More stories

  • in

    A long-term dataset on wild bee abundance in Mid-Atlantic United States

    Identifier variables
    To facilitate aggregation and analysis of the BIML data, we added ‘site’, ‘site-year’, ‘sampling event’, and ‘transect’ identifier variables. We defined ‘sites’ as unique combinations of latitude and longitude, and ‘site-years’ as unique combinations of site and year of sampling. Within site-years, we defined ‘sampling events’ according to the date of sampling and ‘transects’ as unique combinations of sampling event and text field notes. For some specimens, field notes included a transect ID, indicating that the BIML used multiple sets of pan traps at the same site. In other cases, field notes recorded differing sampling methods, or different information on the number of missing traps (traps that were cracked, tipped over, or otherwise compromised). If field notes recorded different methods or number of lost traps, we assumed that the BIML deployed multiple sets of traps (transects). We reviewed the field notes for all sampling events with multiple transects and reassigned these occurrences to a single transect if there was no evidence of multiple transects in the field notes.
    Locality and taxonomic identification
    Next, we reviewed and excluded occurrences lacking critical date and locality information. We removed all occurrences lacking sampling date or latitude and longitude of sampling location and occurrences with duplicated specimen identifiers. We filtered occurrences to a limited geographic area (Maryland, Delaware, and Washington DC, Fig. 1) that represents the densest region of BIML sampling (39.6% of dataset). This filtering removed wild-bee communities collected in desert or tropical biomes, which are likely governed by very different floral resource and climate dynamics19,20, and within the Mid-Atlantic USA, limited sampling locations to a region with a consistent dominant forest type21. Bee occurrences in 1999 and 2001 represented fewer than three sites per year, so we removed these years, retaining sites sampled from 2002–2016.
    Fig. 1

    Abundance per day per trap of wild bees at locations surveyed between 2002 and 2016 by the United States Geological Survey Native Bee Inventory and Monitoring Lab (USGS BIML).

    Full size image

    We also filtered data to our taxa of interest. We removed non-bee occurrences (species outside superfamily Apoidea, clade Anthophila) and records lacking species-level identity, discarding occurrences identified to family or genus (Online-only Table 1). Almost all non-bee occurrences we removed were wasps in the Vespidae, Crabronidae, and Sphecidae families, which are primarily predators, rather than pollen-collectors like most wild bees. For the transect-level dataset22 (see ‘Data Records’ below), we calculated the abundance of Apis mellifera L., then removed A. mellifera from the dataset before calculating total bee abundance per transect, since often A. mellifera specimens likely originated from managed colonies and are not considered to be wild bees.
    We verified species names by cross-referencing all species binomials with the Discover Life database23. We corrected genus and species names that were clear spelling errors (Online-only Table 1) and consulted the original data source (S. Droege) for remaining species binomials that did not exist on Discover Life. We also referenced Discover Life occurrence maps to confirm that all species in the BIML dataset occur in the Mid-Atlantic US. After these data cleaning steps, we removed six occurrences of the remaining five unknown or out-of-region species (Online-only Table 1). Some species in the BIML data were identified singularly and as part of a species set. To avoid double counting these species, we created a new variable with cleaned, mutually exclusive species names (termed ‘grouped name’). In ‘grouped name’, we combined singular species names with their associated species sets (Online-only Table 1). For example, we reclassified occurrences identified as Halictus ligatus/poeyi, Halictus ligatus, or Halictus poeyi to Halictus ligatus/poeyi to avoid inflating future species richness estimates when occurrences might be the same species. In the final occurrence datasets, we included the cleaned, singular names (‘name’) and cleaned, grouped names (‘grouped_name’), so future analysts can select the appropriate taxonomic aggregation for their research objectives. Voucher specimens for most species in the BIML dataset are housed in the Smithsonian collection, but some are not yet permanently archived. We suggest interested parties contact Sam Droege (current email: sdroege@usgs.gov) to access voucher specimens. We also included, to the best of our knowledge, current affiliations for individuals who identified BIML specimens (Supplementary Information, Table S1), and standardized names of identifiers (‘identifiedBy’) in the final datasets.
    Sampling method and effort
    To describe sampling method and effort, we used regular expressions to extract these data from field notes. We sought to compare bee communities sampled with a standard methodology, so we discarded bee occurrences collected with vane traps or nets, only retaining occurrences sampled with pan traps (i.e., bee bowls). Using the stringr package in R24,25, we searched the text of field notes to document trap volume, trap color, total number of traps, and the number of traps missing or disturbed. The most common BIML pan-trapping method involved setting out traps of multiple colors and combining the bees in all traps into one sample. Consequently, BIML recorded trap color in field notes as the number of traps of each color used for a specific sampling event. We designed regular expressions to extract the number of traps for the eight most common colors (white, blue, yellow, pale blue, fluorescent yellow, fluorescent blue, and florescent pale blue). For some occurrences, our regular expressions yielded no sampling information, so we manually reviewed these field notes and recorded any data missed by the automated search.
    Next, we simplified the trap color and volume classification to facilitate future statistical analyses. To reduce the number of trap volume categories, we rounded trap volume to the nearest 0.5 ounces, and removed trap volumes greater than 40 ounces, assuming these were errors in data entry or extraction. When the trap color or volume used at a specific site changed within a year, we manually reviewed the field notes and corrected color or volume classifications when necessary. After correcting these discrepancies, we found the BIML very rarely changed sampling methods within a year, so we filled in most missing trap color or volume information by assuming a constant sampling method for all transects within a site-year. Finally, we combined rarely used color/volumes (fewer than 1% of transects) into an ‘Other’ category. In the archived datasets with sampling information, we included original and simplified variables for trap color and volume.
    Lastly, we summarized sampling effort and calculated effort-adjusted abundance of wild bees. We calculated the total number of traps for each sampling event, and, when available, we also described the number of traps missing or disturbed. If there was no documentation of missing or disturbed traps, we assumed all traps were recovered successfully. When the total number of traps differed between the field notes and ‘number of traps’ column, we selected the lower value. We defined the final number of traps in each transect as the original number minus the number missing or disturbed. We calculated the duration of sampling as the difference between the date traps were collected and date traps were set. If traps were set and collected on the same day, we set the duration of sampling to one day. For each occurrence in the BIML dataset, we converted bee abundance to abundance day−1 trap−1. We conducted all data manipulation and aggregation with the R statistical and computing language 3.6.025,26 More

