The potential for a CRISPR gene drive to eradicate or suppress globally invasive social wasps
1.
Teem, J. L. et al. Genetic biocontrol for invasive species. Front. Bioeng. Biotechnol. 8, 452. https://doi.org/10.3389/fbioe.2020.00452 (2020).
Article PubMed PubMed Central Google Scholar
2.
McFarlane, G. R., Whitelaw, C. B. A. & Lillico, S. G. CRISPR-based gene drives for pest control. Trends Biotechnol. 36, 130–133. https://doi.org/10.1016/j.tibtech.2017.10.001 (2018).
CAS Article PubMed Google Scholar
3.
Dearden, P. K. et al. The potential for the use of gene drives for pest control in New Zealand: a perspective. J. R. Soc. N. Z. 48, 225–244. https://doi.org/10.1080/03036758.2017.1385030 (2017).
Article Google Scholar
4.
Esvelt, K. M., Smidler, A. L., Catteruccia, F. & Church, G. M. Concerning RNA-guided gene drives for the alteration of wild populations. eLife 3, e03401. https://doi.org/10.7554/eLife.03401 (2014).
CAS Article PubMed PubMed Central Google Scholar
5.
Barrangou, R. & Doudna, J. A. Applications of CRISPR technologies in research and beyond. Nat. Biotechnol. 34, 933–941. https://doi.org/10.1038/nbt.3659 (2016).
CAS Article PubMed Google Scholar
6.
Kandul, N. P. et al. Transforming insect population control with precision guided sterile males with demonstration in flies. Nat. Commun. 10, 84. https://doi.org/10.1038/s41467-018-07964-7 (2019).
ADS CAS Article PubMed PubMed Central Google Scholar
7.
Kyrou, K. et al. A CRISPR-Cas9 gene drive targeting doublesex causes complete population suppression in caged Anopheles gambiae mosquitoes. Nat. Biotechnol. 36, 1062–1066. https://doi.org/10.1038/nbt.4245 (2018).
CAS Article PubMed PubMed Central Google Scholar
8.
Drury, D. W., Dapper, A. L., Siniard, D. J., Zentner, G. E. & Wade, M. J. CRISPR/Cas9 gene drives in genetically variable and nonrandomly mating wild populations. Sci. Adv. 3, e1601910. https://doi.org/10.1126/sciadv.1601910 (2017).
ADS CAS Article PubMed PubMed Central Google Scholar
9.
Hammond, A. M. et al. The creation and selection of mutations resistant to a gene drive over multiple generations in the malaria mosquito. PLoS Genet. 13, e1007039. https://doi.org/10.1371/journal.pgen.1007039 (2017).
CAS Article PubMed PubMed Central Google Scholar
10.
Webber, B. L., Raghu, S. & Edwards, O. R. Opinion: is CRISPR-based gene drive a biocontrol silver bullet or global conservation threat?. Proc. Natl. Acad. Sci. U.S.A. 112, 10565–10567. https://doi.org/10.1073/pnas.1514258112 (2015).
ADS CAS Article PubMed PubMed Central Google Scholar
11.
Wilkins, K. E., Prowse, T. A. A., Cassey, P., Thomas, P. Q. & Ross, J. V. Pest demography critically determines the viability of synthetic gene drives for population control. Math. Biosci. 305, 160–169. https://doi.org/10.1016/j.mbs.2018.09.005 (2018).
MathSciNet Article PubMed MATH Google Scholar
12.
de la Filia, A. G., Bain, S. A. & Ross, L. Haplodiploidy and the reproductive ecology of Arthropods. Curr. Opin. Insect Sci. 9, 36–43. https://doi.org/10.1016/j.cois.2015.04.018 (2015).
Article Google Scholar
13.
Deredec, A., Burt, A. & Godfray, H. C. The population genetics of using homing endonuclease genes in vector and pest management. Genetics 179, 2013–2026. https://doi.org/10.1534/genetics.108.089037 (2008).
Article PubMed PubMed Central Google Scholar
14.
Rode, N. O., Estoup, A., Bourguet, D., Courtier-Orgogozo, V. & Débarre, F. Population management using gene drive: molecular design, models of spread dynamics and assessment of ecological risks. Conserv. Genet. 20, 671–690. https://doi.org/10.1007/s10592-019-01165-5 (2019).
