More stories

  • in

    Bile acids drive the newborn’s gut microbiota maturation

    Ethic statement
    All animal experiments were performed in compliance with the German animal protection law (TierSchG) and approved by the local animal welfare committees, the Landesamt für Natur, Umwelt und Verbraucherschutz, North Rhine Westfalia (84–02.04.2016.A207 and 84–02.04.2015.A293). All C57BL6J wildtype mice were bred locally and held under specific pathogen-free conditions at the Institute of Laboratory Animal Science at RWTH Aachen University Hospital. The day of birth was considered day 0, i.e., animals screened at day 1 were approximately 24 h old and verified to have ingested breast milk (abdominal milk spot). Mice were weaned at PND21.
    In vivo study design
    To monitor microbiota and host metabolic development throughout the neonatal period into adulthood, intestinal and hepatic tissues were obtained from C57BL/6 J mice in two different approaches. First, total small intestinal, colon, and liver tissues were obtained from C57BL/6 J mice aged 1, 7, 14, 21, 28, and 56 days (n = 5 per timepoint). In a separate set of experiments, similar tissues were obtained from mice aged 0, 6, 12, 18, and 24 h (n = 10 per timepoint). To rule out potential litter and cage effects, we obtained tissues from a single animal of one litter for a given age group and repeated this by selecting a new animal from the same litter for every other age group (Fig. 1a). Every animal was only examined once at the indicated age (PND). This means that in total 30 animals from 5 litters were used for monitoring the microbiota development between age 1 and 56 days and 46 animals from 10 litters to monitor the microbiota development within the first 24 h. For oral bile acid administration, 7–14 (UDCA and Control, n = 14;, GCA, n = 11; TCA, n = 10; βTMCA, n = 7) PND7 animals received the indicated bile acid (Sigma-Aldrich, Biomol) at a concentration of 70 µg/g body weight or PBS daily for 3 days by oral gavage (average 5 µL) with 100% succession47. Body weight and food/water consumption was monitored daily. To determine the effect of bile acid administration, the intestine was aseptically cut into 10–20 parts and alternately assigned to two collections for microbial profiling and assessment of metabolites. Samples from an additional group of adult 8–12 week old animals (n = 5) were processed in parallel to provide an adult microbiota control. Tissues were transferred into sterile micro-centrifuge tubes and stored at −80 °C before analysis. Liver tissues of 7-, 14-, 21- and 56-day-old germ-free mice were obtained from the Institute for Laboratory Animal Science at Hannover Medical School. Tissues were collected and stored in sterile tubes stored at −80 °C until further analysis.
    DNA isolation and generation of sequence data
    Total metagenomic DNA was isolated from snap frozen small intestinal and colonic tissues by repeated-bead-beating (RBB) combined with chemical lysis plus a column-based purification method48. Approximately 200 mg tissue was added to a 2.0 mL screw-cap tube containing 0.5 g of 0.1 mm zirconia beads (Biospec Products, Bartlesville, OK, USA) and 1 mL ASL lysis buffer from the QIAamp DNA Stool Mini Kit (Qiagen, Hilden, Germany). Samples were incubated at 15 min. at 95 °C and subsequently two successive rounds of bead-beating were employed using a FastPrep®−24 instrument (MP Biomedicals, Inc., USA) at 5.5 ms−1 (3 × 1 min. for each round). To minimize physical damage of DNA in the RBB method, the lysate fraction produced from the first round of bead beating was drawn after centrifugation at full speed (~160,000 × g) for 5 min at 4 °C. A second round of bead beating was performed upon adding 300 μL fresh lysate buffer after which supernatants were pooled. To precipitate nucleic acids, 260 μL 10 M ammonium acetate was added to the lysate tubes, mixed and incubated on ice for 5 min. After centrifugation at 4 °C for 15 min. at full speed, supernatants were transferred to a new 1.5 mL tube to which an equal volume of isopropanol was added. Next, samples were incubated on ice for 30 min., centrifuged at RT for 15. min. at full speed and supernatants were removed by decanting. The nucleic acid pellet was washed with 500 μL 70% EtOH and dried under vacuum for 3 min. The nucleic acid pellet was dissolved in 100 μL TE (Tris-EDTA) buffer. Two microliter DNase-free RNase (1 mg/mL) was added and samples were incubated at 37 °C for 15 min. Next, 15 μL proteinase K and 200 μL AL buffer were added, samples were vortexed for 15 s. and incubated at 70 °C for 10 min. After adding 200 μL ethanol (96–100%) and vortexing, the lysate was transferred to QIAamp spin columns (Qiagen, Hilden, Germany). The DNA was finally purified using the QIAamp DNA Stool Mini Kit according to the manufacturer’s instructions and eluated in 200 μL AE Buffer. For each DNA isolation batch, additional isolation was performed on PCR-grade water as a negative control. Generation of amplicon libraries and sequencing was performed according to a previously published protocol49. Briefly, the V4 region of the 16S rRNA gene was PCR amplified from each DNA sample in duplicate in 50 μL volumes containing 10 pmol of both primers (5′-GTGCCAGCMGCCGCGGTAA*-3′ [515 F] and barcoded 5′-GGACTACHVGGGTWTCTAAT*-3′ [806 R]), 5 μL Accuprime buffer II, 0.2 μL Accuprime Hifi polymerase (Thermo Fisher Scientific, Waltham, WA, USA) and 2 μL DNA. After an initial denaturation step at 94 °C for 3 min., amplification was carried out for 30 s. at 94 °C, 45 s at 50 °C and 1 min. at 72 °C. Amplification was carried out in 35 cycles for PND1-PND56; the samples with a low yield of DNA required 40 cycles (0–24 h) The PCR program ended with a final post-PCR incubation step of 10 min at 72 °C to promote complete synthesis of all PCR products. Pooled amplicons from the duplicate reactions were purified using AMPure XP purification (Agencourt, Massachusetts, USA) according to the manufacturer’s instructions and subsequently quantified by Quant-iT PicoGreen dsDNA reagent kit (Invitrogen, New York, USA). Amplicons were mixed in equimolar concentrations, to ensure equal representation of each sample, and sequenced on an Illumina MiSeq instrument using the V3 reagent kit (2 × 250 cycles). All V4 16S rDNA bacterial sequences generated in this study have been submitted to the Qiita and ENA databases under accession No. 10719 and ERP116798, respectively.
    Sequence analysis
    Data demultiplexing, length and quality filtering, pairing of reads and clustering of reads into Operational Taxonomic Units (OTUs) at 97% sequence identity was performed using the online Integrated Microbial Next Generation Sequencing (IMNGS, www.imngs.org) platform using default settings50. Removal of primers and technical reads resulted in fragments of approximately 250 bases. Sequencing was performed from both the 3′ and 5′ side resulting in sufficient resolution. IMNGS is a UPARSE based analysis pipeline51. Pairing, quality filtering and OTU clustering (97% identity) was done by USEARCH 8.052. The analysis was based on OTUs rather than amplicon sequence variants (ASVs) since we aimed at aggregating taxa at a higher level and wanted to avoid overestimation of prokaryotic diversity due to Intragenomic heterogeneity of 16S rRNA genes53. Chimera filtering was performed by UCHIME (with RDP set 15 as a reference database54. Taxonomic classification was done by RDP classifier version 2.11 training set 15.8 Sequence alignment was performed by MUSCLE and treeing by Fasttree55,56. A total of 21,372,397 V4 reads were generated over two runs. After trimming, quality filtering, removal of potential chimeric reads, de-multiplexing and removal of low abundant operational taxonomic units (OTUs), 15,692,587 sequences belonging to 478 OTUs were retained for downstream analysis. Negative controls were evaluated based on their number of sequences and composition compared to other samples. We used for each batch, sampling blank controls, DNA blank extraction controls and no-template amplification controls, and monitored the lack of contaminant bacterial DNA load herein by a gel-based principle. Moreover, we compared the acquired OTUs composition from the negative controls to our low abundant microbial samples to ensure that our findings were not driven by potential contaminant taxa. Subsequently, samples of the negative controls and with low sequencing depth (less than 6,749 sequences/sample) were excluded from subsequent analysis. For the remaining samples, the number of sequences per sample ranged from 6749 to 239,395 (median 87,227).
    Richness, diversity, taxonomy, and enterotype analyses
    Data normalization, diversity, taxonomical binning and group comparisons were performed using the Rhea package version 1.657. In order to not discard informative data, normalization in Rhea was performed by dividing OTU counts per sample for their total count (sample depth) followed by multiplying all of the obtained relative abundance for the lowest sample depth (6749 reads/sample). Alpha- (observed species and Shannon index) and the generalized Unifrac beta-diversity index were calculated using the Rhea package58. Additional beta-diversity indices (weighted Unifrac, unweighted Unifrac, and Bray–Curtis distance) were calculated using the R package (version 3.6.1.) Phyloseq package version 1.30.059. Ordination of samples according to their microbial composition expressed as Hellinger transformed genus abundance data or beta-diversity indices was visualized using Principal Component Analysis (PCA) and Principal Coordinate Analysis (PCoA), respectively. All ordinations were constructed using the R package Phyloseq and included 95% confidence ellipses. Dirichlet multinomial mixtures models (DMM) were used to calculate genus-level enterotypes60. When including samples from all time-points, Laplace approximation revealed an optimal number of three clusters.
    Downstream microbial analyses and presentation
    Smoothing of the kinetic for dominant taxa (Fig. 1e and f, as well as Supplementary Fig. 1d and e) was generated using the geom_smooth function of the ggplot package 3.2.1. with default settings. The lines reflect the mean values of the relative abundance. The appearance and disappearance of OTUs of the dominant phyla (Actinobacteria, Proteobacteria, Firmicutes, Bacteroidetes) with age was visualized in Sankey-plots (SankeyMATIC.com). For readability of Sankey-plots, only OTUs present in >10% of all samples per timepoint and with a prevalence of >20% in the entire dataset, were included. Ecosystem specific functional metagenome predictions were created by the novel PICRUSt-iMGMC workflow (using PICRUSt version 1.1.3) with the de novo picked OTUs and using mouse metagenome-assembled genomes linked to 16S rRNA genes61. The derived KEGG orthologs were mapped into multiple pathways or modules. Differentially changed KEGG modules were identified using the pathways enrichment analyses from MicrobiomeAnalyst with default settings62. The identification of lactobacillus-related OTUs were performed using EZbiocloud and used to construct a phylogentic tree of lactobacilli by MEGA7 (MUSCLE) for alignment and iTOL v4 for the final annotations (itol.embl.de) with default settings.
    Liver metabolomics and bile acid analyses
    The metabolome analyses were carried out with the AbsoluteIDQ® p180 Kit (Biocrates Life Science AG, Austria. The kit allowed identification and quantification of 188 metabolites from 5 compound classes (acyl carnitines, amino acids, glycerophospho-, and sphingolipids, biogenic amines, and hexoses). The kit used flow injection tandem mass spectrometry (FIA) for the non-polar metabolites and LC-MS/MS for the more polar compounds. The integrated MetIDQ Software (version Boron 2623) streamlined the data analysis by automated calculation of metabolite concentrations. Quantification of analytes utilized stable isotope-labeled or chemically homologous internal standards (IS). Controls were included for 3 different concentration levels. For calibration, the kit contained a calibrator mix at 7 different concentrations. The measurements were carried out with an ABI Sciex API5500 Q-TRAP mass spectrometer via Electrospray ionization (ESI) by Multi Reaction Monitoring (MRM) mode for high specifity and sensitivity. 158 MRM pairs were measured in positive ion mode (13 IS) and 2 MRM pairs were measured in negative mode (1 IS). The following additional chemicals for LC-MS were used: water, Millipore; PITC, Fluka; pyridine, Fluka (p.a.); methanol, Merck; Lichrosolv for LC/MS; acetonitrile, Merck; formic acid, Sigma Aldrich. Metabolites were extracted from liver samples by adding H2O/acetonitrile (1:1,v:v) per mg sample followed by homogenization with a tissue disruptor (10 min, 30 Hz, 4 steel balls). The samples were centrifuged (1400×g, 2 min) and the supernatant analyzed. The targeted analysis was performed by adding 10 μL of extracted liver sample to the AbsoluteIDQ® p180 Kit (Biocrates Life Science AG, Innsbruck, Austria), following the vendor’s instructions63. For bile acid measurements the MS-based Bile Acids Kit (Biocrates Life Sciences AG, Innsbruck, Austria), a 96-well plate format assay, was used following the manufacturer´s instructions with normalization based on mass64. The following settings were used: turbo spray for ion source, 20 for Curtian Gas, medium for CAD Gas, 40 psi for ion source gas 1 and 50 psi for ion source gas 2. For the bile acid measurements we used an ion spray voltage of −4500 V and a temperature of 600 °C; for the p180 kit we used an ion spray voltage of 5500 V and a temperature of 500 °C. All metabolomic data generated in this study have been submitted to the Metabolomics Workbench and have been assigned the Study ID ST001388, ST001389, ST001396, ST001397, the Project ID PR000952 and the Project DOI 10.21228/M8N397.
    The contribution of each metabolite to metabolomic variation was derived from age-constrained redundancy analysis (RDA) based on all metabolites stratified in group levels with additional scaling by normalization based on z-scores (Phyloseq package). Moreover, PCA was used to illustrate changes in the composition of the different metabolic groups during the postnatal period for both PC1 and PC2, and PC2 and PC3. For the bile acids the 2nd and 3rd component were chosen for plotting, since the first component was mainly driven by the strong separation observed between the first and subsequent time points (PND1 vs. PND7–56).
    Multi-omics analyses
    Regularized canonical correlation analyses (rCCA) were performed (Mixomics package 6.10.8)65 to unravel specific correlations between bile acids and OTUs with a minimal presence of 20% in all samples. Samples were excluded from the microbiota-data if they were not measured in the bile acid analyses (i.e. PND1 of litter 1 and 2). Prior to rCCA a hyperbolic sine transformation was used on OTU-counts and a log-transformation for the bile acids. For the estimation of regularization (penalization) parameters λ1 and λ2, the cross-validation procedure (CV) method was used. We used a λ1 = 0.0001, λ2 = 1 with a CV-score = 0.4779644 and 2 components. OTUs with a correlation between −0.3 and 0.3 on the first 2 components were filtered out to optimize the rCCA.
    The Spearman’s rank correlation coefficient was calculated between bile acids (weight corrected) and bacterial genera (relative abundances) with a minimal presence of 20% in all samples. Benjamini and Hochberg FDR correction was performed to correct for multiple testing (p  > 0.05). For the heatmap only significant correlations with adjusted p-value of More

  • in

    Sources of solutes and carbon cycling in perennially ice-covered Lake Untersee, Antarctica

    1.
    Matsumoto, G. I. et al. Geochemical characteristics of Antarctic lakes and ponds. Proc. NIPR Symp. Polar Biol. 5, 125–145 (1992).
    Google Scholar 
    2.
    Doran, P. T. et al. Paleolimnology of extreme cold terrestrial and extraterrestrial environments. In Long-Term Environmental Change in Arctic and Antarctic Lakes 475–507 (Springer, 2004); https://doi.org/10.1007/978-1-4020-2126-8_15.

