More stories

  • in

    Structure and co-occurrence patterns of bacterial communities associated with white faeces disease outbreaks in Pacific white-leg shrimp Penaeus vannamei aquaculture

    1.
    De Schryver, P., Defoirdt, T. & Sorgeloos, P. Early mortality syndrome outbreaks: a microbial management issue in shrimp farming?. PLoS Pathog. 10, e1003919 (2014).
    PubMed  PubMed Central  Google Scholar 
    2.
    Soto-Rodriguez, S. A., Gomez-Gil, B., Lozano-Olvera, R., Betancourt-Lozano, M. & Morales-Covarrubias, M. S. Field and experimental evidence of Vibrio parahaemolyticus as the causative agent of acute hepatopancreatic necrosis disease of cultured shrimp (Litopenaeus vannamei) in Northwestern Mexico. Appl. Environ. Microbiol. 81, 1689–1699 (2015).
    PubMed  PubMed Central  Google Scholar 

    3.
    Mastan, S. A. Incidences of white feces syndrome (WFS) in farm-reared shrimp, Litopenaeus vannamei, Andhra Pradesh. Indo Am. J. Pharm. Res. 5, 3044–3047 (2015).
    CAS  Google Scholar 

    4.
    Zheng, Y. et al. Bacterial community associated with healthy and diseased Pacific white shrimp (Litopenaeus vannamei) larvae and rearing water across different growth stages. Front. Microbiol. 8, 1–11 (2017).
    Google Scholar 

    5.
    Durai, V., Gunalan, B., Johnson, P. M., Maheswaran, M. L. & Pravinkumar, M. Effect on white gut and white feces disease in semi intensive Litopenaeus vannamei shrimp culture system in south Indian state of Tamilnadu. Int. J. Mar. Sci. 5, 1–5 (2015).
    Google Scholar 

    6.
    Sriurairatana, S. et al. White feces syndrome of shrimp arises from transformation, sloughing and aggregation of hepatopancreatic microvilli into vermiform bodies superficially resembling gregarines. PLoS ONE 9, e99170 (2014).
    ADS  PubMed  PubMed Central  Google Scholar 

    7.
    Sung, H. H., Hsu, S. F., Chen, C. K., Ting, Y. Y. & Chao, W. L. Relationships between disease outbreak in cultured tiger shrimp (Penaeus monodon) and the composition of Vibrio communities in pond water and shrimp hepatopancreas during cultivation. Aquaculture 192, 101–110 (2001).
    Google Scholar 

    8.
    Tang, K. F. J. et al. Dense populations of the microsporidian Enterocytozoon hepatopenaei (EHP) in feces of Penaeus vannamei exhibiting white feces syndrome and pathways of their transmission to healthy shrimp. J. Invertebr. Pathol. 140, 1–7 (2016).
    PubMed  Google Scholar 

    9.
    Piamsomboon, P. et al. Quantification of Enterocytozoon hepatopenaei (EHP) in penaeid shrimps from Southeast Asia and Latin America using taqman probe-based quantitative PCR. Pathogens 8, 4–9 (2019).
    Google Scholar 

    10.
    Limsuwan, C. White feces disease in Thailand. Boletines nicovita. 2, 1–3 (2010).
    Google Scholar 

    11.
    Tangprasittipap, A. et al. The microsporidian Enterocytozoon hepatopenaei is not the cause of white feces syndrome in whiteleg shrimp Penaeus (Litopenaeus) vannamei. BMC Vet. Res. 9, 139 (2013).
    PubMed  PubMed Central  Google Scholar 

    12.
    Gomez-Gil, B., Roque, A. & Turnbull, J. F. The use and selection of probiotic bacteria for use in the culture of larval aquatic organisms. Aquaculture 191, 259–270 (2000).
    Google Scholar 

    13.
    Gullian, M., Thompson, F. & Rodriguez, J. Selection of probiotic bacteria and study of their immunostimulatory effect in Penaeus vannamei. Aquaculture 233, 1–14 (2004).
    Google Scholar 

    14.
    Moriarty, D. J. W. Disease control in shrimp aquaculture with probiotic bacteria. In Microbial Biosystems: New Frontiers. Proceedings of the 8th International Symposium on Microbial Ecology (eds Bell, C. R. et al.) 1–7 (Atlantic Canada Society for Microbial Ecology, Halifax, 2013).
    Google Scholar 

    15.
    Franco, R. et al. Evaluation of two probiotics used during farm production of white shrimp Litopenaeus vannamei (Crustacea: Decapoda). Aquac. Res. 48, 1936–1950 (2017).
    CAS  Google Scholar 

    16.
    Zhang, L. et al. Effects of dietary administration of probiotic Halomonas sp. B12 on the intestinal microflora, immunological parameters, and midgut histological structure of shrimp. Fenneropenaeus chinensis. J. World Aquac. Soc. 40, 58–66 (2009).
    ADS  Google Scholar 

    17.
    Xiong, J. et al. Changes in intestinal bacterial communities are closely associated with shrimp disease severity. Appl. Microbiol. Biotechnol. 99, 6911–6919 (2015).
    CAS  PubMed  Google Scholar 

    18.
    Somboon, M., Purivirojkul, W., Limsuwan, C. & Chuchird, N. Effect of Vibrio spp, in white feces infected shrimp in Chanthaburi, Thailand. Kasetsart Univ. Fish. Res. Bull. 36, 7–15 (2012).
    Google Scholar 

    19.
    Amann, R. I., Ludwig, W. & Schleifer, K. H. Phylogenetic identification and in situ detection of individual microbial cells without cultivation. Microbiol. Rev. 59, 143–169 (1995).
    CAS  PubMed  PubMed Central  Google Scholar 

    20.
    Hou, D. et al. Intestinal bacterial signatures of white feces syndrome in shrimp. Appl. Microbiol. Biotechnol. 102, 3701–3709 (2018).
    CAS  PubMed  Google Scholar 

    21.
    Xiong, J., Dai, W. & Li, C. Advances, challenges, and directions in shrimp disease control: the guidelines from an ecological perspective. Appl. Microbiol. Biotechnol. 100, 6947–6954 (2016).
    CAS  PubMed  Google Scholar 

    22.
    Huang, Z. et al. Microecological Koch’s postulates reveal that intestinal microbiota dysbiosis contributes to shrimp white feces syndrome. Microbiome 8, 32 (2020).
    PubMed  PubMed Central  Google Scholar 

    23.
    Fan, J. et al. Dynamics of the gut microbiota in developmental stages of Litopenaeus vannamei reveal its association with body weight. Sci. Rep. 9, 734 (2019).
    ADS  PubMed  PubMed Central  Google Scholar 

    24.
    Sha, Y. et al. Bacterial population in intestines of Litopenaeus vannamei fed different probiotics or probiotic supernatant. J. Microbiol. Biotechnol. 26, 1736–1745 (2016).
    PubMed  Google Scholar 

    25.
    Vargas-Albores, F. et al. Bacterial biota of shrimp intestine is significantly modified by the use of a probiotic mixture: a high throughput sequencing approach. Helgol. Mar. Res. 71, 5 (2017).
    Google Scholar 

    26.
    Rungrassamee, W. et al. Characterization of intestinal bacteria in wild and domesticated adult black tiger shrimp (Penaeus monodon). PLoS ONE 9, e91853 (2014).
    ADS  PubMed  PubMed Central  Google Scholar 

    27.
    Huang, F., Pan, L., Song, M., Tian, C. & Gao, S. Microbiota assemblages of water, sediment, and intestine and their associations with environmental factors and shrimp physiological health. Appl. Microbiol. Biotechnol. 102, 8585–8598 (2018).
    CAS  PubMed  Google Scholar 

    28.
    Grossart, H. P. Ecological consequences of bacterioplankton lifestyles: changes in concepts are needed. Environ. Microbiol. Rep. 2, 706–714 (2010).
    PubMed  Google Scholar 

    29.
    Lyons, M. M., Ward, J. E., Smolowitz, R., Uhlinger, K. R. & Gast, R. J. Lethal marine snow: pathogen of bivalve mollusc concealed in marine aggregates. Limnol. Oceangr. 50, 1983–1988 (2005).
    ADS  Google Scholar 

    30.
    Lyons, M. M. et al. Theory of island biogeography on a microscopic scale: organic aggregates as islands for aquatic pathogens. Aquat. Microb. Ecol. 60, 1–13 (2010).
    Google Scholar 

