1.
Ruan, H., Zou, X., Scatena, F. & Zimmerman, J. Asynchronous fluctuation of soil microbial biomass and plant litterfall in a tropical wet forest. Plant Soil 260, 147–154 (2004).
CAS Google Scholar
2.
Ibekwe, A. M. et al. Impact of fumigants on soil microbial communities. Appl. Environ. Microbiol. 67, 3245–3257 (2001).
CAS PubMed PubMed Central Google Scholar
3.
Reiss, J., Bridle, J. R., Montoya, J. M. & Woodward, G. Emerging horizons in biodiversity and ecosystem functioning research. Trends Ecol. Evol. 24, 505–514 (2009).
PubMed Google Scholar
4.
Fuhrman, J. A. & Fuhrman, J. A. Microbial community structure and its functional implications. Nature 459, 193–199 (2009).
ADS CAS PubMed Google Scholar
5.
Lanzen, A. et al. Multi-targeted metagenetic analysis of the influence of climate and environmental parameters on soil microbial communities along an elevational gradient. Sci. Rep. 6, 28257. https://doi.org/10.1038/srep28257 (2016).
ADS CAS Article PubMed PubMed Central Google Scholar
6.
Berendsen, R. L., Pieterse, C. M. J. & Bakker, P. A. H. M. The rhizosphere microbiome and plant health. Trends Plant Sci. 17, 478–486 (2012).
CAS PubMed Google Scholar
7.
Oh, Y. M. et al. Distinctive bacterial communities in the rhizoplane of four tropical tree species. Microb. Ecol. 64, 1018–1027 (2012).
PubMed Google Scholar
8.
Walker, T. S., Bais, H. P., Grotewold, E. & Vivanco, J. M. Root exudation and rhizosphere biology. Plant Physiol. 132, 44–51 (2003).
CAS PubMed PubMed Central Google Scholar
9.
Herre, E. A. Negative plant-soil feedback predicts tree-species relative abundance in a tropical forest. Nature 466, 752–755 (2010).
ADS PubMed Google Scholar
10.
Philippot, L., Raaijmakers, J. M., Lemanceau, P. & Wh, V. D. P. Going back to the roots: The microbial ecology of the rhizosphere. Nat. Rev. Microbiol. 11, 789–799 (2013).
CAS PubMed Google Scholar
11.
Hackl, E., Pfeffer, M., Donat, C., Bachmann, G. & Zechmeister-Boltenstern, S. Composition of the microbial communities in the mineral soil under different types of natural forest. Soil Biol. Biochem. 37, 661–671 (2005).
CAS Google Scholar
12.
Park, S. et al. Principal component analysis and discriminant analysis (PCA–DA) for discriminating profiles of terminal restriction fragment length polymorphism (T-RFLP) in soil bacterial communities. Soil Biol. Biochem. 38, 2344–2349 (2006).
CAS Google Scholar
13.
Mendes, R. et al. Deciphering the rhizosphere microbiome for disease-suppressive bacteria. Science 332, 1097–1100 (2011).
ADS CAS PubMed Google Scholar
14.
Klimeš, L. Alpine plant life. Functional plant ecology of high mountain ecosystems by C. Körner. Folia Geobot. 41, 454–455 (2006).
Google Scholar
15.
Diaz, H. F., Grosjean, M. & Graumlich, L. Climate variability and change in high elevation regions: Past, present and future. Clim. Change 59, 1–4 (2003).
Google Scholar
16.
Schinner, F. & Gstraunthaler, G. Adaptation of microbial activities to the environmental conditions in alpine soils. Oecologia 50, 113–116 (1981).
ADS PubMed Google Scholar
17.
Cui, H.-J. et al. Soil microbial community composition and its driving factors in alpine grasslands along a mountain elevational gradient. J. Mt. Sci. 13, 1013–1023. https://doi.org/10.1007/s11629-015-3614-7 (2016).
Article Google Scholar
18.
Zhang, B., Liang, C., He, H. & Zhang, X. Variations in soil microbial communities and residues along an altitude gradient on the northern slope of changbai mountain, china. PLoS ONE 8, e66184 (2013).
ADS CAS PubMed PubMed Central Google Scholar
19.
Collins, C. G., Carey, C. J., Aronson, E. L., Kopp, C. W. & Diez, J. M. Direct and indirect effects of native range expansion on soil microbial community structure and function. J. Ecol. 104, 1271–1283 (2016).
Google Scholar
20.
Margesin, R., Jud, M., Tscherko, D. & Schinner, F. Microbial communities and activities in alpine and subalpine soils. FEMS Microbiol. Ecol. 67, 208–218 (2009).