  • in

    Tapanuli orangutan endangered by Sumatran hydropower scheme

    1.
    Wich, S. A., Fredriksson, G., Usher, G., Kühl, H. S. & Nowak, M. G. Conserv. Sci. Pract. 1, e33 (2019).
    Article  Google Scholar 
    2.
    Rochmyaningsih, D. Science 365, 1064–1065 (2019).
    CAS  Article  Google Scholar 

    3.
    Jong, H. N. Scientists call for independent review of dam project in orangutan habitat. Mongabay (24 March 2020); https://go.nature.com/3e8zcaU

    4.
    Indonesian Firm using “Deplorable” Tactics to Push Orangutan-Killer Project (Alliance of Leading Environmental Researchers & Thinkers, 2018); https://go.nature.com/2W2JzXt

    5.
    Batang Toru Hydropower Project. Factcheck and References on Key Issues (IUCN SGA/ARRC, 2020); https://go.nature.com/2BT4up9

    6.
    Santosa, Y. et al. Impact of Batang Toru Hydropower Construction on Primary Forest, Orangutan Population and Habitat, Drought and Flood, Greenhouse Gases Emission and Socio-Economic Surroundings (The Center of Study, Advocacy and Nature Conservation, 2018).

    7.
    New photos show Tapanuli orangutans on the move. Foresthints (26 September 2018); https://go.nature.com/3iJ2BMl

    8.
    Rochmyaningsih, D. A dam threatens the world’s rarest ape. Why are some conservationists suddenly on board? Science (10 September 2019); https://go.nature.com/3gIcRm6

    9.
    Purba, J. Ian Singleton: Dampak PLTA Batangtoru Terhadap Kelangsungan Hidup Orangutan Tapanuli Dapat Direstorasi. RMOL Sumut (19 February 2020); https://go.nature.com/2O6s1W8

    10.
    Aktivis Asing “Menggoyang” Indonesia. Kompasiana (24 September 2019); https://go.nature.com/2O8siYF

    11.
    Finer, M. & Jenkins, C. N. PLoS ONE 7, e35126 (2012).
    CAS  Article  Google Scholar 

    12.
    Watts, J. Chinese dam project in Guinea could kill up to 1,500 chimpanzees. The Guardian (28 February 2019); https://go.nature.com/3205jHp

    13.
    Kormos, R. et al. PLoS ONE 9, e111671 (2014).
    Article  Google Scholar 

    14.
    IUCN calls for a moratorium on projects impacting the Critically Endangered Tapanuli orangutan. IUCN (16 April 2019); https://go.nature.com/3224VIy More

  • in

    Native American imprint in palaeoecology

    1.
    Oswald, W. W. et al. Conservation implications of limited Native American impacts in pre-contact New England. Nat. Sustain. 3, 241–246 (2020).
    Article  Google Scholar 
    2.
    Thompson, J. R., Carpenter, D. N., Cogbill, C. V. & Foster, D. R. Four centuries of change in northeastern United States forests. PLoS ONE 8, e72540 (2013).
    CAS  Article  Google Scholar 

    3.
    Abrams, M. D. Fire and the development of oak forests. BioScience 42, 346–353 (1992).
    Article  Google Scholar 

    4.
    Abrams, M. D. Eastern white pine versatility in the presettlement forest. BioScience 51, 967–979 (2001).
    Article  Google Scholar 

    5.
    Nowacki, G. J. & Abrams, M. D. Is climate an important driver of post European vegetation change in the eastern U.S.? Glob. Change Biol. 21, 314–334 (2015).
    Article  Google Scholar 

    6.
    Whitney G. G. From Coastal Wilderness to Fruited Plain 117–118 (Cambridge Univ. Press, 1994).

    7.
    Nowacki, G. J. & Abrams, M. D. Demise of fire and mesophication of eastern U.S. forests. BioScience 58, 123–138 (2008).
    Article  Google Scholar 

    8.
    Stocks B. J. & Kauffman, J. B. in Sediment Records of Biomass Burning and Global Change NATO ASI Series I, Vol. 51 (eds Clark, J. S. et al.) 169–188 (Springer, 1997).

    9.
    Abrams, M. D. & Seischab, F. K. Does the absence of sediment charcoal provide substantial evidence against the fire and oak hypothesis? J. Ecol. 85, 373–375 (1997).
    Article  Google Scholar 

    10.
    Feurdean, A. et al. Broadleaf deciduous forest counterbalanced the direct effect of climate on Holocene fire regime in hemiboreal/boreal region (NE Europe). Quat. Sci. Rev. 169, 378–390 (2017).
    Article  Google Scholar 

    11.
    Guyette, R. P., Stambaugh, M. C., Dey, D. C. & Muzika, R. Predicting fire frequency with chemistry and climate. Ecosystems 15, 322–335 (2012).
    Article  Google Scholar 

    12.
    Abrams, M. D. & Nowacki, G. J. Native Americans as active and passive promoters of mast and fruit trees in the eastern USA. Holocene 18, 1123–1137 (2008).
    Article  Google Scholar 

    13.
    Patterson, W. A. III & Sassaman, K. E. in Holocene Human Ecology in Northeastern North America (ed. Nicholas, G. P.) 107–135 (Plenum, 1988).

    14.
    Cronon, W. Changes in the Land: Indians, Colonists, and the Ecology of New England (Hill and Wang, 1983).

    15.
    Munoz, S. E., Gajewski, K. & Peros, M. C. Synchronous environmental and cultural change in the prehistory of the northeastern United States. Proc. Natl Acad. Sci. USA 107, 22008–22013 (2010).
    CAS  Article  Google Scholar 

    16.
    Brose, P. H. Development of prescribed fire as a silvicultural tool for the upland oak forests of the eastern United States. J. For. 112, 525–533 (2014).
    Google Scholar 

    17.
    Whitlock, C., Skinner, C. N., Bartlein, P. J., Minckley, T. & Mohr, J. A. et al. Comparison of charcoal and tree-ring records of recent fires in the eastern Klamath Mountains, California, USA. Can. J. For. Res. 34, 2110–2121 (2004).
    Article  Google Scholar  More

  • in

    Fasting season length sets temporal limits for global polar bear persistence

    1.
    Amstrup, S. C. et al. Greenhouse gas mitigation can reduce sea-ice loss and increase polar bear persistence. Nature 468, 955–958 (2010).
    CAS  Google Scholar 
    2.
    Regehr, E. V. et al. Conservation status of polar bears (Ursus maritimus) in relation to projected sea-ice declines. Biol. Lett. 12, 20160556 (2016).
    Google Scholar 

    3.
    Molnár, P. K., Derocher, A. E., Thiemann, G. W. & Lewis, M. A. Predicting survival, reproduction and abundance of polar bears under climate change. Biol. Conserv. 143, 1612–1622 (2010); corrigendum 177, 230–231 (2014).