    3.
    Wharton, R. A., Lyons, W. B. & Des Marais, D. J. Stable isotopic biogeochemistry of carbon and nitrogen in a perennially ice-covered Antarctic lake. Chem. Geol. 107, 159–172 (1993).
    ADS  CAS  PubMed  Google Scholar 

    4.
    Gibson, J. A. E. et al. Biogeographic Trends in Antarctic Lake Communities. In Trends in Antarctic Terrestrial and Limnetic Ecosystems 71–99 (Springer, 2006). https://doi.org/10.1007/1-4020-5277-4_5.

    5.
    Hawes, I., Sumner, D. Y., Andersen, D. T. & Mackey, T. J. Legacies of recent environmental change in the benthic communities of Lake Joyce, a perennially ice-covered Antarctic lake. Geobiology 9, 394–410 (2011).
    CAS  PubMed  Google Scholar 

    6.
    Jungblut, A. D., Lovejoy, C. & Vincent, W. F. Global distribution of cyanobacterial ecotypes in the cold biosphere. ISME J. 4, 191–202 (2010).
    CAS  PubMed  Google Scholar 

    7.
    Lawson, J., Doran, P. T., Kenig, F., Des Marais, D. J. & Priscu, J. C. Stable carbon and nitrogen isotopic composition of benthic and pelagic organic matter in lakes of the McMurdo Dry Valleys, Antarctica. Aquat. Geochem. 10, 269–301 (2004).
    CAS  Google Scholar 

    8.
    Neumann, K., Lyons, W. B., Priscu, J. C., Desmarais, D. J. & Welch, K. A. The carbon isotopic composition of dissolved inorganic carbon in perennially ice-covered Antarctic lakes: searching for a biogenic signature. Ann. Glaciol. 39, 518–524 (2004).
    ADS  CAS  Google Scholar 

    9.
    Hawes, I., Jungblut, A. D., Obryk, M. K. & Doran, P. T. Growth dynamics of a laminated microbial mat in response to variable irradiance in an Antarctic lake. Freshw. Biol. 61, 396–410 (2016).
    Google Scholar 

    10.
    Hermichen, W.-D., Kowski, P. & Wand, U. Lake Untersee, a first isotope study of the largest freshwater lake in the interior of East Antarctica. Nature 315, 131–133 (1985).
    ADS  CAS  Google Scholar 

    11.
    Wand, U., Schwarz, G., Brüggemann, E. & Bräuer, K. Evidence for physical and chemical stratification in Lake Untersee (central Dronning Maud Land, East Antarctica). Antarct. Sci. 9, 43–45 (1997).
    ADS  Google Scholar 

    12.
    Andersen, D. T., Sumner, D. Y., Hawes, I., Webster-Brown, J. & McKay, C. P. Discovery of large conical stromatolites in Lake Untersee, Antarctica. Geobiology 9, 280–293 (2011).
    CAS  PubMed  Google Scholar 

    13.
    Faucher, B., Lacelle, D., Fisher, D. A., Andersen, D. T. & McKay, C. P. Energy and water mass balance of Lake Untersee and its perennial ice cover, East Antarctica. Antarct. Sci. 31, 271–285 (2019).
    ADS  Google Scholar 

    14.
    Weisleitner, K., Perras, A., Moissl-Eichinger, C., Andersen, D. T. & Sattler, B. Source environments of the microbiome in perennially ice-covered Lake Untersee, Antarctica. Front. Microbiol. 10, 1019 (2019).
    PubMed  PubMed Central  Google Scholar 

    15.
    Hawes I., Sumner D., & Jungblut A. D. Complex structure but simple function in microbial mats from Antarctic Lakes. In The Structure and Function of Aquatic Microbial Communities. Advances in Environmental Microbiology, Vol. 7 (ed Hurst, C.) (Springer, Cham, 2019) https://doi.org/10.1007/978-3-030-16775-2_4.
    Google Scholar 

    16.
    Koo, H. et al. Microbial communities and their predicted metabolic functions in growth laminae of a unique large conical mat from Lake Untersee, East Antarctica. Front. Microbiol. 8, 1347 (2017).
    PubMed  PubMed Central  Google Scholar 

    17.
    Faucher, B., Lacelle, D., Fisher, D. A., Weisleitner, K. & Andersen, D. T. Modeling δD-δ18O steady-state of well-sealed perennially ice covered-lakes and their recharge source: examples from Lake Untersee and Lake Vostok, Antarctica. Front. Earth Sci. https://doi.org/10.3389/feart.2020.00220 (2020).
    Article  Google Scholar 

    18.
    McKay, C. P., Andersen, D. & Davila, A. Antarctic environments as models of planetary habitats: University Valley as a model for modern Mars and Lake Untersee as a model for Enceladus and ancient Mars. Polar J. 7, 303–318 (2017).
    Google Scholar 

    19.
    Bormann, P. The Schirmacher Oasis, Queen Maud Land, East Antarctica and its surroundings. Polarforschung 64, 151–153 (1995).
    Google Scholar 

    20.
    Paech, H.-J. & Stackebrandt, W. Geology. In The Schirmacher Oasis, Queen Maud Land, East Antarctica and its surroundings (eds Bormann, P., & Fritzsche, D.) 59–159 (Petermanns Geographische Mitteilungen, 1995).

    21.
    Andersen, D. T., McKay, C. P. & Lagun, V. Climate conditions at perennially ice-covered Lake Untersee, East Antarctica. J. Appl. Meteorol. Climatol. 54, 1393–1412 (2015).
    ADS  Google Scholar 

    22.
    Hoffman, M. J., Fountain, A. G. & Liston, G. E. Surface energy balance and melt thresholds over 11 years at Taylor Glacier, Antarctica. J. Geophys. Res. 113, F04014 (2008).
    ADS  Google Scholar 

    23.
    Steel, H. C. B., McKay, C. P. & Andersen, D. T. Modeling circulation and seasonal fluctuations in perennially ice-covered and ice-walled Lake Untersee, Antarctica. Limnol. Oceanogr. 60, 1139–1155 (2015).
    ADS  Google Scholar 

    24.
    Bevington, J. et al. The thermal structure of the anoxic trough in Lake Untersee, Antarctica. Antarct. Sci. 30, 333–344 (2018).
    ADS  Google Scholar 

    25.
    Wand, U., Samarkin, V. A., Nitzsche, H.-M. & Hubberten, H.-W. Biogeochemistry of methane in the permanently ice-covered Lake Untersee, central Dronning Maud Land, East Antarctica. Limnol. Oceanogr. 51, 1180–1194 (2006).
    ADS  CAS  Google Scholar 

    26.
    McKay, C. P., Clow, G. D., Wharton, R. A. & Squyres, S. W. Thickness of ice on perennially frozen lakes. Nature 313, 561–562 (1985).
    ADS  CAS  PubMed  Google Scholar 

    27.
    Kaup, E., Loopman, A., Klokov, V., Simonov, I. & Haendel, D. Limnological investigations in the Untersee Oasis. In Limnological Studies in Queen Maud Land (East Antarctica) (ed. Martin, J.) 28–42 (Valgus, Tallinn, 1988).
    Google Scholar 

    28.
    Isaksson, E. et al. A century of accumulation and temperature changes in Dronning Maud Land, Antarctica. J. Geophys. Res. Atmos. 101, 7085–7094 (1996).
    ADS  Google Scholar 

    29.
    Killawee, J. A., Fairchild, I. J., Tison, J. L., Janssens, L. & Lorrain, R. Segregation of solutes and gases in experimental freezing of dilute solutions: implications for natural glacial systems. Geochim. Cosmochim. Acta 62, 3637–3655 (1998).
    ADS  CAS  Google Scholar 

    30.
    Santibáñez, P. A. et al. Differential incorporation of bacteria, organic matter, and inorganic ions into lake ice during ice formation. J. Geophys. Res. Biogeosciences 124, 585–600 (2019).
    ADS  Google Scholar 

    31.
    Jonsell, U., Hansson, M. E., Mörth, C. M. & Torssander, P. Sulfur isotopic signals in two shallow ice cores from Dronning Maud Land, Antarctica. Tellus Ser. B Chem. Phys. Meteorol. 57, 341–350 (2005).
    ADS  Google Scholar 

    32.
    Patris, N., Delmas, R. J. & Jouzel, J. Isotopic signatures of sulfur in shallow Antarctic ice cores. J. Geophys. Res. Atmos. 105, 7071–7078 (2000).
    ADS  CAS  Google Scholar 

    33.
    Castellano, E. et al. Holocene volcanic history as recorded in the sulfate stratigraphy of the European Project for Ice Coring in Antarctica Dome C (EDC96) ice core. J. Geophys. Res. Atmos. 110, D06114. https://doi.org/10.1029/2004JD005259 (2005).
    ADS  CAS  Article  Google Scholar 

    34.
    Wolff, E. W. et al. Southern Ocean sea-ice extent, productivity and iron flux over the past eight glacial cycles. Nature 440, 491–496 (2006).
    ADS  CAS  PubMed  Google Scholar 

    35.
    Mayewski, P. A. et al. Climate change during the last deglaciation in Antarctica. Science 272, 1636–1638 (1996).
    ADS  CAS  PubMed  Google Scholar 

    36.
    Alexander, B. et al. East Antarctic ice core sulfur isotope measurements over a complete glacial–interglacial cycle. J. Geophys. Res. Atmos. 108, 4786 (2003).
    ADS  Google Scholar 

    37.
    Nielsen, H., Pilot, J., Grinenko, L. N., Grinenko, V. A. & Lein, A. Y. Lithospheric sources of sulphur. In Stable Isotopes: Natural and Anthropogenic Sulphur in the Environment (ed. Krouse, H.) 65–132 (Wiley, New York, 1991).
    Google Scholar 

    38.
    Parkhurst, D. L. & Appelo, C. A. J. Description of input and examples for PHREEQC version 3—a computer program for speciation, batch-reaction, one-dimensional transport, and inverse geochemical calculations. U.S. Geological Survey Techniques and Methods, book 6, chapter A43 (2013). https://doi.org/10.1016/0029-6554(94)90020-5.

    39.
    Blum, J. D. & Erel, Y. A silicate weathering mechanism linking increases in marine 87Sr/86Sr with global glaciation. Nature 373, 415–418 (1995).
    ADS  CAS  Google Scholar 

    40.
    Blum, J. D. & Erel, Y. Rb–Sr isotope systematics of a granitic soil chronosequence: the importance of biotite weathering. Geochim. Cosmochim. Acta 61, 3193–3204 (1997).
    ADS  CAS  Google Scholar 

    41.
    Takacs, C. D., Priscu, J. C. & McKnight, D. M. Bacterial dissolved organic carbon demand in McMurdo Dry Valley lakes, Antarctica. Limnol. Oceanogr. 46, 1189–1194 (2001).
    ADS  CAS  Google Scholar 

    42.
    Hood, E., Battin, T. J., Fellman, J., O’Neel, S. & Spencer, R. G. M. Storage and release of organic carbon from glaciers and ice sheets. Nat. Geosci. 8, 91–96 (2015).
    ADS  CAS  Google Scholar 

    43.
    Lyons, W. B. et al. The carbon stable isotope biogeochemistry of streams, Taylor Valley, Antarctica. Appl. Geochem. 32, 26–36 (2013).
    CAS  Google Scholar 

    44.
    Hayes, J. M. Factors controlling 13C contents of sedimentary organic compounds: principles and evidence. Mar. Geol. 113, 111–125 (1993).
    ADS  CAS  Google Scholar 

    45.
    Hage, M. M., Uhle, M. E. & Macko, S. Biomarker and stable isotope characterization of coastal pond-derived organic matter, McMurdo Dry Valleys, Antarctica. Astrobiology 7, 645–661 (2007).
    ADS  CAS  PubMed  Google Scholar 

    46.
    Calder, J. A. & Parker, P. L. Geochemical implications of induced changes in C13 fractionation by blue-green algae. Geochim. Cosmochim. Acta 37, 133–140 (1973).
    ADS  CAS  Google Scholar 

    47.
    Pardue, J. W., Scalan, R. S., Van Baalen, C. & Parker, P. L. Maximum carbon isotope fractionation in photosynthesis by blue-green algae and a green alga. Geochim. Cosmochim. Acta 40, 309–312 (1976).
    ADS  CAS  Google Scholar 

    48.
    Wada, E. et al. Ecological aspects of carbon and nitrogen isotope ratios of cyanobacteria. Plankt. Benthos Res. 7, 135–145 (2012).
    Google Scholar 

    49.
    Gow, A. J. & Williamson, T. Gas inclusions in the Antarctic ice sheet and their significance. US Army Corps Eng Cold Reg Res Eng Lab Res Rep (1975).