CAS Article Google Scholar
15.
Alphey, N. & Bonsall, M. B. Interplay of population genetics and dynamics in the genetic control of mosquitoes. J. R. Soc. Interface 11, 20131071. https://doi.org/10.1098/rsif.2013.1071 (2014).
Article PubMed PubMed Central Google Scholar
16.
Prowse, T. A. A. et al. Dodging silver bullets: good CRISPR gene-drive design is critical for eradicating exotic vertebrates. Proc. R. Soc. B https://doi.org/10.1098/rspb.2017.0799 (2017).
Article PubMed Google Scholar
17.
Lowe, S., Browne, M., Boudjelas, S. & De Poorter, M. 100 of the World’s Worst Invasive Alien Species. A Selection from the Global Invasive Species Database Vol. 12 (The Invasive Species Specialist Group (ISSG) a specialist group of the Species Survival Commission (SSC) of the World Conservation Union (IUCN), Auckland, 2000).
Google Scholar
18.
Lester, P. J. & Beggs, J. R. Invasion success and management strategies for social Vespula wasps. Annu. Rev. Entomol. 64, 51–71. https://doi.org/10.1146/annurev-ento-011118-111812 (2019).
CAS Article PubMed Google Scholar
19.
Lester, P. J. et al. Determining the origin of invasions and demonstrating a lack of enemy release from microsporidian pathogens in common wasps (Vespula vulgaris). Divers. Distrib. 20, 964–974. https://doi.org/10.1111/ddi.12223 (2014).
Article Google Scholar
20.
Harris, R. J. Diet of the wasps Vespula vulgaris and V. germanica in honeydew beech forest of the South Island, New Zealand. N. Z. J. Zool. 18, 159–169 (1991).
Article Google Scholar
21.
Grangier, J. & Lester, P. J. A novel interference behaviour: invasive wasps remove ants from resources and drop them from a height. Biol. Lett. 7, 664–667. https://doi.org/10.1098/rsbl.2011.0165 (2011).
Article PubMed PubMed Central Google Scholar
22.
Wilson, P. R., Karl, B. J., Toft, R. J., Beggs, J. R. & Taylor, R. H. The role of introduced predators and competitors in the decline of kaka (Nestor meridionalis) populations in New Zealand. Biol. Conserv. 83, 175–185. https://doi.org/10.1016/S0006-3207(97)00055-4 (1998).
Article Google Scholar
23.
Dobelmann, J. et al. Fitness in invasive social wasps: the role of variation in viral load, immune response and paternity in predicting nest size and reproductive output. Oikos 126, 1208–1218. https://doi.org/10.1111/oik.04117 (2017).
CAS Article Google Scholar
24.
Sekine, K., Furusawa, T. & Hatakeyama, M. The boule gene is essential for spermatogenesis of haploid insect male. Dev. Biol. 399, 154–163. https://doi.org/10.1016/j.ydbio.2014.12.027 (2015).
CAS Article PubMed Google Scholar
25.
Ferree, P. M. et al. Identification of genes uniquely expressed in the germ-line tissues of the jewel wasp Nasonia vitripennis. G3-Genes Genom. Genet. 5, 2647–2653. https://doi.org/10.1534/g3.115.021386 (2015).
CAS Article Google Scholar
26.
Mikhaylova, L. M., Boutanaev, A. M. & Nurminsky, D. I. Transcriptional regulation by Modulo integrates meiosis and spermatid differentiation in male germ line. Proc. Natl. Acad. Sci. U.S.A. 103, 11975–11980. https://doi.org/10.1073/pnas.0605087103 (2006).
ADS CAS Article PubMed PubMed Central Google Scholar
27.
Parsch, J., Meiklejohn, C. D., Hauschteck-Jungen, E., Hunziker, P. & Hartl, D. L. Molecular evolution of the ocnus and janus genes in the Drosophila melanogaster species subgroup. Mol. Biol. Evol. 18, 801–811. https://doi.org/10.1093/oxfordjournals.molbev.a003862 (2001).
CAS Article PubMed Google Scholar
28.
Dang, Y. et al. Optimizing sgRNA structure to improve CRISPR-Cas9 knockout efficiency. Genome Biol. 16, 280. https://doi.org/10.1186/s13059-015-0846-3 (2015).
CAS Article PubMed PubMed Central Google Scholar
29.
