Improving prediction of rare species’ distribution from community data
1.
Guisan, A. et al. Predicting species distributions for conservation decisions. Ecol. Lett. 16, 1424–1435 (2013).
PubMed PubMed Central Google Scholar
2.
Elith, J. & Leathwick, J. R. Species distribution models: Ecological explanation and prediction across space and time. Annu. Rev. Ecol. Evol. Syst. 40, 677–697 (2009).
Google Scholar
3.
Robinson, N. M., Nelson, W. A., Costello, M. J., Sutherland, J. E. & Lundquist, C. J. A systematic review of marine-based species distribution models (SDMs) with recommendations for best practice. Front. Mar. Sci. 4, 421 (2017).
Google Scholar
4.
Sofaer, H. R. et al. Development and delivery of species distribution models to inform decision-making. Bioscience 69, 480–480 (2019).
Google Scholar
5.
Guisan, A. & Thuiller, W. Predicting species distribution: Offering more than simple habitat models. Ecol. Lett. 8, 993–1009 (2005).
Google Scholar
6.
Hao, T., Elith, J., Guillera-Arroita, G. & Lahoz-Monfort, J. J. A review of evidence about use and performance of species distribution modelling ensembles like BIOMOD. Divers. Distrib. https://doi.org/10.1111/DDI.12892 (2019).
Article Google Scholar
7.
Gogol-Prokurat, M. Predicting habitat suitability for rare plants at local spatial scales using a species distribution model. Ecol. Appl. 21, 33–47 (2011).
PubMed Google Scholar
8.
Lomba, A. et al. Overcoming the rare species modelling paradox: A novel hierarchical framework applied to an Iberian endemic plant. Biol. Conserv. 143, 2647–2657 (2010).
Google Scholar
9.
Breiner, F. T., Guisan, A., Bergamini, A. & Nobis, M. P. Overcoming limitations of modelling rare species by using ensembles of small models. Methods Ecol. Evol. 6, 1210–1218 (2015).
Google Scholar
10.
Magurran, A. E. & Henderson, P. A. Explaining the excess of rare species in natural species abundance distributions. Nature 422, 714–716 (2003).
ADS CAS PubMed Google Scholar
11.
Cao, Y., Larsen, D. P. & Thorne, R.S.-J.J. Rare species in multivariate analysis for bioassessment: Some considerations. J. N. Am. Benthol. Soc. 20, 144–153 (2001).
Google Scholar
12.
Foden, W. B. et al. Climate change vulnerability assessment of species. Wiley Interdiscip. Rev. Clim. Chang. 10, e551 (2019).
Google Scholar
13.
Guisan, A. et al. Using niche-based models to improve the sampling of rare species. Conserv. Biol. 20, 501–511 (2006).
PubMed Google Scholar
14.
Ancillotto, L. et al. An African bat in Europe, Plecotus gaisleri: Biogeographic and ecological insights from molecular taxonomy and Species Distribution Models. Ecol. Evol. https://doi.org/10.1002/ece3.6317 (2020).
Article PubMed PubMed Central Google Scholar
15.
Della Rocca, F., Bogliani, G., Breiner, F. T. & Milanesi, P. Identifying hotspots for rare species under climate change scenarios: Improving saproxylic beetle conservation in Italy. Biodivers. Conserv. 28, 433–449 (2019).
Google Scholar
16.
Cunningham, R. B. & Lindenmayer, D. B. Modeling count data of rare species: Some statistical issues. Ecology 86, 1135–1142 (2005).
Google Scholar
17.
Vaughan, I. P. & Ormerod, S. J. The continuing challenges of testing species distribution models. J. Appl. Ecol. 42, 720–730 (2005).
Google Scholar
18.
Franklin, J., Wejnert, K. E., Hathaway, S. A., Rochester, C. J. & Fisher, R. N. Effect of species rarity on the accuracy of species distribution models for reptiles and amphibians in southern California. Divers. Distrib. 15, 167–177 (2009).