    50.
    Samyn, D., Fitzsimons, S. J. & Lorrain, R. D. Strain-induced phase changes within cold basal ice from Taylor Glacier, Antarctica, indicated by textural and gas analyses. J. Glaciol. 51, 611–619 (2005).
    ADS  Google Scholar 

    51.
    Monnin, E. et al. Evidence for substantial accumulation rate variability in Antarctica during the Holocene, through synchronization of CO2 in the Taylor Dome, Dome C and DML ice cores. Earth Planet. Sci. Lett. 224, 45–54 (2004).
    ADS  CAS  Google Scholar 

    52.
    Schmitt, J. et al. Carbon isotope constraints on the deglacial CO2 rise from ice cores. Science 336, 711–714 (2012).
    ADS  CAS  PubMed  Google Scholar 

    53.
    Eggleston, S., Schmitt, J., Bereiter, B., Schneider, R. & Fischer, H. Evolution of the stable carbon isotope composition of atmospheric CO2 over the last glacial cycle. Paleoceanography 31, 434–452 (2016).
    ADS  Google Scholar 

    54.
    Clark, I. Groundwater Geochemistry and Isotopes (CRC Press, Cambridge, 2015). https://doi.org/10.1201/b18347.
    Google Scholar 

    55.
    Wadham, J. L. et al. Biogeochemical weathering under ice: size matters. Glob. Biogeochem. Cycles 24, GB3025 (2010).
    ADS  Google Scholar 

    56.
    Wynn, P. M., Hodson, A. & Heaton, T. Chemical and isotopic switching within the subglacial environment of a high Arctic Glacier. Biogeochemistry 78, 173–193 (2006).
    CAS  Google Scholar 

    57.
    Graly, J. A., Drever, J. I. & Humphrey, N. F. Calculating the balance between atmospheric CO2 drawdown and organic carbon oxidation in subglacial hydrochemical systems. Glob. Biogeochem. Cycles 31, 709–727 (2017).
    ADS  CAS  Google Scholar 

    58.
    Badger, M. The roles of carbonic anhydrases in photosynthetic CO2 concentrating mechanisms. Photosynth. Res. https://doi.org/10.1023/A:1025821717773 (2003).
    Article  PubMed  Google Scholar 

    59.
    Eigenbrode, J. L. & Freeman, K. H. Late Archean rise of aerobic microbial ecosystems. Proc. Natl. Acad. Sci. 103, 15759–15764 (2006).
    ADS  CAS  PubMed  Google Scholar 

    60.
    Rasmussen, B., Fletcher, I. R., Brocks, J. J. & Kilburn, M. R. Reassessing the first appearance of eukaryotes and cyanobacteria. Nature 455, 1101 (2008).
    ADS  CAS  PubMed  Google Scholar 

    61.
    Allwood, A. C., Walter, M. R., Kamber, B. S., Marshall, C. P. & Burch, I. W. Stromatolite reef from the early Archaean era of Australia. Nature 441, 714–718 (2006).
    ADS  CAS  PubMed  Google Scholar 

    62.
    Tomkins, J. D., Antoniades, D., Lamoureux, S. F. & Vincent, W. F. A simple and effective method for preserving the sediment–water interface of sediment cores during transport. J. Paleolimnol. 40, 577–582 (2008).
    ADS  Google Scholar 

    63.
    St-Jean, G. Automated quantitative and isotopic (13C) analysis of dissolved inorganic carbon and dissolved organic carbon in continuous-flow using a total organic carbon analyser. Rapid Commun. Mass Spectrom. 17, 419–428 (2003).
    ADS  CAS  PubMed  Google Scholar 

    64.
    Murseli, S., et al. The preparation of water (DIC, DOC) and gas (CO2, CH4) samples for radiocarbon analysis at AEL-AMS, Ottawa, Canada. Radiocarbon 61, 1563–1571 https://doi.org/10.1017/RDC.2019.14 (2019).

    65.
    Crann, C. A. et al. First status report on radiocarbon sample preparation techniques at the A.E. Lalonde AMS Laboratory (Ottawa, Canada). Radiocarbon 59, 695–704 (2017).
    CAS  Google Scholar 

    66.
    Stuiver, M. & Polach, H. A. Reporting of 14C data. Radiocarbon 19, 355–363 (1977).
    Google Scholar 

    67.
    Lyons, W. B., Welch, K. A., Priscu, J. C., Tranter, M. & Royston-Bishop, G. Source of Lake Vostok cations constrained with strontium isotopes. Front. Earth Sci. 4, 78 (2016).
    ADS  Google Scholar 

    68.
    Lyons, W. B. et al. Strontium isotopic signatures of the streams and lakes of Taylor Valley, Southern Victoria Land, Antarctica: chemical weathering in a polar climate. Aquat. Geochem. 8, 75–95 (2002).
    CAS  Google Scholar 

    69.
    Friedman, I., Rafter, A. & Smith, G. I. A thermal, isotopic, and chemical study of Lake Vanda and Don Juan Pond, Antartica. In Contributions to Antarctic Research IV, volume 67 (eds. Elliot, D. H. & Blaisdell, G. L.) 47–74 (1995). https://doi.org/10.1002/9781118668207.ch5.

    70.
    Grousset, F. E. et al. Antarctic (Dome C) ice-core dust at 18 k.y. B.P.: isotopic constraints on origins. Earth Planet. Sci. Lett. 111, 175–182 (1992).
    ADS  CAS  Google Scholar 

    71.
    Burton, G., Morgan, V., Boutron, C. & Rosman, K. J. High-sensitivity measurements of strontium isotopes in polar ice. Anal. Chim. Acta 469, 225–233 (2002).
    CAS  Google Scholar  More

  • in

    Salinity and temperature increase impact groundwater crustaceans

    1.
    Gaston, L., Lapworth, D. J., Stuart, M. & Amscheidt, J. Prioritization approaches for substances of emerging concern in groundwater: a critical review. Environ. Sci. Technol. 53(11), 6107–6122. https://doi.org/10.1021/acs.est.8b04490 (2019).
    ADS  CAS  Article  PubMed  Google Scholar 
    2.
    Castaño-Sánchez, A., Hose, G. C. & Reboleira, A. S. P. S. Ecotoxicological effects of anthropogenic stressors in subterranean organisms: a review. Chemosphere 244, 125422. https://doi.org/10.1016/j.chemosphere.2019.125422 (2020).
    ADS  CAS  Article  PubMed  Google Scholar 

    3.
    Mammola, S. et al. Scientists’ warning on the conservation of subterranean ecosystems. Bioscience 69(8), 641–650. https://doi.org/10.1093/biosci/biz064 (2019).
    Article  Google Scholar 

    4.
    Foster, S. S. D. & Chilton, P. J. Groundwater: the processes and global significance of aquifer degradation. Philos. Trans. R. Soc. Lond. B. Biol. Sci. 358(1440), 1957–1972. https://doi.org/10.1098/rstb.2003.1380 (2003).
    CAS  Article  PubMed  PubMed Central  Google Scholar 

    5.
    Masterson, J. P. & Garabedian, S. P. Effects of sea-level rise on ground water flow in a coastal aquifer system. Groundwater 45(2), 209–217. https://doi.org/10.1111/j.1745-6584.2006.00279.x (2007).
    CAS  Article  Google Scholar 

    6.
    Ferguson, G. & Gleeson, T. Vulnerability of coastal aquifers to groundwater use and climate change. Nat. Clim. Change 2(5), 342. https://doi.org/10.1038/nclimate1413 (2012).
    ADS  Article  Google Scholar 

    7.
    Robinson, H. K. & Hasenmueller, E. A. Transport of road salt contamination in karst aquifers and soils over multiple timescales. Sci. Total Environ. 603, 94–108. https://doi.org/10.1016/j.apgeochem.2017.01.018 (2017).
    ADS  CAS  Article  PubMed  Google Scholar 

    8.
    Davis, J., Sim, L. & Chambers, J. Multiple stressors and regime shifts in shallow aquatic ecosystems in antipodean landscapes. Freshw. Biol. 55, 5–18. https://doi.org/10.1111/j.1365-2427.2009.02376.x (2010).
    Article  Google Scholar 

    9.
    Davis, J. et al. When trends intersect: the challenge of protecting freshwater ecosystems under multiple land use and hydrological intensification scenarios. Sci. Total Environ. 534, 65–78. https://doi.org/10.1016/j.scitotenv.2015.03.127 (2015).
    ADS  CAS  Article  PubMed  Google Scholar 

    10.
    Bennetts, D. A., Webb, J. A., Stone, D. J. M. & Hill, D. M. Understanding the salinisation process for groundwater in an area of south-eastern Australia, using hydrochemical and isotopic evidence. J. Hydrol. 323(1–4), 178–192. https://doi.org/10.1016/j.jhydrol.2005.08.023 (2006).
    ADS  Article  Google Scholar 

    11.
    Cartwright, I., Weaver, T. R., Stone, D. & Reid, M. Constraining modern and historical recharge from bore hydrographs, 3H, 14C, and chloride concentrations: applications to dual-porosity aquifers in dryland salinity areas, Murray Basin, Australia. J. Hydrol. 332(1–2), 69–92. https://doi.org/10.1016/j.jhydrol.2006.06.034 (2007).
    ADS  Article  Google Scholar 

    12.
    Bann, G. & Field, J. S. Dryland salinity, regolith and biodiversity: problems and opportunities for mitigation and remediation. Proceedings of Regolith 2005—Ten Years of CRC LEME, 8–12 (2005).

    13.
    National Land and Water Resources Audit. A Summary of the National Land and Water Resources Audit’s ‘Australian Dryland Salinity Assessment 2000’ NLWRA (Canberra, Commonwealth of Australia, 2001).
    Google Scholar 

    14.
    Velasco, J. et al. Effects of salinity changes on aquatic organisms in a multiple stressor context. Philos. Trans. R. Soc. B. Biol. Sci. 374, 20180011. https://doi.org/10.1098/rstb.2018.0011 (2018).
    CAS  Article  Google Scholar 

    15.
    Di Lorenzo, T. & Galassi, D. Effect of temperature rising on the stygobitic crustacean species Diacyclops belgicus: does global warming affect groundwater populations?. Water 9, 1–12. https://doi.org/10.3390/w9120951 (2017).
    ADS  CAS  Article  Google Scholar 

    16.
    Addo-Bediako, A., Chown, S. L. & Gaston, K. J. Thermal tolerance, climatic variability and latitude. Proc. R. Soc. Lond. B Biol. Sci. 267, 739–745. https://doi.org/10.1098/rspb.2000.1065 (2000).
    CAS  Article  Google Scholar 

    17.
    Hughes, L. Climate change and Australia: trends, projections and impacts. Aust. Ecol. 28, 423–443. https://doi.org/10.1046/j.1442-9993.2003.01300.x (2003).
    Article  Google Scholar 

    18.
    Badino, G. Cave temperatures and global climatic change. Int. J. Speleol. 33(1), 10 (2004).
    Google Scholar 

    19.
    Griebler, C. et al. Ecological assessment of groundwater ecosystems—vision or illusion?. Ecol. Eng. 36, 1174–1190. https://doi.org/10.1016/j.ecoleng.2010.01.010 (2010).
    Article  Google Scholar 

    20.
    Griebler, C. & Avramov, M. Groundwater ecosystem services: a review. Freshw. Sci. 34, 355–367. https://doi.org/10.1086/679903 (2015).
    Article  Google Scholar 

    21.
    Sket, B. Collecting and processing crustaceans of subterranean habitats. J. Crustacean. Biol. 38, 380–384. https://doi.org/10.1093/jcbiol/rux125 (2018).
    Article  Google Scholar 

    22.
    Hart, R. C. & Bychek, E. A. Body size in freshwater planktonic crustaceans: an overview of extrinsic determinants and modifying influences of biotic interactions. Hydrobiologia 668, 61–108. https://doi.org/10.1007/s10750-010-0400-y (2011).
    CAS  Article  Google Scholar 

    23.
    Strong, D. R. Jr. Life history variation among populations of an amphipod (Hyalella azteca). Ecology 53(6), 1103–1111. https://doi.org/10.2307/1935422 (1972).
    Article  Google Scholar 

    24.
    Wong, L. C., Kwok, K. W., Leung, K. M. & Wong, C. K. Relative sensitivity distribution of freshwater planktonic crustaceans to trace metals. Hum. Ecol. Risk Assess. 15(6), 1335–1345. https://doi.org/10.1080/10807030903307115 (2009).
    CAS  Article  Google Scholar 

    25.
    Hayasaka, D., Korenaga, T., Suzuki, K., Sánchez-Bayo, F. & Goka, K. Differences in susceptibility of five cladoceran species to two systemic insecticides, imidacloprid and fipronil. Ecotoxicology 21(2), 421–427. https://doi.org/10.1007/s10646-011-0802-2 (2012).
    CAS  Article  PubMed  Google Scholar 

    26.
    Sánchez-Bayo, F. Comparative acute toxicity of organic pollutants and reference values for crustaceans. I. Branchiopoda, Copepoda and Ostracoda. Environ. Pollut. 139(3), 385–420. https://doi.org/10.1016/j.envpol.2005.06.016 (2006).
    CAS  Article  PubMed  Google Scholar 

    27.
    Peck, L. S., Clark, M. S., Morley, S. A., Massey, A. & Rossetti, H. Animal temperature limits and ecological relevance: effects of size, activity and rates of change. Funct. Ecol. 23(2), 248–256. https://doi.org/10.1111/j.1365-2435.2008.01537.x (2009).
    Article  Google Scholar 

    28.
    Nielsen, D. L., Brock, M. A., Rees, G. N. & Baldwin, D. S. Effects of increasing salinity on freshwater ecosystems in Australia. Aust. J. Bot. 51(6), 655–665. https://doi.org/10.1071/BT02115 (2003).
    Article  Google Scholar 

    29.
    Menció, A., Korbel, K. L. & Hose, G. C. River-aquifer interactions and their relationship to stygofauna assemblages: a case study of the Gwydir River alluvial aquifer (New South Wales, Australia). Sci. Total Environ. 479–480, 292–305. https://doi.org/10.1016/j.scitotenv.2014.02.009 (2014).
    ADS  CAS  Article  PubMed  Google Scholar 

    30.
    Shapouri, M. et al. The variation of stygofauna along a gradient of salinization in a coastal aquifer. Hydrol. Res. 47(1), 89–103. https://doi.org/10.2166/nh.2015.153 (2015).
    Article  Google Scholar 

    31.
    Schulz, C., Steward, A. L. & Prior, A. Stygofauna presence within fresh and highly saline aquifers of the border rivers region in southern Queensland. Proc. Royal Soc. Qld. 118, 27–35 (2013).
    Google Scholar 

    32.
    Reboleira, A. S. P. S., Abrantes, N. A., Oromí, P. & Gonçalves, F. Acute toxicity of copper sulfate and potassium dichromate on stygobiont Proasellus: general aspects of groundwater ecotoxicology and future perspectives. Water Air Soil Pollut. 224(5), 1550. https://doi.org/10.1007/s11270-013-1550-0 (2013).
    ADS  CAS  Article  Google Scholar 

    33.
    Peck, L. S., Morley, S. A., Richard, J. & Clark, M. S. Acclimation and thermal tolerance in antarctic marine ectotherms. J. Exp. Biol. 217(1), 16–22. https://doi.org/10.1242/jeb.089946 (2014).
    Article  PubMed  Google Scholar 

    34.
    Issartel, J., Hervant, F., Voituron, Y., Renault, D. & Vernon, P. Behavioural, ventilatory and respiratory responses of epigean and hypogean crustaceans to different temperatures. Comp. Biochem. Phys. A. 141, 1–7. https://doi.org/10.1016/j.cbpb.2005.02.013 (2005).
    CAS  Article  Google Scholar 

    35.
    Mermillod-Blondin, F. et al. Thermal tolerance breadths among groundwater crustaceans living in a thermally constant environment. J. Exp. Biol. 21(9), 1683–1694. https://doi.org/10.1242/jeb.081232 (2013).
    Article  Google Scholar 