    31.
    Kramer, A. M., Lyons, M. M., Dobbs, F. C. & Drake, J. M. Bacterial colonization and extinction on marine aggregates: stochastic model of species presence and abundance. Ecol. Evol. 3, 4300–4309 (2013).
    PubMed  PubMed Central  Google Scholar 

    32.
    Ekasari, J. et al. The size of biofloc determines the nutritional composition and the nitrogen recovery by aquaculture animals. Aquaculture 426, 105–111 (2014).
    Google Scholar 

    33.
    Hargreaves, J. A. Biofloc production systems for aquaculture. SRAC Publ. 4503, 1–12 (2013).
    Google Scholar 

    34.
    Beardsley, C., Moss, S., Malfatti, F. & Azam, F. Quantitative role of shrimp fecal bacteria in organicmatter fluxes in a recirculating shrimp aquaculture system. FEMS Microbiol. Ecol. 77, 134–145 (2011).
    CAS  PubMed  Google Scholar 

    35.
    Alfiansah, Y. R. et al. Bacterial abundance and community composition in pond water from shrimp aquaculture systems with different stocking densities. Front. Microbiol. 9, 2457 (2018).
    PubMed  PubMed Central  Google Scholar 

    36.
    Xiong, J. et al. The temporal scaling of bacterioplankton composition: high turnover and predictability during shrimp cultivation. Microb. Ecol. 67, 256–264 (2014).
    PubMed  Google Scholar 

    37.
    Yang, W. et al. Nutrient enrichment during shrimp cultivation alters bacterioplankton assemblies and destroys community stability. Ecotoxicol. Environ. Saf. 156, 366–374 (2018).
    CAS  PubMed  Google Scholar 

    38.
    Boyd, C. E. & Tucker, C. S. pH in Handbook for Aquaculture Water Quality 95–112 (Craftmaster Printers, Auburn, Alabama, 2002).
    Google Scholar 

    39.
    Zhang, D. et al. Bacterioplankton assemblages as biological indicators of shrimp health status. Ecol. Indic. 38, 218–224 (2014).
    CAS  Google Scholar 

    40.
    Chankaew, S., O-Thong, S. & Songnoi, Y. Halomonas sp. SKNB4, a proficient ammonium oxidizing bacterium. In Proceeding of the 3rd National Meeting on Biodiversity Management in Thailand 4, 186–191 (2016).

    41.
    Chankaew, S., O-Thong, S. & Sangnoi, Y. Nitrogen removal efficiency of salt-tolerant heterotrophic nitrifying bacteria. Chiang Mai J. Sci 44, 1–10 (2017).
    Google Scholar 

    42.
    Sangnoi, Y., Chankaew, S. & O-Thong, S. Indigenous Halomonas spp., the potential nitrifying bacteria for saline ammonium waste water treatment. Pak. J. Biol. Sci. 20, 52–58 (2016).
    Google Scholar 

    43.
    Bourne, D. G. et al. Microbial community dynamics in a larval aquaculture system of the tropical rock lobster Panulirus ornatus. Aquaculture 242, 31–51 (2004).
    Google Scholar 

    44.
    Li, Y. et al. Diversity of cultivable protease-producing bacteria in Laizhou Bay sediments, Bohai Sea, China. Front. Microbiol. 8, 1–10 (2017).
    ADS  Google Scholar 

    45.
    Cao, H. et al. Isolation and characterization of a denitrifying Acinetobacter baumannii H1 using NO2–N as nitrogen source from shrimp farming ponds. Afr. J. Microbiol. Res. 6, 2258–2264 (2012).
    ADS  CAS  Google Scholar 

    46.
    Vijayan, K. K. et al. A brackishwater isolate of Pseudomonas PS-102, a potential antagonistic bacterium against pathogenic vibrios in penaeid and non-penaeid rearing systems. Aquaculture 251, 192–200 (2006).
    CAS  Google Scholar 

    47.
    Luis-Villaseñor, I. E. et al. Effect of beneficial bacteria on larval culture of Pacific whiteleg shrimp Litopenaeus vannamei. Afr. J. Microbiol. Res. 7, 3471–3478 (2013).
    Google Scholar 

    48.
    Liu, Y. et al. PHB-degrading bacteria isolated from the gastrointestinal tract of aquatic animals as protective actors against luminescent vibriosis. FEMS Microbiol. Ecol. 74, 196–204 (2010).
    CAS  PubMed  Google Scholar 

    49.
    Shade, A. et al. Fundamentals of microbial community resistance and resilience. Front. Microbiol. 3, 1–19 (2012).
    ADS  Google Scholar 

    50.
    Dai, W., Qiu, Q., Chen, J. & Xiong, J. Gut eukaryotic disease-discriminatory taxa are indicative of Pacific white shrimp (Litopenaeus vannamei) white feces syndrome. Aquaculture 506, 154–160 (2019).
    Google Scholar 

    51.
    Ventosa, A., Nieto, J. J. & Oren, A. Biology of moderately halophilic aerobic bacteria. Microbiol. Mol. Biol. Rev. 62, 504–544 (1998).
    CAS  PubMed  PubMed Central  Google Scholar 

    52.
    DiRita, V. J. Co-ordinate expression of virulence genes by ToxR in Vibrio cholerae. Mol. Microbiol. 6, 451–458 (1992).
    CAS  PubMed  Google Scholar 

    53.
    Williams, S. L., Jensen, R. V., Kuhn, D. D. & Stevens, A. M. Analyzing the metabolic capabilities of a Vibrio parahaemolyticus strain that causes early mortality syndrome in shrimp. Aquaculture 476, 44–48 (2017).
    CAS  Google Scholar 

    54.
    Sirikharin, R. et al. Characterization and PCR detection of binary, pir-like toxins from Vibrio parahaemolyticus isolates that cause acute hepatopancreatic necrosis disease (AHPND) in shrimp. PLoS ONE 10, e0126987 (2015).
    PubMed  PubMed Central  Google Scholar 

    55.
    Whitaker, W. B. et al. Modulation of responses of Vibrio parahaemolyticus O3:K6 to pH and temperature stresses by growth at different salt concentrations. Appl. Environ. Microbiol. 76, 4720–4729 (2010).
    CAS  PubMed  PubMed Central  Google Scholar 

    56.
    Alonzo, K. H. F., Cadiz, R. E., Traifalgar, R. F. M. & Corre, V. L. Immune responses and susceptibility to Vibrio parahaemolyticus colonization of juvenile Penaeus vannamei at increased water temperature. AACL Bioflux 10, 1238–1247 (2017).
    Google Scholar 

    57.
    Gomez-Gil, B., Roque, A. & Velasco-Blanco, G. Culture of Vibrio alginolyticus C7b, a potential probiotic bacterium, with the microalga Chaetoceros muelleri. Aquaculture 211, 43–48 (2002).
    Google Scholar 

    58.
    Zorriehzahra, M. J. et al. Probiotics as beneficial microbes in aquaculture: an update on their multiple modes of action: a review. Vet Q 36, 228–241 (2016).
    PubMed  Google Scholar 

    59.
    Allison, S. D. & Martiny, J. B. H. Resistance, resilience, and redundancy in microbial communities. Proc. Natl. Acad. Sci. USA 105, 11512–11519 (2008).
    ADS  CAS  PubMed  Google Scholar 

    60.
    Mandakovic, D. et al. Structure and co-occurrence patterns in microbial communities under acute environmental stress reveal ecological factors fostering resilience. Sci. Rep. 8, 5875 (2018).
    ADS  PubMed  PubMed Central  Google Scholar 

    61.
    Anjaini, J., Fadjar, M., Andayani, S., Agustin, I. & Bayu, I. Histopathological in gills, hepatopancreas and gut of white shrimp (Litopenaeus vannamei) infected white feces disease (WFD). Res. J. Life Sci. 5, 183–194 (2018).
    Google Scholar 

    62.
    Nercessian, O., Noyes, E., Kalyuzhnaya, M. G., Lidstrom, M. E. & Chistoserdova, L. Bacterial populations active in metabolism of C1 compounds in the sediment of Lake Washington, a freshwater lake. Appl. Environ. Microbiol. 71, 6885–6899 (2005).
    CAS  PubMed  PubMed Central  Google Scholar 