Google Scholar
19.
Engler, R., Guisan, A. & Rechsteiner, L. An improved approach for predicting the distribution of rare and endangered species from occurrence and pseudo-absence data. J. Appl. Ecol. 41, 263–274 (2004).
Google Scholar
20.
Chefaoui, R. M. & Lobo, J. M. Assessing the effects of pseudo-absences on predictive distribution model performance. Ecol. Modell. 210, 478–486 (2008).
Google Scholar
21.
Phillips, S. J. et al. Sample selection bias and presence-only distribution models: Implications for background and pseudo-absence data. Ecol. Appl. 19, 181–197 (2009).
PubMed Google Scholar
22.
Meynard, C. N. & Quinn, J. F. Predicting species distributions: A critical comparison of the most common statistical models using artificial species. J. Biogeogr. 34, 1455–1469 (2007).
Google Scholar
23.
Royle, J. A., Nichols, J. D. & Kéry, M. Modelling occurrence and abundance of species when detection is imperfect. Oikos 110, 353–359 (2005).
Google Scholar
24.
Welsh, A. H., Cunningham, R. B., Donnelly, C. F. & Lindenmayer, D. B. Modelling the abundance of rare species: Statistical models for counts with extra zeros. Ecol. Modell. 88, 297–308 (1996).
Google Scholar
25.
Yates, K. L. et al. Outstanding challenges in the transferability of ecological models. Trends Ecol. Evol. 33, 790–802 (2018).
PubMed Google Scholar
26.
Williams, J. N. et al. Using species distribution models to predict new occurrences for rare plants. Divers. Distrib. 15, 565–576 (2009).
Google Scholar
27.
Rufener, M.-C., Kinas, P. G., Nóbrega, M. F. & Lins Oliveira, J. E. Bayesian spatial predictive models for data-poor fisheries. Ecol. Modell. 348, 125–134 (2017).
Google Scholar
28.
Blangiardo, M. & Cameletti, M. Spatial and spatial-temporal bayesian models with R-INLA. Spat Spat. Epidemiol. 4, 33–49 (2013).
MATH Google Scholar
29.
Nieto-Lugilde, D., Maguire, K. C., Blois, J. L., Williams, J. W. & Fitzpatrick, M. C. Multiresponse algorithms for community-level modelling: Review of theory, applications, and comparison to species distribution models. Methods Ecol. Evol. 9, 834–848 (2018).
Google Scholar
30.
Warton, D. I. et al. So many variables: Joint modeling in community ecology. Trends Ecol. Evol. 30, 766–779 (2015).
PubMed Google Scholar
31.
Thorson, J. T., Pinsky, M. L. & Ward, E. J. Model-based inference for estimating shifts in species distribution, area occupied and centre of gravity. Methods Ecol. Evol. https://doi.org/10.1111/2041-210X.12567 (2016).
Article Google Scholar
32.
Ovaskainen, O. et al. How to make more out of community data? A conceptual framework and its implementation as models and software. Ecol. Lett. 20, 561–576 (2017).
PubMed Google Scholar
33.
Hui, F. K. C. Boral-Bayesian ordination and regression analysis of multivariate abundance data in R. Methods Ecol. Evol. 7, 744–750 (2016).
Google Scholar
34.
Warton, D. I., Foster, S. D., De’ath, G., Stoklosa, J. & Dunstan, P. K. Model-based thinking for community ecology. Plant Ecol. 216, 669–682 (2015).
Google Scholar
35.
Ovaskainen, O. & Soininen, J. Making more out of sparse data: Hierarchical modeling of species communities. Ecology 92, 289–295 (2011).
PubMed Google Scholar
36.
Hui, F. K. C., Warton, D. I., Foster, S. D. & Dunstan, P. K. To mix or not to mix: Comparing the predictive performance of mixture models vs separate species distribution models. Ecology 94, 1913–1919 (2013).
PubMed Google Scholar
37.