    36.
    Terblanche, J. S., Deere, J. A., Clusella-Trullas, S., Janion, C. & Chown, S. L. Critical thermal limits depend on methodological context. Proc. R. Soc. B Biol. Sci. 274(1628), 2935–2943. https://doi.org/10.1098/rspb.2007.0985 (2007).
    Article  Google Scholar 

    37.
    Chown, S. L., Jumbam, K. R., Sørensen, J. G. & Terblanche, J. S. Phenotypic variance, plasticity and heritability estimates of critical thermal limits depend on methodological context. Funct. Ecol. 23(1), 133–140. https://doi.org/10.1111/j.1365-2435.2008.01481.x (2009).
    Article  Google Scholar 

    38.
    Verberk, W. C. E. P. et al. Does oxygen limit thermal tolerance in arthropods? A critical review of current evidence. Comp. Biochem. Phys. A. 192, 64–78. https://doi.org/10.1016/j.cbpa.2015.10.020 (2016).
    CAS  Article  Google Scholar 

    39.
    Zhu, K. & Grathwohl, P. Groundwater temperature evolution in the subsurface urban heat island of Cologne, Germany. Hydrol. Process. 29(6), 965–978. https://doi.org/10.1002/hyp.10209 (2015).
    ADS  Article  Google Scholar 

    40.
    Griebler, C. et al. Potential impacts of geothermal energy use and storage of heat on groundwater quality, biodiversity, and ecosystem processes. Environ. Earth Sci. 75, 1391. https://doi.org/10.1007/s12665-016-6207-z (2016).
    CAS  Article  Google Scholar 

    41.
    Reid, A. J. et al. Emerging threats and persistent conservation challenges for freshwater biodiversity. Biol. Rev. 94, 849–873. https://doi.org/10.1111/brv.12480 (2019).
    Article  PubMed  Google Scholar 

    42.
    Juan, C., Guzik, M. T., Jaume, D. & Cooper, S. J. Evolution in caves: Darwin’s ‘wrecks of ancient life’ in the molecular era. Mol. Ecol. 19(18), 3865–3880. https://doi.org/10.1111/j.1365-294X.2010.04759.x (2010).
    Article  PubMed  Google Scholar 

    43.
    Song, M. Y. & Brown, J. J. Osmotic effects as a factor modifying insecticide toxicity on Aedes and Artemia. Ecotox. Environ. Safe. 41(2), 195–202. https://doi.org/10.1006/eesa.1998.1693 (1998).
    CAS  Article  Google Scholar 

    44.
    Wang, J., Grisle, S. & Schlenk, D. Effects of salinity on Aldicarb toxicity in juvenile rainbow trout (Oncorhynchus mykiss) and striped bass (Morone saxatilis x chrysops). Toxicol. Sci. 64(2), 200–207. https://doi.org/10.1093/toxsci/64.2.200 (2001).
    CAS  Article  PubMed  Google Scholar 

    45.
    Cairns, J., Heath, A. G. & Parker, B. C. The effects of temperature upon the toxicity of chemicals to aquatic organisms. Hydrobiologia 47(1), 135–171. https://doi.org/10.1007/BF00036747 (1975).
    CAS  Article  Google Scholar 

    46.
    Schiedek, D., Sundelin, B., Readman, J. W. & Macdonald, R. W. Interactions between climate change and contaminants. Mar. Pollut. Bull. 54(12), 1845–1856. https://doi.org/10.1016/j.marpolbul.2007.09.020 (2007).
    CAS  Article  PubMed  Google Scholar 

    47.
    Hose, G. C., Symington, K., Lott, M. & Lategan, M. The toxicity of arsenic (III), chromium (VI) and zinc to groundwater copepods. Environ. Sci. Pollut. Res. 23, 18704–18713. https://doi.org/10.1007/s11356-016-7046-x (2016).
    CAS  Article  Google Scholar 

    48.
    Asmyhr, M. G., Hose, G. C., Graham, P. & Stow, A. Fine-scaled genetics of subterranean syncarids. Freshw. Biol. 59, 1–11. https://doi.org/10.1111/fwb.12239 (2014).
    Article  Google Scholar 

    49.
    Galassi, D. M., Huys, R. & Reid, J. W. Diversity, ecology and evolution of groundwater copepods. Freshw. Biol. 54(4), 691–708. https://doi.org/10.1111/j.1365-2427.2009.02185.x (2009).
    Article  Google Scholar 

    50.
    Schminke, H. K. & Cho, J. L. Biology and ecology of Parabathynellidae (Crustacea, Bathynellacea)—a review. Crustaceana 86(10), 1266–1273. https://doi.org/10.1163/15685403-00003200 (2013).
    Article  Google Scholar 

    51.
    ASTM (American Society for Testing and Materials). Standard guide for Daphnia magna life-cycle toxicity tests. Annual Book of ASTM Standards, Report E1193–97. (Philadelphia, USA, 1997).

    52.
    ISO (Internacional Organization for Standardization). Water quality: determination of the inhibition of the mobility of Daphnia magna Straus (Cladocera, Crustacea)—acute toxicity test. ISO 6341 (Geneva 1996).

    53.
    OECD (Organization for the Economic Cooperation and Development). Guideline for testing of chemicals Daphnia sp., Acute Immobilisation Test. OECD test guideline 202. (Paris, 2004).

    54.
    Di Lorenzo, T. et al. Recommendations for ecotoxicity testing with stygobiotic species in the framework of groundwater environmental risk assessment. Sci. Total Environ. 681, 292–304. https://doi.org/10.1016/j.scitotenv.2019.05.030 (2019).
    ADS  CAS  Article  PubMed  Google Scholar 

    55.
    Rizzo, V., Sánchez-Fernández, D., Fresneda, J., Cieslak, A. & Ribera, I. Lack of evolutionary adjustment to ambient temperature in highly specialized cave beetles. Evol. Biol. 15, 10. https://doi.org/10.1186/s12862-015-0288-2 (2015).
    Article  Google Scholar 

    56.
    Ritz, C. & Streibig, J. C. Bioassay for allelochemicals: examples with RJ Stat. Software (2016).

    57.
    Ripley, B. D. & Venables, W. N. Feed-forward neural networks and multinomial log-linear models. R package version 7.3–12. (2018).

    58.
    Team, R. R Development core team. R. A. Lang. Environ. Stat. Comput. 55, 275–286 (2013).
    Google Scholar 

    59.
    EMA (European Medicines Agency). Guidelines on the Environmental Risk Assessment of Medicinal Products for Human Use. Doc. Ref. 627 Risks of Veterinary Medicinal Products in Groundwater (2006).

    60.
    EC (European Commission). Technical Guidance Document in Support of Commission Directive 93/67/EEC on Risk Assessment for New Notified Substances and Commission Regulation (EC) N. 1488/94 on Risk Assessment for Existing Substances. Office for official publications of the European communities. (Luxembourg, 2003).

    61.
    EC (European Commission). Common Implementation Strategy for the Water Directive (2000/60/EC). Technical Guidance Document for Deriving Environmental Quality Standards. Technical Report 055 (2011).

    62.
    Hose, G. C. Assessing the need for groundwater quality guidelines for pesticides using the species sensitivity distribution approach. Hum. Ecol. Risk. Assess. 11, 951–966. https://doi.org/10.1080/10807030500257788 (2005).
    CAS  Article  Google Scholar 

    63.
    Hose, G. C., Asmyhr, M. G., Cooper, S. J. B. & Humphreys, W. F. Down Under Down Under: Austral Groundwater Life. In Austral Ark (eds Stow, A. et al.) 512–536 (Cambridge University Press, Cambridge, 2015).
    Google Scholar 

    64.
    USEPA. CADDIS Volume 4: SSD Generator V1. Available at https://www.epa.gov/caddis-vol4/caddis-volume-4-data-analysis-download-software#tab-3. Accessed 4 Feb 2020. More

  • in

    Egg size and fecundity of biannually spawning corals at Scott Reef

    Many Acropora corals at Scott Reef spawn biannually, but most individuals spawn either in autumn or in spring (not in both seasons) and are thus temporally isolated from one another with respect to reproduction10,25. Gametogenesis takes ~ 4 to 6 months in Acropora corals at Scott Reef10. While it is unknown whether gametogenesis occurs at different rates in the different seasons, coral colonies experience different environmental conditions through the gametogenic period, leading up to spawning in the spring and autumn spawning seasons. Gametogenesis occurs through austral winter and early spring prior to the spring spawning (October/November), when water temperatures are cooler and days are shorter. Conversely, gametogenesis occurs through summer prior to the autumn spawning (March/April), when water temperatures are warmest (potentially stressfully warm), the days are longest, and tropical cyclones occur. Both spring and autumn spawning correspond with seasonal minimums in wind speed26,27. Within the thermal tolerance limits of the coral, warmer water temperatures and longer days theoretically increase energy availability for reproductive processes through increased metabolic activity and elevated photosynthesis28,29. Despite the different environmental conditions through gametogenesis, there were no seasonal differences in fecundity and eggs size observed in the biannually spawning Acropora corals studied here. There are several possibilities for the lack of seasonality observed in reproductive output. Firstly, fecundity and egg size varied widely within species, which confounded inferences about whether reproductive output was higher in a particular season. Other studies have similarly reported high variability, particularly in fecundity. Fecundity can vary widely with season22,30 and between years31, but there is also high variation between colonies, within a single colony22, with colony age30 and between colonies at different depths13. Fecundity can also vary in response to stressors13, however, there was no evidence of environmental stress, such as damaging waves from cyclones or heat stress causing coral bleaching32, before or during the period when samples were collected for this study. Adaptive plasticity in egg size (in response to conditions parents are exposed to), is discussed further below. Secondly, Scott Reef is situated in the tropics (14°S) with relatively small seasonal variations in temperature and day length, and has a light regime that is affected by high cloud cover during the summer cyclone season. Water temperatures are 2–4 °C cooler in the winter months leading up to spring spawning than in the summer months prior to autumn spawning. Day length is 1–2 h shorter in winter compared to summer, however summer cyclones and rainfall mean that overall sunshine hours are higher in the winter months. Consequently, there are cooler temperatures with more sunshine hours in the months leading to the spring spawning and warmer temperatures with less sunshine hours in the months leading to the autumn spawning, which may result in comparable available energy for reproduction during both spawning events. Thirdly, seasonal differences in environmental conditions may indeed drive some seasonal differences in energetics, but these could be channeled into other life history processes, such as calcification12,33, rather than fecundity and egg size. Variation in available energy may also affect egg quality rather than size or number. For example, in other invertebrates (greenlip abalone), while the size of the eggs do not increase, the density of protein and lipids increase throughout the spawning season34 and may indicate an increase in the quality over size of the egg. However, a study on the reef-building coral Montipora capitata, reported stable egg quality (lipids and antioxidants) regardless of the environmental conditions the parent colonies were exposed to, although egg sizes were not presented in this work35. The higher polyp fecundity in spring observed in A. microclados may have been an adaptive response to cooler (less favourable) conditions in spring. That is, an increase in parental investment to increase survival in less favourable conditions36. Alternatively, more sunshine hours during winter gametogenesis may have provided additional energy to produce more eggs in this species.
    Early work on egg size and number of eggs suggests a simple trade-off model. That is, assuming resources for reproduction are limited, then an increase in gamete size should result in a reduction in the number of gametes37. Correspondingly, earlier studies of different coral species, genera and morphologies reported an inverse relationship between coral egg sizes and the number of eggs (fecundity)21,22,23, also suggesting that energy is channelled to either fewer large eggs or many small eggs19,20. However, in these cases, the reductions in fecundity with egg size among genera were attributed to the differences in polyp morphology (and sometimes reproductive mode i.e. brooder vs spawner). That is, differences in polyp size and structure can also affect egg size and fecundity38,39 independently of energetics. In our between species comparison, we did not see an inverse relationship between egg size and number of eggs (Fig. 3), but there were also no large differences in corallite size for the seven Acropora species studied here (see Supplementary Table S4 for corallite sizes of our species). However, it is important to note that the differences in reproductive mode and morphology (including polyp structure and size) between genera and species, interferes with the egg size versus number of eggs comparison in the context of a trade-off model. In order to determine if there is a trade-off between egg size and number of eggs, we need to look at individuals within a species. That is, do individuals with large eggs have fewer eggs than individuals with smaller eggs of the same species? We have been unable to locate any other dataset providing a within species comparison. Our study demonstrates that there is no direct relationship between egg size and fecundity, within these species of Acropora, and suggests that there is more than just a simple trade-off in resources influencing these measures.
    Egg size has been shown to be a phenotypically plastic trait, regulated by the conditions the parent colony is exposed to. For example, a study on the broadcast spawning ascidian, Styela plicata, demonstrated that parents maintained at high densities produced smaller eggs, presumably reflecting the higher sperm concentrations expected at high adult densities, and therefore reduced requirement for a large target40. While the study was unable to measure the number of gametes, and provide an egg size versus number of eggs comparison, it did suggest that egg size is an adaptive plastic response, rather than a simple energetic constraint. Several studies have also reported varying effects of stress on the number and size of eggs. Under temperature stress sufficient to cause bleaching, corals within the same species can produce either fewer eggs (and maintain size) or smaller eggs (and maintain numbers) depending on their zooxanthellae clade and lipid levels15. Corals exposed to elevated nutrients levels also adjusted their reproductive output, with nitrogen reducing both egg size and number of eggs, and phosphorus producing smaller, but more eggs41. Furthermore, when coral colonies are transplanted to different latitudes, they adjust their egg size to be similar to local colonies. A transplant study conducted in Taiwan reported that coral colonies transplanted to higher latitudes and cooler waters, developed larger eggs, similar to local colonies, as an increased investment response to unfavourable conditions36. This phenotypic plasticity may allow for a type of maternal ‘bet-hedging’, where parents increase within clutch variation in offspring phenotype in response to unpredictable environmental conditions42. The results of our study showed high within species natural variability, but this variability was not consistent with the trade-off model. That is, while there may have been both large and small mature eggs within a species, the large eggs did not necessarily correspond with fewer eggs in a polyp. Within species size variation amongst offspring has traditionally been underestimated43, however, since offspring size can affect dispersal potential, producing a range of sizes, could spread offspring through a range of habitats, thereby spreading the risk of reproductive failure44.
    It is often assumed that if resources are limited for reproduction, then an increase in egg size should result in a reduction in the number of eggs37. However, there are no datasets directly comparing egg size and number within coral species. We have shown that in seven Acropora coral species this trade-off between size and number did not occur. We also did not see any seasonal differences in these measures. We recorded high natural variability in both mature egg size and fecundity, a factor that should not be overlooked when using these measures to gauge or compare reproductive output (e.g. between seasons, years, locations). Since egg size and fecundity are affected by parent colony energy reserves, energy allocation to a range of other life history processes (e.g. growth and repair), polyp size and morphology, responses to environmental conditions, and the interaction of these factors, it is unlikely that there is a simple trade-off between size and number of eggs. It is also unlikely that these measures are constrained only by energetics, given the adaptive phenotypic plasticity reported in other studies36, 40. Furthermore, parental investment can come in the form of increased egg quality (e.g. lipids or antioxidants), rather than size or number of eggs. More research into coral energetics, natural variability, and adaptive plasticity is required to determine the mechanisms behind some of the patterns we observed, but our study doesn’t support a simple trade-off model in coral reproduction. More