    63.
    Green, M. R. & Sambrook, J. Isolation of high-molecular-weight DNA using organic solvents. Cold Spring Harb. Protoc. 10, 356–359 (2017).
    Google Scholar 

    64.
    Klindworth, A. et al. Evaluation of general 16S ribosomal RNA gene PCR primers for classical and next-generation sequencing-based diversity studies. Nucleic Acids Res. 41, e1 (2013).
    CAS  PubMed  Google Scholar 

    65.
    Bolger, A. M., Lohse, M. & Usadel, B. Trimmomatic: a flexible trimmer for Illumina sequence data. Bioinformatics 30, 2114–2120 (2014).
    CAS  PubMed  PubMed Central  Google Scholar 

    66.
    Zhang, J., Kobert, K., Flouri, T. & Stamatakis, A. PEAR: a fast and accurate Illumina Paired-End reAd mergeR. Bioinformatics 30, 614–620 (2014).
    CAS  PubMed  Google Scholar 

    67.
    Eren, A. M. et al. Oligotyping: Differentiating between closely related microbial taxa using 16S rRNA gene data. Methods Ecol. Evol. 4, 1111–1119 (2013).
    PubMed Central  Google Scholar 

    68.
    Ramette, A. & Buttigieg, P. L. The R package OTU2ot for implementing the entropy decomposition of nucleotide variation in sequence data. Front. Microbiol. 5, 1–9 (2014).
    Google Scholar 

    69.
    Utter, D. R., Mark Welch, J. L. & Borisy, G. G. Individuality, stability, and variability of the plaque microbiome. Front. Microbiol. 7, 564 (2016).
    PubMed  PubMed Central  Google Scholar 

    70.
    Pruesse, E., Peplies, J. & Glöckner, F. O. SINA: accurate high-throughput multiple sequence alignment of ribosomal RNA genes. Bioinformatics 28, 1823–1829 (2012).
    CAS  PubMed  PubMed Central  Google Scholar 

    71.
    Kurtz, Z. D. et al. Sparse and compositionally robust inference of microbial ecological networks. PLoS Comput. Biol. 11, 1–25 (2015).
    Google Scholar 

    72.
    Csárdi, G. & Nepusz, T. The igraph software package for complex network research. InterJournal Complex Syst. 1695, 1–9 (2006).
    Google Scholar 

    73.
    Langfelder, P. & Horvath, S. WGCNA: an R package for weighted correlation network analysis. BMC Bioinform 9, 559 (2008).
    Google Scholar 

    74.
    Breiman, L., Cutler, A., Liaw, A. & Wiener, M. Breiman and Cutler’s random forests for classification and regression version 4.6–14. 14 pp. https://www.stat.berkeley.edu/~breiman/RandomForests/ (2018).

    75.
    Oksanen, J. Vegan: Community Ecology Package. R package version 2.4–3. 1–12. https://CRAN.R-project.org/package=vegan. (2017)..

    76.
    Pinheiro, J. et al. Linear and Nonlinear Mixed Effects Models. 157 pp. R package version 3.1–131, https://CRAN.R-project.org/package=nlme. (2017).

    77.
    Warnes, A. G. R. et al. Various R programming tools for plotting data. 45 pp. https://CRAN.R-project.org/package=gplots. (2016).

    78.
    Diepenbroek, M. et al. Towards an integrated biodiversity and ecological research data management and archiving platform : the German federation for the curation of biological data ( GFBio ). Inform. 2014 – Big Data Komplexität meistern. GI-Edition Lect. Notes Informatics – Proc. P-232, 1711–1724 (2014).

    79.
    Yilmaz, P. et al. Minimum information about a marker gene sequence (MIMARKS) and minimum information about any (x) sequence (MIxS) specifications. Nat. Biotechnol. 29, 415–420 (2011).
    CAS  PubMed  PubMed Central  Google Scholar  More

  • in

    Preference and familiarity mediate spatial responses of a large herbivore to experimental manipulation of resource availability

