google Scholar 

    63.
    Marchese M, de Drago IE. Benthos of the lotic environments in the middle Paraná River system: transverse zonation. Hydrobiologia. 1992;237:1–13.
    CAS  Google Scholar 

    64.
    Zilli FL, Paggi AC. Ecological responses to different degrees of hydrologic connectivity: assessing patterns in the bionomy of benthic chironomids in a large river-floodplain system. Wetlands. 2013;33:837–45.
    Google Scholar 

    65.
    José de Paggi SB, Devercelli M, Molina FR. Zooplankton and their driving factors in a large subtropical river during low water periods. Fundam Appl Limnol/Arch für Hydrobiol. 2014;184:125–39.
    Google Scholar 

    66.
    Fernandez Zenoff V, Sineriz F, Farias ME. Diverse responses to UV-B radiation and repair mechanisms of bacteria isolated from high-altitude aquatic environments. Appl Environ Microbiol. 2006;72:7857–63.
    CAS  PubMed  PubMed Central  Google Scholar 

    67.
    Herlemann DPR, Labrenz M, Jürgens K, Bertilsson S, Waniek JJ, Andersson AF. Transitions in bacterial communities along the 2000 km salinity gradient of the Baltic Sea. ISME J. 2011;5:1571–9.
    CAS  PubMed  PubMed Central  Google Scholar 

    68.
    Caporaso JG, Lauber CL, Walters WA, Berg-Lyons D, Huntley J, Fierer N, et al. Ultra-high-throughput microbial community analysis on the Illumina HiSeq and MiSeq platforms. ISME J. 2012;6:1621–4.
    CAS  PubMed  PubMed Central  Google Scholar 

    69.
    Logares R. Workflow for analysing MiSeq amplicons based on Uparse v1.5.: https://github.com/ramalok/amplicon_processing. 2017. https://doi.org/10.5281/zenodo.259579.

    70.
    Edgar RC. UNOISE2: improved error-correction for Illumina 16S and ITS amplicon sequencing. 2016;081257. https://doi.org/10.1101/081257.

    71.
    Oksanen J, Blanchet FG, Kindt R, Legendre P, Minchin PR, O’Hara RB, et al. Vegan: community ecology package. R package version 2.0-9. 2013. http://CRAN.R-project.org/package=vegan.

    72.
    R Core Team. R: A language and environment for statistical computing. Vienna, Austria: R Foundation for Statistical Computing; 2015. https://www.R-project.org/.

    73.
    Ranjard L, Dequiedt S, Chemidlin Prévost-Bouré N, Thioulouse J, Saby NPA, Lelievre M, et al. Turnover of soil bacterial diversity driven by wide-scale environmental heterogeneity. Nat Commun. 2013;4:1–10.
    Google Scholar 

    74.
    Anderson MJ. A new method for non-parametric multivariate analysis of variance. Austral Ecol. 2001;26:32–46.
    Google Scholar 

    75.
    Anderson MJ. Distance-based tests for homogeneity of multivariate dispersions. Biometrics. 2006;62:245–53.
    Google Scholar 

    76.
    Anderson MJ, Walsh DCI, Robert Clarke K, Gorley RN, Guerra-Castro E. Some solutions to the multivariate Behrens–Fisher problem for dissimilarity-based analyses. Aust N Zeal J Stat. 2017;59:57–79.
    Google Scholar 

    77.
    Pedrós-Alió C. The rare bacterial biosphere. Ann Rev Mar Sci. 2012;4:449–66.
    PubMed  Google Scholar 

    78.
    Zhou J, Ning D. Stochastic community assembly: does it matter in microbial ecology? Microbiol Mol Biol Rev. 2017;81:1–32.
    Google Scholar 

    79.
    Fine PVA, Kembel SW. Phylogenetic community structure and phylogenetic turnover across space and edaphic gradients in western Amazonian tree communities. Ecography. 2011;34:552–65.
    Google Scholar 

    80.
    Webb CO, Ackerly DD, McPeek MA, Donoghue MJ. Phylogenies and community ecology. Annu Rev Ecol Syst. 2002;33:475–505.
    Google Scholar 

    81.
    Webb CO, Ackerly DD, Kembel SW. Phylocom: software for the analysis of phylogenetic community structure and trait evolution. Bioinformatics. 2008;24:2098–2100.
    CAS  PubMed  Google Scholar 

    82.
    Kembel SW. Disentangling niche and neutral influences on community assembly: assessing the performance of community phylogenetic structure tests. Ecol Lett. 2009;12:949–60.
    PubMed  Google Scholar 

    83.
    Oden NL, Sokal RR. Directional autocorrelation: an extension of spatial correlograms to two dimensions. Syst Zool. 1986;35:608–17.
    Google Scholar 

    84.
    Diniz-Filho JAF, Terribile LC, Da Cruz MJR, Vieira LCG. Hidden patterns of phylogenetic non-stationarity overwhelm comparative analyses of niche conservatism and divergence. Glob Ecol Biogeogr. 2010;19:916–26.
    Google Scholar 

    85.
    Stegen JC, Lin X, Konopka AE, Fredrickson JK. Stochastic and deterministic assembly processes in subsurface microbial communities. ISME J. 2012;6:1653–64.
    CAS  PubMed  PubMed Central  Google Scholar 

    86.
    Andersson AF, Riemann L, Bertilsson S. Pyrosequencing reveals contrasting seasonal dynamics of taxa within Baltic Sea bacterioplankton communities. ISME J. 2010;4:171–81.
    PubMed  Google Scholar 

    87.
    Chase JM, Myers JA. Disentangling the importance of ecological niches from stochastic processes across scales. Philos Trans R Soc B Biol Sci. 2011;366:2351–63.
    Google Scholar 

    88.
    Chase JM. Picante: R tools for integrating phylogenies and ecology. Oecologia 2003;136:489–98.
    PubMed  Google Scholar 

    89.
    Dray S, Legendre P, Peres-Neto PR. Spatial modelling: a comprehensive framework for principal coordinate analysis of neighbour matrices (PCNM). Ecol Modell. 2006;196:483–93.
    Google Scholar 

    90.
    Braak CJF ter, Šmilauer P. CANOCO reference manual and CanoDraw for Windows user’s guide: software for canonical community ordination (Version 5). Ithaca, NY: Section on Permutation Methods Microcomputer Power; 2012.
    Google Scholar 