    4.
    Kay, J. E. et al. The Community Earth System Model (CESM) Large Ensemble Project: a community resource for studying climate change in the presence of internal climate variability. Bull. Am. Meteorol. Soc. 96, 1333–1349 (2015).
    Google Scholar 

    5.
    Rode, K. D., Robbins, C. T., Nelson, L. & Amstrup, S. C. Can polar bears use terrestrial foods to offset lost ice-based hunting opportunities? Front. Ecol. Environ. 13, 138–145 (2015).
    Google Scholar 

    6.
    Stern, H. S. & Laidre, K. L. Sea-ice indicators of polar bear habitat. Cryosphere 10, 2027–2041 (2016).
    Google Scholar 

    7.
    Stirling, I. & Derocher, A. E. Effects of climate warming on polar bears: a review of the evidence. Glob. Change Biol. 18, 2694–2706 (2012).
    Google Scholar 

    8.
    Regehr, E. V., Lunn, N. J., Amstrup, S. C. & Stirling, I. Effects of earlier sea ice breakup on survival and population size of polar bears in Western Hudson Bay. J. Wildl. Manag. 71, 2673–2683 (2007).
    Google Scholar 

    9.
    Rode, K. D., Amstrup, S. C. & Regehr, E. V. Reduced body size and cub recruitment in polar bears associated with sea ice decline. Ecol. Appl. 20, 768–782 (2010).
    Google Scholar 

    10.
    Rode, K. D. et al. A tale of two polar bear populations: ice habitat, harvest, and body condition. Popul. Ecol. 54, 3–18 (2012).
    Google Scholar 

    11.
    Bromaghin, J. F. et al. Polar bear population dynamics in the Southern Beaufort Sea during a period of sea ice decline. Ecol. Appl. 25, 634–651 (2016).
    Google Scholar 

    12.
    Lunn, N. J. et al. Demography of an apex predator at the edge of its range: impacts of changing sea ice on polar bears in Hudson Bay. Ecol. Appl. 26, 1302–1320 (2016).
    Google Scholar 

    13.
    Obbard, M. E. et al. Trends in body condition in polar bears (Ursus maritimus) from the Southern Hudson Bay subpopulation in relation to changes in sea ice. Arctic Sci. 2, 15–32 (2016).
    Google Scholar 

    14.
    Hunter, C. M. et al. Climate change threatens polar bear populations: a stochastic demographic analysis. Ecology 91, 2883–2897 (2010).
    Google Scholar 

    15.
    Molnár, P. K., Derocher, A. E., Klanjscek, T. & Lewis, M. A. Predicting climate change impacts on polar bear litter size. Nat. Commun. 2, 186 (2011).
    Google Scholar 

    16.
    De la Guardia, L. C., Derocher, A. E., Myers, P. G., van Scheltinga, A. D. T. & Lunn, N. J. Future sea ice conditions in Western Hudson Bay and consequences for polar bears in the 21st century. Glob. Change Biol. 19, 2675–2687 (2013).
    Google Scholar 

    17.
    Hamilton, S. G. et al. Projected polar bear sea ice habitat in the Canadian Arctic Archipelago. PLoS ONE 9, e113746 (2014).
    Google Scholar 

    18.
    Cavalieri, D., Parkinson, C., Gloersen, P. & Zwally, H. J. Sea Ice Concentrations from Nimbus-7 SMMR and DMSP SSM/I-SSMIS Passive Microwave Data Version 1 (1979–2016) (NASA DAAC at the National Snow and Ice Data Center, accessed 7 June 2017).

    19.
    Arnould, J. P. Y. & Ramsay, M. A. Milk production and milk consumption in polar bears during the ice-free period in western Hudson Bay. Can. J. Zool. 72, 1365–1370 (1994).
    Google Scholar 

    20.
    Dyck, M., Campbell, M., Lee, D. S., Boulanger, J. & Hedman, D. Aerial Survey of the Western Hudson Bay Polar Bear Sub-Population 2016. 2017 Final Report (Wildlife Research Section, Department of Environment, Government of Nunavut, 2017).

    21.
    Manning, T. H. Geographical Variation in the Polar Bear Ursus Maritimus Phipps. Rep. Ser. No. 13 (Canadian Wildlife Service, 1971).

    22.
    Derocher, A. E. & Stirling, I. Geographic variation in growth of polar bears (Ursus maritimus). J. Zool. Lond. 245, 65–72 (1998).
    Google Scholar 

    23.
    Derocher, A. E. & Wiig, Ø. Postnatal growth in body length and mass of polar bears (Ursus maritimus) at Svalbard. J. Zool. Lond. 256, 343–349 (2002).
    Google Scholar 

    24.
    Obbard, M. E. et al. Re-assessing abundance of Southern Hudson Bay polar bears by aerial survey: effects of climate change at the southern edge of the range. Arctic Sci. 4, 634–655 (2018).
    Google Scholar 

    25.
    Peacock, E., Taylor, M. K., Laake, J. & Stirling, I. Population ecology of polar bears in Davis Strait, Canada and Greenland. J. Wildl. Manag. 77, 463–476 (2013).
    Google Scholar 

    26.
    Galicia, M. P., Thiemann, G. W., Dyck, M. G. & Ferguson, S. H. Characterization of polar bear (Ursus maritimus) diets in the Canadian high arctic. Polar Biol. 38, 1983–1992 (2015).
    Google Scholar 

    27.
    Laidre, K. L. et al. Interrelated ecological impacts of climate change on an apex predator. Ecol. Appl. 30, e02071 (2020).
    Google Scholar 

    28.
    Stapleton, S., Peacock, E. & Garshelis, D. Aerial surveys suggest long-term stability in the seasonally ice-free Foxe Basin (Nunavut) polar bear population. Mar. Mammal Sci. 32, 181–201 (2016).
    Google Scholar 

    29.
    Regehr, E. V. et al. Integrated population modeling provides the first empirical estimates of vital rates and abundance for polar bears in the Chukchi Sea. Sci. Rep. 8, 16780 (2018).
    Google Scholar 

    30.
    Stirling, I., McDonald, T. L., Richardson, E. S., Regehr, E. V. & Amstrup, S. C. Polar bear population status in the Northern Beaufort Sea, Canada, 1971–2006. Ecol. Appl. 21, 859–876 (2011).
    Google Scholar 

    31.
    Pagano, A. M. et al. High-energy, high-fat lifestyle challenges an Arctic apex predator, the polar bear. Science 359, 568–572 (2018).
    CAS  Google Scholar 

    32.
    Aars, J. et al. The number and distribution of polar bears in the western Barents Sea. Polar Res. 36, 1374125 (2017).
    Google Scholar 

    33.
    Moss, R. et al. Towards New Scenarios for Analysis of Emissions, Climate Change, Impacts, and Response Strategies (IPCC, 2008).

