Self-disseminating vaccines to suppress zoonoses
1.
Redding, D. W., Moses, L. M., Cunningham, A. A., Wood, J. & Jones, K. E. Environmental-mechanistic modelling of the impact of global change on human zoonotic disease emergence: a case study of Lassa fever. Methods Ecol. Evol. 7, 646–655 (2016).
Google Scholar
2.
McCormick, J. B. & Fisher-Hoch, S. P. in Arenaviruses I: The Epidemiology, Molecular and Cell Biology of Arenaviruses — Current Topics in Microbiology and Immunology Vol. 262 (ed. Oldstone, M. B. A.) 75–109 (Springer, 2002).
3.
Jonsson, C. B., Figueiredo, L. T. M. & Vapalahti, O. A global perspective on hantavirus ecology, epidemiology, and disease. Clin. Microbiol. Rev. 23, 412–441 (2010).
CAS PubMed PubMed Central Google Scholar
4.
Edson, D. et al. Routes of Hendra virus excretion in naturally-infected flying-foxes: implications for viral transmission and spillover risk. PLoS ONE 10, e0140670 (2015).
PubMed PubMed Central Google Scholar
5.
Luby, S. P., Gurley, E. S. & Jahangir Hossain, M. Transmission of human infection with Nipah virus. Clin. Infect. Dis. 49, 1743–1748 (2009).
PubMed PubMed Central Google Scholar
6.
Georgiou, G. et al. Display of heterologous proteins on the surface of microorganisms: from the screening of combinatorial libraries to live recombinant vaccines. Nat. Biotechnol. 15, 29–34 (1997).
CAS PubMed Google Scholar
7.
Leitner, W. W., Ying, H. & Restifo, N. P. DNA and RNA-based vaccines: principles, progress and prospects. Vaccine 18, 765–777 (1999).
CAS PubMed PubMed Central Google Scholar
8.
Pardi, N., Hogan, M. J., Porter, F. W. & Weissman, D. mRNA vaccines — a new era in vaccinology. Nat. Rev. Drug Discov. 17, 261–279 (2018).
CAS PubMed PubMed Central Google Scholar
9.
Rollier, C. S., Reyes-Sandoval, A., Cottingham, M. G., Ewer, K. & Hill, A. V. S. Viral vectors as vaccine platforms: deployment in sight. Curr. Opin. Immunol. 23, 377–382 (2011).
CAS PubMed Google Scholar
10.
Ferretti, L. et al. Quantifying SARS-CoV-2 transmission suggests epidemic control with digital contact tracing. Science 368, eabb6936 (2020).
CAS PubMed PubMed Central Google Scholar
11.
Morse, S. S. et al. Prediction and prevention of the next pandemic zoonosis. Lancet 380, 1956–1965 (2012).
PubMed PubMed Central Google Scholar
12.
Rupprecht, C. E., Hanlon, C. A. & Slate, D. in Control of Infectious Animal Diseases by Vaccination — Developments in Biologicals Vol. 119 (eds Schudel, A. & Lombard, M.) 173–184 (Karger, 2004).
13.
Bull, J. J., Smithson, M. W. & Nuismer, S. L. Transmissible viral vaccines. Trends Microbiol. 26, 6–15 (2018).
CAS PubMed Google Scholar
14.
Murphy, A. A., Redwood, A. J. & Jarvis, M. A. Self-disseminating vaccines for emerging infectious diseases. Expert Rev. Vaccines 15, 31–39 (2016).
CAS PubMed Google Scholar
15.
Shellam, G. R. The potential of murine cytomegalovirus as a viral vector for immunocontraception. Reprod. Fertil. Dev. 6, 401–409 (1994).
CAS PubMed Google Scholar
16.
Tyndale-Biscoe, C. H. Virus-vectored immunocontraception of feral mammals. Reprod. Fertil. Dev. 6, 281–287 (1994).
CAS PubMed Google Scholar
17.
Barcena, J. et al. Horizontal transmissible protection against myxomatosis and rabbit hemorrhagic disease by using a recombinant myxoma virus. J. Virol. 74, 1114–1123 (2000).
CAS PubMed PubMed Central Google Scholar
18.
Torres, J. M. et al. First field trial of a transmissible recombinant vaccine against myxomatosis and rabbit hemorrhagic disease. Vaccine 19, 4536–4543 (2001).
CAS PubMed Google Scholar
19.
Angulo, E. & Barcena, J. Towards a unique and transmissible vaccine against myxomatosis and rabbit haemorrhagic disease for rabbit populations. Wildl. Res. 34, 567–577 (2007).
CAS Google Scholar
20.