    91.
    Legendre P, Legendre L. Numerical ecology. Oxford, U.K.: Elsevier Scientific; 1998.

    92.
    Faust K, Lima-Mendez G, Lerat JS, Sathirapongsasuti JF, Knight R, Huttenhower C, et al. Cross-biome comparison of microbial association networks. Front Microbiol. 2015;6:1–13.
    Google Scholar 

    93.
    Faust K, Raes J. CoNet app: inference of biological association networks using Cytoscape. F1000Research. 2016;5:1–16.
    Google Scholar 

    94.
    Shannon P, Markiel A, Ozier O, Baliga NS, Wang JT, Ramage D, et al. Cytoscape: a software environment for integrated models of biomolecular interaction networks. Genome Res. 2003;13:2498–504.
    CAS  PubMed  PubMed Central  Google Scholar 

    95.
    Faust K, Sathirapongsasuti JF, Izard J, Segata N, Gevers D, Raes J, et al. Microbial co-occurrence relationships in the Human Microbiome. PLoS Comput Biol. 2012;8. https://doi.org/10.1371/journal.pcbi.1002606.

    96.
    Volterra V. Variazioni flultuazioni del numero d’invididui in specie convirenti. Men Acad Lincei. 1926;2:31–113.
    Google Scholar 

    97.
    Assenov Y, Ramírez F, Schelhorn SESE, Lengauer T, Albrecht M. Computing topological parameters of biological networks. Bioinformatics. 2008;24:282–4.
    CAS  PubMed  Google Scholar 

    98.
    Banerjee S, Walder F, Büchi L, Meyer M, Held AY, Gattinger A, et al. Agricultural intensification reduces microbial network complexity and the abundance of keystone taxa in roots. ISME J. 2019;13:1722–36.
    PubMed  PubMed Central  Google Scholar 

    99.
    Cao X, Zhao D, Xu H, Huang R, Zeng J, Yu Z. Heterogeneity of interactions of microbial communities in regions of Taihu Lake with different nutrient loadings: a network analysis. Sci Rep. 2018;8:1–11.
    Google Scholar 

    100.
    Newman MEJ. The structure and function of complex networks. Soc Ind Appl Math Rev. 2003;45:167–256.
    Google Scholar 

    101.
    Barabási AL, Oltvai ZN. Network biology: understanding the cell’s functional organization. Nat Rev Genet. 2004;5:101–13.
    PubMed  Google Scholar 

    102.
    Newman MEJ. A measure of betweenness centrality based on random walks. Soc Netw. 2005;27:39–54.
    Google Scholar 

    103.
    Brandes U. A faster algorithm for betweenness centrality. J Math Sociol. 2001;25:163–77.
    Google Scholar 

    104.
    Powell JR, Karunaratne S, Campbell CD, Yao H, Robinson L, Singh BK. Deterministic processes vary during community assembly for ecologically dissimilar taxa. Nat Commun. 2015;6:1–10.
    CAS  Google Scholar 

    105.
    Weilhoefer CL, Pan Y, Eppard S. The effects of river floodwaters on floodplain wetland water quality and diatom assemblages. Wetlands. 2008;28:473–86.
    Google Scholar 

    106.
    Unrein F. Changes in phytoplankton community along a transversal section of the lower Paraná floodplain, Argentina. Hydrobiologia. 2002;468:123–34.
    Google Scholar 

    107.
    Vass M, Székely AJ, Lindström ES, Langenheder S. Using null models to compare bacterial and microeukaryotic metacommunity assembly under shifting environmental conditions. Sci Rep. 2020;10:1–13.
    Google Scholar 

    108.
    Wagg C, Schlaeppi K, Banerjee S, Kuramae EE, van der Heijden MGA. Fungal-bacterial diversity and microbiome complexity predict ecosystem functioning. Nat Commun. 2019;10:4841.
    PubMed  PubMed Central  Google Scholar 

    109.
    Barberán A, Bates ST, Casamayor EO, Fierer N. Using network analysis to explore co-occurrence patterns in soil microbial communities. ISME J. 2012;6:343–51.
    PubMed  Google Scholar 

    110.
    Fuhrman JA. Microbial community structure and its functional implications. Nature. 2009;459:193–9.
    CAS  PubMed  Google Scholar 

    111.
    Newman MEJ. The structure and function of networks. Comput Phys Commun. 2002;147:40–47.
    Google Scholar  More

  • in

    Ecological niche modeling of Astragalus membranaceus var. mongholicus medicinal plants in Inner Mongolia, China