    34.
    Molnár, P. K., Derocher, A. E., Lewis, M. A. & Taylor, M. K. Modelling the mating system of polar bears: a mechanistic approach to the Allee effect. Proc. R. Soc. B 275, 217–226 (2008).
    Google Scholar 

    35.
    Ingolfsson, O. & Wiig, Ø. Late Pleistocene fossil find in Svalbard: the oldest remains of a polar bear (Ursus maritimus Phipps, 1744) ever discovered. Polar Res. 28, 455–462 (2008).
    Google Scholar 

    36.
    Notz, D. & Stroeve, J. Observed Arctic sea-ice loss directly follows anthropogenic CO2 emission. Science 354, 747–750 (2016).
    CAS  Google Scholar 

    37.
    Durner, G. M. et al. Predicting 21st century polar bear habitat distribution from global climate models. Ecol. Monogr. 79, 25–58 (2009).
    Google Scholar 

    38.
    Cherry, S. G., Derocher, A. E., Thiemann, G. W. & Lunn, N. J. Migration phenology and seasonal fidelity of an Arctic marine predator in relation to sea ice dynamics. J. Anim. Ecol. 82, 912–921 (2013).
    Google Scholar 

    39.
    Smith, R. D., Kortas, S. & Meltz, B. J. A. Curvilinear Coordinates for Global Ocean Models. Tech. Note LA-UR-95-1146 (Los Alamos National Laboratory, 1997).

    40.
    Amstrup, S. C., Marcot, B. G. & Douglas, D. C. in Arctic Sea Ice Decline: Observations, Projections, Mechanisms, and Implications (eds DeWeaver, E. T. et al.) 213–268 (American Geophysical Union, 2008).

    41.
    Regehr, E. V., Hunter, C. M., Caswell, H., Amstrup, S. C. & Stirling, I. Survival and breeding of polar bears in the Southern Beaufort Sea in relation to sea ice. J. Anim. Ecol. 79, 117–127 (2009).
    Google Scholar 

    42.
    Whiteman, J. P. et al. Summer declines in activity and body temperature offer polar bears limited energy savings. Science 349, 295–298 (2015).
    CAS  Google Scholar 

    43.
    Whiteman, J. P. et al. Phenotypic plasticity and climate change: can polar bears respond to longer Arctic summers with an adaptive fast? Oecologia 186, 369–381 (2018).
    Google Scholar 

    44.
    Fetterer, F., Knowles, K., Meier, W. & Savoie, M. Sea Ice Index (National Snow and Ice Data Center, 2002).

    45.
    Furnell, D. J. & Oolooyuk, D. Polar bear predation on ringed seals in ice-free water. Can. Field-Nat. 94, 88–89 (1980).
    Google Scholar 

    46.
    Stirling, I., Lunn, N. J. & Iacozza, J. Long-term trends in the population ecology of polar bears in western Hudson Bay in relation to climate change. Arctic 52, 294–306 (1999).
    Google Scholar 

    47.
    Cavalieri, D. J., Parkinson, C. L., Gloersen, P., Comiso, J. C. & Zwally, H. J. Deriving long-term time series of ice cover from satellite passive-microwave multisensor data sets. J. Geophys. Res. 104, 15803–15814 (1999).
    Google Scholar 

    48.
    Meier, W. N. & Stewart, J. S. Assessing uncertainties in sea ice extent climate indicators. Environ. Res. Lett. 14, 035005 (2019).
    Google Scholar 

    49.
    Durner, G. M. et al. Increased Arctic sea ice drift alters adult female polar bear movements and energetics. Glob. Change Biol. 23, 3460–3473 (2017).
    Google Scholar 

    50.
    Durner, G. M. et al. Consequences of long-distance swimming and travel over deep-water pack ice for a female polar bear during a year of extreme sea ice retreat. Polar Biol. 34, 975–984 (2011).
    Google Scholar 

    51.
    Pagano, A. M., Durner, G. M., Amstrup, S. C., Simac, K. S. & York, G. S. Long-distance swimming by polar bears (Ursus maritimus) of the Southern Beaufort Sea during years of extensive open water. Can. J. Zool. 90, 663–676 (2012).
    Google Scholar 

    52.
    Derocher, A. E. & Stirling, I. Aspects of survival in juvenile polar bears. Can. J. Zool. 74, 1246–1252 (1996).
    Google Scholar 

    53.
    Molnár, P. K., Klanjscek, T., Derocher, A. E., Obbard, M. E. & Lewis, M. A. A body composition model to estimate mammalian energy stores and metabolic rates from body mass and body length, with application to polar bears. J. Exp. Biol. 212, 2313–2323 (2009).
    Google Scholar 

    54.
    Best, R. C. Thermoregulation in resting and active polar bears. J. Comp. Physiol. 146, 63–73 (1982).
    Google Scholar 

    55.
    Mathewson, P. D. & Porter, W. P. Simulating polar bear energetics during a seasonal fast using a mechanistic model. PLoS ONE 8, e72863 (2013).
    CAS  Google Scholar 

    56.
    Pagano, A. M. et al. Energetic costs of locomotion in bears: is plantigrade locomotion energetically economical? J. Exp. Biol. 221, jeb175372 (2018).
    Google Scholar 

    57.
    Derocher, A. E. & Stirling, I. Distribution of polar bears (Ursus maritimus) during the ice-free period in Western Hudson Bay. Can. J. Zool. 68, 1395–1403 (1990).
    Google Scholar 

    58.
    Lunn, N. J., Stirling, I., Andriashek, D. & Richardson, E. Selection of maternity dens by female polar bears in western Hudson Bay, Canada and the effects of human disturbance. Polar Biol. 27, 350–356 (2004).
    Google Scholar 