CAS PubMed Google Scholar
21.
Fierer, N. & Mcculley, R. L. Reconstructing the microbial diversity and function of pre-agricultural tallgrass prairie soils in the United States. Science 342, 621–624 (2013).
ADS CAS PubMed Google Scholar
22.
Shi, Y. et al. Multi-scale variability analysis reveals the importance of spatial distance in shaping Arctic soil microbial functional communities. Soil Biol. Biochem. 86, 126–134 (2015).
CAS Google Scholar
23.
Yang, Y. et al. The microbial gene diversity along an elevation gradient of the Tibetan grassland. Isme J. Multidiscipl. J. Microb. Ecol. 8, 430–440 (2013).
Google Scholar
24.
Ding, J. et al. Integrated metagenomics and network analysis of soil microbial community of the forest timberline. Sci. Rep. 5, 7994 (2015).
CAS PubMed PubMed Central Google Scholar
25.
Liu, J. et al. High throughput sequencing analysis of biogeographical distribution of bacterial communities in the black soils of northeast China. Soil Biol. Biochem. 70, 113–122 (2014).
CAS Google Scholar
26.
Brockett, B. F. T., Prescott, C. E. & Grayston, S. J. Soil moisture is the major factor influencing microbial community structure and enzyme activities across seven biogeoclimatic zones in western Canada. Soil Biol. Biochem. 44, 9–20 (2012).
CAS Google Scholar
27.
Uroz, S., Tech, J. J., Sawaya, N. A., Frey-Klett, P. & Leveau, J. H. J. Structure and function of bacterial communities in ageing soils: Insights from the Mendocino ecological staircase. Soil Biol. Biochem. 69, 265–274 (2014).
CAS Google Scholar
28.
Shi, Y. et al. Vegetation-associated impacts on arctic tundra bacterial and microeukaryotic communities. Appl. Environ. Microbiol. 81, 492–501 (2014).
PubMed Google Scholar
29.
Zeglin, L. H. & Myrold, D. D. Fate of decomposed fungal cell wall material in organic horizons of old-growth douglas-fir forest soils. Soil Sci. Soc. Am. J. 77, 489–500 (2013).
ADS CAS Google Scholar
30.
Wallander, H., Göransson, H. & Rosengren, U. Production, standing biomass and natural abundance of 15N and 13C in ectomycorrhizal mycelia collected at different soil depths in two forest types. Oecologia 139, 89–97 (2004).
ADS PubMed Google Scholar
31.
Colpaert, J. V., Laere, A. V. & Assche, J. A. V. Carbon and nitrogen allocation in ectomycorrhizal and non-mycorrhizal Pinus sylvestris L. seedlings. Tree Physiol. 16, 787–793 (1996).
CAS PubMed Google Scholar
32.
Zhang, M. et al. Distribution of soil organic carbon fractions along the altitudinal gradient in Changbai mountain, China. Pedosphere 21, 615–620 (2011).
CAS Google Scholar
33.
Wenduo, X. U., Xingyuan, H. E., Chen, W. & Liu, C. Characteristics and succession rules of vegetation types in Changbai mountain. Chin. J. Ecol. 23, 162–174 (2004).
Google Scholar
34.
Mao, Y., Yannarell, A. C., Davis, S. C. & Mackie, R. I. Impact of different bioenergy crops on N-cycling bacterial and archaeal communities in soil. Environ. Microbiol. 15, 928–942 (2012).
PubMed Google Scholar
35.
Grayston, S. J. et al. Assessing shifts in microbial community structure across a range of grasslands of differing management intensity using CLPP, PLFA and community DNA techniques. Appl. Soil. Ecol. 25, 63–84 (2004).
Google Scholar
36.
Lauber, C. L., Hamady, M., Knight, R. & Fierer, N. Pyrosequencing-based assessment of soil pH as a predictor of soil bacterial community structure at the continental scale. Appl. Environ. Microbiol. 75, 5111–5120 (2009).
CAS PubMed PubMed Central Google Scholar
37.
Tedersoo, L. et al. Towards global patterns in the diversity and community structure of ectomycorrhizal fungi. Mol. Ecol. 21, 4160–4170 (2012).
PubMed Google Scholar
38.
Davey, M. L., Heegaard, E., Halvorsen, R., Kauserud, H. & Ohlson, M. Amplicon-pyrosequencing-based detection of compositional shifts in bryophyte-associated fungal communities along an elevation gradient. Mol. Ecol. 22, 368–383 (2013).
CAS PubMed Google Scholar
39.