    Materials
    BioSim2 version 2 (Information Technology Department of Norwich University, Las Vegas, NE, USA), Maxent version 3.3.3 (AT&T Labs–Research, Florham Park, NJ, USA; https://www.cs.princeton.edu/~schapire/maxent/), and ArcGIS version 10.5 (ESRI Inc., California, USA; https://www.esri.com/) software were respectively used for screening the environmental variables, predicting the A. membranaceus var. mongholicus habitat, and mapping the suitable distribution area of A. membranaceus var. mongholicus in Inner Mongolia. The geographic coordinate information of A. membranaceus var. mongholicus samples was obtained by Handheld GPS (Jarmin Rino530HCx, Nanjing Tiandi Precision Drawing Instrument Equipment Co. Ltd., Nanjing).
    The extraction of active components (Astragaloside IV and calycosin-7-glucoside) from A. membranaceus var. mongholicus samples was carried out by experimental equipment, namely pulverizer (FLBP-200, Zhejiang Yili Industry and Trade Co., Ltd., Zhejiang), electronic analytical balance (ME204, Mettle Toledo, Shanghai), temperature-controlled electric heating jacket (KDM, Heze Jingke Instrument Co., Ltd., Heze), rotary evaporator (IKA RV 10, Shanghai Hanpei Electromechanical Equipment Co. Ltd., Shanghai), ultrasonic cleaner (KQ-500DE, Sonxi Ultrasonic, Kunshan), the Soxhlet extractor, reflux extractor, volumetric bottle, and other glass instruments produced by Shuniu Glass Instrument Co., Ltd. (Sichuan). High-performance liquid chromatography-ultraviolet (Ultimate3000, Thermo Fisher Scientific, Waltham, MA, USA), evaporative light scattering detector (ELSD 2000ES, Alltech (Shanghai in China) Co., Ltd.), air generator (XWK-III, Tianjin Jinmin Analytical Instrument Manufacturing Co., Ltd., Tianjin), and Astragaloside IV (CAS: 148321) and calycosin-7-glucoside (CAS: 150326) reference substances of  > 95% purity purchased from Chengdu Pufeide Biotech Co., Ltd (Chengdu) were used for the quantitative analyses of the samples. A laboratory water purifier (XGB-40-B, Shenyang Xinjie Technology Co., Ltd., Shenyang), chromatographic methanol, n-butanol, and phosphoric acid were purchased from Tianjin Fuchen Chemical Reagent Factory, chromatographic acetonitrile was purchased from Tianjin Comeo Chemical Reagent Co., Ltd., and ammonia water was purchased from Tianjin Fengchuan Chemical Reagent Technology Co., Ltd (Tianjin) for the entire High-performance liquid chromatography-ultraviolet analysis.
    Acquisition of ecological factor data
    In this study, we considered the influence of 74 ecological factors, including climate, soil, topography, vegetation type, and meteorological factors, on the distribution of A. membranaceus var. mongholicus. Climatic data included 59 ecological factors, e.g., monthly mean precipitation (mm), temperature (°C × 10), and sunshine duration (h × 10) from January to December (mm), mean precipitation (mm), temperature (Tmean4-10, °C × 10), and sunshine duration (Smean4-10, h × 10) in the growing season, mean annual sunshine duration (SunshineAnnu, h × 10), and 19 comprehensive climatic factors. These data were based on spatial interpolation of meteorological observation data from 752 surface and automatic meteorological stations in China, collected from 1951 to 2000, with a resolution of 1 km.
    The soil data comprised eight ecological factors, which were determined according to a 1:100,000 soil map of the People’s Republic of China (compiled in 1995) provided by the Second National Land Survey. These factors were soil pH, cation exchange capacity (cmol kg−1), sand content (SoilSand, %), clay content (%), soil type (SoilType from FAO-90), soil available water content level (SoilWater), soil texture (SoilTexture, USDA), and organic carbon content (SoilCarbon, %).
    Topographic data included three ecological factors, namely altitude (m), slope (°), and aspect with a resolution of 1 km. Vegetation type data included an ecological factor based on vegetation subtype data from a vegetation map of the People’s Republic of China (1:100,000) published by the Institute of Botany, Chinese Academy of Sciences. The comprehensive meteorological data comprised three ecological factors, namely the warmth and coldness indexes (°C) derived from Kira’s thermal index and the humidity index (mm∙°C−1) derived from Xu’s modified version of Kira’s humidity index42,43.
    The abovementioned data of ecological factors for studying the ecological suitability and quality regionalization of A. membranaceus var. mongholicus were taken from the “Traditional Chinese Medicine Resources Spatial Information Grid Database” (https://www.tcm-resources.com/) provided by the National Resource Center for Chinese Materia Medica of the China Academy of Chinese Medical Sciences (Beijing, China). The relevant information for each ecological factor, including the category, name and type, is presented in Appendix 1 in Supplementary Information 1.
    Collection of A. membranaceus var. mongholicus samples
    The cultivation area of A. membranaceus var. mongholicus was approximately 6,666.67 ha (66.67 km2) in Inner Mongolia in 2016 and mainly covered Urad Front Banner, Guyang County, Tumd Right Banner, Wuchuan County, and Harqin Banner44. Based on a full understanding of the regional characteristics of Inner Mongolia, we adopted traditional route and quadrat surveys, taking the village or gacha (level with administrative village) as the smallest sampling unit, to conduct a field survey of A. membranaceus var. mongholicus in the eastern, central, and western regions of Inner Mongolia in 2016. To ensure the uniformity and representativeness of the sample data, we sampled different production areas with significant differences in ecological factors, such as terrain, soil, and vegetation type, according to these two routes. Three to five sampling points were set in each sampling area with a distance of 1 km, and a total of 63 samples of A. membranaceus var. mongholicus were collected in Inner Mongolia. The geographic coordinates of the sampling points were recorded using the handheld GPS. To diminish the influence of different harvesting periods or growth years on the contents of active components in A. membranaceus var. mongholicus, the samples were biennial medicinal materials and were collected in October 2016. Figure 10 shows the survey route and location of the sampling points. The geographical coordinates (latitude and longitude data) of each sampling point are listed in Appendix 4 in Supplementary Information 1.
    Figure 10

    Survey routes of A. membranaceus var. mongholicus and geographical location of its sampling points. Generated using the ArcMap version 10.5 software (ESRI Inc., California, USA. https://www.esri.com/).