    59.
    Parks, E. K., Derocher, A. E. & Lunn, N. J. Seasonal and annual movement patterns of polar bears on the sea ice of Hudson Bay. Can. J. Zool. 84, 1281–1294 (2006).
    Google Scholar 

    60.
    Derocher, A. E., Stirling, I. & Andriashek, D. Pregnancy rates and serum progesterone levels of polar bears in Western Hudson Bay. Can. J. Zool. 70, 561–566 (1992).
    CAS  Google Scholar 

    61.
    Lee, P. C., Majluf, P. & Gordon, I. J. Growth, weaning and maternal investment from a comparative perspective. J. Zool. Lond. 225, 99–114 (1991).
    Google Scholar 

    62.
    Oftedal, O. T. The adaptation of milk secretion to the constraints of fasting in bears, seals, and baleen whales. J. Dairy Sci. 76, 3234–3246 (1993).
    CAS  Google Scholar 

    63.
    Derocher, A. E., Andriashek, D. & Arnould, J. P. Y. Aspects of milk composition and lactation in polar bears. Can. J. Zool. 71, 561–567 (1993).
    Google Scholar 

    64.
    Stapleton, S., Atkinson, S., Hedman, D. & Garshelis, D. Revisiting Western Hudson Bay: using aerial surveys to update polar bear abundance in a sentinel population. Biol. Conserv. 170, 38–47 (2014).
    Google Scholar 

    65.
    Calvert, W. & Ramsay, M. A. Evaluation of age determination of polar bears by counts of cementum growth layer groups. Ursus 10, 449–453 (1998).
    Google Scholar 

    66.
    Regehr, E. V., Wilson, R. R., Rode, K. D. & Runge, M. C. Resilience and Risk—a Demographic Model to Inform Conservation Planning for Polar Bears Open-File Report 2015–1029 (US Geological Survey, 2015).

    67.
    Molnár, P. K., Lewis, M. A. & Derocher, A. E. Estimating Allee dynamics before they can be observed: polar bears as a case study. PLoS ONE 9, e85410 (2014).
    Google Scholar 

    68.
    Rode, K. D. et al. Variation in the response of an Arctic top predator experiencing habitat loss: feeding and reproductive ecology of two polar bear populations. Glob. Change Biol. 20, 76–88 (2014).
    Google Scholar 

    69.
    Laliberté, F., Howell, S. E. L. & Kushner, P. J. Regional variability of a projected sea ice‐free Arctic during the summer months. Geophys. Res. Lett. 43, 256–263 (2016).
    Google Scholar 

    70.
    Massonnet, F. et al. Constraining projections of summer Arctic sea ice. Cryosphere 6, 1383–1394 (2012).
    Google Scholar 

    71.
    McNab, B. K. Geographic and temporal correlations of mammalian size reconsidered: a resource rule. Oecologia 164, 13–23 (2010).
    Google Scholar 

    72.
    McNutt, J. W. & Gusset, M. Declining body size in an endangered large mammal. Biol. J. Linn. Soc. 105, 8–12 (2012).
    Google Scholar 

    73.
    Amstrup, S. C. & Durner, G. M. Survival rates of radio-collared female polar bears and their dependent young. Can. J. Zool. 73, 1312–1322 (1995).
    Google Scholar  More

  • in

    W. W. Oswald et al. reply

    1.
    Oswald, W. W. et al. Conservation implications of limited Native American impacts in pre-contact New England. Nat. Sustain. 3, 241–246 (2020).
    Article  Google Scholar 
    2.
    Roos, C. I. Scale in the study of Indigenous burning. Nat. Sustain. https://doi.org/10.1038/s41893-020-0579-5 (2020).

    3.
    Abrams, M. D. & Nowacki, G. J. Native American imprint in palaeoecology. Nat. Sustain. https://doi.org/10.1038/s41893-020-0578-6 (2020).

    4.
    Abrams, M. D. & Nowacki, G. J. Native Americans as active and passive promoters of mast and fruit trees in the eastern USA. Holocene 18, 1123–1137 (2008).
    Article  Google Scholar 

    5.
    Mann, C. C. 1491: New Revelations of the Americas Before Columbus (Knopf, 2005).

    6.
    Canuto, M. A. et al. Ancient lowland Maya complexity as revealed by airborne laser scanning of northern Guatemala. Science 361, 1355–1371 (2018).
    CAS  Article  Google Scholar 

    7.
    Snow, D. The Iroquois (Wiley-Blackwell, 1996).

    8.
    Day, G. M. The Indian as an ecological factor in the northeastern forest. Ecology 34, 329–346 (1953).
    Article  Google Scholar 

    9.
    Cronon, W. Changes in the Land: Indians, Colonists, and the Ecology of New England (Hill & Wang, 1983).

    10.
    Whitney G. G. From Coastal Wilderness to Fruited Plain (Cambridge Univ. Press, 1994).

    11.
    Nowacki, G. J. & Abrams, M. D. The demise of fire and “mesophication” of forests in the eastern United States. BioScience 58, 123–138 (2008).
    Article  Google Scholar 

    12.
    Cogbill, C. V., Burk, J. & Motzkin, G. The forests of presettlement New England, USA: spatial and compositional patterns based on town proprietor surveys. J. Biogeogr. 29, 1279–1304 (2002).
    Article  Google Scholar 

    13.
    Oswald, W. W. et al. Subregional variability in the response of New England vegetation to postglacial climate change. J. Biogeogr. 45, 2375–2388 (2018).
    Article  Google Scholar 

    14.
    Shuman, B. N., Marsicek, J., Oswald, W. W. & Foster, D. R. Predictable hydrological and ecological responses to Holocene North Atlantic variability. Proc. Natl Acad. Sci. USA 116, 5985–5990 (2019).
    CAS  Article  Google Scholar 

    15.
    Foster, D. R., Motzkin, G. & Slater, B. Land-use history as long-term broad-scale disturbance: regional forest dynamics in central New England. Ecosystems 1, 96–119 (1998).
    Article  Google Scholar 

    16.
    McEwan, R. W., Dyer, J. M. & Pederson, N. Multiple interacting ecosystem drivers: toward an encompassing hypothesis of oak forest dynamics across eastern North America. Ecography 34, 244–256 (2011).
    Article  Google Scholar 

    17.
    Pederson, N. et al. Climate remains an important driver of post-European vegetation change in the eastern United States. Glob. Change Biol. 20, 2105–2110 (2014).
    Google Scholar 

    18.
    Thompson, J. R., Carpenter, D. N., Cogbill, C. V. & Foster, D. R. Four centuries of change in northeastern United States forests. PLoS ONE 8, e72540 (2013).
    CAS  Article  Google Scholar 

    19.
    Patterson, W. A. III in Fire in Eastern Oak Forests: Delivering Science to Land Managers (ed. Dickinson, M. B.) 2–19 (US Department of Agriculture, Forest Service, Northern Research Station, 2006).