Leach, K., Montgomery, W. I. & Reid, N. Modelling the influence of biotic factors on species distribution patterns. Ecol. Modell. 337, 96–106 (2016).
Google Scholar
38.
Anderson, R. P. When and how should biotic interactions be considered in models of species niches and distributions?. J. Biogeogr. 44, 8–17 (2017).
Google Scholar
39.
D’Amen, M., Rahbek, C., Zimmermann, N. E. & Guisan, A. Spatial predictions at the community level: From current approaches to future frameworks. Biol. Rev. 92, 169–187 (2017).
PubMed Google Scholar
40.
Kindsvater, H. K. et al. Overcoming the data crisis in biodiversity conservation. Trends Ecol. Evol. 33, 676–688 (2018).
PubMed Google Scholar
41.
Thorson, J. T., Kell, L. T., De Oliveira, J. A. A., Sampson, D. B. & Punt, A. E. Introduction to data-poor stock assessment. Fish. Res. 171, 1–3 (2015).
Google Scholar
42.
Schliep, E. M. et al. Joint species distribution modelling for spatio-temporal occurrence and ordinal abundance data. Glob. Ecol. Biogeogr. 27, 142–155 (2018).
MathSciNet Google Scholar
43.
Maguire, K. C. et al. Controlled comparison of species- and community-level models across novel climates and communities. Proc. R. Soc. B Biol. Sci. 283, 20152817 (2016).
Google Scholar
44.
Zhang, C., Chen, Y., Xu, B., Xue, Y. & Ren, Y. Comparing the prediction of joint species distribution models with respect to characteristics of sampling data. Ecography (Cop.) 41, 1876–1887 (2018).
Google Scholar
45.
Wilkinson, D. P., Golding, N., Guillera-Arroita, G., Tingley, R. & McCarthy, M. A. A comparison of joint species distribution models for presence–absence data. Methods Ecol. Evol. 10, 198–211 (2019).
Google Scholar
46.
Ehrlén, J. & Morris, W. F. Predicting changes in the distribution and abundance of species under environmental change. Ecol. Lett. 18, 303–314 (2015).
PubMed PubMed Central Google Scholar
47.
Smeraldo, S. et al. Modelling risks posed by wind turbines and power lines to soaring birds: The black stork (Ciconia nigra) in Italy as a case study. Biodivers. Conserv. 29, 1959–1976 (2020).
Google Scholar
48.
Rizvanovic, M., Kennedy, J. D., Nogués-Bravo, D. & Marske, K. A. Persistence of genetic diversity and phylogeographic structure of three New Zealand forest beetles under climate change. Divers. Distrib. 25, 142–153 (2019).
Google Scholar
49.
Guillera-Arroita, G. et al. Is my species distribution model fit for purpose? Matching data and models to applications. Glob. Ecol. Biogeogr. 24, 276–292 (2015).
Google Scholar
50.
Hernandez, P. A., Graham, C. H., Master, L. L. & Albert, D. L. The effect of sample size and species characteristics on performance of different species distribution modeling methods. Ecography 29, 773–785 (2006).
Google Scholar
51.
Thibaud, E., Petitpierre, B., Broennimann, O., Davison, A. C. & Guisan, A. Measuring the relative effect of factors affecting species distribution model predictions. Methods Ecol. Evol. 5, 947–955 (2014).
Google Scholar
52.
Rabinowitz, D., Cairns, S. & Dillon, T. Seven forms of rarity and their frequency in the flora of the British Isles. In Conservation Biology: The Science of Scarcity and Diversity 182–204 (Sinauer, 1986).
53.
Gaston, K. J. What is Rarity? In The Biology of Rarity: Causes and Consequences of Rare-Common Differences 30–47 (Chapman and Hall, New York, 1997).
Google Scholar
54.
Boulesteix, A.-L., Janitza, S., Kruppa, J. & König, I. R. Overview of random forest methodology and practical guidance with emphasis on computational biology and bioinformatics. Wiley Interdiscip. Rev. Data Min. Knowl. Discov. 2, 493–507 (2012).