    Full size image

    Preliminary screening of ecological factors
    To diminish the influence of high correlations between ecological factors at the time of MaxEnt modeling, we used Biosim2 to calculate the correlation coefficients between all the ecological factor values extracted from the longitude and latitude of 63 sampling points. According to the correlation coefficient tree diagram calculated using Biosim2, we excluded any ecological factor that had a low correlation with A. membranaceus var. mongholicus growth, based on their potential biological relevance to this species, for each set of highly correlated ecological factors with correlation coefficients  > 0.845. We loaded the retained ecological factors into Biosim2 again and repeated the above-mentioned operation until the correlation coefficient between all the retained ecological factors was ≤ 0.8. The ecological factors finally screened are depicted in Fig. 3.
    Calculation and accuracy testing of MaxEnt model
    The point locality data of A. membranaceus var. mongholicus and the retained ecological factor data were imported into the MaxEnt model for the calculation. The model parameters were set as follows: The model was run 10 times, the maximum number of iterations was 1,000,000, the convergence threshold was 0.0005, the random test percentage was set to 10, namely, 90% of the point locality data were randomly selected as training data, and the remaining 10% of data points were the test data. Cross validation (the data set was divided into ten parts, of which 9 were used as training data and 1 as test data in turn for the experiment) was used as the replicated run type, and the max number of background points and the remaining parameters were set as default.
    In this study, the receiver operating characteristic curve analysis of the distribution of A. membranaceus var. mongholicus in the model was used to evaluate the accuracy of MaxEnt. The area under the receiver operating characteristic (AUC) was not affected by the threshold, and its value ranged from 0 to 1. The larger the value, the higher was the accuracy of the model. When the AUC was in the range 0.5–0.8, the accuracy of the prediction made by the model was inferior; however, the prediction accuracy was reasonable when the AUC was in the range 0.8–0.9. Finally, when the AUC was greater than 0.9, the model produced reliable and accurate prediction results, and the potential distribution of the species could be accurately predicted46,47. The results of 10 training and test sample data repeatedly calculated using MaxEnt are presented in Table 1, and the mean AUC and standard deviation value of the test samples are depicted in Fig. 4. The average growth suitability image of A. membranaceus var. mongholicus obtained through the model was used as the probability layer file of potential A. membranaceus var. mongholicus distribution for studying the ecological suitability regionalization of A. membranaceus var. mongholicus.
    Ecological suitability regionalization of A. membranaceus var. mongholicus in Inner Mongolia
    The point locality data of A. membranaceus var. mongholicus and its average growth suitability image (distribution probability layer of this species) were simultaneously loaded into ArcGIS. The distribution data of the A. membranaceus var. mongholicus sampling points were used to extract the ecological suitability values in the distribution probability layer, which was rasterized according to the maximum and minimum values of the suitability value. This was done to remove the data outside the range of the sampling points and obtain the region suitable for the cultivation of A. membranaceus var. mongholicus. The natural breaks method in ArcGIS was used to divide the ecological suitability distribution area of the species into four levels: unsuitable (0.00–0.02), secondarily suitable (0.02–0.18), suitable (0.18–0.42), and optimum (0.42–0.90); we used an appropriate color ramp in ArcGIS to indicate the aforementioned levels. Finally, a legend, north arrow, and scale bar were added to complete the map of the ecological suitability of A. membranaceus var. mongholicus at the city level in Inner Mongolia (Fig. 5). To accurately obtain the potential distribution area of A. membranaceus var. mongholicus, based on the ecological suitability of this species in Inner Mongolia, we added county-level administrative data to ArcGIS. Next, we extracted the distribution probability layer of this species by mask to obtain a map of the ecological suitability of A. membranaceus var. mongholicus at the county level. Subsequently, the areas of suitable habitat in the Leagues or Cities in Inner Mongolia were statistically analyzed (Table 2).
    Main ecological factors affecting A. membranaceus var. mongholicus growth
    The ecological factors screened by Biosim2 were inputted as environmental variables into the Maxent model for model calculation, and the contribution rate of each factor to the growth of A. membranaceus var. mongholicus was determined. To determine the first estimate, in each iteration of the training algorithm the increase in regularized gain was added to the contribution of the corresponding variable, or subtracted from it if the change to the absolute value of λ was negative. For the second estimate, for each environmental variable, the values of that variable on training presence and background data were randomly permuted. Finally, the model was reevaluated on the permuted data and the contribution of each factor was obtained (Fig. 6). Ecological factors with a contribution rate of  > 0% were selected as the main factors to analyze the response curves (Fig. 8A–Q). Those contributing to the growth of the species were used as the main ecological factors for studying the suitability regionalization of high-quality A. membranaceus var. mongholicus in Inner Mongolia.
    Content of index components and relationships with main ecological factors
    Saponins and flavonoids are the primary active components of Radix Astragali, and they are valuable indicators for evaluating the quality of Radix Astragali in the Chinese, British, and European pharmacopoeia3,48,49. The contents of the saponin astragaloside IV and flavonoid calycosin-7-glucoside in 63 Radix Astragali samples were determined via high performance liquid chromatography according to the Chinese Pharmacopoeia (2015 Edition) (Appendix 3 in Supplementary Information 1). In addition, we used SPSS17.0 statistical analysis software to analyze differences in astragaloside IV and calycosin-7-glucoside content in A. membranaceus var. mongholicus from different production areas in Inner Mongolia. The relationships between astragaloside IV, calycosin-7-glucoside, and the main ecological factors were determined using the correlation matrix (Tables 3, 4). The relationship equations between these index components and the main ecological factors were obtained by stepwise linear regression analysis.
    Suitability regionalization of high-quality A. membranaceus var. mongholicus in Inner Mongolia
    The relationship equations were respectively inputted into ArcGIS’s grid calculator to obtain the quantitative distribution layers of astragaloside IV and calycosin-7-glucoside in A. membranaceus var. mongholicus. Using the spatial calculation function of ArcGIS, the two abovementioned layers were overlain on the ecological suitability distribution layer of A. membranaceus var. mongholicus, and the spatial suitability distribution regions of astragaloside IV and calycosin-7-glucoside in A. membranaceus var. mongholicus in Inner Mongolia were finally obtained. According to the content limits of these index components in 63 A. membranaceus var. mongholicus samples, the spatial suitability distribution regions of the index components were divided into five grades in ArcGIS, represented by a color ramp from blue to red. A map of the spatial distribution of astragaloside IV and calycosin-7-glucoside in A. membranaceus var. mongholicus in the study area was plotted in ArcGIS (Fig. 9A,B). To determine the regions in Inner Mongolia that were suitable for cultivating high-quality A. membranaceus var. mongholicus, we overlaid the spatial distribution layer of the two active ingredients and the administrative distribution data at the county level to find out where these contents are both maximized (Fig. 9C). The administrative areas under various suitability levels of astragaloside IV and calycosin-7-glucoside distribution are presented in the Table 5. More

  • in

    STAGdb: a 30K SNP genotyping array and Science Gateway for Acropora corals and their dinoflagellate symbionts

    1.
    Altshuler, D. et al. An SNP map of the human genome generated by reduced representation shotgun sequencing. Nature 407, 513–516. https://doi.org/10.1038/35035083 (2000).
    ADS  CAS  Article  PubMed  Google Scholar 
    2.
    Ali, O. A. et al. RAD capture (Rapture): flexible and efficient sequence-based genotyping. Genetics 202, 389 (2016).
    CAS  PubMed  Google Scholar 

    3.
    Hoffberg, S. L. et al. RADcap: sequence capture of dual-digest RADseq libraries with identifiable duplicates and reduced missing data. Mol. Ecol. Resour. 16, 1264–1278. https://doi.org/10.1111/1755-0998.12566 (2016).
    CAS  Article  PubMed  Google Scholar 