Mao, Y., Yannarell, A. C. & Mackie, R. I. Changes in N-transforming archaea and bacteria in soil during the establishment of bioenergy crops. PLoS ONE 6, e24750 (2011).
ADS CAS PubMed PubMed Central Google Scholar
40.
Heijden, M. G. A. V. D., Bardgett, R. D. & Straalen, N. M. V. The unseen majority: Soil microbes as drivers of plant diversity and productivity in terrestrial ecosystems. Ecol. Lett. 11, 296–310 (2008).
PubMed Google Scholar
41.
Steltzer, H. & Bowman, W. D. Original articles: Differential influence of plant species on soil nitrogen transformations within moist meadow alpine Tundra. Ecosystems 1, 464–474 (1998).
CAS Google Scholar
42.
Shen, C., Ni, Y., Liang, W., Wang, J. & Chu, H. Distinct soil bacterial communities along a small-scale elevational gradient in alpine tundra. Front. Microbiol. 6, 538–541 (2014).
CAS Google Scholar
43.
Zhang, C., Liu, G. B., Xue, S. & Xiao, L. Effect of different vegetation types on the rhizosphere soil microbial community structure in the loess plateau of China. J. Integr. Agric. 12, 2103–2113 (2013).
Google Scholar
44.
Weand, M. P., Arthur, M. A., Lovett, G. M., Mcculley, R. L. & Weathers, K. C. Effects of tree species and N additions on forest floor microbial communities and extracellular enzyme activities. Soil Biol. Biochem. 42, 2161–2173 (2010).
CAS Google Scholar
45.
Wu, Z. et al. Terminal restriction fragment length polymorphism analysis of soil bacterial communities under different vegetation types in subtropical area. PLoS ONE https://doi.org/10.1371/journal.pone.0129397 (2015).
Article PubMed PubMed Central Google Scholar
46.
Singh, D. et al. Strong elevational trends in soil bacterial community composition on Mt. Halla, South Korea. Soil Biol. Biochem. 68, 140–149 (2014).
ADS CAS Google Scholar
47.
Fallen, M. Linking water and nutrients through the vadose zone: A fungal interface between the soil and plant systems. J. Arid Land 206, 155–163 (2011).
Google Scholar
48.
Grayston, S. J., Griffith, G. S., Mawdsley, J. L., Campbell, C. D. & Bardgett, R. D. Accounting for variability in soil microbial communities of temperate upland grassland ecosystems. Soil Biol. Biochem. 33, 533–551 (2001).
CAS Google Scholar
49.
Studies, R. Forest floor properties across sharp compositional boundaries separating trembling aspen and jack pine stands in the southern boreal forest. Plant Soil 345, 353–364 (2011).
Google Scholar
50.
Ruzicka, S., Edgerton, D., Norman, M. & Hill, T. The utility of ergosterol as a bioindicator of fungi in temperate soils. Soil Biol. Biochem. 32, 989–1005 (2000).
CAS Google Scholar
51.
Weete, J. D., Abril, M. & Blackwell, M. Phylogenetic distribution of fungal sterols. PLoS ONE 5, e10899 (2010).
ADS PubMed PubMed Central Google Scholar
52.
Shen, C. et al. Dramatic increases of soil microbial functional gene diversity at the treeline ecotone of Changbai mountain. Front. Microbiol. https://doi.org/10.3389/fmicb.2016.01184 (2016).
Article PubMed PubMed Central Google Scholar
53.
Quideau, S. A., Chadwick, O. A., Benesi, A., Graham, R. C. & Anderson, M. A. A direct link between forest vegetation type and soil organic matter composition. Geoderma 104, 41–60 (2001).
ADS CAS Google Scholar
54.
Tian, J. et al. Linkages between the soil organic matter fractions and the microbial metabolic functional diversity within a broad-leaved Korean pine forest. Eur. J. Soil Biol. 66, 57–64 (2015).
CAS Google Scholar
55.
Yuan, Y., Si, G., Jian, W., Luo, T. & Zhang, G. Bacterial community in alpine grasslands along an altitudinal gradient on the Tibetan plateau. FEMS Microbiol. Ecol. 87, 121–132 (2013).
PubMed Google Scholar
56.
Fierer, N. et al. Microbes do not follow the elevational diversity patterns of plants and animals. Ecology 92, 797–804 (2011).
PubMed Google Scholar
57.
Shen, C., Ni, Y., Liang, W., Wang, J. & Chu, H. Distinct soil bacterial communities along a small-scale elevational gradient in alpine tundra. Front. Microbiol. 6, 582. https://doi.org/10.3389/fmicb.2015.00582 (2015).