  • in

    Substantial blue carbon in overlooked Australian kelp forests

    1.
    Edenhofer, O. Climate Change 2014: Mitigation of Climate Change (Cambridge University Press, Cambridge, 2015).
    Google Scholar 
    2.
    Grassi, G. et al. The key role of forests in meeting climate targets requires science for credible mitigation. Nat. Clim. Change 7, 220–226 (2017).
    ADS  Article  Google Scholar 

    3.
    Duarte, C. M., Losada, I. J., Hendriks, I. E., Mazarrasa, I. & Marbà, N. The role of coastal plant communities for climate change mitigation and adaptation. Nat. Clim. Change 3, 961–968 (2013).
    ADS  CAS  Article  Google Scholar 

    4.
    Mcleod, E. et al. A blueprint for blue carbon: toward an improved understanding of the role of vegetated coastal habitats in sequestering CO 2. Front. Ecol. Environ. 9, 552–560 (2011).
    Article  Google Scholar 

    5.
    Alongi, D. M. Carbon cycling and storage in mangrove forests. Ann. Rev. Mar. Sci. 6, 195–219 (2014).
    Article  Google Scholar 

    6.
    Macreadie, P. I. et al. The future of Blue Carbon science. Nat. Commun. 10, 3998 (2019).
    ADS  Article  Google Scholar 

    7.
    Wernberg, T., Krumhansl, K., Filbee-Dexter, K. & Pedersen, M. Status and trends for the world’s kelp forests. In World Seas: An Environmental Evaluation (ed. Sheppard, C.) 57–78 (Elsevier, London, UK, 2019).

    8.
    Krause-Jensen, D. et al. Sequestration of macroalgal carbon: the elephant in the Blue Carbon room. Biol. Lett. 14, 20180236 (2018).
    Article  Google Scholar 

    9.
    Howard, J. et al. Clarifying the role of coastal and marine systems in climate mitigation. Front. Ecol. Environ. 15, 42–50 (2017).
    Article  Google Scholar 

    10.
    Krumhansl, K. & Scheibling, R. Production and fate of kelp detritus. Mar. Ecol. Prog. Ser. 467, 281–302 (2012).
    ADS  Article  Google Scholar 

    11.
    Hill, R. et al. Can macroalgae contribute to blue carbon? An Australian perspective. Limnol. Oceanogr. 60, 1689–1706 (2015).
    ADS  CAS  Article  Google Scholar 

    12.
    Ortega, A. et al. Important contribution of macroalgae to oceanic carbon sequestration. Nat. Geosci. 12, 748–754 (2019).
    ADS  CAS  Article  Google Scholar 

    13.
    Wernberg, T. & Filbee-Dexter, K. Missing the marine forest for the trees. Mar. Ecol. Prog. Ser. 612, 209–215 (2019).
    ADS  Article  Google Scholar 

    14.
    Filbee-Dexter, K., Feehan, C. J. & Scheibling, R. E. Large-scale degradation of a kelp ecosystem in an ocean warming hotspot. Mar. Ecol. Prog. Ser. 543, 141–152 (2016).
    ADS  CAS  Article  Google Scholar 

    15.
    Smale, D. A., Moore, P. J., Queirós, A. M., Higgs, N. D. & Burrows, M. T. Appreciating interconnectivity between habitats is key to blue carbon management. Front. Ecol. Environ. 16, 71–73 (2018).
    Article  Google Scholar 

    16.
    Filbee-Dexter, K., Wernberg, T., Ramirez-Llodra, E., Norderhaug, K. M. & Pedersen, M. F. Movement of pulsed resource subsidies from shallow kelp forests to deep fjords. Oecologia 187, 291–304 (2018).
    ADS  Article  Google Scholar 

    17.
    Queirós, A. M. et al. Connected macroalgal-sediment systems: blue carbon and food webs in the deep coastal ocean. Ecol. Monogr. https://doi.org/10.1002/ecm.1366 (2019).
    Article  Google Scholar 

    18.
    Kokubu, Y., Rothäusler, E., Filippi, J. B., Durieux, E. D. H. & Komatsu, T. Revealing the deposition of macrophytes transported offshore: evidence of their long-distance dispersal and seasonal aggregation to the deep sea. Sci. Rep. 9, 1–11 (2019).
    CAS  Article  Google Scholar 

    19.
    Krause-Jensen, D. & Duarte, C. M. Substantial role of macroalgae in marine carbon sequestration. Nat. Geosci. 9, 737–742 (2016).
    ADS  CAS  Article  Google Scholar 

    20.
    Bennett, S. et al. The ‘Great Southern Reef’: social, ecological and economic value of Australia’s neglected kelp forests. Mar. Freshw. Res. https://doi.org/10.1071/MF15232 (2016).
    Article  Google Scholar 

    21.
    Serrano, O. et al. Australian vegetated coastal ecosystems as global hotspots for climate change mitigation. Nat. Commun. 10, 4313 (2019).
    ADS  Article  Google Scholar 

    22.
    Fulton, C. J. et al. Sea temperature shapes seasonal fluctuations in seaweed biomass within the Ningaloo coral reef ecosystem. Limnol. Oceanogr. 59, 156–166 (2014).
    ADS  Article  Google Scholar 

    23.
    Coleman, M. A. & Wernberg, T. Forgotten underwater forests: The key role of fucoids on Australian temperate reefs. Ecol. Evol. 7, 8406–8418 (2017).
    Article  Google Scholar 

    24.
    Cresswell, A. K. et al. Translating local benthic community structure to national biogenic reef habitat types. Glob. Ecol. Biogeogr. 26, 1112–1125 (2017).
    Article  Google Scholar 

    25.
    Kennedy, H. et al. Seagrass sediments as a global carbon sink: isotopic constraints. Glob. Biogeochem. Cycles 24, GB4026. https://doi.org/10.1029/2010GB003848 (2010).
    ADS  CAS  Article  Google Scholar 

    26.
    Boyer, K. E. & Fong, P. Macroalgal-mediated transfers of water column nitrogen to intertidal sediments and salt marsh plants. J. Exp. Mar. Biol. Ecol. 321, 59–69 (2005).
    CAS  Article  Google Scholar 

    27.
    Wernberg, T., Vanderklift, M. A., How, J. & Lavery, P. S. Export of detached macroalgae from reefs to adjacent seagrass beds. Oecologia 147, 692–701 (2006).
    ADS  Article  Google Scholar 

    28.
    Spivak, A. C., Sanderman, J., Bowen, J. L., Canuel, E. A. & Hopkinson, C. S. Global-change controls on soil-carbon accumulation and loss in coastal vegetated ecosystems. Nat. Geosci. 12, 685–692 (2019).
    ADS  CAS  Article  Google Scholar 

    29.
    Pedersen, M. F. et al. Detrital carbon production and export in high latitude kelp forests. Oecologia 1, 1–33. https://doi.org/10.1007/s00442-019-04573-z (2019).
    Article  Google Scholar 

    30.
    Chew, S. T. & Gallagher, J. B. Accounting for black carbon lowers estimates of blue carbon storage services. Sci. Rep. 8, 2553 (2018).
    ADS  Article  Google Scholar 

    31.
    Wernberg, T. et al. Biology and ecology of the globally significant kelp Ecklonia radiata. Mar. Biol. Annu. Rev. 57, 265–324 (2019).

    32.
    Wernberg, T. et al. Climate-driven regime shift of a temperate marine ecosystem. Science (80-). 353, 169–172 (2016).
    ADS  CAS  Article  Google Scholar 

    33.
    Connell, S. et al. Recovering a lost baseline: missing kelp forests from a metropolitan coast. Mar. Ecol. Prog. Ser. 360, 63–72 (2008).
    ADS  Article  Google Scholar 

    34.
    Gaylard, S. The Health of Subtidal Reefs Along the Adelaide Metropolitan Coastline 1996–99 (Environment Protection Authority, Carlton, 2003).
    Google Scholar 

    35.
    Carnell, P. E. & Keough, M. J. Reconstructing historical marine populations reveals major decline of a kelp forest ecosystem in Australia. Estuaries Coasts 42, 765–778 (2019).
    Article  Google Scholar 

    36.
    Ling, S. D., Johnson, C. R., Ridgeway, K., Hobday, A. J. & Haddon, M. Climate-driven range extension of a sea urchin: inferring future trends by analysis of recent population dynamics. Glob. Change. Biol. 15, 719–731 (2009).
    ADS  Article  Google Scholar 

    37.
    Ling, S. & Keane, J. Resurvey of the longspined sea urchin (Centrostephanus rodgersii) and associated barren reef in Tasmania. Technical Report, University of Tasmania, https://eprints.utas.edu.au/28761/ (2018).

    38.
    Vergés, A. et al. Long-term empirical evidence of ocean warming leading to tropicalization of fish communities, increased herbivory, and loss of kelp. Proc. Natl. Acad. Sci. USA 113, 13791–13796 (2016).
    Article  Google Scholar 

    39.
    Martínez, B. et al. Distribution models predict large contractions of habitat-forming seaweeds in response to ocean warming. Divers. Distrib. 24, 1350–1366 (2018).
    Article  Google Scholar 

    40.
    Coleman, M. A., Wood, G., Filbee-Dexter, K., Minne, A. J. P., Goold, V. et al.. Restore or redefine: future trajectories for restoration. Front. Mar. Sci. 7, 237. https://doi.org/10.3389/fmars.2020.00237 (2020).
    Article  Google Scholar 

    41.
    Layton, C., Coleman, M. A., Marzinelli, E. M., Steinberg, P. D., Swearer, S. E. et al. Kelp forest restoration in Australia. Front. Mar. Sci. 7, 237. https://doi.org/10.3389/fmars.2020.00074 (2020).
    Article  Google Scholar 

    42.
    Fredriksen, S. et al. Green gravel: a novel restoration tool to combat kelp forest decline. Sci. Rep. 10, 1–7 (2020).
    Article  Google Scholar 

    43.
    Marzinelli, E. M. et al. Large-scale geographic variation in distribution and abundance of Australian deep-water kelp forests. PLoS ONE 10, e0118390. https://doi.org/10.1371/journal.pone.0118390. (2015).
    CAS  Article  PubMed  PubMed Central  Google Scholar 

    44.
    Connell, S. D. & Irving, A. D. Integrating ecology with biogeography using landscape characteristics: a case study of subtidal habitat across continental Australia. J. Biogeogr. 35, 1608–1621 (2008).
    Article  Google Scholar 

    45.
    Wernberg, T., Coleman, M., Fairhead, A., Miller, S. & Thomsen, M. Morphology of Ecklonia radiata (Phaeophyta: Laminarales) along its geographic distribution in south-western Australia and Australasia. Mar. Biol. 143, 47–55 (2003).
    Article  Google Scholar 

    46.
    Staehr, P. A. & Wernberg, T. Physiological responses of Ecklonia radiata (Laminariales) to a latitudinal gradient in ocean temperature. J. Phycol. 45, 91–99 (2009).
    CAS  Article  Google Scholar  More

  • in

    The coffee agroecosystem: bio-economic analysis of coffee berry borer control (Hypothenemus hampei)

    1.
    Talbot, J. M. Grounds for Agreement. The Political Economy of the Coffee Commodity Chain 1–250 (Rowman & Little field Publishers Inc, Washington, DC, 2004).
    Google Scholar 
    2.
    Igami, M. Market power in international commodity trade: The case of coffee. J. Ind. Econ. 63, 225–248 (2015).
    Google Scholar 

    3.
    Waller, J. M., Bigger, M. & Hillocks, R. J. Coffee Pests, Diseases and their Management 1–400 (CABI, Wallingford, 2007).
    Google Scholar 

    4.
    Sustainable Commodities Marketplace Series. Global Market Report: Coffee. International Institute for Sustainable Development (IISD). https://www.iisd.org/sites/default/files/publications/ssi-global-market-report-coffee.pdf (2019).

    5.
    Vega, F. E., Infante, F., Castillo, A. & Jaramillo, J. The coffee berry borer, Hypothenemus hampei (Ferrari) (Coleoptera:Curculionidae): A short review, with recent findings and future research directions. Terr. Arthropod. Rev. 2, 129–147 (2009).
    Google Scholar 

    6.
    Vega, F. E., Infante, F. & Johnson, A. J. In The Genus Hypothenemus, Biology and Ecology of Native and Invasive Species with Emphasis on H. hampei, The Coffee Berry Borer in Bark Beetles (eds Vega, F. E. & Hofstetter, R. W.) 427–494 (Elsevier, London, 2015).

    7.
    International Coffee Organization. IPM of Coffee Berry Borer (CFC/ICO/02). Impact Assessment. https://www.ico.org/project_pdfs/CBB_ICO02.pdf (2009).

    8.
    CABI. Stopping the coffee berry borer in its tracks. Development projects. https://www.cabi.org/uploads/projectsdb/documents/2734/Coffee-berry-borer_HR.pdf (2012).

    9.
    Burbano, E., Wright, M., Bright, D. E. & Vega, F. E. New record for the coffee berry borer, Hypothenemus hampei, in Hawaii. J. Insect. Sci. 11, 117 (2011).
    PubMed  PubMed Central  Google Scholar 

    10.
    State of Hawaii Department of Agriculture. Coffee berry borer Hypothenemus hampei (Ferrari) (Coleoptera: Curculionidae: Scolytinae). Hawaii Department of Agriculture. New Pest Advisory 10–01. https://hdoa.hawaii.gov/pi/files/2013/01/Hypothenemus-hampei-NPA-MASTER.pdf (2014).

    11.
    NAPPO. North American Plant Protection Organization. Detection of the coffee berry borer, Hypothenemus hampei, in Puerto Rico. Official Pest Alerts. https://www.pestalerts.org/es/official-pest-report/detecciones-de-la-broca-del-caf-hypothenemus-hampei-en-puerto-rico-estados (2007).