    Study area
    The study area is located in the north-eastern Italian Alps (Argentario range, in Val di Cembra and Valsugana; Autonomous Province of Trento), covers c. 16 km2 and ranges between 500 and 1,000 m a.s.l. The topography is generally mild, but steeper slopes ( > 30°) occur in the northern portion. The climate is continental and characterized by a mean temperature of 1.0 °C in January and 21.0 °C in July, and a mean annual rainfall of 966 mm (average 2000–2018; https://www.meteotrentino.it). There is occasional snow cover between December and March, although the soil is mostly frozen at night. The study area is covered by 80.0% forest, mostly as relatively homogeneous secondary growth stands interspersed with small pastures. The forests are dominated by Pinus sylvestris with abundant shrub undergrowth, and by mixed stands of Fagus sylvatica, Picea abies and Abies alba and, to a lower extent, by Quercus petraea stands.
    Roe deer is the primary large herbivore in the study area (6–9 individuals km−2; ref. values from Autonomous Province of Trento Wildlife Office). Adult roe deer do not have natural predators in this landscape, but young fawns may be predated by red fox (Vulpes vulpes). The fine-scale food selection of roe deer in the Alps has been described as mainly dependent on shrubs or regeneration of tree species as well as a diversity of herbaceous plants from the undergrowth from spring to fall, switching between items according to the temporal trends of availability48. In the winter time, roe deer strongly select for forested environments and opportunistically for supplemental food where available22.
    Supplemental feeding management of roe deer is conducted at  > 50 distinct feeding sites within the study area (FS; Supplementary Information S1: Fig. S1) and authorized year-round within a larger zone of c. 45 km2 (official authorization: “Autonomous Province of Trento order n. 2852/2013”). FS are typically shaped as wooden hopper dispensers that provide a continuous supply of corn accessible through a tray (Fig. 1). They have been deployed and provided continuously with food (at least in fall and winter) for many years (i.e., for longer that the average lifespan of roe deer in our study area). They are managed by private hunters for roe deer but are also attended sporadically by red deer (Cervus elaphus), as well as non-target mammals (Meles meles, Sciurus vulgaris, Apodemus sp., Microtus sp.) and birds (Garrulus glandarius, Columba palumbus).
    Experimental design
    We took advantage of roe deer use of a focal, identifiable resource—the FS—to design an in situ experimental manipulation of resource availability. We created three successive experimental phases based on the availability of this resource—pre-closure, closure and post-closure—by physically managing the accessibility of food at the FS. During the closure phase, access to forage at FS was transitorily restricted by placing wooden boards obstructing the tray; boards were then removed again in the post-closure phase (Fig. 1).
    The experiment was conducted between January and April, when the use of high-nutritional supplemental feed (i.e., corn) by roe deer is the most intense17, for three consecutive winters (2017, 2018 and 2019). We implemented the experiment on 18 individuals, of which seven could be manipulated in two consecutive years—five individuals were recaptured and two collar deployments spanned two winters—leading to a total of 25 individual winter trajectories i.e., “animal-years” (21 adults: 15 females, 6 males; 4 yearlings: 2 females, 2 males; sample size n = 4, 11 and 10 in 2017, 2018 and 2019 respectively; see Supplementary Information S1 for details). Because roe deer captures at middle to low density in Alpine, heavily forested environments are rare events that have to rely on low-efficiency techniques such as box traps and because we had to account for stakeholder acceptance, repeating the experiment on single individuals in consecutive years allowed us to take full advantage of our sample.
    Roe deer were captured using baited box traps (n = 21 capture events) or net drives (n = 2), and were fitted with GPS-GSM radio collars programmed to acquire hourly GPS locations for a year, after which they were released via a drop-off mechanism. Captures and marking were performed complying with ethical and welfare rules, under authorization of the Wildlife Committee of the Autonomous Province of Trento (Resolution of the Provincial Government n. 602, under approval of the Wildlife Committee of 20/09/2011, and successive integration approved on the 23/04/2015); all methods and experiments were carried out in accordance with the relevant guidelines and regulations. Radio-collared roe deer moved an average of 61.2 m per hour. This value of the average hourly movement distance (l) was subsequently utilized in the analyses described below.
    For all captured animals, we assumed a post-capture response in ranging behaviour. We therefore considered the first re-visitation of the capture location as a likely sign of resettlement in the original range and we used this time as onset of the experimental pre-closure phase. Although not all the individuals were manipulated at the same time, we avoided interference between capture operations and FS manipulations, and between co-occurring different manipulation phases (i.e., ensuring that co-occurring manipulations occurred in separate areas).
    During the pre-closure phase, we ensured a continuous supply of food at all managed FS—i.e., that were provisioned at least once in the month prior to the experiment—located within 500 m of each roe deer locations (known through twice-daily download of GSM-transmitted GPS relocations). At the end of the pre-closure phase, we identified the “manipulated” FS (M) for each individual as the managed FS with the largest number of locations within a radius (l) during this initial phase, and considered it as the FS to which an individual is most familiar. All other managed FS were considered as “alternate” (A) FS. During the closure phase, corn was made inaccessible at M for a duration of approximately 15 days, depending on personnel availabilities (min = 14.0 days, max = 18.1, mean = 15.5). M was then re-opened, thereby initiating the post-closure phase. During both pre- and post-closure phases, corn was available ad libitum at M. All A FS had corn available ad libitum throughout the duration of the experiment. To ensure a continuous supply of food during the experiment, field personnel visited and replenished the FS every third day. Across the experimental manipulations, we used a total of twelve distinct FS as M, and 23 distinct FS as A (mean = 4.04 A sites per animal-year, (sigma hspace{0.17em})= 1.43; of these, an average of 1.76, (sigma hspace{0.17em})= 1.13, were actually used by roe deer; see Supplementary Information S1: Table S1 for details on the identity of M and A for all animal-years). M sites were separate from A sites by an average distance of 702.5 m ((sigma hspace{0.17em})= 310.5), and M and used A sites by an averaged distance of 567.5 m ((sigma hspace{0.17em})= 235.7).
    Data preparation
    To ensure meaningful comparisons between animal-years, we homogenized the durations of each experimental phase to the minimum length of the closure phase in our sample (i.e., 14 days). Specifically, we truncated the movement data by removing initial excess positions for the pre-closure and closure phases, and terminal excess positions for the post-closure phase. GPS acquisition success was extremely high (99.57% during the experiment) and we did not interpolate missing fixes in the collected data.
    The analyses of space-use and movement behaviour were based on spatially-explicit, raw movement trajectories. The analyses of resource use, instead, relied on spatially-implicit, state time series derived from the underlying movement data. To this end, we created an initial time series, for each animal-year, by intersecting the relocations with three spatial domains: vegetation (the matrix; V), manipulated FS (M) and alternate FS (A). We converted FS locations (M and A) into areas by buffering them. To investigate the sensitivity of buffer choice we considered six buffer sizes: l (i.e., 61.2 m) multiplied by 0.5, 1, 1.5, 2, 3 and 4. We associated all locations falling outside M and A to the state V. The three-state time series was then converted into three single-state presence/absence time series.
    Preference for feeding sites
    We calculated each individual’s preference for FS (({h}_{FS})) as the relative use of FS over natural vegetation during the pre-closure phase (i.e., the proportion of GPS fixes classified as either M or A). Because preference is considered to be temporally dynamic37, we chose to evaluate ({h}_{FS}) for each year separately in case individuals were manipulated in two separate winters. This reasoning allowed to account for the influence of individual condition and of the relative quality and quantity of vegetation resources on ({h}_{FS}). We included ({h}_{FS}) in all space-use, movement, and resource use analyses described below.
    The variability of ({h}_{FS}) across animal-years was maximal when FS attendance was defined as a GPS location within a distance equal to the population mean hourly step length (l) i.e., 61.2 m from the FS (interquartile range = 0.278, mean = 0.343; Supplementary Information S2: Table S1). Accordingly, the results described below are based on this definition (see Supplementary Information S6 for a sensitivity analysis). At this scale, ({h}_{FS}) did not differ consistently between sex (mean for females = 0.346; mean for males = 0.336; t-test: p value = 0.901).
    Analysis
    We analysed how the experimental manipulation, and its interaction with both preference for FS and sex, affected roe deer space-use, movement behaviour, and resource use.
    General modelling approach
    We analysed the roe deer responses to the experiment using mixed effect models. The final fixed-effect structure was developed progressively, beginning with simple formulations and evaluating the consistency of our results to ascertain that our data could support more complex formulations. For example, regarding the analysis of home range size, we first fitted a simple function of the experimental phase (i.e., home range size ~ Phase), then evaluated a potential additive effect of preference for feeding sites (i.e., home range size ~ Phase + ({h}_{FS})), and then an interaction between the two covariates (i.e., home range size ~ Phase + ({h}_{FS})+ Phase:({h}_{FS})). We repeated this procedure when evaluating the effects of sex, and eventually, assessed the full fixed effect structure. We did not find irregularities in the behaviour of the nested models (i.e., marked changes in absolute parameter values or sign). In the full model, fixed effect terms were dropped when statistically non-significant (p value  > 0.05). We considered “animal-year” as the sampling unit to account for the fact that an individual may respond independently to manipulations in different years. The choice of an “animal-year” random effect (instead of an “animal” random effect) did not qualitatively affect our results (Supplementary Information S8).
    Space-use
    We assessed the changes of home range and core area sizes (P1.1), and space-use overlap (P1.2, P3.1) between experimental phases. We calculated utilization distributions (UD)49 for each animal-year and experimental phase using a Gaussian kernel density estimation. After visual inspection, we chose to compute the UDs at a spatial resolution of 10 m and with a fixed bandwidth set to half the average hourly movement distance (i.e., l/2 = 30.6 m).
    For home range and core area sizes, we calculated the area (in hectares) corresponding to the 95% and 50% UD contours, respectively, during each experimental phase (Phase; three levels; reference level: Pre-closure). We then analysed the log-transformed areas using a linear mixed-effect model (LMM) with five fixed effects: Phase, ({h}_{FS}), Sex (categorical predictor; reference level: Female), and two interaction terms (Phase:({h}_{FS}) and Phase:Sex). We included animal-year (ind) as random intercept.
    We estimated the space-use overlaps for three pairs of UDs—pre- and post-closure, pre-closure and closure, and closure and post-closure (Contrast; three levels; reference level: Pre-/Closure)—using the volume of intersection statistic (VI)50. VI ranges from 0 (no overlap) to 1 (complete overlap). We analysed the logit-transformed overlaps using an LMM with Contrast, hFS, Sex, Contrast:hFS and Contrast:Sex as fixed effects, and ind as random intercept.
    Movement behaviour
    We investigated the movement responses of roe deer to the experiment (P1.3) by analysing the changes in hourly step length (Euclidean distance between two successive relocations) and turning angle ({theta }_{t}) (angle between two successive movement steps). We analysed the log-transformed step length, ({s}_{t}) and, because turning angles range between (-pi) and (pi), and were symmetric around 0, the logit-transformed absolute turning angle, ({varphi }_{t}=logleft(frac{left|{theta }_{t}right|}{1-left|{theta }_{t}right|}right)). We used LMMs with Phase, ({h}_{FS}), Sex, Phase:hFS and Phase:Sex as fixed effects, and ind as random intercept. Because step length was characterized by strong serial autocorrelation at short temporal lags and at circadian periodicities (a common pattern in animal movement trajectories51), we also included step length measured at lags 1, 2 and 24 h (i.e., ({s}_{t-1},{s}_{t-2}),({s}_{t-24})) as fixed effects to reduce the autocorrelation of the model residuals.
    Resource use
    To test whether the experiment led to a transitory change in resource use (P1.4a–b, P3.2), we fitted separate mixed-effect logistic regression models to the three single-state presence/absence time series (({u}_{M,t}), ({u}_{A,t}) and ({u}_{V,t})) using Phase, ({h}_{FS}), Sex, Phase:({h}_{FS}) and Phase:Sex as fixed effects, and ind as random intercept. The pre-closure level for Phase was dropped for ({u}_{V}) to avoid circularity (({h}_{FS}=1-{{stackrel{-}{u}}_{V,t}}_{Pre-closure})). We also included the response variables measured at lags 1, 2 and 24 h (e.g., ({u}_{M,t-1},{u}_{M,t-2}),({u}_{M,t-24})) as fixed effects to reduce the autocorrelation of the model residuals. However, for the sake of conciseness and clarity, we omitted these response lags when visualizing resource use predictions. Because the model results were consistent regardless of the inclusion of the response lags (Supplementary Information S5: Tables S1, S2), this decision had no impact on the interpretation. Two animal-years were excluded from the analyses of resource use due to the absence of suitable A-state: F4-2017 did not seem to have visited any alternate FS (A) prior to the experiment; and F16-2016 had two distinct, highly-used FS during pre-closure, but only the second most visited FS could be manipulated (due to stakeholder acceptance). While the use of A was more variable when including these two outliers, the general patterns remained unchanged (Supplementary Information S5: Tables S1, S3).
    Software
    All analyses were conducted in the R environment52. We used the packages adehabitatLT and adehabitatHR53 for the spatial analyses, fitted all mixed-effect models via Maximum Likelihood with the package lme454. We obtained the p-values for the fixed effects using afex55 and coefficients of determination using MuMin56.
    Ethical statement
    All experimental protocols and data collection were approved by the Wildlife Committee of the Autonomous Province of Trento (Resolution of the Provincial Government n. 602, under approval of the Wildlife Committee of 20/09/2011, and successive integration approved on the 23/04/2015). All experiments and methods were performed in accordance with relevant guideline and regulations. More