Yarrington, R. M., Verma, S., Schwartz, S., Trautman, J. K. & Carroll, D. Nucleosomes inhibit target cleavage by CRISPR-Cas9 in vivo. Proc. Natl. Acad. Sci. U.S.A. 115, 9351–9358. https://doi.org/10.1073/pnas.1810062115 (2018).
CAS Article PubMed PubMed Central Google Scholar
30.
Chaverra-Rodriguez, D. et al. Targeted delivery of CRISPR-Cas9 ribonucleoprotein into arthropod ovaries for heritable germline gene editing. Nat. Commun. 9, 3008. https://doi.org/10.1038/s41467-018-05425-9 (2018).
ADS CAS Article PubMed PubMed Central Google Scholar
31.
Noble, C. et al. Daisy-chain gene drives for the alteration of local populations. Proc. Natl. Acad. Sci. U.S.A. 116, 8275–8282. https://doi.org/10.1073/pnas.1716358116 (2019).
CAS Article PubMed PubMed Central Google Scholar
32.
KaramiNejadRanjbar, M. et al. Consequences of resistance evolution in a Cas9-based sex conversion-suppression gene drive for insect pest management. Proc. Natl. Acad. Sci. U.S.A. 115, 6189–6194. https://doi.org/10.1073/pnas.1713825115 (2018).
CAS Article PubMed PubMed Central Google Scholar
33.
Brenton-Rule, E. C. et al. The origins of global invasions of the German wasp (Vespula germanica) and its infection with four honey bee viruses. Biol. Invasions 20, 3445–3460. https://doi.org/10.1007/s10530-018-1786-0 (2018).
Article Google Scholar
34.
Schmack, J. M. et al. Lack of genetic structuring, low effective population sizes and major bottlenecks characterise common and German wasps in New Zealand. Biol. Invasions 21, 3185–3201. https://doi.org/10.1007/s10530-019-02039-0 (2019).
Article Google Scholar
35.
Tanaka, H., Stone, H. A. & Nelson, D. R. Spatial gene drives and pushed genetic waves. Proc. Natl. Acad. Sci. U.S.A. 114, 8452–8457. https://doi.org/10.1073/pnas.1705868114 (2017).
ADS CAS Article PubMed PubMed Central Google Scholar
36.
Hammond, A. et al. A CRISPR-Cas9 gene drive system targeting female reproduction in the malaria mosquito vector Anopheles gambiae. Nat. Biotechnol. 34, 78–83. https://doi.org/10.1038/nbt.3439 (2016).
CAS Article PubMed Google Scholar
37.
Marshall, J. M., Buchman, A., Sanchez, C. H. & Akbari, O. S. Overcoming evolved resistance to population-suppressing homing-based gene drives. Sci. Rep. 7, 3776. https://doi.org/10.1038/s41598-017-02744-7 (2017).
ADS CAS Article PubMed PubMed Central Google Scholar
38.
Eckhoff, P. A., Wenger, E. A., Godfray, H. C. & Burt, A. Impact of mosquito gene drive on malaria elimination in a computational model with explicit spatial and temporal dynamics. Proc. Natl. Acad. Sci. U.S.A. 114, E255–E264. https://doi.org/10.1073/pnas.1611064114 (2017).
CAS Article PubMed Google Scholar
39.
North, A., Burt, A. & Godfray, H. C. Modelling the spatial spread of a homing endonuclease gene in a mosquito population. J. Appl. Ecol. 50, 1216–1225. https://doi.org/10.1111/1365-2664.12133 (2013).
CAS Article PubMed PubMed Central Google Scholar
40.
Kirk, N., Kannemeyer, R., Greenaway, A., MacDonald, E. & Stronge, D. Understanding attitudes on new technologies to manage invasive species. Pac. Conserv. Biol. https://doi.org/10.1071/pc18080 (2019).
Article Google Scholar
41.
Mercier, O. R., KingHunt, A. & Lester, P. J. Novel biotechnologies for eradicating wasps: seeking Māori studies students’ perspectives with Q method. Kōtuitui N. Z. J. Soc. Sci. 14, 136–156. https://doi.org/10.1080/1177083x.2019.1578245 (2019).
Article Google Scholar
42.
Peters, R. S. et al. Evolutionary history of the Hymenoptera. Curr. Biol. 27, 1013–1018. https://doi.org/10.1016/j.cub.2017.01.027 (2017).