    4.
    Franchini, P., Monné Parera, D., Kautt, A. F. & Meyer, A. quaddRAD: a new high-multiplexing and PCR duplicate removal ddRAD protocol produces novel evolutionary insights in a nonradiating cichlid lineage. Mol. Ecol. 26, 2783–2795 (2017).
    CAS  PubMed  Google Scholar 

    5.
    Darrier, B. et al. A comparison of mainstream genotyping platforms for the evaluation and use of barley genetic resources. Front. Plant Sci. 10, 544 (2019).
    PubMed  PubMed Central  Google Scholar 

    6.
    Palti, Y. et al. The development and characterization of a 57 K single nucleotide polymorphism array for rainbow trout. Mol. Ecol. Resour. 15, 662–672 (2015).
    CAS  PubMed  Google Scholar 

    7.
    Moragues, M. et al. Effects of ascertainment bias and marker number on estimations of barley diversity from high-throughput SNP genotype data. Theor. Appl. Genet. 120, 1525–1534 (2010).
    CAS  PubMed  Google Scholar 

    8.
    Malomane, D. K. et al. Efficiency of different strategies to mitigate ascertainment bias when using SNP panels in diversity studies. BMC Genomics 19, 22 (2018).
    PubMed  PubMed Central  Google Scholar 

    9.
    Lachance, J. & Tishkoff, S. A. SNP ascertainment bias in population genetic analyses: why it is important, and how to correct it. BioEssays 35, 780–786 (2013).
    CAS  PubMed  PubMed Central  Google Scholar 

    10.
    Afgan, E. et al. The Galaxy platform for accessible, reproducible and collaborative biomedical analyses: 2018 update. Nucleic Acids Res. 46, W537–W544 (2018).
    CAS  PubMed  PubMed Central  Google Scholar 

    11.
    Whitaker, K. Genetic evidence for mixed modes of reproduction in the coral Pocillopora damicornis and its effect on population structure. Mar. Ecol. Prog. Ser. 306, 115–124 (2006).
    ADS  Google Scholar 

    12.
    Miller, K. J. & Ayre, D. J. The role of sexual and asexual reproduction in structuring high latitude populations of the reef coral Pocillopora damicornis. Heredity 92, 557–568 (2004).
    CAS  PubMed  Google Scholar 

    13.
    Stoddart, J. A. Asexual production of planulae in the coral Pocillopora damicornis. Mar. Biol. 76, 279–284 (1983).
    Google Scholar 

    14.
    Ayre, D. J. & Hughes, T. P. Genotypic diversity and gene flow in brooding and spawning corals along the Great Barrier Reef, Australia. Evolution 54, 1590–1605 (2000).
    CAS  PubMed  Google Scholar 

    15.
    Adjeroud, M. & Tsuchiya, M. Genetic variation and clonal structure in the scleractinian coral Pocillopora damicornis in the Ryukyu Archipelago, southern Japan. Mar. Biol. 134, 753–760 (1999).
    Google Scholar 

    16.
    Foster, N. L., Baums, I. B. & Mumby, P. J. Sexual vs. asexual reproduction in an ecosystem engineer: the massive coral Montastraea annularis. J. Anim. Ecol. 76, 384–391. https://doi.org/10.1111/j.1365-2656.2006.01207.x (2007).
    Article  PubMed  Google Scholar 

    17.
    Neigel, J. E. & Avise, J. C. Clonal diversity and population structure in a reef-building coral, Acropora cervicornis: self-recognition analysis and demographic interpretation. Evolution 37, 437–453. https://doi.org/10.1111/j.1558-5646.1983.tb05561.x (1983).
    Article  PubMed  Google Scholar 

    18.
    Baums, I. B., Miller, M. W. & Hellberg, M. E. Geographic variation in clonal structure in a reef building Caribbean coral, Acropora palmata. Ecol. Monogr. 76, 503–519. https://doi.org/10.1890/0012-9615 (2006).
    Article  Google Scholar 

    19.
    Pinzón, J., Reyes-Bonilla, H., Baums, I. & LaJeunesse, T. Contrasting clonal structure among Pocillopora (Scleractinia) communities at two environmentally distinct sites in the Gulf of California. Coral Reefs 3, 765–777. https://doi.org/10.1007/s00338-012-0887-y (2012).
    ADS  Article  Google Scholar 

    20.
    Parkinson, J. E. & Baums, I. B. The extended phenotypes of marine symbioses: ecological and evolutionary consequences of intraspecific genetic diversity in coral-algal associations. Front. Microbiol. https://doi.org/10.3389/fmicb.2014.00445 (2014).
    Article  PubMed  PubMed Central  Google Scholar 

    21.
    Polato, N. R., Altman, N. S. & Baums, I. B. Variation in the transcriptional response of threatened coral larvae to elevated temperatures. Mol. Ecol. 22, 1366–1382 (2013).
    CAS  PubMed  Google Scholar 

    22.
    Baums, I. et al. Genotypic variation influences reproductive success and thermal stress tolerance in the reef building coral, Acropora palmata. Coral Reefs 32, 703–717 (2013).
    ADS  Google Scholar 

    23.
    Randall, C. J. & Szmant, A. M. Elevated temperature affects development, survivorship, and settlement of the Elkhorn coral, Acropora palmata (Lamarck 1816). Biol. Bull. 217, 269–282 (2009).
    PubMed  Google Scholar 

    24.
    Meyer, E. et al. Genetic variation in responses to a settlement cue and elevated temperature in the reef-building coral Acropora millepora. Mar. Ecol. Prog. Ser. 392, 81–92 (2009).
    ADS  CAS  Google Scholar 

    25.
    Baums, I. B., Hughes, C. R. & Hellberg, M. H. Mendelian microsatellite loci for the Caribbean coral Acropora palmata. Mar. Ecol. Prog. Ser. 288, 115–127. https://doi.org/10.3354/meps288115 (2005).
    ADS  CAS  Article  Google Scholar 

    26.
    Fogarty, N. D., Vollmer, S. V. & Levitan, D. R. Weak Prezygotic isolating mechanisms in threatened Caribbean Acropora corals. PLoS ONE 7, e30486. https://doi.org/10.1371/journal.pone.0030486 (2012).
    ADS  CAS  Article  PubMed  PubMed Central  Google Scholar 