    20.
    Patterson, W. A. III & Sassaman, K. E. in Holocene Human Ecology in Northeastern North America (ed. Nicholas, G. P.) 107–135 (Plenum, 1988).

    21.
    Marlon, J., Bartlein, P. J. & Whitlock, C. Fire–fuel–climate linkages in the northwestern USA during the Holocene. Holocene 16, 1059–1071 (2006).
    Article  Google Scholar 

    22.
    Munoz, S. E. & Gajewski, K. Distinguishing prehistoric human influence on late-Holocene forests in southern Ontario, Canada. Holocene 20, 967–981 (2010).
    Article  Google Scholar 

    23.
    Lynch, E. A., Hotchkiss, S. C. & Calcote, R. Charcoal signatures defined by multivariate analysis of charcoal records from 10 lakes in northwest Wisconsin (USA). Quat. Res. 75, 125–137 (2011).
    Article  Google Scholar 

    24.
    Calder, W. J. et al. Medieval warming initiated exceptionally large wildfire outbreaks in the Rocky Mountains. Proc. Natl Acad. Sci. USA 112, 13261–13266 (2015).

    25.
    Chilton, E. S. in Northeast Subsistence-Settlement Change: A.D. 700–A.D. 1300 (eds Hart, J. & Reith, C.) 289–300 (New York State Museum, 2002).

    26.
    Josselyn, J. Two Voyages to New England (E. W. Metcalf & Co., 1833).

    27.
    Chilton, E. S. in Ancient Complexities: New Perspectives in Pre-Columbian North America (ed. Alt, S.) 96–103 (Univ. of Utah Press, 2010).

    28.
    Archer, G. Gosnold’s Settlement at Cuttyhunk (Old South Work, 1902).

    29.
    Thomas, P. A. In the Maelstrom of Change: The Indian Trade and Cultural Process in the Middle Connecticut River Valley 1635–1665. PhD thesis, Univ. of Massachusetts, Amherst (1979).

    30.
    Clark, J. S. & Royall, P. D. Transformation of a northern hardwood forest by aboriginal (Iroquois) fire: charcoal evidence from Crawford Lake, Ontario, Canada. Holocene 5, 1–9 (1995).
    Article  Google Scholar 

    31.
    Chilton, E. S. in Oxford Handbook of North American Archaeology (ed. Pauketat, T.) 262–272 (Oxford Univ. Press, 2012). More

  • in

    Scale in the study of Indigenous burning

    1.
    Armstrong, C. G. et al. Anthropological contributions to historical ecology: 50 questions, infinite prospects. PLoS ONE 12, e0171883 (2017).
    Article  Google Scholar 
    2.
    Oswald, W. W. et al. Conservation implications of limited Native American impacts in pre-contact New England. Nat. Sustain. 3, 241–246 (2020).
    Article  Google Scholar 

    3.
    Bragdon, K. J. Native People of Southern New England, 1500–1650 Vol. 221 (Univ. Oklahoma Press, 1996).

    4.
    Stone, G. D. Settlement Ecology: The Social and Spatial Organization of Kofyar Agriculture (Univ. Arizona Press, 1996).

    5.
    Whitlock, C. & Anderson, R. S. in Fire and Climatic Change in Temperate Ecosystems of the Western Americas Ecological Studies Vol. 160 (eds Veblen, T. T. et al.) 3–31 (Springer, 2003).

    6.
    Roos, C. I., Williamson, G. J. & Bowman, D. M. J. S. Is anthropogenic pyrodiversity invisible in paleofire records? Fire 2, 42 (2019).
    Article  Google Scholar 

    7.
    Day, G. M. The Indian as an ecological factor in the northeastern forest. Ecology 34, 329–346 (1953).
    Article  Google Scholar 

    8.
    Cronon, W. Changes in the Land: Indians, Colonists, and the Ecology of New England (Hill and Wang, 2011).

    9.
    Trauernicht, C., Brook, B. W., Murphy, B. P., Williamson, G. J. & Bowman, D. M. J. S. Local and global pyrogeographic evidence that indigenous fire management creates pyrodiversity. Ecol. Evol. 5, 1908–1918 (2015).
    Article  Google Scholar 

    10.
    Roos, C. I. et al. Pyrogeography, historical ecology, and the human dimensions of fire regimes. J. Biogeogr. 41, 833–836 (2014).
    Article  Google Scholar 

    11.
    Bowman, D. M. J. S. et al. The human dimension of fire regimes on Earth. J. Biogeogr. 38, 2223–2236 (2011).
    Article  Google Scholar 

    12.
    Swetnam, T. W. et al. Multiscale perspectives of fire, climate and humans in western North America and the Jemez Mountains, USA. Phil. Trans. R. Soc. B 371, 20150168 (2016).
    Article  Google Scholar 

    13.
    Bliege Bird, R., Codding, B. F., Kauhanen, P. G. & Bird, D. W. Aboriginal hunting buffers climate-driven fire-size variability in Australia’s spinifex grasslands. Proc. Natl Acad. Sci. USA 109, 10287–10292 (2012).
    Article  Google Scholar 

    14.
    Roos, C. I., Zedeño, M. N., Hollenback, K. L. & Erlick, M. M. H. Indigenous impacts on North American Great Plains fire regimes of the past millennium. Proc. Natl Acad. Sci. USA 115, 8143–8148 (2018).
    CAS  Article  Google Scholar 

    15.
    Balch, J. K. et al. Human-started wildfires expand the fire niche across the United States. Proc. Natl Acad. Sci. USA 114, 2946–2951 (2017).