Nuismer, S. L. et al. Eradicating infectious disease using weakly transmissible vaccines. Proc. R. Soc. B 283, 20161903 (2016).
PubMed Google Scholar
21.
Basinski, A. J., Nuismer, S. L. & Remien, C. H. A little goes a long way: weak vaccine transmission facilitates oral vaccination campaigns against zoonotic pathogens. PLoS Negl. Trop. Dis. 13, e0007251 (2019).
PubMed PubMed Central Google Scholar
22.
Basinski, A. J. et al. Evaluating the promise of recombinant transmissible vaccines. Vaccine 36, 675–682 (2018).
CAS PubMed Google Scholar
23.
Smithson, M. W., Basinki, A. J., Nuismer, S. L. & Bull, J. J. Transmissible vaccines whose dissemination rates vary through time, with applications to wildlife. Vaccine 37, 1153–1159 (2019).
CAS PubMed PubMed Central Google Scholar
24.
Lecompte, E. et al. Mastomys natalensis and Lassa fever, West Africa. Emerg. Infect. Dis. 12, 1971–1974 (2006).
PubMed PubMed Central Google Scholar
25.
Olayemi, A. et al. New hosts of the Lassa virus. Sci. Rep. 6, 25280 (2016).
CAS PubMed PubMed Central Google Scholar
26.
Douglass, R. J. et al. Longitudinal studies of Sin Nombre virus in deer mouse-dominated ecosystems of Montana. Am. J. Trop. Med. Hyg. 65, 33–41 (2001).
CAS PubMed Google Scholar
27.
Luis, A. D., Douglass, R. J., Mills, J. N. & Bjornstad, O. N. The effect of seasonality, density and climate on the population dynamics of Montana deer mice, important reservoir hosts for Sin Nombre hantavirus. J. Anim. Ecol. 79, 462–470 (2010).
PubMed Google Scholar
28.
Viana, M. et al. Assembling evidence for identifying reservoirs of infection. Trends Ecol. Evol. 29, 270–279 (2014).
PubMed PubMed Central Google Scholar
29.
Fenton, A., Streicker, D. G., Petchey, O. L. & Pedersen, A. B. Are all hosts created equal? Partitioning host species contributions to parasite persistence in multihost communities. Am. Nat. 186, 610–622 (2015).
PubMed PubMed Central Google Scholar
30.
Fichet-Calvet, E. et al. Fluctuation of abundance and Lassa virus prevalence in Mastomys natalensis in Guinea, West Africa. Vector-Borne Zoonotic Dis. 7, 119–128 (2007).
PubMed Google Scholar
31.
Marien, J. et al. Evaluation of rodent control to fight Lassa fever based on field data and mathematical modelling. Emerg. Microbes Infect. 8, 640–649 (2019).
PubMed PubMed Central Google Scholar
32.
Towner, J. S. et al. Marburg virus infection detected in a common african bat. PLoS ONE 2, e764 (2007).
PubMed PubMed Central Google Scholar
33.
Nziza, J. et al. Coronaviruses detected in bats in close contact with humans in Rwanda. EcoHealth 17, 152–159 (2020).
PubMed Google Scholar
34.
Anthony, S. J. et al. Further evidence for bats as the evolutionary source of Middle East respiratory syndrome coronavirus. Mbio 8, e00373–17 (2017).
CAS PubMed PubMed Central Google Scholar
35.
Ge, X.-Y. et al. Isolation and characterization of a bat SARS-like coronavirus that uses the ACE2 receptor. Nature 503, 535–538 (2013).
CAS PubMed PubMed Central Google Scholar
36.
Bird, B. H. & Mazet, J. A. K. Detection of emerging zoonotic pathogens: an integrated one health approach. Annu. Rev. Anim. Biosci. 6, 121–139 (2018).
CAS PubMed Google Scholar
37.
Goldstein, T. et al. The discovery of Bombali virus adds further support for bats as hosts of ebolaviruses. Nat. Microbiol. 3, 1084–1089 (2018).
CAS PubMed PubMed Central Google Scholar
38.
Pernet, O. et al. Evidence for henipavirus spillover into human populations in Africa. Nat. Commun. 5, 5342 (2014).
PubMed PubMed Central Google Scholar
39.
Grard, G. et al. A novel rhabdovirus associated with acute hemorrhagic fever in Central Africa. PLoS Pathog. 8, e1002924 (2012).
PubMed PubMed Central Google Scholar
40.
Han, B. A. & Drake, J. M. Future directions in analytics for infectious disease intelligence. EMBO Rep. 17, 785–789 (2016).
CAS PubMed PubMed Central Google Scholar
41.