    27.
    Baums, I. B. et al. Considerations for maximizing the adaptive potential of restored coral populations in the western Atlantic. Ecol. Appl. 19, e01978 (2019).
    Google Scholar 

    28.
    Muscatine, L. & Cernichiari, E. Assimilation of photosynthetic products of zooxanthellae by a reef coral. Biol. Bull. 137, 506–523 (1969).
    CAS  PubMed  Google Scholar 

    29.
    Davies, P. S. Effect of daylight variations on the energy budgets of shallow-water corals. Mar. Biol. 108, 137–144 (1991).
    Google Scholar 

    30.
    Santos, S. R. & Coffroth, M. A. Molecular genetic evidence that dinoflagellates belonging to the genus Symbiodinium Freudenthal are haploid. Biol. Bull. 204, 10–20 (2003).
    CAS  PubMed  Google Scholar 

    31.
    Pettay, D. T. LaJeunesse TC (2007) Microsatellites from clade B Symbiodinium spp. specialized for Caribbean corals in the genus Madracis. Mol. Ecol. Notes 7, 1271–1274. https://doi.org/10.1111/j.1471-8286.2007.01852.x (2007).
    CAS  Article  Google Scholar 

    32.
    Pettay, D. T. & LaJeunesse, T. C. Microsatellite loci for assessing genetic diversity, dispersal and clonality of coral symbionts in ‘stress-tolerant’ clade D Symbiodinium. Mol. Ecol. Resour. 9, 1022–1025. https://doi.org/10.1111/j.1755-0998.2009.02561.x (2009).
    CAS  Article  PubMed  Google Scholar 

    33.
    Pinzón, J. H., Devlin-Durante, M. K., Weber, M. X., Baums, I. B. & LaJeunesse, T. C. Microsatellite loci for Symbiodinium A3 (S. fitti) a common algal symbiont among Caribbean Acropora (stony corals) and Indo-Pacific giant clams (Tridacna). Conserv. Genet. Resour. 3, 45–47. https://doi.org/10.1007/s12686-010-9283-5 (2011).
    Article  Google Scholar 

    34.
    Baums, I. B., Devlin-Durante, M. K. & LaJeunesse, T. C. New insights into the dynamics between reef corals and their associated dinoflagellate endosymbionts from population genetic studies. Mol. Ecol. 23, 4203–4215. https://doi.org/10.1111/mec.12788 (2014).
    Article  PubMed  Google Scholar 

    35.
    Wham, D. C., Pettay, D. T. & LaJeunesse, T. C. Microsatellite loci for the host-generalist “zooxanthella” Symbiodinium trenchi and other Clade D Symbiodinium. Conserv. Genet. Resour. 3, 541–544. https://doi.org/10.1007/s12686-011-9399-2 (2011).
    Article  Google Scholar 

    36.
    Grupstra, C. G. et al. Evidence for coral range expansion accompanied by reduced diversity of Symbiodinium genotypes. Coral Reefs 36, 981–985 (2017).
    ADS  Google Scholar 

    37.
    Chan, A. N., Lewis, C. L., Neely, K. L. & Baums, I. B. Fallen pillars: the past, present, and future population dynamics of a rare, specialist coral-algal symbiosis. Front. Mar. Sci. 6, 218 (2019).
    ADS  Google Scholar 

    38.
    Andras, J. P., Kirk, N. L., Coffroth, M. A. & Harvell, C. D. Isolation and characterization of microsatellite loci in Symbiodinium B1/B184, the dinoflagellate symbiont of the Caribbean sea fan coral, Gorgonia ventalina. Mol. Ecol. Resour. 9, 989–993 (2009).
    CAS  PubMed  Google Scholar 

    39.
    Veron, J. E. N. Corals of the World (Australian Institute of Marine Science, Townsville, 2000).
    Google Scholar 

    40.
    Wallace, C. C. Staghorn Corals of the World: A Revision of the Coral Genus Acropora (Scleractinia; Astrocoeniina; Acroporidae) Worldwide, with Emphasis on Morphology, Phylogeny and Biogeography (CSIRO publishing, Clayton, 1999).
    Google Scholar 

    41.
    van Oppen, M. J. H., Willis, B. L., van Vugt, J. A. & Miller, D. J. Examination of species boundaries in the Acropora cervicornis group (Scleractinia, Cnidaria) using nuclear DNA sequence analyses. Mol. Ecol. 9, 1363–1373 (2000).
    CAS  Google Scholar 

    42.
    Vollmer, S. V. & Palumbi, S. R. Hybridization and the evolution of reef coral diversity. Science 296, 2023–2025 (2002).
    ADS  CAS  PubMed  Google Scholar 

    43.
    de Lamarck, J. B. P. A. Histoire Naturelle des Animaux sans Vertebres Vol. 2 (Verdiere, Paris, 1816).
    Google Scholar 

    44.
    Li, H. A statistical framework for SNP calling, mutation discovery, association mapping and population genetical parameter estimation from sequencing data. Bioinformatics 27, 2987–2993 (2011).
    CAS  PubMed  PubMed Central  Google Scholar 

    45.
    45Garrison, E. & Marth, G. Haplotype-based variant detection from short-read sequencing. arXiv:1207.3907 (2012).

    46.
    Kitchen, S. A. et al. Genomic variants among threatened Acropora corals. G3: Genes Genomes Genet. https://doi.org/10.1534/g3.119.400125 (2019).
    Article  Google Scholar 

    47.
    Liew, Y. J., Aranda, M. & Voolstra, C. R. Reefgenomics.org—a repository for marine genomics data. Database https://doi.org/10.1093/database/baw152 (2016).
    Article  PubMed  PubMed Central  Google Scholar 

    48.
    Fuller, Z. L. et al. Population genetics of the coral Acropora millepora: towards a genomic predictor of bleaching. bioRxiv https://doi.org/10.1101/2020.02.10.943092 (2019).
    Article  Google Scholar 

    49.
    49Hong, H. et al. in BMC Bioinformatics. (BioMed Central).