  • in

    Unravelling the different causes of nitrate and ammonium effects on coral bleaching

    1.
    Dubinsky, Z. & Jokiel, P. L. Ratio of energy and nutrient fluxes regulates symbiosis between zooxanthellae and corals. Pac. Sci. 48, 313–324 (1994).
    Google Scholar 
    2.
    LaJeunesse, T. C. et al. Systematic revision of Symbiodiniaceae highlights the antiquity and diversity of coral endosymbionts. Curr. Biol. 28, 2570–2580 (2018).
    CAS  PubMed  Google Scholar 

    3.
    Falkowski, P. G., Dubinsky, Z., Muscatine, L. & Porter, J. W. Light and the bioenergetics of a symbiotic coral. Bioscience 34, 705–709 (1984).
    CAS  Google Scholar 

    4.
    Grover, R., Maguer, J.-F., Reynaud-Vaganay, S. & Ferrier-Pagès, C. Uptake of ammonium by the scleractinian coral Stylophora pistillata: effect of feeding, light, and ammonium concentrations. Limnol. Oceanogr. 47, 782–790 (2002).
    ADS  Google Scholar 

    5.
    Grover, R., Maguer, J.-F., Allemand, D. & Ferrier-Pagès, C. Nitrate uptake in the scleractinian coral Stylophora pistillata. Limnol. Oceanogr. 48, 2266–2274 (2003).
    ADS  CAS  Google Scholar 

    6.
    Godinot, C., Ferrier-Pagès, C. & Grover, R. Kinetics of phosphate uptake by the scleractinian coral Stylophora pistillata. Limnol. Oceanogr. 54, 1627–1633 (2009).
    ADS  Google Scholar 

    7.
    Muscatine, L., McCloskey, L. R. & Marian, R. E. Estimating the daily contribution of carbon from zooxanthellae to coral animal respiration. Limnol. Oceanogr. 26, 601–611 (1981).
    ADS  CAS  Google Scholar 

    8.
    Trembley, P., Grover, R., Maguer, J.-F., Legendre, L. & Ferrier-Pagè, C. Autotrophic carbon budget in coral tissue: a new 13C-based model of photosynthate translocation. J. Exp. Biol. 215, 1384–1393 (2012).
    Google Scholar 

    9.
    Hoegh-Guldberg, O. et al. Coral reefs under rapid climate change and ocean acidification. Science 318, 1737–1742 (2007).
    ADS  CAS  PubMed  Google Scholar 

    10.
    Claar, D. C., Szostek, L., McDevitt-Irwin, J. M., Schanze, J. J. & Baum, J. K. Global patterns and impacts of El Niño events on coral reefs: A meta-analysis. PLoS ONE 13, e0190957 (2018).
    PubMed  PubMed Central  Google Scholar 

    11.
    Lough, J. M., Anderson, K. D. & Ughes, T. P. Increasing thermal stress for tropical coral reefs: 1871–2017. Sci. Rep. 8, 6079 (2018).
    ADS  CAS  PubMed  PubMed Central  Google Scholar 

    12.
    Hughes, T. P. et al. Spatial and temporal patterns of mass bleaching of corals in the Anthropocene. Science 359, 80–83 (2018).
    ADS  CAS  PubMed  Google Scholar 

    13.
    Lapointe, B. E., Brewton, R. A., Herren, L. W., Porter, J. W. & Hu, C. Nitrogen enrichment, altered stoichiometry, and coral reef decline at Looe Key, Florida Keys, USA: a 3-decade study. Mar. Biol. 166, 108 (2019).
    Google Scholar 

    14.
    Wiedenmann, J. et al. Nutrient enrichment can increase the susceptibility of reef corals to bleaching. Nat. Clim. Chang. 3, 160–164 (2013).
    ADS  CAS  Google Scholar 

    15.
    Burkepile, D. E. et al. Nitrogen identity drives differential impacts of nutrients on coral bleaching and mortality. Ecosystems https://doi.org/10.1007/s10021-019-00433-2 (2019).
    Article  Google Scholar 

    16.
    Shantz, A. A. & Burkepile, D. E. Context-dependent effects of nutrient loading on the coral-algal mutualism. Ecology 95, 1995–2005 (2014).
    PubMed  Google Scholar 

    17.
    Nordemar, I., Nyströn, M. & Dizon, R. Effects of elevated seawater temperature and nitrate enrichment on the branching coral Porites cylindrica in the absence of particulate food. Mar. Biol. 142, 669–677 (2003).
    CAS  Google Scholar 

    18.
    Béraud, E., Gevaert, F., Rottier, C. & Ferrier-Pagès, C. The response of the scleractinian coral Turbinaria reniformis to thermal stress depends on the nitrogen status of the coral holobiont. J. Exp. Biol. 216, 2665–2674 (2013).
    PubMed  Google Scholar 

    19.
    Ezzat, L., Maguer, J.-F., Grover, R. & Ferrier-Pagès, C. Limited phosphorus availability is the Achilles heel of tropical reef corals in a warming ocean. Sci. Rep. 6, 31768 (2015).
    ADS  Google Scholar 

    20.
    Lesser, M. P. Elevated temperatures and ultraviolet radiation cause oxidative stress and inhibit photosynthesis in symbiotic dinoflagellates. Limnol. Oceanogr. 41, 271–283 (1996).
    ADS  CAS  Google Scholar 

    21.
    Lesser, M. P. Oxidative stress causes coral bleaching during exposure to elevated temperatures. Coral Reefs 16, 187–192 (1997).
    ADS  Google Scholar 

    22.
    Lesser, M. P. Oxidative stress in marine environments: biochemistry and physiological Ecology. Annu. Rev. Physiol. 68, 253–278 (2006).
    CAS  PubMed  Google Scholar 

    23.
    Downs, C. A. et al. Oxidative stress and seasonal coral bleaching. Free Rad. Biol. Med. 33, 533–543 (2002).
    CAS  PubMed  Google Scholar 

    24.
    Perez, S. & Weis, V. Nitric oxide and cnidarians bleaching: an eviction notice mediates breakdown of a symbiosis. J. Exp. Biol. 209, 2804–2810 (2006).
    CAS  PubMed  Google Scholar 

    25.
    Weis, V. M. Cellular mechanisms of Cnidarian bleaching: stress causes the collapse of symbiosis. J. Exp. Biol. 211, 59–66 (2008).
    Google Scholar 

    26.
    Halliwell, B. & Gutteridge, J.M.C. (eds.) Free Radicals in Biology and Medicine. (Oxford, 2007).

    27.
    Pörtner, H. O. & Farrell, A. P. Physiology and climate change. Science 322, 690–692 (2008).
    PubMed  Google Scholar 

    28.
    Sokolova, I. M. Energy-Limited tolerance to stress as a conceptual framework to integrate the effects of multiple stressors. Integ. Comp. Biol. 53, 597–608 (2013).
    Google Scholar 

    29.
    Dominguez-Valdivia, M. D. et al. Nitrogen nutrtion and antioxidant metabolism in ammonium-tolerant and –sensitive plants. Phys. Plant. 132, 359–369 (2008).
    CAS  Google Scholar 

    30.
    Bouchard, J. N. & Yamasaki, H. Heat stress stimulates nitric oxide production in Symbiodinium microadriaticum: a possible linkage between nitric oxide and the coral bleaching phenomenon. Plant. Cell Physiol. 49, 641–652 (2008).
    CAS  PubMed  Google Scholar 