Article PubMed PubMed Central Google Scholar
58.
Hinsinger, P., Bengough, A. G., Vetterlein, D. & Young, I. M. Rhizosphere: Biophysics, biogeochemistry and ecological relevance. Plant Soil 321, 117–152 (2009).
CAS Google Scholar
59.
Shen, C. et al. Contrasting elevational diversity patterns between eukaryotic soil microbes and plants. Ecology 95, 3190–3202 (2014).
Google Scholar
60.
Jarvis, S. G., Woodward, S. & Taylor, A. F. S. Strong altitudinal partitioning in the distributions of ectomycorrhizal fungi along a short (300 m) elevation gradient. New Phytol. 206, 1145–1155 (2015).
CAS PubMed Google Scholar
61.
Lanzén, A. et al. Multi-targeted metagenetic analysis of the influence of climate and environmental parameters on soil microbial communities along an elevational gradient. Sci. Rep. 6, 28257 (2016).
ADS PubMed PubMed Central Google Scholar
62.
Shen, C. et al. Soil pH drives the spatial distribution of bacterial communities along elevation on Changbai mountain. Soil Biol. Biochem. 57, 204–211 (2013).
CAS Google Scholar
63.
Siles, J. A. & Margesin, R. Abundance and diversity of bacterial, archaeal, and fungal communities along an altitudinal gradient in alpine forest soils: What are the driving factors?. Microb. Ecol. 72, 207–220 (2016).
PubMed PubMed Central Google Scholar
64.
Sagovamareckova, M., Cermak, L., Omelka, M., Kyselkova, M. & Kopecky, J. Bacterial diversity and abundance of a creek valleysites reflected soil pH and season. Open Life Sci. https://doi.org/10.1515/biol-2015-0007 (2015).
Article Google Scholar
65.
Smith, J. L., Halvorson, J. J. & Bolton, H. Soil properties and microbial activity across a 500m elevation gradient in a semi-arid environment. Soil Biol. Biochem. 34, 1749–1757 (2002).
CAS Google Scholar
66.
Yergeau, E., Kang, S., He, Z., Zhou, J. & Kowalchuk, G. A. Functional microarray analysis of nitrogen and carbon cycling genes across an Antarctic latitudinal transect. ISME J. 1, 163–179 (2007).
CAS PubMed Google Scholar
67.
Kai, X. et al. Warming alters expressions of microbial functional genes important to ecosystem functioning. Front. Microbiol. 7, 668 (2016).
ADS Google Scholar
68.
Jing, C. et al. Available nitrogen is the key factor influencing soil microbial functional gene diversity in tropical rainforest. BMC Microbiol. 15, 397–398 (2015).
Google Scholar
69.
Griffiths, R. I. et al. The bacterial biogeography of British soils. Environ. Microbiol. 13, 1642–1654 (2011).
PubMed Google Scholar
70.
Davey, M. L., Nybakken, L., Kauserud, H. & Ohlson, M. Fungal biomass associated with the phyllosphere of bryophytes and vascular plants. Mycol. Res. 113, 1254–1260 (2009).
CAS PubMed Google Scholar
71.
Meier, C. L., Rapp, J., Bowers, R. M., Silman, M. & Fierer, N. Fungal growth on a common wood substrate across a tropical elevation gradient: Temperature sensitivity, community composition, and potential for above-ground decomposition. Soil Biol. Biochem. 42, 1083–1090 (2010).
CAS Google Scholar
72.
Tu, S., Sun, J., Guo, Z. & Gu, F. On relationship between root exudates and plant nutrition in rhizosphere. Soil Environ. 9, 64–67 (2000).
Google Scholar
73.
Zhang, C., Liu, G., Xue, S. & Song, Z. Rhizosphere soil microbial activity under different vegetation types on the Loess Plateau, China. Geoderma 161, 115–125 (2011).
ADS CAS Google Scholar
74.
Zeng, S., Zhiyao, S. U., Chen, B. & Yuanchun, Y. U. A review on the rhizosphere nutrition ecology research. J. Nanjing For. Univ. 27, 79 (2003).
Google Scholar
75.
Wei, Z., Xiaojuan, Q. I., Jianwei, L., Zhengxiang, Y. U. & Xia, C. Characterization of microbial community structure in rhizosphere soils of cowskin Azalea (Rhododendron aureum Georgi) on northern slope of Changbai mountains, China. Chin. Geogr. Sci. 26, 78–89 (2016).
Google Scholar
76.
Yang, X. & Wu, G. The strategy for conservation and sustainable utilization of biodiversity in Changbaishan biosphere reserve. J. For. Res. 9, 217–222 (1998).