    50.
    Hong, H. et al. Technical reproducibility of genotyping SNP arrays used in genome-wide association studies. PLoS ONE 7, e44483 (2012).
    ADS  CAS  PubMed  PubMed Central  Google Scholar 

    51.
    Lee, Y. G. et al. Development, validation and genetic analysis of a large soybean SNP genotyping array. Plant J. 81, 625–636 (2015).
    CAS  PubMed  Google Scholar 

    52.
    Marrano, A. et al. A new genomic tool for walnut (Juglans regia L.): development and validation of the high-density Axiom™ J. regia 700K SNP genotyping array. Plant Biotechnol. J. 17, 1027–1036 (2019).
    CAS  PubMed  Google Scholar 

    53.
    Baums, I. B., Johnson, M. E., Devlin-Durante, M. K. & Miller, M. W. Host population genetic structure and zooxanthellae diversity of two reef-building coral species along the Florida Reef Tract and wider Caribbean. Coral Reefs 29, 835–842. https://doi.org/10.1007/s00338-010-0645-y (2010).
    ADS  Article  Google Scholar 

    54.
    Hemond, E. M. & Vollmer, S. V. Genetic diversity and connectivity in the threatened Staghorn coral (Acropora cervicornis) in Florida. PLoS ONE 5, e8652 (2010).
    ADS  PubMed  PubMed Central  Google Scholar 

    55.
    Vollmer, S. V. & Palumbi, S. R. Restricted gene flow in the Caribbean staghorn coral Acropora cervicomis: Implications for the recovery of endangered reefs. J. Hered. 98, 40–50 (2007).
    CAS  PubMed  Google Scholar 

    56.
    Drury, C. et al. Genomic variation among populations of threatened coral: Acropora cervicornis. BMC Genomics 17, 286. https://doi.org/10.1186/s12864-016-2583-8 (2016).
    CAS  Article  PubMed  PubMed Central  Google Scholar 

    57.
    Porto-Hannes, I. et al. Population structure of the corals Orbicella faveolata and Acropora palmata in the Mesoamerican Barrier Reef System with comparisons over Caribbean basin-wide spatial scale. Mar. Biol. https://doi.org/10.1007/s00227-014-2560-1 (2014).
    Article  Google Scholar 

    58.
    Baums, I. B., Miller, M. W. & Hellberg, M. E. Regionally isolated populations of an imperiled Caribbean coral, Acropora palmata. Mol. Ecol. 14, 1377–1390 (2005).
    CAS  PubMed  Google Scholar 

    59.
    Devlin-Durante, M. K. & Baums, I. B. Genome-wide survey of single-nucleotide polymorphisms reveals fine-scale population structure and signs of selection in the threatened Caribbean elkhorn coral, Acropora palmata. PeerJ 5, e4077 (2017).
    PubMed  PubMed Central  Google Scholar 

    60.
    Palumbi, S. R., Vollmer, S., Romano, S., Oliver, T. & Ladner, J. The role of genes in understanding the evolutionary ecology of reef building corals. Evol. Ecol. 26, 317–335. https://doi.org/10.1007/s10682-011-9517-3 (2012).
    Article  Google Scholar 

    61.
    Miller, D. J. & Van Oppen, M. J. H. A “fair go” for coral hybridization. Mol. Ecol. 12, 805–807 (2003).
    CAS  PubMed  Google Scholar 

    62.
    Japaud, A., Bouchon, C., Magalon, H. & Fauvelot, C. Geographic distances and ocean currents influence Caribbean Acropora palmata population connectivity in the Lesser Antilles. Conserv. Genet. 20, 447–466 (2019).
    Google Scholar 

    63.
    Liu, H. et al. Symbiodinium genomes reveal adaptive evolution of functions related to coral-dinoflagellate symbiosis. Commun. Biol. 1, 95. https://doi.org/10.1038/s42003-018-0098-3 (2018).
    Article  PubMed  PubMed Central  Google Scholar 

    64.
    Thornhill, D. J., LaJeunesse, T. C., Kemp, D. W., Fitt, W. K. & Schmidt, G. W. Multi-year, seasonal genotypic surveys of coral-algal symbioses reveal prevalent stability or post-bleaching reversion. Mar. Biol. 148, 711–722 (2006).
    Google Scholar 

    65.
    Hoadley, K. D. et al. Host–symbiont combinations dictate the photo-physiological response of reef-building corals to thermal stress. Sci. Rep. 9, 1–15 (2019).
    CAS  Google Scholar 

    66.
    Rosser, N. L. et al. Phylogenomics provides new insight into evolutionary relationships and genealogical discordance in the reef-building coral genus Acropora. Proc. Roy. Soc. B: Biol. Sci. 284, 20162182 (2017).
    Google Scholar 

    67.
    Hatta, M. et al. Reproductive and genetic evidence for a reticulate evolutionary history of mass-spawning corals. Mol. Biol. Evol. 16, 1607–1613 (1999).
    CAS  PubMed  Google Scholar 

    68.
    Danecek, P. et al. The variant call format and VCFtools. Bioinformatics 27, 2156–2158 (2011).
    CAS  PubMed  PubMed Central  Google Scholar 

    69.
    Shinzato, C. et al. Using the Acropora digitifera genome to understand coral responses to environmental change. Nature 476, 320–323. https://doi.org/10.1038/nature10249 (2011).
    ADS  CAS  Article  PubMed  PubMed Central  Google Scholar 

    70.
    Quinlan, A. R. & Hall, I. M. BEDTools: a flexible suite of utilities for comparing genomic features. Bioinformatics 26, 841–842 (2010).
    CAS  PubMed  PubMed Central  Google Scholar 

    71.
    Shoguchi, E. et al. Two divergent Symbiodinium genomes reveal conservation of a gene cluster for sunscreen biosynthesis and recently lost genes. BMC Genomics 19, 458 (2018).
    PubMed  PubMed Central  Google Scholar 

    72.
    Takishita, K., Ishikura, M., Koike, K. & Maruyama, T. Comparison of phylogenies based on nuclear-encoded SSU rDNA and plastid-encoded psbA in the symbiotic dinoflagellate genus Symbiodinium. Phycologia 42, 285–291 (2003).
    Google Scholar 

    73.
    Pochon, X., Putnam, H. M., Burki, F. & Gates, R. D. Identifying and characterizing alternative molecular markers for the symbiotic and free-living dinoflagellate genus Symbiodinium. PLoS ONE 7, e29816 (2012).
    ADS  CAS  PubMed  PubMed Central  Google Scholar 