Google Scholar
55.
Özesmi, S. L., Tan, C. O. & Özesmi, U. Methodological issues in building, training, and testing artificial neural networks in ecological applications. Ecol. Modell. 195, 83–93 (2006).
Google Scholar
56.
Norberg, A. et al. A comprehensive evaluation of predictive performance of 33 species distribution models at species and community levels. Ecol. Monogr. 89, e01370 (2019).
Google Scholar
57.
Harris, D. J. Generating realistic assemblages with a joint species distribution model. Methods Ecol. Evol. 6, 465–473 (2015).
Google Scholar
58.
Elith, J. et al. Novel methods improve prediction of species’ distributions from occurrence data. Ecography 29, 129–151 (2006).
Google Scholar
59.
Clark, J. S., Nemergut, D., Seyednasrollah, B., Turner, P. J. & Zhang, S. Generalized joint attribute modeling for biodiversity analysis: Median-zero, multivariate, multifarious data. Ecol. Monogr. 87, 34–56 (2017).
Google Scholar
60.
Breiman, L. Random forests. Mach. Learn. 45, 5–32 (2001).
MATH Google Scholar
61.
Suryanarayana, I. et al. Neural networks in fisheries research. Fish. Res. 92, 115–139 (2008).
Google Scholar
62.
Brun, P., Kiørboe, T., Licandro, P. & Payne, M. R. The predictive skill of species distribution models for plankton in a changing climate. Glob. Chang. Biol. 22, 3170–3181 (2016).
ADS PubMed Google Scholar
63.
Smoliński, S. & Radtke, K. Spatial prediction of demersal fish diversity in the Baltic Sea: Comparison of machine learning and regression-based techniques. ICES J. Mar. Sci. J. Cons. 74, 102–111 (2017).
Google Scholar
64.
Segal, M. & Xiao, Y. Multivariate random forests. Wiley Interdiscip. Rev. Data Min. Knowl. Discov. 1, 80–87 (2011).
Google Scholar
65.
Rahman, R., Otridge, J. & Pal, R. IntegratedMRF: Random forest-based framework for integrating prediction from different data types. Bioinformatics 33, 1407–1410 (2017).
CAS PubMed PubMed Central Google Scholar
66.
Olden, J. D. A species-specific approach to modeling biological communities and its potential for conservation. Conserv. Biol. 17, 854–863 (2003).
Google Scholar
67.
Ovaskainen, O., Roy, D. B., Fox, R. & Anderson, B. J. Uncovering hidden spatial structure in species communities with spatially explicit joint species distribution models. Methods Ecol. Evol. 7, 428–436 (2016).
Google Scholar
68.
Clark, J. S. Why species tell more about traits than traits about species: Predictive analysis. Ecology 97, 1979–1993 (2016).
PubMed Google Scholar
69.
Araújo, M. B. & Luoto, M. The importance of biotic interactions for modelling species distributions under climate change. Glob. Ecol. Biogeogr. 16, 743–753 (2007).
Google Scholar
70.
Peres-Neto, P. R., Jackson, D. A. & Somers, K. M. How many principal components? Stopping rules for determining the number of non-trivial axes revisited. Comput. Stat. Data Anal. 49, 974–997 (2005).
MathSciNet MATH Google Scholar
71.
Fielding, A. H. & Bell, J. F. A review of methods for the assessment of prediction errors in conservation presence/absence models. Environ. Conserv. 24, 38–49 (1997).
Google Scholar
72.
Allouche, O., Tsoar, A. & Kadmon, R. Assessing the accuracy of species distribution models: Prevalence, kappa and the true skill statistic (TSS). J. Appl. Ecol. 43, 1223–1232 (2006).
Google Scholar
73.
Basheer, I. & Hajmeer, M. Artificial neural networks: Fundamentals, computing, design, and application. J. Microbiol. Methods 43, 3–31 (2000).
CAS PubMed Google Scholar More