    31.
    Yamasaki, H. & Sakihama, Y. Simultaneous production of nitric oxide and peroxynitrite by plant nitrate reducatase: in vitro evidence for the NR*dependent formation of active nitrogen species. FEBS. 468, 89–92 (2000).
    CAS  Google Scholar 

    32.
    Bethke, P. C., Badger, M. R. & Jones, R. L. Apoplastic synthesis of nitric oxide by plant tissues. Plant. Cell. 16, 332–341 (2004).
    CAS  PubMed  PubMed Central  Google Scholar 

    33.
    Tischner, R., Planchet, E. & Kaiser, W. M. Mitochondrial electron transport as a source of nitric oxide in the unicellular green algae Chlorella sorokiniana. FEBS Lett. 576, 151–155 (2004).
    CAS  PubMed  Google Scholar 

    34.
    Planchet, E., Gupta, K. J., Sonoda, M. & Kaiser, W. M. Nitric oxide emission from tabacco leaves and cell suspensions: rate limiting factors and evidence for the involvement of mitochondrial electron transport. Plant. J. 41, 732–743 (2005).
    CAS  PubMed  Google Scholar 

    35.
    Bartesaghi, S. & Radi, R. Fundamentals on the biochemistry of peroxynitrite and protein tyrosine nitration. Redox. Biol. 14, 618–625 (2018).
    CAS  PubMed  Google Scholar 

    36.
    Brodie, J., Devlin, M., Heynes, D. & Waterhouse, J. Assessment of the eutrophication status of the Great Barrier Reef lagoon (Australia). Biogeochemistry 106, 281–302 (2011).
    CAS  Google Scholar 

    37.
    Govers, L. L., Lamers, L. P., Bouma, T. J., de Brouwer, J. H. & van Katwijk, M. M. Eutrophication threatens Caribbean seagrass: an example from Curaçao and Bonaire. Mar. Poll. Bull. 89, 481–486 (2014).
    CAS  Google Scholar 

    38.
    Naumann, M. S., Bednarz, V. N., Ferse, S. C., Niggl, W. & Wild, C. Monitoring of coastal coral reefs near Dahab (Gulf of Aqaba, red sea) indicates local eutrophication as potential cause for change in benthic communities. Environ. Monit. Assess. 187, 1–14 (2015).
    CAS  Google Scholar 

    39.
    Rouzé, H., Lecellier, G., Langlade, M., Planes, S. & Berteaux-Lecellier, V. Fringing reefs exposed to different levels of eutrophication and sedimentation can support similar benthic communities. Mar. Pollut. Bull. 92, 212–221 (2015).
    PubMed  Google Scholar 

    40.
    Hoogenboom, M., Beraud, E. & Ferrier-Pagè, C. Relationship between symbiont density and photosynthetic carbon acquisition in the temperate coral Cladocora caespitosa. Coral Reefs 29, 21–29 (2010).
    ADS  Google Scholar 

    41.
    Bradford, M. M. A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal. Biochem. 7, 248–254 (1976).
    Google Scholar 

    42.
    Jeffrey, S. & Humphrey, G. New spectrophotometric equations for determining chlorophylls a, b, c1 and c2 in higher plants, algae and natural phytoplankton. Biochem. Physiol. Pfl. 167, 191–194 (1975).
    CAS  Google Scholar 

    43.
    Veal, C. J., Carmi, M., Fine, M. & Hoegh-Guldberg, O. Increasing the accuracy of surface area estimation using single wax dipping of coral fragments. Coral Reefs 29, 893–897 (2010).
    ADS  Google Scholar 

    44.
    Jones, R. J., Kildea, T. & Hoegh-Guldberg, O. PAM chlorophyll fluorometry: a new in situ technique for stress assessment in scleractinian corals, used to examine the effects of cyanide from cyanide fishing. Mar. Pollut. Bull. 38, 864–874 (1999).
    CAS  Google Scholar 

    45.
    Jones, R. The ecotoxicological effects of photosystem II herbicides on corals. Mar. Pollut. Bull. 51, 495–506 (2005).
    CAS  PubMed  Google Scholar 

    46.
    Davies, P. S. Short-term growth measurements of corals using an accurate buoyant weighing technique. Mar. Biol. 101, 389–395 (1989).
    Google Scholar 

    47.
    Aguiar, R. B. et al. Estradiol valerate and tibolone: effects upon brain oxidative stress and blood biochemistry during aging in female rats. Biogerontology 9, 285–298 (2008).
    CAS  PubMed  Google Scholar 

    48.
    Oakes, K. D. & van der Kraak, G. J. Utility of the TBARS assay in detecting oxidative stress in white sucker (Catostomus commersoni) populations exposed to pulp mill effluent. Aquat. Toxicol. 63, 447–463 (2003).
    CAS  PubMed  Google Scholar 

    49.
    Huang, D., Ou, B. & Prior, R. L. The chemistry behind antioxidant capacity assays. J. Agric. Food. Chem. 53, 1841–1856 (2005).
    CAS  PubMed  Google Scholar 

    50.
    Sokolova, I. M., Frederich, M., Bagwe, R., Lanning, G. & Sukhotin, A. A. Energy homeostasis as an integrative tool for assessing limits of envirnmental stress tolerance in aquatic organisms. Mar. Environ. Res. 79, 1–15 (2012).
    CAS  PubMed  Google Scholar 

    51.
    Underwood, A. J. Experiments in Ecology: Their Logical Design and Interpretation Using Analysis of Variance (Cambridge University Press, Cambridge, U.K., 1997).
    Google Scholar 

    52.
    Halliwell, B. Biochemistry of oxidative stress. Biochem. Soc. Trans. 35, 1147–1150 (2007).
    CAS  PubMed  Google Scholar 

    53.
    Havaux, M. & Niyogi, K. K. The violaxanthin cycle protects plants from photooxidative damage by more than one mechanism. Proc. Natl. Acad. Sci. USA 96, 8762–8767 (1999).
    ADS  CAS  PubMed  Google Scholar 

    54.
    Tardy, F. & Havaux, M. Thylakoid membrane fluidity and thermostability during the operation of the xanthophyll cycle in higher-plant chloroplasts. Biochim. Biophys. Acta. 1330, 179–193 (1997).
    CAS  PubMed  Google Scholar 

    55.
    Downs, C. A., Mueller, E., Phillips, S., Fauth, J. E. & Woodley, C. M. A molecular biomarker system for assessing the health of coral (Montastrea faveolata) during heat stress. Mar. Biotechnol. 2, 533–544 (2000).
    CAS  PubMed  Google Scholar 

    56.
    Krueger, T. et al. Differential coral bleaching—contrasting the activity and response of enzymatic antioxidants in symbiotic partners under thermal stress. Comp. Biochem. Physiol. Part A: Mol. Integ. Physiol. 190, 15–25 (2015).
    CAS  Google Scholar 

    57.
    Marangoni, L. F. B. et al. Oxidative stress biomarkers as potential tools in reef degradation monitoring: a study case in a South Atlantic reef under influence of the 2015–2016 El Niño/Southern Oscillation (ENSO). Ecol. Ind. 106, 105533 (2019).
    CAS  Google Scholar 

    58.
    Morris, L. A., Voolstra, C. R., Quigley, K. M., Bourne, D. G. & Bay, L. K. Nutrient availability and metabolism affect the stability of coral-Symbiodiniaceae Symbioses. Trends Microbiol. 8, 678–689 (2019).
    Google Scholar 

    59.
    Axenov-Gribanov, D. V. et al. A cellular and metabolic assessment of the thermal stress responses in the endemic gastropod Benedictia limnaeoides ongurensis from Lake Baikal. Comp. Biochem. Physiol. Part B. 167, 16–22 (2013).
    Google Scholar 

    60.
    Larade, S. & Storey, K. B. A profile of metabolic responses to anoxia in marine invertebrates. In Sensing, Signaling and Cell Adaptation (eds Storey, K. B. & Storey, J. M.) 27–46 (Elsevier, Amsterdam, 2002).
    Google Scholar 

    61.
    Philip, A., Macdonald, A. L. & Watt, P. W. Lactate—a signal coordinating cell and systemic function. J. Exp. Biol. 208, 4561–4575 (2005).
    Google Scholar 

    62.
    Riobò, N. A. et al. Nitric oxide inhibits mitochondrial NADH:ubiquinone reductase activity through peroxynitrite formation. Biochem. J. 359, 139–145 (2001).
    PubMed  PubMed Central  Google Scholar 