    16.
    Flannery, T. The Future Eaters: An Ecological History of the Australasian Lands and People (Grove, 2002). More

  • in

    Integrating agroecological production in a robust post-2020 Global Biodiversity Framework

    Below, we elaborate on how agroecological production can help to support the GBF targets.
    Target 1 — reduce the threats to biodiversity
    Comprehensive spatial planning for diversified agriculture benefits biodiversity conservation and nature’s contributions to people (NCP)7,8, when integrating multiple spatial scales from local to regional and multi-stakeholder participatory approaches. Diversified farmlands enhance biodiversity, biocontrol, pollination and reduce pathogen and pest impact7, thereby contributing to achieve conservation objectives in proximate protected areas, as more protected areas are seeing impact in intensive land use in surrounding areas9. Agroecological practices can considerably reduce the use of synthetic pesticides10, a major cause of biodiversity loss11. A more effective use of fertilizers can reduce nutrient pollution and mitigate climate impacts by maintaining healthier, carbon-sequestering soil microbiota12. Diversified cropping systems can further mitigate greenhouse gas emissions by, for example, non-crop tree diversification in agroforestry systems, thereby enhancing agrobiodiversity benefits13,14.
    Target 2 — meeting people’s needs through sustainable use and benefit sharing
    Agroecological production is a comprehensive framework for the sustainable use of biodiversity that also supports productivity and resilience15. Farmers benefit from diversified systems through increased economic resilience, reduced dependency on agrochemical inputs, and in subsistence systems more diverse and nutritious foods16,17,18. Moreover, agroecological production can reduce negative externalities and off-farm inputs, while increasing biodiversity and NCP19,20. Trade-offs between agroecological approaches and yield are often assumed, but not inherent21. New crop varieties, crop combinations and technological innovations will only further reduce yield gaps between conventional and agroecological production19,22, when the availability is fair and locally appropriate.
    Target 3 — tools and solutions for implementation and mainstreaming
    Eco-certification and agricultural policies — if well informed and implemented — provide important opportunities to encourage diversified farm and landscape measures for conservation23,24. Corporate and government commitments to zero-deforestation and eco-labelling could be enhanced by coupling production and protection goals within innovative investment models that emphasize natural assets. Investing in diversified systems can mitigate environmental vulnerability by embedding resilience into supply chains25. Promotion and equitable participation of indigenous peoples and local communities in decision-making processes is critical to incorporate their perspective on and knowledge about agroecological approaches. Lastly, an understanding of agroecological production, benefits for biodiversity conservation, food security, and overall better quality of life can help to shape new social norms for sustainability6. More

  • in

    Reduced ecosystem services of desert plants from ground-mounted solar energy development

    1.
    Halmo, D. B., Stoffle, R. W. & Evans, M. J. Paitu Nanasuagaindu Pahonupi (Three Sacred Valleys): cultural significance of Gosiute, Paiute, and Ute plants. Hum. Organ. 52, 142–150 (1993).
    Google Scholar 
    2.
    Stoffle, R. W., Halmo, D. B. & Austin, D. E. Cultural landscapes and traditional cultural properties: a southern Paiute view of the Grand Canyon and Colorado River. Am. Indian Q. 21, 229–249 (1997).
    Google Scholar 

    3.
    Lee, R. B. in Man the Hunter (eds Lee, R. B. & DeVore, I.) 30–48 (Aldine, 1968).

    4.
    Smith, M., Veth, P., Hiscock, P. & Wallis, L. A. in Desert Peoples, Archaeological Perspectives Vol. 1 (eds Veth, P. et al.) Ch. 1 (Blackwell, 2005).

    5.
    Stoffle, R. W. & Evans, M. J. Holistic conservation and cultural triage: American Indian perspectives on cultural resources. Hum. Organ 49, 91–99 (1990).
    Google Scholar 

    6.
    Anderson, M. K. Tending the Wild: Native American Knowledge and the Management of California’s Natural Resources (UC Press, 2005).

    7.
    Saenz-Hernandez, C., Corrales-Garcia, J. & Aquino-Perez, G. in Cacti: Biology and Uses (ed. Nobel, P. S.) 211–234 (UC Press, 2002).

    8.
    Larsen, L. & Harlan, S. L. Desert dreamscapes: residential landscape preference and behavior. Landsc. Urban Plan. 78, 8–100 (2006).
    Google Scholar 

    9.
    Rokeach, M. The Nature of Human Values (Free Press, 1973).

    10.
    Schwartz, S. H. & Bilksy, W. Toward a universal psychology structure of human values. J. Person. Soc. Psychol. 58, 878–891 (1987).
    Google Scholar 

    11.
    Kamakura, W. A. & Novak, T. P. Value system segmentation: exploring the meaning of LOV. J. Consum. Res. 19, 119–132 (1992).
    Google Scholar 

    12.
    Moore-O’Leary, K. A. et al. Sustainability of utility-scale solar energy—critical ecological concepts. Front. Ecol. Environ. 15, 385–394 (2017).
    Google Scholar 

    13.
    Hernandez, R. R. et al. Techno-ecological synergies of solar energy produce beneficial outcomes across industrial-ecological boundaries to mitigate global change. Nat. Sustain. 2, 560–568 (2019).
    Google Scholar 

    14.
    Carpenter, S. R. et al. Science for managing ecosystem services: beyond the Millennium Ecosystem Assessment. Proc. Natl Acad. Sci. USA 106, 1305–1312 (2009).
    CAS  Google Scholar 

    15.
    Folke, C. et al. Resilience and sustainable development: building adaptive capacity in a world of transformations. AMBIO 31, 437–440 (2002).
    Google Scholar 

    16.
    Daniel, T. C. et al. Contributions of cultural services to the ecosystem services agenda. Proc. Natl Acad. Sci. USA 109, 8812–8819 (2012).
    CAS  Google Scholar 

    17.
    Chan, K. M. A. et al. Where are cultural and social in ecosystem services? A framework for constructive engagement. BioScience 62, 744–756 (2012).
    Google Scholar 

    18.
    Farber, S. C., Constanza, R. & Wilson, M. A. Economic and ecological concepts for valuing ecosystem services. Ecol. Econ. 41, 375–392 (2002).
    Google Scholar 

    19.
    Copeland, S. M., Bradford, J. B., Duniway, M. C. & Schuster, R. M. Potential impacts of overlapping land-use and climate in a sensitive dryland: a case study of the Colorado Plateau, USA. Ecosphere 8, e01823 (2017).