    12.
    Mariño, Y. A. et al. The coffee berry borer (Coleoptera: Curculionidae) in Puerto Rico: Distribution, infestation, and population per fruit. J. Insect Sci. 17(2), 58 (2017).
    PubMed Central  Google Scholar 

    13.
    Wood, S. L. Bark and Ambrosia Beetles of South America. 1–900 (Monte L. Bean Sci. Mus., Provo, Utah, 2007).

    14.
    Damon, A. A review of the biology and control of the coffee berry borer, Hypothenemus hampei (Coleoptera: Scolytidae). Bull. Entomol. Res. 90, 453–465 (2000).
    CAS  PubMed  Google Scholar 

    15.
    Batchelor, T. P., Hardy, I. C. W. & Barrera, J. F. Interactions among bethylid parasitoid species attacking the coffee berry borer, Hypothenemus hampei (Coleoptera:Scolytidae). Biol. Control 36, 106–118 (2006).
    Google Scholar 

    16.
    Benassi, V.L.R.M. Biologia em diferentes temperaturas e ocorrência de Prorops nasuta Wat. e Cephalonomia stephanoderis Betr. (Hymenoptera:Bethylidae) parasitando Hypothenemus hampei (Ferr.) (Coleoptera:Scolytidae). Biblioteca digital Brasileira de teses e dissertações, https://bdtd.ibict.br/vufind/Record/UNSP_921d283e6a2f9fc4271784147e404a27 (2007).

    17.
    Maldonado, C. E. & Benavides, P. Evaluación del establecimiento de Cephalonomia stephanoderis y Prorops nasuta, controladores de Hypothenemus hampei, en Colombia. Revista cenicafé (Colombia) 58, 333–339 (2007).
    Google Scholar 

    18.
    Pérez-Lachaud, G., Batchelor, T. P. & Hardy, I. C. W. Wasp eat wasp: Facultative hyperparasitism and intra-guild predation by bethylid wasps. Biol. Control 30, 149–155 (2004).
    Google Scholar 

    19.
    Gutierrez, A. P. & Baumgärtner, J. U. Multitrophic level models of predator-prey energetics: II: A realistic model of plant-herbivore-parasitoid-predator interactions. Can. Entomol. 116, 933–949 (1984).
    Google Scholar 

    20.
    Gutierrez, A. P. Applied Population Ecology: A Supply-Demand Approach 1–300 (Wiley, Hoboken, 1996).
    Google Scholar 

    21.
    Gutierrez, A. P., Villacorta, A., Cure, J. R. & Ellis, C. K. Tritrophic analysis of the coffee (Coffea arabica)-coffee berry borer Hypothenemus hampei (Ferrari)-parasitoid system. Anais da sociedade entomológica do brasil 27(3), 357–385 (1998).
    Google Scholar 

    22.
    Rodríguez, D., Cure, J. R., Cotes, J. M., Gutierrez, A. P. & Cantor, F. A coffee agroecosystem model. I. Growth and development of the coffee plant. Ecol. Model. 222, 3626–3639 (2011).
    Google Scholar 

    23.
    Rodríguez, D., Cure, J. R., Cotes, J. M., Gutierrez, A. P. & Cantor, F. A coffee agroecosystem model. II. Dynamics of coffee berry borer. Ecol. Model. 248, 203–214 (2013).
    Google Scholar 

    24.
    Rodríguez, D., Cure, J. R., Cotes, J. M. & Gutierrez, A. P. A coffee agroecosystem model. III. Parasitoids of the coffee berry borer (Hypothenemus hampei). Ecol. Model. 363, 96–110 (2017).
    Google Scholar 

    25.
    Arcila, J., Jaramillo, A., Baldión, V. & La Bustillo, A. E. floración del cafeto y su relación con el control de la broca. Avances Técnicos Cenicafé 193, 6 (1993).
    Google Scholar 

    26.
    Vélez, B. E., Jaramillo, A., Cháves, B. & Franco, M. Distribución de la floración y la cosecha de café en tres altitudes. Avances Técnicos Cenicafé 272, 4 (2000).
    Google Scholar 

    27.
    Benavides, P. & Arévalo, H. Manejo integrado: una estrategia para el control de la broca del café en Colombia. Revista Cenicafé (Colombia) 53(1), 39–48 (2002).
    Google Scholar 

    28.
    Benavides, P., Bustillo, A. E., Cárdenas, M. R. & Montoya, E. C. Análisis biológico y económico del manejo integrado de la broca del café en Colombia. Revista Cenicafé (Colombia) 54(1), 5–23 (2003).
    Google Scholar 

    29.
    Aristizábal, L. F., Jiménez, M., Bustillo, A. E. & Arthurs, S. P. Monitoring cultural control practices for coffee berry borer Hypothenemus hampei (Coleoptera: Curculionidae: Scolytinae) management in a small coffee farm in Colombia. Fla. Entomol. 94(3), 685–687 (2011).
    Google Scholar 

    30.
    Aristizábal, L. F. Frequent and efficient harvesting practices to reduce coffee berry borer populations. CBB Notes Number 05, Kailua-Kona, Hawaii https://www.researchgate.net/publication/340502340_CBB_Notes_Frequent_and_Efficient_Harvesting_Practices_to_Reduce_Coffee_Berry_Borer_Populations (2020).

    31.
    Villalba, D. A., Bustillo, A. E. & Cháves, B. Evaluación de insecticidas para el control de la broca del café en Colombia. Revista Cenicafé (Colombia) 46(3), 152–163 (1995).
    Google Scholar 

    32.
    Benavides, P., Bustillo, A. E., Montoya, E. C., Cárdenas, M. R. & Mejía, C. G. Participación del control cultural, químico y biológico en el manejo de la broca del café. Rev. Colomb. Entomol. 28, 161–165 (2002).
    Google Scholar 

    33.
    Tabares, J. E., Villalba, D. A., Bustillo, A. E. & Vallejo, L. F. Eficacia de insecticidas para el control de la broca del café usando diferentes equipos de aspersión. Revista Cenicafé (Colombia) 59(3), 227–237 (2008).
    Google Scholar 

    34.
    Beers, E. H. et al. Nontarget effect of orchard pesticides on natural enemies: Lessons from the field and the laboratory. Biol. Control 102, 44–52 (2016).
    CAS  Google Scholar 

    35.
    Bueno, A. F., Carvalho, G. A., Santos, A. C., Sosa-Gómez, D. R. & Silva, D. M. Pesticide selectivity to natural enemies: Challenges and constrains for research and field recommendation. Ciência Rural (Santa María, Brasil) https://doi.org/10.1590/0103-8478cr20160829 (2017).
    Article  Google Scholar 

    36.
    Klein, A. M., Steffan-Dewenter, I. & Tscharntke, T. Bee pollination and fruit set of Coffea arabica and C. canephora (Rubiaceae). Am. J. Bot. 90, 153–157 (2003).
    PubMed  Google Scholar 

    37.
    Woodill, A. J., Nakamoto, S. T., Kawabata, A. M. & Leung, P. S. To spray or not to spray: A decision analysis of coffee berry borer in Hawaii. Insects 8(4), 116 (2017).
    PubMed Central  Google Scholar 

    38.
    González, M. T., Posada, F. J. & Bustillo, A. E. Bioensayo para evaluar la patogenicidad de Beauveria bassiana (Bals.) Vuill. sobre la broca del café, Hypothenemus hampei (Ferrari). Rev. Colomb. Entomol. 19, 123–130 (1993).
    Google Scholar 

    39.
    Tobar, S. P., Vélez, P. E. & Montoya, E. C. Evaluación en campo de un aislamiento del hongo Beauveria bassiana seleccionado por resistencia a la luz ultravioleta. Revista Cenicafé (Colombia) 50(3), 195–204 (1999).
    Google Scholar 

    40.
    De la Rosa, W., Alatorre, R. R., Barrera, J. F. & Toriello, C. Effect of Beauveria bassiana and Metarhizium anisopliae (Deuteromycetes) upon the Coffee Berry Borer (Coleoptera: Scolytidae) under field conditions. J. Econ. Entomol. 93, 1409–1413 (2000).
    PubMed  Google Scholar 

    41.
    Posada, F. J., Osorio, E. & Velásquez, E. T. Evaluación de la patogenicidad de Beauveria bassiana sobre la broca del café empleando el método de aspersión foliar. Rev. Colomb. Entomol. 28, 139–144 (2002).
    Google Scholar 

    42.
    Cárdenas, A. B., Villalba, D. A., Bustillo, A. E., Montoya, E. C. & Góngora, C. E. Eficacia de mezclas de cepas del hongo Beauveria bassiana en el control de la broca del café. Revista Cenicafé (Colombia) 58, 293–303 (2007).
    Google Scholar 

    43.
    Aristizábal, L. F. et al. Integrated pest management of coffee berry borer in Hawaii and Puerto Rico: Current status and prospects. Insects 8, 123 (2017).
    PubMed Central  Google Scholar 

    44.
    Greco, B. E., Wright, M. G., Burgueño, J. & Jaronski, S. TEfficacy of Beauveria bassiana applications on coffee berry borer across an elevation gradient in Hawaii. Biocontrol Sci. Technol. 28, 995–1013 (2018).
    Google Scholar 

    45.
    Hollingsworth, R. G. et al. Incorporating Beauveria bassiana into an integrated pest management plan for coffee berry borer in Hawaii. Front. Sustain. Food Syst. 4, 22 (2020).
    Google Scholar 

    46.
    Bustillo, A. E. Una revisión sobre la broca del café, Hypothenemus hampei, en Colombia. Rev. Colomb. Entomol. 32(2), 101–116 (2006).
    Google Scholar 

    47.
    Bustillo, A. E. El manejo de cafetales y su relación con el control de la broca del café en Colombia 2nd edn, 1–40 (Cenicafé, Chinchiná, 2007).
    Google Scholar 

    48.
    Bernal, M. G., Bustillo, A. E. & Posada, F. J. Virulencia de aislamientos de Metarhizyum anisopliae y su eficacia en campo sobre Hypothenemus hampei. Rev. Colomb. Entomol. 20(4), 225–228 (1994).
    Google Scholar 

    49.
    Molina, J. P. A. & López, N. J. C. Efeito da aplicação de nematoides entomopatogênicos sobre frutos infestados com broca-do-café, Hypothenemus hampei (Coleoptera:Scolytidae). Nematol. Bras. (Brazil) 33(2), 115–122 (2009).
    Google Scholar 

    50.
    Benavides-Machado, P., Quintero, J. C. & López, J. C. Evaluación en el laboratorio de nematodos entomopatógenos nativos para el control de la broca del café. Cenicafé (Colombia) 61(2), 119–131 (2010).
    Google Scholar 

    51.
    Guide, B. A. et al. Selection of entomopathogenic nematodes and evaluation of their compatibility with cyantraniliprole for the control of Hypothenemus hampei. Semina: Ciências Agrárias, Londrina 39(4), 1489–1502. https://doi.org/10.5433/1679-0359.2018v39n4p1489 (2018).
    Article  Google Scholar 

    52.
    Lara, J. C., Lopez, J. N. & Bustillo, A. E. Efecto de entomonemátodos sobre poblaciones de la broca del café, Hypothenems hampei (Coleoptera, Scolytidae) en frutos en el suelo. Rev. Colomb. Entomol. 30(2), 179–185 (2004).
    Google Scholar 

    53.
    Abraham, Y. J., Moore, D. & Goodwin, G. Rearing and aspects of biology of Cephalonomia stephanoderis and Prorops nasuta (Hymenoptera:Bethylidae) parasitoid of the coffee berry borer Hypothenemus hampei (Coleoptera: scolytidae). Bull. Entomol. Res. 80, 121–128 (1990).
    Google Scholar 

    54.
    Barrera, J. F. Dynamique des populations du scolyte des fruits du caféier, Hypothenemus hampei (Coleoptera: Scolytidae), et lutte biologique avec le parasitoide Cephalonomia stephanoderis (Hymenoptera: Bethylidae), au Chiapas, Mexique. Ph.D. Thesis. Université Paul Sabatier, Toulouse III. France. https://agritrop.cirad.fr/312449/ (1994).

    55.
    Aristizábal, L. F., Baker, P. S., Orozco, H. J. & Orozco, G. L. Determinación de las horas del día convenientes para la liberación del parasitoide Cephalonomia stephanoderis (Betrem) (Hymenoptera: Bethylidae). Rev. Colomb. Entomol. 2, 99–104 (1996).
    Google Scholar 

    56.
    Aristizábal, L. F., Baker, P. S., Orozco, S. J. & Chaves, B. Parasitismo de Cephalonomia stephanoderis Betrem sobre una población de Hypothenemus hampei (Ferrari) con niveles bajos de infestación en campo. Rev. Colomb. Entomol. 23, 157–164 (1997).
    Google Scholar 

    57.
    Aristizábal, L. F., Bustillo, A. E., Baker, P. F., Orozco, H. J. & Chaves, C. B. Efecto depredador del parasitoide Cephalonomia stephanoderis (Hymenoptera: bethylidae) sobre los estados inmaduros de Hypothenemus hampei (Coleoptera: scolytidae) en condiciones de campo. Rev. Colomb. Entomol. 24, 35–41 (1998).
    Google Scholar 

    58.
    Damon, A. & Valle, J. Comparison of two release techniques for the use of Cephalonomia stephanoderis (Hymenoptera: Bethylidae), to control the coffee berry borer Hypothenemus hampei (Coleoptera: Scolytidae) in Soconusco, southeastern Mexico. Biol. Control 24, 117–127 (2002).
    Google Scholar 

    59.
    Hempel, A. Combate à broca do café por meio da Vespa de Uganda. Bol. Agric. Zoot. Vet. 6(9), 551–555 (1933).
    Google Scholar 

    60.
    Hempel, A. A Prorops nasuta Waterston no Brasil. Arquivos do Instituto Biológico de São Paulo (Brasil) 5, 197–212 (1934).
    Google Scholar 

    61.
    Infante, F. Biological Control of Hypothenemus hampei(Coleoptera:Scolytidae) in Mexico, Using the Parasitoid Prorops nasuta (Hymenoptera:bethylidae) Dissertation, Imperial College, University of London (1998).