Han, B. A., Schmidt, J. P., Bowden, S. E. & Drake, J. M. Rodent reservoirs of future zoonotic diseases. Proc. Natl Acad. Sci. USA 112, 7039–7044 (2015).
CAS PubMed Google Scholar
42.
Han, B. A. et al. Undiscovered bat hosts of filoviruses. PLoS Negl. Trop. Dis. 10, e0004815 (2016).
PubMed PubMed Central Google Scholar
43.
Guth, S., Visher, E., Boots, M. & Brook, C. E. Host phylogenetic distance drives trends in virus virulence and transmissibility across the animal-human interface. Philos. Trans. R. Soc. B 374, 20190296 (2019).
Google Scholar
44.
Olival, K. J. et al. Host and viral traits predict zoonotic spillover from mammals. Nature 546, 646–650 (2017).
CAS PubMed PubMed Central Google Scholar
45.
Pepin, K. M., Lass, S., Pulliam, J. R. C., Read, A. F. & Lloyd-Smith, J. O. Identifying genetic markers of adaptation for surveillance of viral host jumps. Nat. Rev. Microbiol. 8, 802–813 (2010).
CAS PubMed PubMed Central Google Scholar
46.
Babayan, S. A., Orton, R. J. & Streicker, D. G. Predicting reservoir hosts and arthropod vectors from evolutionary signatures in RNA virus genomes. Science 362, 577–580 (2018).
CAS PubMed PubMed Central Google Scholar
47.
Bakker, K. M. et al. Fluorescent biomarkers demonstrate prospects for spreadable vaccines to control disease transmission in wild bats. Nat. Ecol. Evol. 3, 1697–1704 (2019).
PubMed PubMed Central Google Scholar
48.
Garnier, R., Gandon, S., Chaval, Y., Charbonnel, N. & Boulinier, T. Evidence of cross-transfer of maternal antibodies through allosuckling in a mammal: potential importance for behavioral ecology. Mamm. Biol. 78, 361–364 (2013).
Google Scholar
49.
Stading, B. et al. Protection of bats (Eptesicus fuscus) against rabies following topical or oronasal exposure to a recombinant raccoon poxvirus vaccine. PLoS Negl. Trop. Dis. 11, e0005958 (2017).
PubMed PubMed Central Google Scholar
50.
Schreiner, C. L., Nuismer, S. L. & Basinski, A. J. When to vaccinate a fluctuating wildlife population: is timing everything? J. Appl. Ecol. 57, 307–319 (2020).
PubMed Google Scholar
51.
Varrelman, T. J., Basinski, A. J., Remien, C. H. & Nuismer, S. L. Transmissible vaccines in heterogeneous populations: implications for vaccine design. One Health 7, 100084 (2019).
PubMed PubMed Central Google Scholar
52.
Alizon, S., Hurford, A., Mideo, N. & Van Baalen, M. Virulence evolution and the trade-off hypothesis: history, current state of affairs and the future. J. Evol. Biol. 22, 245–259 (2009).
CAS PubMed Google Scholar
53.
Kew, O. M., Sutter, R. W., de Gourville, E. M., Dowdle, W. R. & Pallansch, M. A. Vaccine-derived polioviruses and the endgame strategy for global polio eradication. Annu. Rev. Microbiol. 59, 587–635 (2005).
CAS PubMed Google Scholar
54.
Bull, J. J. Evolutionary reversion of live viral vaccines: can genetic engineering subdue it? Virus Evol. 1, vev005 (2015).
PubMed PubMed Central Google Scholar
55.
Lauring, A. S., Jones, J. O. & Andino, R. Rationalizing the development of live attenuated virus vaccines. Nat. Biotechnol. 28, 573–579 (2010).
CAS PubMed PubMed Central Google Scholar
56.
Nuismer, S. L., Basinski, A. & Bull, J. J. Evolution and containment of transmissible recombinant vector vaccines. Evol. Appl. 12, 1595–1609 (2019).
PubMed PubMed Central Google Scholar
57.
Kew, O. M. et al. Circulating vaccine-derived polioviruses: current state of knowledge. Bull. World Health Organ. 82, 16–23 (2004).
PubMed PubMed Central Google Scholar
58.
Hampson, K. et al. Estimating the global burden of endemic canine rabies. PLoS Negl. Trop. Dis. 9, e0003709 (2015).
PubMed PubMed Central Google Scholar
59.
Cost of the Ebola Epidemic (US Centers for Disease Control and Prevention, 2020); https://go.nature.com/38iF7cg
60.
Forum on Microbial Threats Learning from SARS: Preparing for the Next Disease Outbreak: Workshop Summary (National Academies Press, 2004). More