    63.
    Wang, Y. & Ruby, E. G. The roles of NO in microbial symbioses. Cell. Microbiol. 13, 518–526 (2013).
    Google Scholar 

    64.
    Higuchi, T., Yuyama, I. & Nakamura, T. The combined effects of nitrate with high temperature and high light intensity on coral bleaching and antioxidant enzyme activities. Reg. S. Mar. Sci. 2, 27–31 (2015).
    Google Scholar 

    65.
    Muscatine, L. & Porter, J. W. Reef corals-mutualistic symbioses adapted to nutrient-poor environments. Bioscience 27, 454–460 (1977).
    Google Scholar 

    66.
    Ezzat, L., Maguer, J.-F., Grover, R. & Ferrier-Pagès, C. New insights into carbon acquisition and exchanges within the coral-dinoflagellate symbiosis under NH4+ and NO3− supply. Proc. R. Soc. B. 282, 20150610 (2015).
    PubMed  Google Scholar 

    67.
    Cunning, R. & Baker, A. C. Excess algal symbionts increase the susceptibility of reef corals to bleaching. Nat. Clim. Change 3, 259–262 (2013).
    ADS  Google Scholar 

    68.
    Meyer, J. L. & Schultz, E. T. Migrating haemulid fishes as a source of nutrients and organic matter on coral reefs. Limnol. Oceanogr. 30, 146–156 (1985).
    ADS  Google Scholar  More

  • in

    Global wind patterns and the vulnerability of wind-dispersed species to climate change

    1.
    Bellard, C., Bertelsmeier, C., Leadley, P., Thuiller, W. & Courchamp, F. Impacts of climate change on the future of biodiversity. Ecol. Lett. 15, 365–377 (2012).
    Google Scholar 
    2.
    Hampe, A. Plants on the move: the role of seed dispersal and initial population establishment for climate-driven range expansions. Acta Oecol. 37, 666–673 (2011).
    Google Scholar 

    3.
    Kremer, A. et al. Long‐distance gene flow and adaptation of forest trees to rapid climate change. Ecol. Lett. 15, 378–392 (2012).
    Google Scholar 

    4.
    Pecl, G. T. et al. Biodiversity redistribution under climate change: impacts on ecosystems and human well-being. Science 355, eaai9214 (2017).
    Google Scholar 

    5.
    Felicísimo, Á. M., Muñoz, J. & González-Solis, J. Ocean surface winds drive dynamics of transoceanic aerial movements. PLoS ONE 3, e2928 (2008).
    Google Scholar 

    6.
    Gillespie, R. G. et al. Long-distance dispersal: a framework for hypothesis testing. Trends Ecol. Evol. 27, 47–56 (2012).
    Google Scholar 

    7.
    Muñoz, J., Felicísimo, Á. M., Cabezas, F., Burgaz, A. R. & Martínez, I. Wind as a long-distance dispersal vehicle in the Southern Hemisphere. Science 304, 1144–1147 (2004).
    Google Scholar 

    8.
    Smith, D. J. et al. Intercontinental dispersal of bacteria and archaea by transpacific winds. Appl. Environ. Microbiol. 79, 1134–1139 (2013).
    CAS  Google Scholar 

    9.
    Austerlitz, F., Dutech, C., Smouse, P. E., Davis, F. & Sork, V. L. Estimating anisotropic pollen dispersal: a case study in Quercus lobata. Heredity 99, 193–204 (2007).
    CAS  Google Scholar 

    10.
    Bullock, J. M. & Clarke, R. T. Long distance seed dispersal by wind: measuring and modelling the tail of the curve. Oecologia 124, 506–521 (2000).
    CAS  Google Scholar 

    11.
    Gassmann, M. I. & Pérez, C. F. Trajectories associated to regional and extra-regional pollen transport in the southeast of Buenos Aires province, Mar del Plata (Argentina). Int. J. Biometeorol. 50, 280–291 (2006).
    Google Scholar 

    12.
    Skarpaas, O. & Shea, K. Dispersal patterns, dispersal mechanisms, and invasion wave speeds for invasive thistles. Am. Naturalist 170, 421–430 (2007).
    Google Scholar 

    13.
    Wang, Z. F. et al. Pollen and seed flow under different predominant winds in wind-pollinated and wind-dispersed species Engelhardia roxburghiana. Tree Genet. Genomes 12, 19 (2016).
    CAS  Google Scholar 

    14.
    Soubeyrand, S., Enjalbert, J., Sanchez, A. & Sache, I. Anisotropy, in density and in distance, of the dispersal of yellow rust of wheat: experiments in large field plots and estimation. Phytopathology 97, 1315–1324 (2007).
    CAS  Google Scholar 

    15.
    Born, C., le Roux, P. C., Spohr, C., McGeoch, M. A. & van Vuuren, B. J. Plant dispersal in the sub‐Antarctic inferred from anisotropic genetic structure. Mol. Ecol. 21, 184–194 (2012).
    Google Scholar 

    16.
    Geremew, A., Woldemariam, M. G., Kefalew, A., Stiers, I. & Triest, L. Isotropic and anisotropic processes influence fine-scale spatial genetic structure of a keystone tropical plant. AoB Plants 10, plx076 (2018).
    Google Scholar 

    17.
    Brown, J. K. & Hovmøller, M. S. Aerial dispersal of pathogens on the global and continental scales and its impact on plant disease. Science 297, 537–541 (2002).
    CAS  Google Scholar 

    18.
    Vanschoenwinkel, B., Gielen, S., Seaman, M. & Brendonck, L. Any way the wind blows—frequent wind dispersal drives species sorting in ephemeral aquatic communities. Oikos 117, 125–134 (2008).
    Google Scholar 

    19.
    Ahmed, S., Compton, S. G., Butlin, R. K. & Gilmartin, P. M. Wind-borne insects mediate directional pollen transfer between desert fig trees 160 kilometers apart. Proc. Natl Acad. Sci. USA 106, 20342–20347 (2009).
    CAS  Google Scholar 

    20.
    Larson-Johnson, K. Field observations of Carpinus (Betulaceae) demonstrate high dispersal asymmetry and inform migration simulations with implications for times of rapid climate change. Int. J. Plant Sci. 177, 389–399 (2016).
    Google Scholar 

    21.
    Nathan, R. et al. Spread of North American wind‐dispersed trees in future environments. Ecol. Lett. 14, 211–219 (2011).
    Google Scholar 

    22.
    Sorte, C. J. Predicting persistence in a changing climate: flow direction and limitations to redistribution. Oikos 122, 161–170 (2013).
    Google Scholar 

    23.
    Loarie, S. R. et al. The velocity of climate change. Nature 462, 1052–1055 (2009).
    CAS  Google Scholar 

    24.
    Molinos, J. G., Burrows, M. T. & Poloczanska, E. S. Ocean currents modify the coupling between climate change and biogeographical shifts. Sci. Rep. 7, 1332 (2017).
    Google Scholar 

    25.
    Higgins, S. I. et al. Forecasting plant migration rates: managing uncertainty for risk assessment. J. Ecol. 91, 341–347 (2003).
    Google Scholar 

    26.
    Bullock, J. M. et al. Modelling spread of British wind‐dispersed plants under future wind speeds in a changing climate. J. Ecol. 100, 104–115 (2012).
    Google Scholar 

    27.
    Kuparinen, A., Katul, G., Nathan, R. & Schurr, F. M. Increases in air temperature can promote wind-driven dispersal and spread of plants. Proc. R. Soc. B 276, 3081–3087 (2009).
    Google Scholar 

    28.
    Davis, H. G., Taylor, C. M., Lambrinos, J. G. & Strong, D. R. Pollen limitation causes an Allee effect in a wind-pollinated invasive grass (Spartina alterniflora). Proc. Natl Acad. Sci. USA 101, 13804–13807 (2004).
    CAS  Google Scholar 

    29.
    Dullinger, S., Dirnböck, T. & Grabherr, G. Patterns of shrub invasion into high mountain grasslands of the Northern Calcareous Alps, Austria. Arct. Antarct. Alp. Res. 35, 434–441 (2003).
    Google Scholar 

    30.
    Payette, S. The range limit of boreal tree species in Québec-Labrador: an ecological and palaeoecological interpretation. Rev. Palaeobot. Palynol. 79, 7–30 (1993).
    Google Scholar 