    20.
    Durant, S. M. et al. Forgotten biodiversity in desert ecosystems. Science 336, 1379–1380 (2012).
    CAS  Google Scholar 

    21.
    McDonald, R. I. et al. Energy sprawl or energy efficiency: climate policy impacts on natural habitat for the United States of America. PLoS ONE 4, e6802 (2009).
    Google Scholar 

    22.
    Hernandez, R. R. et al. Solar energy development impacts on terrestrial ecosystems. Proc. Natl Acad. Sci. USA 112, 13579–13584 (2015a).
    CAS  Google Scholar 

    23.
    Hernandez, R. R. et al. The land-use efficiency of big solar. Environ. Sci. Technol. 48, 1315–1323 (2014).
    CAS  Google Scholar 

    24.
    Lovich, J. E. & Bainbridge, D. Anthropogenic degradation of the southern California desert ecosystem and prospects for natural recovery and restoration. Environ. Manag. 24, 309–326 (1999).
    CAS  Google Scholar 

    25.
    Hoffacker, M. K., Allen, M. F. & Hernandez, R. R. Land sparing opportunities for solar energy development in agricultural landscapes: a case study of the Great Central Valley, CA, USA. Environ. Sci. Technol. 51, 14472–14482 (2017).
    CAS  Google Scholar 

    26.
    Potter, C. Landsat time series analysis of vegetation changes in solar energy development areas of the Lower Colorado Desert, southern California. J. Geosci. Environ. Prot. 4, 1–6 (2016).
    Google Scholar 

    27.
    Li, Y. et al. Climate model shows large-scale wind and solar farms in the Sahara increase rain and vegetation. Science 361, 1019–1022 (2018).
    CAS  Google Scholar 

    28.
    Myers, N., Mittermeier, R. A., Mittermeier, C. G., da Fonseca, G. A. B. & Kent, J. Biodiversity hotspots for conservation priorities. Nature 403, 853–858 (2000).
    CAS  Google Scholar 

    29.
    Bidak, L. M., Kamal, S. A., Halmy, M. W. A. & Heneidy, S. Z. Goods and services provided by native plants in desert ecosystems: examples from the northwestern coastal desert of Egypt. Glob. Ecol. Conserv. 3, 433–447 (2015).
    Google Scholar 

    30.
    Liu, J. et al. Complexity of coupled human and natural systems. Science 317, 1513–1516 (2007).
    CAS  Google Scholar 

    31.
    Walsh, J. R., Carpenter, S. R. & Vander Zanden, M. J. Invasive species triggers massive loss of ecosystem services through a trophic cascade. Proc. Natl Acad. Sci. USA 113, 4081–4085 (2016).
    CAS  Google Scholar 

    32.
    Brooks, M. L. & Matchett, J. R. Spatial and temporal patterns of wildfires in the Mojave Desert, 1980-2004. J. Arid Environ. 67, 148–164 (2006).
    Google Scholar 

    33.
    Goettsch, B. et al. High proportion of cactus species threatened with extinction. Nat. Plants 1, 15142 (2015).
    CAS  Google Scholar 

    34.
    Drennan, P. M. & Nobel, P. S. Responses of CAM species to increasing atmospheric CO2 concentrations. Plant Cell Environ. 23, 767–781 (2000).
    CAS  Google Scholar 

    35.
    Díaz, S. et al. Incorporating plant functional diversity effects in ecosystem service assessments. Proc. Natl Acad. Sci. USA 104, 20684–20689 (2007).
    Google Scholar 

    36.
    Daily, G. C. & Matson, P. A. Ecosystem services: from theory to implementation. Proc. Natl Acad. Sci. USA 105, 9455–9456 (2008).
    CAS  Google Scholar 

    37.
    Kuletz, V. L. The Tainted Desert: Environmental and Social Ruin in the American West (Routledge, 1998).

    38.
    Adamson, J. American Indian Literature, Environmental Justice, and Ecocriticism (Univ. Arizona Press, 2001).

    39.
    Romero, H., Mendez, M. & Smith, P. Mining development and environmental injustice in the Atacama Desert of northern Chile. Environ. Justice 5, 70–76 (2012).
    Google Scholar 

    40.
    Vine, D. Base Nation: How U.S. Military Bases Abroad Harm America and the World (Henry Holt and Co., 2015).

    41.
    Tsosie, R. Indigenous people and environmental justice: the impact of climate change. Univ. Col. Law Rev. 78, 1625–1678 (2007).
    Google Scholar 

    42.
    Mulvaney, D. Identifying the roots of Green Civil War over utility-scale solar energy projects on public lands across the American Southwest. J. Land Use Sci. 12, 493–515 (2017).
    Google Scholar 

    43.
    Brookshire, D. & Kaza, N. Planning for seven generations: energy planning of American Indian tribes. Energy Policy 62, 1506–1514 (2013).
    Google Scholar 

    44.
    Bronin, S. C. The promise and perils of renewable energy on tribal lands. Tulane Environ. Law J. 26, 221–237 (2013).
    Google Scholar 

    45.
    Polis, G. A. The Ecology of Desert Communities (Univ. Arizona Press, 1991).

    46.
    Aranda-Rickert, A., Diez, P. & Marazzi, B. Extrafloral nectar fuels ant life in deserts. AoB PLANTS 6, plu068 (2014).
    Google Scholar 

    47.
    Rickleffs, R. E. & Hainsworth, F. R. Tenperature regulation in nestling cactus wren: the nest environment. Condor 71, 32–37 (1969).
    Google Scholar 

    48.
    Pfeiler, E. & Markow, T. A. Phylogeography of the cactophilic Drosophila and other arthropods associated with cactus necroses in the Sonoran Desert. Insects 2, 218–231 (2011).
    Google Scholar 

    49.
    Pellmyr, O., Thompson, J. N., Brown, J. M. & Harrison, R. G. Evolution of pollination and mutualism in the yucca moth lineage. Am. Nat. 148, 827–847 (1996).
    Google Scholar 

    50.
    Abella, S. R. & Berry, K. H. Enhancing and restoring habitat for the desert tortoise. J. Fish. Wildl. Manag. 7, 255–279 (2016).
    Google Scholar 

    51.
    Hernandez, R. R. et al. Efficient use of land to meet sustainable energy needs. Nat. Clim. Change 5, 353–358 (2015).
    Google Scholar 

    52.
    Clark, W. C., van Kerkhoff, L., Lebel, L. & Gallopin, G. C. Crafting usable knowledge for sustainable development. Proc. Natl Acad. Sci. USA 113, 4570–4578 (2016).
    CAS  Google Scholar  More