    62.
    Infante, F. et al. Cría de Phymastichus coffea, parasitoide de la broca del café y algunas notas sobre su historia de vida. Southw. Entomol. 19, 313–315 (1994).
    Google Scholar 

    63.
    Aristizábal, L. F., Salazar, H. M., Mejía, C. G. & Bustillo, A. E. Introducción y evaluación de Phymastichus coffea (Hymenoptera: eulophidae) en fincas de pequeños caficultores, a través de investigación participativa. Rev. Colomb. Entomol. 30, 219–234 (2004).
    Google Scholar 

    64.
    Castillo, A., Infante, F., Vera-Graziano, J. & Trujillo, J. Host-discrimination by Phymastichus coffea, a parasitoid of the coffee berry borer (Coleoptera: Scolytidae). Biocontrol 49, 655–663 (2004).
    Google Scholar 

    65.
    Castillo, A. et al. Laboratory parasitism by Phymastichus coffea (Hymenoptera: Eulophidae) upon non-target bark beetles associated with coffee plantations. Fla. Entomol. 87, 274–277 (2004).
    Google Scholar 

    66.
    Castillo, A. Análisis Post-introductorio Del Parasitoide Africano Phymastichus coffea LaSalle (Hymenoptera: Eulophidae) a México. Dissertation 1–150 (Colegio de Postgraduados, Montecillo, Estado de México, 2005).

    67.
    Jaramillo, J., Bustillo, A. E., Montoya, E. C. & Borgemeister, C. Biological control of the coffee berry borer Hypothenemus hampei (Coleoptera: Curculionidae) by Phymastichus coffea (Hymenoptera: Eulophidae) in Colombia. Bull. Entomol. Res 95, 1–6 (2005).
    Google Scholar 

    68.
    Jaramillo, J., Borgemeister, C. & Setamou, M. Field superparasitism by Phymastichus coffea, a parasitoid of adult coffee berry borer, Hypothenemus hampei. Entomol. Exp. Appl. 119, 231–237 (2006).
    Google Scholar 

    69.
    Riaño, N., Arcila, J., Jaramillo, A. & Chaves, B. Acumulación de materia seca y extracción de nutrimentos por Coffea arabica L. cv. Colombia en tres localidades de la zona cafetera central. Revista Cenicafé (Colombia) 55, 265–276 (2004).
    Google Scholar 

    70.
    CENICAFE Anuario Meteorológico Cafetero 1990–1995. Chinchiná, Colombia, https://books.google.com.co/books?id=6QNdAAAAMAAJ&hl=es&source=gbs_book_other_versions (Centro Nacional de Investigaciones del Café “Pedro Uribe Mejía”, 1995).

    71.
    Prescott, J. A. Evaporation from water Surface in relation to solar radiation. Trans. R. Soc. South. Aust. 64, 114–118 (1940).
    Google Scholar 

    72.
    Baker, P.S. The Coffee Berry Borer in Colombia. Final report of the DFID-Cenicafé-CABI Bioscience IPM for coffee Project (CNTR 93/1536A), https://www.sidalc.net/cgi-bin/wxis.exe/?IsisScript=CAFE.xis&method=post&formato= 2&cantidad=1&expresion=mfn=019976 (Chinchiná, Colombia DFID-Cenicafé, 1999).

    73.
    Mejía, J. W., Bustillo, A. E., Orozco, H. J. & Cháves, B. Efecto de cuatro insecticidas y de Beauveria bassiana sobre Prorops nasuta (Hymenoptera:Bethylidae), parasitoide de la broca del café. Rev. Colomb. Entomol. 26(3–4), 117–123 (2000).
    Google Scholar 

    74.
    McCullagh, P. & Nelder, J. A. Generalized Linear Models 1–532 (Chapman and Hall/CRC, Boca Raton, 1989) (ISBN 9780412317606).
    Google Scholar 

    75.
    Lactin, D. J., Holliday, N. J., Johnson, D. L. & Craigen, R. Improved rate model of temperature dependent development by arthropods. Environ. Entomol. 24, 68–75 (1995).
    Google Scholar 

    76.
    Fargues, J., Goettel, M. S., Smits, N., Ouedraogo, A. & Rougier, M. Effect of temperature on vegetative growth of Beauveria bassiana from different origins. Mycologia 89(3), 383–392 (1997).
    Google Scholar 

    77.
    Ouedraogo, A., Fargues, J., Goettel, M. S. & Lomer, C. J. Effect of temperature on vegetative growth among isolates of Metarhizium anisopliae and M. flavoviride. Mycopathologia 137, 37–43 (1997).
    CAS  PubMed  Google Scholar 

    78.
    Reyes, I. C., Bustillo, A. E. & Chaves, B. Efecto de Beauveria bassiana y Metarhizium anisopliae sobre el parasitoide de la broca del café, Cephalonomia stephanoderis. Rev. Colomb. Entomol. 21(4), 199–204 (1995).
    Google Scholar 

    79.
    Castillo, A., Gómez, J., Infante, F. & Vega, F. E. Susceptibilidad del parasitoide Phymastichus coffea LaSalle (Hymenoptera: Eulophidae) a Beauveria bassiana en condiciones de laboratorio. Neotrop. Entomol. 38, 665–670 (2009).
    PubMed  Google Scholar 

    80.
    Banu, J.G. Efficacy of entomopathogenic nematodes against coleopteran pests. In Biocontrol Agents: Entomopathogenic and Slug Parasitic Nematodes (eds Mahfouz, M.M. et al.) 174–192 (CABI, Oxfordshire, 2017).

    81.
    Aristizábal, L. F., Salazar, E. H. & Mejía, M. C. Cambios en la adopción de los componentes del manejo integrado de la broca del café Hypothenemus hampei (Coleoptera: Scolytidae) a través de metodologías participativas. Rev. Colomb. Entomol. 28(2), 153–160 (2002).
    Google Scholar 

    82.
    O’Hara, R. B. & Kotze, D. J. Do not log-transform count data. Methods Ecol. Evol. 1, 118–122 (2010).
    Google Scholar 

    83.
    Akaike, H. Information theory and an extension of the maximum likelihood principle. In Second International Symposium on Information Theory (eds. Petrov, V.N. & Csaki, F.) 267–281 (Academiai Kiado, Budapest, 1973).

    84.
    Georgescu-Roegen N. Energy and economic myths: institutional and analytical economic essays. Pergamon, New York, 1976) https://www.elsevier.com/books/energy-and-economic-myths/georgescu-roegen/978-0-08-021027-8.

    85.
    Neuenschwander, P. et al. Impact assessment of the biological control of the cassava mealybug, Phenacoccus manihoti Matile-Ferrero (Hemiptera: Pseudococcidae), by the introduced parasitoid Epidinocarsis lopezi (De Santis) (Hymenoptera: Encyrtidae). Bull. Entomol. Res. 79, 579–594 (1989).
    Google Scholar 

    86.
    Gutierrez, A. P., Pitcairn, M. J., Ellis, C. K., Carruthers, N. & Ghezelbash, R. Evaluating biological control of yellow starthistle (Centaurea solstitialis) in California: a GIS based supply–demand demographic model. Biol. Control 34, 115–131 (2005).
    Google Scholar 

    87.
    Gutierrez, A. P. & Ponti, L. Deconstructing the control of the spotted alfalfa aphid Therioaphis maculata. Agric. For. Entomol. 15, 272–284 (2013).
    Google Scholar 

    88.
    Aristizábal, L. F. et al. Establishment of exotic parasitoids of the coffee berry borer Hypothenemus hampei (Coleoptera: Curculionidae: Scolytinae) in Colombia through farmer participatory research. Int. J. Trop. Insect Sci. 32, 24–31 (2012).
    Google Scholar 

    89.
    Vergara, J. D., Bustillo, A. E. & Cháves, B. Biología de Phymastichus coffea en condiciones de campo. Revista Cenicafé (Colombia) 52, 97–103 (2001).
    Google Scholar 

    90.
    Johnson, M. A., Fortna, S., Hollingsworth, R. G. & Manoukis, N. C. Postharvest population reservoirs of coffee berry borer (Coleoptera: Curculionidae) on Hawai’i Island. J. Econ. Entomol. 112, 2833–2841 (2019).
    PubMed  Google Scholar 

    91.
    Duque, H. & Cháves, C.B. Estudio Sobre la Adopción de Tecnología en Manejo Integrado de la Broca del café. Centro Nacional de Investigaciones del Café-Cenicafé, Chinchiná. https://books.google.com.co/books/about/Estudio_sobre_adopcion_del_manejo_integr.html?id=pDpGMwEACAAJ&redir_esc=y (2000).

    92.
    Bustillo, A. E. et al. Manejo integrado de la broca del café Hypothenemus hampei (Ferrari) en Colombia. Chinchiná, Colombia. Cenicafé, https://biblioteca.cenicafe.org/handle/10778/848 (1998).

    93.
    Aristizábal, L. F., Vélez, J. C. & León, C. A. Diagnóstico del manejo integrado de la broca del café, Hypothenemus hampei (Coleoptera: Curculionidae) con caficultores caldenses. Rev. Col. Entomol. 32, 117–124 (2006).
    Google Scholar 

    94.
    Atallah, S. S., Gómez, M. I. & Jaramillo, J. A bioeconomic model of ecosystem services provision: Coffee Berry Borer and shade-grown coffee in Colombia. Ecol. Econ. 144, 129–138 (2018).
    Google Scholar 

    95.
    Hernandez-Aguilera, J. N., Conrad, J. M., Gómez, M. I. & Rodewald, A. D. The economics and ecology of shade-grown coffee: A model to incentivize shade and bird conservation. Ecol. Econ. 159, 110–121 (2019).
    Google Scholar 

    96.
    Infante, F. Pest management strategies against the coffee berry borer (Coleoptera:Curculionidae: Scolytinae). J. Agric. Food Chem. 66, 5275–5280 (2018).
    CAS  PubMed  Google Scholar 

    97.
    Mendesil, E. et al. Semiochemicals used in host location by the coffee berryborer, Hypothenemus hampei. J. Chem. Ecol. 35(8), 944–950 (2009).
    CAS  PubMed  Google Scholar 

    98.
    Borsa, P. & Gingerich, D. P. Allozyme variation and an estimate of the inbreeding coefficient in the coffee berry borer, Hypothenemus hampei (Coleoptera:Scolytidae). Bull. Entomol. Res. 85(1), 21–28 (1995).
    CAS  Google Scholar 

    99.
    Gingerich, P. D., Borsa, P., Suckling, D. M. & Brun, L. O. Inbreeding in the coffee berry borer, Hypothenemus hampei (Coleoptera: Scolytidae) estimated from endosulfan resistance phenotype frequencies. Bull. Entomol. Res. 86, 667–674 (1996).
    Google Scholar 

    100.
    Andreev, D., Breilid, H., Kirkendall, L., Brun, L. O. & Ffrench-Constant, R. H. Lack of nucleotide variability in a beetle pest with extreme inbreeding. Insect. Mol. Biol. 7(2), 197–200 (1998).
    CAS  PubMed  Google Scholar 

    101.
    Benavides, P., Aspectos genéticos de la broca del Café. In La broca del café en América Tropical: Hallazgos y Enfoques. (eds Barrera J. F. et al.) 101–110 (Sociedad Mexicana de Entomología and El Colegio de la Frontera Sur, México, 2007). More

  • in

    Biases in estimation of insect herbivory from herbarium specimens

    Effect of sampling protocol on leaf area lost to insects
    We analysed 248 samples collected from 17 species of woody plants native to the study region. Among these, 85 samples were collected using the protocol developed for ecological research, and 163 samples were collected as herbarium specimens. Each herbarium specimen, on average, contained four-fold fewer leaves than a sample collected by ecological methods (13.5 and 50.3 leaves, respectively).
    Measurements of leaf area lost to insects were performed by M.V.K., who was aware of research hypothesis and sample origin, and by J. Rikus, who was blinded to these factors. The measurements by both persons yielded the same results (average difference ± SE: 0.52 ± 0.48%; P  > 0.38), indicating that the results by M.V.K. used in subsequent analyses were not affected by confirmation bias.
    The average losses of woody plant foliage (Supplementary Data S1) were significantly lower for herbarium specimens (4.87%) than for ecological samples (7.96%), although the differences between these two types of samples varied with the plant species (Table 1, Fig. 1). Collectors generally prefer branches with low levels of herbivory, and when insect damage increases in nature, the difference between herbarium specimens and ecological samples becomes greater (see e.g. Sorbus aucuparia and Tilia cordata on Fig. 1). Individual collectors significantly differed in their attitudes to leaf damage by insects (F14, 79 = 1.93, P = 0.04; Fig. 2) while collecting herbarium specimens, with their choices ranging from careful selection of branches with nearly undamaged leaves to taking almost no account of the extent of insect herbivory. As a result, the actual levels of herbivory and the damage in herbarium specimens varied independently from each other (regression analysis: F1, 15 = 0.07, P = 0.80; Fig. 3). Additional analysis showed that exclusion of Sorbus aucuparia, the species with the extreme differences between the levels of herbivory measured from two types of samples, did not change our main result: the correlation between the levels of herbivory in ecological samples and in herbarium specimens remained not significant (data not shown).
    Table 1 Sources of variation in losses of woody plant foliage to insects: results of field experiment (SAS GLIMMIX procedure).
    Full size table

    Figure 1

    Leaf area loss (estimated marginal means + SE) measured from ecological samples (black bars) and from herbarium specimens (white bars) collected at the same time from the same localities (sample sizes are shown within bars). An asterisk indicates a significant (P  More

  • in

    Effects of nitrogen deposition and phosphorus addition on arbuscular mycorrhizal fungi of Chinese fir (Cunninghamia lanceolata)

    1.
    Smith, S. E. & Read, D. J. Mycorrhizal Symbiosis. (Academic Press, New York, 2010).
    2.
    Campos-Soriano, L. & Segundo, B. S. New insights into the signaling pathways controlling defense gene expression in rice roots during the arbuscular mycorrhizal symbiosis. Plant Signal. Behav. 6, 553–557 (2011).
    CAS  PubMed  PubMed Central  Google Scholar 

    3.
    He, X. H., Duan, Y. H., Chen, Y. L. & Xu, M. G. A 60-year journey of mycorrhizal research in China: Past, present and future directions. Sci. Chin. Life Sci. 53, 1374–1398 (2010).
    Google Scholar 

    4.
    Mao, L. & Liu, Y. J. The eco-physiological functions of arbuscular mycorrhizal fungi: A review. Sciencepap. Online 11, 236–245 (2018).
    Google Scholar 

    5.
    Karasawa, T., Hodge, A. & Fitter, A. H. Growth, respiration and nutrient acquisition by the arbuscular mycorrhizal fungus Glomus mosseae and its host plant Plantago lanceolata in cooled soil. Plant Cell Environ. 35, 819–828 (2012).
    CAS  PubMed  Google Scholar 

    6.
    Pozo, M. J. & Azcón-Aguilar, C. Unraveling mycorrhiza-induced resistance. Curr. Opin. Plant Biol. 10, 393–398 (2007).
    CAS  PubMed  PubMed Central  Google Scholar 

    7.
    Parniske, M. Arbuscular mycorrhiza: The mother of plant root endosymbioses. Nat. Rev. Microbiol. 6, 763–775 (2008).
    CAS  PubMed  Google Scholar 

    8.
    Bryla, D. R. & Eissenstat, D. M. Respiratory Costs of Mycorrhizal Associations. (eds. Lambers, H. & Ribas-Carbo, M.) 207–224 (Springer The Netherlands, 2005).