Google Scholar
77.
Zong, S. et al. Analysis of the process and impacts of Deyeuxia angustifolia invasion on the Alpine Tundra, Changbai mountain. Acta Ecol. Sin. 34, 87–104 (2014).
Google Scholar
78.
Batten, K. M., Scow, K. M., Davies, K. F. & Harrison, S. P. Two invasive plants alter soil microbial community composition in serpentine grasslands. Biol. Invas. 8, 217–230 (2006).
Google Scholar
79.
Mebius, L. J. A rapid method for the determination of organic carbon in soil. Anal. Chim. Acta 22, 120–124 (1960).
CAS Google Scholar
80.
Industry, D. I. Design in industry. Electr. Power 28, 228–228 (1982).
Google Scholar
81.
Murphy, J. & Riley, J. P. A modified single solution method for the determination of phosphate in natural waters. Anal. Chim. Acta 27, 31–36 (1962).
CAS Google Scholar
82.
Brookes, P. C., Landman, A., Pruden, G. & Jenkinson, D. S. Chloroform fumigation and the release of soil nitrogen: A rapid direct extraction method to measure microbial biomass nitrogen in soil. Soil Biol. Biochem. 17, 837–842 (1985).
CAS Google Scholar
83.
Schinner, F. & Mersi, W. V. Xylanase-, CM-cellulase- and invertase activity in soil: An improved method. Soil Biol. Biochem. 22, 511–515 (1990).
CAS Google Scholar
84.
Johnson, J. L. & Temple, K. L. Some variables affecting the measurement of “catalase activity” in Soil1. Soil Sci. Soc. Am. J. 28, 207–209 (1964).
ADS CAS Google Scholar
85.
Klose, S. & Tabatabai, M. A. Urease activity of microbial biomass in soils as affected by cropping systems. Biol. Fertil. Soils 31, 191–199 (2000).
CAS Google Scholar
86.
Vaughan, D. & Ord, B. G. An effect of soil organic matter on invertase activity in soil. Soil Biol. Biochem. 12, 449–450 (1980).
CAS Google Scholar
87.
Djajakirana, G., Joergensen, R. G. & Meyer, B. Ergosterol and microbial biomass relationship in soil. Biol. Fertil. Soils 22, 299–304 (1996).
CAS Google Scholar
88.
Levy-Booth, D. J., Prescott, C. E. & Grayston, S. J. Microbial functional genes involved in nitrogen fixation, nitrification and denitrification in forest ecosystems. Soil Biol. Biochem. 75, 11–25 (2014).
CAS Google Scholar
89.
Yuan, H. et al. Abundance and composition of CO_2 fixating bacteria in relation to long-term fertilization of paddy soils. Acta Ecol. Sin. 32, 183–189 (2012).
CAS Google Scholar
90.
Chen, J., Yu, Z., Michel, F. C. Jr., Wittum, T. & Morrison, M. Development and application of real-time PCR assays for quantification of erm genes conferring resistance to macrolides-lincosamides-streptogramin B in livestock manure and manure management systems. Appl. Environ. Microbiol. 73, 4407–4416. https://doi.org/10.1128/AEM.02799-06 (2007).
CAS Article PubMed PubMed Central Google Scholar
91.
Edgar, R. C. UPARSE: highly accurate OTU sequences from microbial amplicon reads. Nat. Methods 10, 996–998 (2013).
CAS PubMed Google Scholar
92.
Edgar, R. C. Search and clustering orders of magnitude faster than BLAST. Bioinformatics 26, 2460–2461 (2010).
CAS PubMed Google Scholar
93.
Maidak, B. L. et al. The ribosomal database project (RDP). Nucleic Acids Res. 24, 82–85 (1996).
CAS PubMed PubMed Central Google Scholar
94.
CoreTeam, R. R: A language and environment for statistical computing. (2013).
95.
Oksanen, B. J., Kindt, R., Legendre, P. & O’Hara, B. vegan: Community Ecology Package. R package version 1.8-6 (accessed 10 December 2019); https://CRAN.R-project.org/package=vegan.
96.
Oksanen, J. et al. vegan: Community ecology package. R package version 1.17-3. J. Stat. Softw. 48, 103–132 (2010).
Google Scholar
97.
Nd, S. A., Potvin, L. R. & Lilleskov, E. A. Fertility-dependent effects of ectomycorrhizal fungal communities on white spruce seedling nutrition. Mycorrhiza 25, 649–662 (2015).
Google Scholar
98.
Arbuckle, J. L. Amos 7.0 User’s Guide. (SPSS, 2006). More