CAS Article PubMed Google Scholar
43.
Stein, K. J. & Fell, R. D. Correlation of queen sperm content with colony size in yellowjackets (Hymenoptera: Vespidae). Environ. Entomol. 23, 1497–1500. https://doi.org/10.1093/ee/23.6.1497 (1994).
Article Google Scholar
44.
Lester, P. J., Haywood, J., Archer, M. E. & Shortall, C. R. The long-term population dynamics of common wasps in their native and invaded range. J. Anim. Ecol. 86, 337–347. https://doi.org/10.1111/1365-2656.12622 (2017).
Article PubMed Google Scholar
45.
Burt, A. & Deredec, A. Self-limiting population genetic control with sex-linked genome editors. Proc. R. Soc. B https://doi.org/10.1098/rspb.2018.0776 (2018).
Article PubMed Google Scholar
46.
Prowse, T. A., Adikusuma, F., Cassey, P., Thomas, P. & Ross, J. V. A Y-chromosome shredding gene drive for controlling pest vertebrate populations. eLife 8, e41873. https://doi.org/10.7554/eLife.41873 (2019).
Article PubMed PubMed Central Google Scholar
47.
Li, J. et al. Can CRISPR gene drive work in pest and beneficial haplodiploid species?. Evol. Appl. https://doi.org/10.1111/eva.13032 (2020).
Article PubMed PubMed Central Google Scholar
48.
Esvelt, K. M. & Gemmell, N. J. Conservation demands safe gene drive. PLoS Biol. 15, e2003850. https://doi.org/10.1371/journal.pbio.2003850 (2017).
CAS Article PubMed PubMed Central Google Scholar
49.
Piaggio, A. J. et al. Is it time for synthetic biodiversity conservation?. Trends Ecol. Evol. 32, 97–107. https://doi.org/10.1016/j.tree.2016.10.016 (2017).
Article PubMed Google Scholar
50.
Edgington, M. P., Harvey-Samuel, T. & Alphey, L. Population-level multiplexing, a promising strategy to manage the evolution of resistance against gene drives targeting a neutral locus. Evol. Appl. https://doi.org/10.1111/eva.12945 (2020).
Article Google Scholar
51.
Sumner, S., Law, G. & Cini, A. Why we love bees and hate wasps. Ecol. Entomol. 43, 836–845. https://doi.org/10.1111/een.12676 (2018).
Article Google Scholar
52.
Southon, R. J., Fernandes, O. A., Nascimento, F. S. & Sumner, S. Social wasps are effective biocontrol agents of key lepidopteran crop pests. Proc. R. Soc. B https://doi.org/10.1098/rspb.2019.1676 (2019).
Article PubMed Google Scholar
53.
Harris, R. J., Thomas, C. D. & Moller, H. The influence of habitat use and foraging on the replacement of one introduced wasp species by another in New Zealand. Ecol. Entomol. 16, 441–448. https://doi.org/10.1111/j.1365-2311.1991.tb00237.x (1991).
Article Google Scholar
54.
Lester, P. J. et al. Critical issues facing New Zealand entomology. N. Z. Entomol. 37, 1–13. https://doi.org/10.1080/00779962.2014.861789 (2014).
Article Google Scholar
55.
Hare, K. M. et al. Intractable: species in New Zealand that continue to decline despite conservation efforts. J. R. Soc. N. Z. 49, 301–319. https://doi.org/10.1080/03036758.2019.1599967 (2019).
Article Google Scholar
56.
Hu, X. F., Zhang, B., Liao, C. H. & Zeng, Z. J. High-Efficiency CRISPR/Cas9-mediated gene editing in honeybee (Apis mellifera) embryos. G3-Genes Genom. Genet. 9, 1759–1766. https://doi.org/10.1534/g3.119.400130 (2019).
CAS Article Google Scholar
57.
Yan, H. et al. An engineered orco mutation produces aberrant social behavior and defective neural development in ants. Cell 170, 736-747 e739. https://doi.org/10.1016/j.cell.2017.06.051 (2017).
CAS Article PubMed PubMed Central Google Scholar
58.
Oksanen, J. et al. vegan: community ecology package. (R package version 2.4-0. https://CRAN.R-project.org/package=vegan, 2016). More