    9.
    Bonfante, P. & Genre, A. Mechanisms underlying beneficial plant-fungus interactions in mycorrhizal symbiosis. Nat. Commun. 48, 1038–1046 (2010).
    Google Scholar 

    10.
    Rouphael, Y. et al. Arbuscular mycorrhizal fungi act as biostimulants in horticultural crops. Sci. Hortic. 196, 91–108 (2015).
    Google Scholar 

    11.
    Veresoglou, S. D., Chen, B. D. & Rillig, M. C. Arbuscular mycorrhiza and soil nitrogen cycling. Soil Biol. Biochem. 46, 53–62 (2012).
    CAS  Google Scholar 

    12.
    Galloway, J. N. et al. Transformation of the nitrogen cycle: Recent trends, questions, and potential solutions. Science 320, 889–892 (2008).
    ADS  CAS  PubMed  PubMed Central  Google Scholar 

    13.
    Song, X. Z., Gu, H. H., Wang, M., Zhou, G. M. & Li, Q. Management practices regulate the response of Moso bamboo foliar stoichiometry to nitrogen deposition. Sci. Rep. 6, 24107 (2016).
    ADS  CAS  PubMed  PubMed Central  Google Scholar 

    14.
    Galloway, J. N. & Cowling, E. B. Reactive nitrogen and the world: 200 years of change. Ambio 31, 64–71 (2002).
    PubMed  Google Scholar 

    15.
    Liu, J. et al. Enhanced nitrogen deposition over China. Nature 494, 459–462 (2013).
    ADS  CAS  PubMed  Google Scholar 

    16.
    Li, Q. et al. Nitrogen depositions increase soil respiration and decrease temperature sensitivity in a Moso bamboo forest. Agric. For. Meteorol. 268, 48–54 (2019).
    ADS  Google Scholar 

    17.
    Wang, J. F. & Liu, N. K. Research progress on mechanisms of atmospheric nitrogen deposition and its ecological impact. Pollut. Control Technol. 31, 17–21+39 (2018).

    18.
    Lin, J. X. et al. Research progress on effects of nitrogen deposition on symbiont of plant-arbuscular mycorrhizal. Grassl. Turf 35, 88–94 (2015).
    Google Scholar 

    19.
    Wang, Y. N. Physiological responses of Leymus chinens-arbuscular mycorrhizal symbiont to the interaction of nitrogen deposition and salt-alkali stress. PhD Thesis, Northeast Forestry University (2016).

    20.
    He, X. L., Liu, T. & Zhao, L. L. Effects of inoculating AM fungi on physiological characters and nutritional components of Astragalus membranaceus under different N application levels. Chin. J. Appl. Ecol. 20, 2118–2122 (2009).
    CAS  Google Scholar 

    21.
    Hodge, A. The plastic plant, root responses to heterogeneous supplies of nutrients. New. Phytol. 162, 9–24 (2004).
    Google Scholar 

    22.
    Lin, S. S. et al. Mycorrhizal studies and their application prospects in China. Acta Pratacult. Sin. 22, 310–325 (2013).
    Google Scholar 

    23.
    Liu, R. J. & Chen, Y. L. Mycorrhizology. (Science Press, 2007).

    24.
    Su, Y. B., Lin, C., Zhang, F. S. & Yang, X. L. Effect of arbuscular mycorrhizal fungi (Glomus Mosseae, Glomus Versiformea, Gigaspora Margarita and Gigaspora Rosea) on phosphate activities and soil organic phosphate content in clover rhizosphere. Soils 35, 334–338 (2003).
    CAS  Google Scholar 

    25.
    Feng, H. Y., Feng, G., Wang, J. G. & Li, X. L. Regulation of P status host plant on alkaline phosphatase (ALP) activity in intraradical hyphae and development of extraradical hyphae of AM fungi. Mycosystema 22, 589–598 (2003).
    CAS  Google Scholar 

    26.
    Zhang, S. B., Wang, Y. S., Yin, X. F., Liu, J. B. & Wu, F. X. Development of arbuscular mycorrhizal (AM) fungi and their influences on the absorption of N and P of maize at different soil phosphorus application levels. J. Plant Nutr. Fertil. 23, 649–657 (2017).
    Google Scholar 

    27.
    Shi, S. Z. et al. Ecophysiological effects of simulated nitrogen deposition on fine roots of Chinese fir (Cunninghamia lanceolata) seedlings. Acta Ecol. Sin. 37, 74–83 (2017).
    Google Scholar 

    28.
    Slezack, S., Dumas-Gaudot, E., Paynot, M. & Gianinazzi, S. Is a fully established arbuscular mycorrhizal symbiosis required for bioprotection of Pisum sativum roots against Aphanomyces euteiches?. Mol. Plant-Microbe Interact. 13, 238–241 (2000).
    CAS  PubMed  Google Scholar 

    29.
    Yang, J. Y., Wang, Y. H., Wen, G. S. & Yi, L. T. Effects of AM fungi and simulated nitrogen deposition on the growth and biomass accumulation of Solidago canadensis seedlings. Chin. J. Ecol. 32, 2953–2958 (2013).
    Google Scholar 

    30.
    Marschner, H. Marschner’s Mineral Nutrition of Higher Plants. (Academic Press, New York, 2012).

    31.
    García, I. V. & Mendoza, R. E. Relationships among soil properties, plant nutrition and arbuscular mycorrhizal fungi-plant symbioses in a temperate grassland along hydrologic, saline and sodic gradients. FEMS Microbiol. Ecol. 63, 359–371 (2008).
    PubMed  Google Scholar 

    32.
    Johnson, N. C. Resource stoichiometry elucidates the structure and function of arbuscular mycorrhizas across scales. New Phytol. 185, 631–647 (2010).
    CAS  PubMed  Google Scholar 

    33.
    Fitter, A. H. Costs and benefifits of mycorrhizas: implications for functioning under natural conditions. Experientia 47, 350–355 (1991).
    Google Scholar 

    34.
    Pang, L., Zhou, Z. C., Zhang, Y. & Feng, Z. P. Effects of atmospheric N sedimentation on growth and P efficiency of Pinus Massoniana mycorrhizal seedlings under low P stress. J. Plant Nutr. Fertil. 22, 225–235 (2016).
    CAS  Google Scholar 

    35.
    Johnson, N. C., Rowland, D. L., Corkidi, L., Egerton-Warburton, L. & Allen, E. B. Nitrogen enrichment alters mycorrhizal allocation at five mesic to semiarid grasslands. Ecology 84, 1895–1908 (2003).
    Google Scholar 

    36.
    Cai, X. Z. Effects of nitrogen addition on arbuscular mycorrhizal fungi and nitrogen uptake of Chinese fir seedlings. PhD Thesis, Fujian Normal University (2017).

    37.
    Bago, B. et al. Differential morphogenesis of the extraradical mycelium of an arbuscular mycorrhizal fungus grown monoxenically on spatially heterogeneous culture media. Mycologia 96, 452–462 (2004).
    PubMed  Google Scholar 

    38.
    Zhang, X. et al. Correlation between physicochemical properties of rhizosphere soil and arbuscular mycorrhizal fungi in Medicago sativa grassland. Northern Hortic. 13, 172–177 (2016).
    Google Scholar 

    39.
    Wang, J. Effects of AM fungi on plant growth and community structure under different soil nitrogen fertility. PhD Thesis, Lanzhou University (2018).

    40.
    Holguin, G., Vazquez, P. & Bashan, Y. The role of sediment microorganisms in the productivity, conservation, and rehabilitation of mangrove ecosystems: An overview. Biol. Fertil. Soils. 33, 265–278 (2001).
    CAS  Google Scholar 

    41.
    Ma, L. M., Wang, P. T. & Wang, S. G. Effect of flooding time length on mycorrhizal colonization of three AM fungi in two wetland plants. Environ. Sci. 35, 263–270 (2014).
    Google Scholar 

    42.
    Sharma, D. & David, K. Moisture-a regulator of arbuscular mycorrhizal fungal community assembly and symbiotic phosphorus uptake. Mycorrhiza 25, 67–75 (2015).
    Google Scholar 

    43.
    Zhang, X. H. The adaptability of arbuscular mycorrhizal fungi to different soil environmental factors. PhD Thesis, Agricultural University of Hebei (2003).

    44.
    Li, Y. F., Ju, L. H., Zhang, L. Y. & Xu, G. H. Effects of AM fungi on plant growth and nitrogen and phosphorus utilization in rice/mungbean intercropping under different phosphorus application levels. Jiangsu Agric. Sci. 41, 51–55 (2013).
    CAS  Google Scholar 

    45.
    Kiers, E. T. et al. Reciprocal rewards stabilize cooperation in the mycorrhizal symbiosis. Science 333, 880–882 (2011).
    ADS  CAS  PubMed  Google Scholar 

    46.
    Read, D. J. Mycorrhizas in Ecosystems-Nature’s Response to the “Law of the Minimum”. (ed. Hawksworth, D.L.) 101–130 (CAB International, 1991).

    47.
    Sun, X. W. et al. Effects of eco-enviromental factors on the production and distribution of arbuscular mycorrhizal fungal spores. Acta Pratacult. Sin. 20, 214–221 (2011).
    Google Scholar 

    48.
    Sun, J. H., Bi, Y. L., Qiu, L. & Jiang, B. A review about the effect of AMF on uptaking phosphorus by host plants in soil. Chin. J. Soil Sci. 47, 499–504 (2016).
    Google Scholar 

    49.
    Subhashini, D. V. Effect of NPK fertilizers and co-inoculation with phosphate solubilising arbuscular mycorrhizal fungus and potassium mobilizing bacteria on growth, yield, nutrient acquisition and quality of tobacco (Nicotiana tabacum). Commun. Soil Sci. Plant Anal. 47, 328–337 (2016).
    CAS  Google Scholar 

    50.
    Johnson, N. C., Wilson, G. W. T., Wilson, J. A., Miller, R. M. & Bowker, M. A. Mycorrhizal phenotypes and the law of the minimum. New Phytol. 205, 1473–1484 (2015).
    CAS  PubMed  Google Scholar 

    51.
    Tessa, C. et al. Nitrogen and phosphorus additions impact arbuscular mycorrhizal abundance and molecular diversity in a tropical montane forest. Glob. Change Biol. 20, 3646–3659 (2014).
    Google Scholar 

    52.
    Gusewell, S. N: P ratios in terrestrial plants: variation and functional significance. New Phytol. 164, 243–266 (2004).
    Google Scholar 

    53.
    Xia, T. T., Wang, Z. P., Zhang, L. C. & Jing, H. R. Effects of phosphorus concentration on growth of arbuscular mycorrhizal sweet corn. Ind. Microbiol. 47, 49–53 (2017).
    Google Scholar 

    54.
    Qiu, J. J. Molecular mechanism of phosphorus uptake by the interaction of arbuscular mycorrhizal fungi and maize. PhD Thesis, Shandong Agricultural University (2017).

    55.
    Reay, D. S., Dentener, F., Smith, P., Grace, J. & Feely, R. A. Global nitrogen deposition and carbon sinks. Nat. Geosci. 1, 430–437 (2008).
    ADS  CAS  Google Scholar 

    56.
    Fang, H., Mo, J., Peng, S., Li, Z. & Wang, H. Cumulative effects of nitrogen additions on litter decomposition in three tropical forests in southern China. Plant Soil 297, 233–242 (2007).
    CAS  Google Scholar 

    57.
    Mo, J. et al. Response of nutrient dynamics of decomposing pine (Pinus massoniana) needles to simulated N deposition in a disturbed and a rehabilitated forest in tropical China. Ecol. Res. 22, 649–658 (2007).
    ADS  CAS  Google Scholar 

    58.
    Chen, Z. Y. et al. Relationship between growth and endogenous hormones of Chinese fir seedlings under low phosphorus stress. Sci. Silvae Sin. 52, 57–66 (2016).
    Google Scholar 

    59.
    Leng, H. N. et al. Effects of phosphorous stress on the growth and nitrogen and phosphorus absorption of different formosan sweet gum provenances. Chin. J. Appl. Ecol. 20, 754–760 (2009).
    CAS  Google Scholar 

    60.
    Wu, J. J. et al. Analysis of soil respiration and components in Castanopsis carlesii and Cunninghamia lanceolata plantations. Chin. J. Plant Ecol. 38, 45–53 (2014).
    Google Scholar 

    61.
    Yang, Y. R. et al. Community structure of arbuscular mycorrhizal fungi associated with Robinia pseudoacacia in uncontaminated and heavy metal contaminated soils. Soil Biol. Biochem. 86, 146–158 (2015).
    CAS  Google Scholar 

    62.
    Berch, S. M. & Kendrick, B. Vesicular-arbuscular mycorrhizae of southern Ontario ferns and fern-allies. Mycologia 74, 769–769 (1982).
    Google Scholar 

    63.
    McGonigle, T. P., Miller, M. H., Evans, D. G., Fairchild, G. L. & Swan, J. A. A new method which gives an objective measure of colonization of roots by vesicular-arbuscular mycorrhizal fungi. New Phytol. 115, 495–501 (1990).
    Google Scholar 

    64.
    Gerdemann, J. W. & Nicolson, T. H. Spores of mycorrhizal endogone species extracted from soil by wet sieving and decanting. Trans. Br. Mycol. Soc. 46, 235–244 (1963).
    Google Scholar 

    65.
    Eom, A. H., Wilson, G. W. & Hartnett, D. C. Effects of ungulate grazers on arbuscular mycorrhizal symbiosis and fungal community structure in tallgrass prairie. Mycologia 93, 233–242 (2001).
    Google Scholar 

    66.
    Jackson, M. L. Soil chemical analysis. Soil Sci. 85, 288 (1973).
    Google Scholar 

    67.
    Olsen, S. R. Estimation of available phosphorus in soils by extraction with sodium bicarbonate (U.S. Government Printing Office, New York, 1954).
    Google Scholar 

    68.
    Hess, T. M. Tropical Soil Biology and Fertility: A Handbook of Methods. (eds Anderson, J. M. & Ingram, J. S. I.) 245–245 (CAB International, 1990).

    69.
    Zhang, W. R., Yang, G. J., Tu, X. N. & Zhang, P. Forestry Industry Standard of the People’s Republic of China: Forest Soil Analysis Method. (China Standards Press, 1999). More