    74.
    Arif, C. et al. Assessing Symbiodinium diversity in scleractinian corals via next-generation sequencing-based genotyping of the ITS2 rDNA region. Mol. Ecol. 23, 4418–4433. https://doi.org/10.1111/mec.12869 (2014).
    CAS  Article  PubMed  PubMed Central  Google Scholar 

    75.
    LaJeunesse, T. C. Diversity and community structure of symbiotic dinoflagellates from Caribbean coral reefs. Mar. Biol. 141, 387–400 (2002).
    Google Scholar 

    76.
    LaJeunesse, T. C. Investigating the biodiversity, ecology, and phylogeny of endosymbiotic dinoflagellates in the genus Symbiodinium using the ITS region: in search of a “species” level marker. J. Phycol. 37, 866–880 (2001).
    CAS  Google Scholar 

    77.
    Kumar, S., Stecher, G., Li, M., Knyaz, C. & Tamura, K. MEGA X: molecular evolutionary genetics analysis across computing platforms. Mol. Biol. Evol. 35, 1547–1549 (2018).
    CAS  PubMed  PubMed Central  Google Scholar 

    78.
    Cingolani, P. et al. A program for annotating and predicting the effects of single nucleotide polymorphisms, SnpEff: SNPs in the genome of Drosophila melanogaster strain w1118; iso-2; iso-3. Fly 6, 80–92 (2012).
    CAS  PubMed  PubMed Central  Google Scholar 

    79.
    Affymetrix. (Affymetrix, 2007).

    80.
    R: a language and environment for statistical computing [Online] (R Foundation for Statistical Computing, Vienna, 2017).

    81.
    Knaus, B. J. & Grünwald, N. J. vcfr: a package to manipulate and visualize variant call format data in R. Mol. Ecol. Resour. 17, 44–53 (2017).
    CAS  PubMed  Google Scholar 

    82.
    Kamvar, Z. N., Brooks, J. C. & Grünwald, N. J. Novel R tools for analysis of genome-wide population genetic data with emphasis on clonality. Front. Genet. 6, 208 (2015).
    PubMed  PubMed Central  Google Scholar 

    83.
    Kamvar, Z. N., Tabima, J. F. & Grünwald, N. J. Poppr: an R package for genetic analysis of populations with clonal, partially clonal, and/or sexual reproduction. PeerJ 2, e281 (2014).
    PubMed  PubMed Central  Google Scholar 

    84.
    Prevosti, A., Ocana, J. & Alonso, G. Distances between populations of Drosophila subobscura, based on chromosome arrangement frequencies. Theor. Appl. Genet. 45, 231–241 (1975).
    CAS  PubMed  Google Scholar 

    85.
    Zheng, X. et al. A high-performance computing toolset for relatedness and principal component analysis of SNP data. Bioinformatics 28, 3326–3328 (2012).
    CAS  PubMed  PubMed Central  Google Scholar 

    86.
    Alexander, D. H., Novembre, J. & Lange, K. Fast model-based estimation of ancestry in unrelated individuals. Genome Res. 19, 1655–1664 (2009).
    CAS  PubMed  PubMed Central  Google Scholar 

    87.
    Chang, C. C. et al. Second-generation PLINK: rising to the challenge of larger and richer datasets. Gigascience 4, 7 (2015).
    PubMed  PubMed Central  Google Scholar 

    88.
    Kopelman, N. M., Mayzel, J., Jakobsson, M., Rosenberg, N. A. & Mayrose, I. Clumpak: a program for identifying clustering modes and packaging population structure inferences across K. Mol. Ecol. Resour. 15, 1179–1191 (2015).
    CAS  PubMed  PubMed Central  Google Scholar 

    89.
    Venables, W. & Ripley, B. Modern Applied Statistics with S, 4th edn (Springer, New York, 2002).
    Google Scholar 

    90.
    Therneau, T. & Atkinson, B. rpart: Recursive Partitioning and Regression Trees. R package version 4.1-15 (2019). https://CRAN.R-project.org/package=rpart.

    91.
    Milborrow, S. rpart.plot: Plot ‘rpart’ Models: An Enhanced Version of ‘plot.rpart’. R package version 3.0.8 (2019). https://CRAN.R-project.org/package=rpart.plot.

    92.
    Kuhn, M. Building predictive models in R using the caret package. J. Stat. Softw. 28, 1–26 (2008).
    Google Scholar 

    93.
    González, M., Rosado-Falcón, O. & Rodríguez, J. D. ssc: Semi-Supervised Classification Methods. R package version 2.1-0 (2019). https://CRAN.R-project.org/package=ssc.

    94.
    Lirman, D. et al. Growth dynamics of the threatened Caribbean staghorn coral Acropora cervicornis: influence of host genotype, symbiont identity, colony size, and environmental setting. PLoS ONE 9, e107253 (2014).
    ADS  PubMed  PubMed Central  Google Scholar  More

  • in

    Trading for climate resilience

    1.
    Myers, S. S. et al. Annu. Rev. Public Health 38, 259–277 (2017).
    Article  Google Scholar 
    2.
    Zhao, C. et al. Proc. Natl Acad. Sci. USA 114, 9326–9331 (2017).
    CAS  Article  Google Scholar 

    3.
    Sloat, L. L. et al. Nat. Commun. 11, 1243 (2020).
    CAS  Article  Google Scholar 

    4.
    Janssens, C. et al. Nat. Clim. Change https://doi.org/10.1038/s41558-020-0847-4 (2020).

    5.
    Dellink, R., Hwang, H., Lanzi, E. & Chateau, J. International Trade Consequences of Climate Change (OECD Publishing, 2017).

    6.
    Climate Change and Trade Agreements: Friends or Foes? (The Economist Intelligence Unit, 2019).

    7.
    OECD. Regional Trade Agreements and Agriculture OECD Food, Agriculture and Fisheries Papers No. 79 (OECD Publishing, 2015).

    8.
    Foster, V. & Briceño-Garmendia, C. M. Africa’s Infrastructure: a Time for Transformation (The World Bank, 2009).

    9.
    Cagé, J. & Gadenne, L. Explor. Econ. Hist. 70, 1–24 (2018).
    Article  Google Scholar 

    10.
    Hallegatte, S. & Rozenberg, J. Nat. Clim. Change 7, 250–256 (2017).
    Article  Google Scholar  More