    31.
    Sandel, B., Monnet, A. C., Govaerts, R. & Vorontsova, M. Late Quaternary climate stability and the origins and future of global grass endemism. Ann. Bot. 119, 279–288 (2016).
    Google Scholar 

    32.
    Svenning, J. C. & Skov, F. Could the tree diversity pattern in Europe be generated by postglacial dispersal limitation? Ecol. Lett. 10, 453–460 (2007).
    Google Scholar 

    33.
    Schurr, F. M. et al. Colonization and persistence ability explain the extent to which plant species fill their potential range. Glob. Ecol. Biogeogr. 16, 449–459 (2007).
    Google Scholar 

    34.
    Saha, S. et al. The NCEP Climate Forecast System Reanalysis. Bull. Am. Meteorol. Soc. 91, 1015–1058 (2010).
    Google Scholar 

    35.
    Hamann, A., Roberts, D. R., Barber, Q. E., Carroll, C. & Nielsen, S. E. Velocity of climate change algorithms for guiding conservation and management. Glob. Change Biol. 21, 997–1004 (2015).
    Google Scholar 

    36.
    Kling, M. M., Auer, S. L., Comer, P. J., Ackerly, D. D. & Hamilton, H. Multiple axes of ecological vulnerability to climate change. Glob. Change Biol. 26, 2798–2813 (2020).
    Google Scholar 

    37.
    Keeley, A. T. et al. New concepts, models, and assessments of climate-wise connectivity. Environ. Res. Lett. 13, 073002 (2018).
    Google Scholar 

    38.
    Savage, D., Barbetti, M. J., MacLeod, W. J., Salam, M. U. & Renton, M. Timing of propagule release significantly alters the deposition area of resulting aerial dispersal. Diversity Distrib. 16, 288–299 (2010).
    Google Scholar 

    39.
    Nathan, R. et al. Long‐distance biological transport processes through the air: can nature’s complexity be unfolded in silico? Divers. Distrib. 11, 131–137 (2005).
    Google Scholar 

    40.
    Zeller, K. A., McGarigal, K. & Whiteley, A. R. Estimating landscape resistance to movement: a review. Landsc. Ecol. 27, 777–797 (2012).
    Google Scholar 

    41.
    Treml, E. A., Halpin, P. N., Urban, D. L. & Pratson, L. F. Modeling population connectivity by ocean currents, a graph-theoretic approach for marine conservation. Landsc. Ecol. 23, 19–36 (2008).
    Google Scholar 

    42.
    Fernández‐López, J. & Schliep, K. rWind: download, edit and include wind data in ecological and evolutionary analysis. Ecography 42, 804–810 (2019).
    Google Scholar 

    43.
    Thompson, S. & Katul, G. Plant propagation fronts and wind dispersal: an analytical model to upscale from seconds to decades using superstatistics. Am. Naturalist 171, 468–479 (2008).
    Google Scholar 

    44.
    Savage, D., Barbetti, M. J., MacLeod, W. J., Salam, M. U. & Renton, M. Can mechanistically parameterised, anisotropic dispersal kernels provide a reliable estimate of wind-assisted dispersal? Ecol. Model. 222, 1673–1682 (2011).
    Google Scholar 

    45.
    Regal, P. J. Pollination by wind and animals: ecology of geographic patterns. Annu. Rev. Ecol. Syst. 13, 497–524 (1982).
    Google Scholar 

    46.
    Carroll, C., Lawler, J. J., Roberts, D. R. & Hamann, A. Biotic and climatic velocity identify contrasting areas of vulnerability to climate change. PLoS ONE 10, e0140486 (2015).
    Google Scholar 

    47.
    Jackson, S. T. & Sax, D. F. Balancing biodiversity in a changing environment: extinction debt, immigration credit and species turnover. Trends Ecol. Evol. 25, 153–160 (2010).
    Google Scholar 

    48.
    Ackerly, D. D. et al. The geography of climate change: implications for conservation biogeography. Divers. Distrib. 16, 476–487 (2010).
    Google Scholar 

    49.
    Owens, J. N. The Reproductive Biology of Lodgepole Pine Extension Note 07 (Forest Genetics Council of British Columbia, 2006).

    50.
    Bontrager, M. & Angert, A. L. Gene flow improves fitness at a range edge under climate change. Evol. Lett. 3, 55–68 (2019).
    Google Scholar 

    51.
    Sexton, J. P., Strauss, S. Y. & Rice, K. J. Gene flow increases fitness at the warm edge of a species’ range. Proc. Natl Acad. Sci. USA 108, 11704–11709 (2011).
    CAS  Google Scholar 

    52.
    Rehfeldt, G. E., Ying, C. C., Spittlehouse, D. L. & Hamilton, D. A. Jr Genetic responses to climate in Pinus contorta: niche breadth, climate change, and reforestation. Ecol. Monogr. 69, 375–407 (1999).
    Google Scholar 

    53.
    Wang, T., O’Neill, G. A. & Aitken, S. N. Integrating environmental and genetic effects to predict responses of tree populations to climate. Ecol. Appl. 20, 153–163 (2010).
    CAS  Google Scholar 

    54.
    Karger, D. N. et al. Climatologies at high resolution for the Earth’s land surface areas. Sci. Data 4, 170122 (2017).
    Google Scholar 

    55.
    Dobrowski, S. Z. et al. The climate velocity of the contiguous United States during the 20th century. Glob. Change Biol. 19, 241–251 (2013).
    Google Scholar 

    56.
    van Etten, J. R Package gdistance: distances and routes on geographical grids. J. Stat. Softw. 76, 1–21 (2017).
    Google Scholar 

    57.
    IPCC Special Report on Global Warming of 1.5 °C (eds Masson-Delmotte, V. et al.) (WMO, 2018).

    58.
    Schleussner, C. F. et al. Differential climate impacts for policy-relevant limits to global warming: the case of 1.5 °C and 2 °C. Earth Syst. Dyn. 7, 327–351 (2016).
    Google Scholar 

    59.
    Little, E. L. Jr Atlas of United States Trees. Volume 1, Conifers and Important Hardwoods Miscellaneous Publication 1146 (US Department of Agriculture, 1971).

    60.
    Wang, T., Hamann, A., Yanchuk, A., O’Neill, G. A. & Aitken, S. N. Use of response functions in selecting lodgepole pine populations for future climates. Glob. Change Biol. 12, 2404–2416 (2006).
    Google Scholar 

    61.
    Phillips, S. J., Anderson, R. P. & Schapire, R. E. Maximum entropy modeling of species geographic distributions. Ecol. Model. 190, 231–259 (2006).
    Google Scholar 

    62.
    Taylor, K. E., Stouffer, R. J. & Meehl, G. A. An overview of CMIP5 and the experiment design. Bull. Am. Meteorol. Soc. 93, 485–498 (2012).
    Google Scholar 

    63.
    R Core Team (2017). R: A Language and Environment for Statistical Computing (R Foundation for Statistical Computing, 2017); https://www.R-project.org/

    64.
    Kling, M. M. & Ackerly, D. D. Scripts and Data used in ‘Global Wind Patterns and the Vulnerability of Wind-Dispersed Species to Climate Change (Zenodo Repository, 2020); https://doi.org/10.5281/zenodo.3860687

    65.
    Kling, M. M. Windscape R Package v.1.0.0 (Zenodo Repository, 2020); https://doi.org/10.5281/zenodo.3857730 More

  • in

    Last glacial atmospheric CO2 decline due to widespread Pacific deep-water expansion

    1.
    Oppo, D. et al. Data constraints on glacial Atlantic water mass geometry and properties. Paleoceanogr. Paleoclimatol. 33, 1013–1034 (2018).
    Google Scholar 
    2.
    Lynch-Stieglitz, J. et al. Atlantic meridional overturning circulation during the Last Glacial Maximum. Science 316, 66–69 (2007).
    Google Scholar 

    3.
    Howe, J. N. W. et al. North Atlantic Deep Water production during the Last Glacial Maximum. Nat. Commun. 7, 11765 (2016).
    Google Scholar 

    4.
    Gebbie, G. How much did Glacial North Atlantic Water shoal? Paleoceanogr. Paleoclimatol. 29, 190–209 (2014).
    Google Scholar 

    5.
    Skinner, L., Fallon, S. J., Waelbroeck, C., Michel, E. & Barker, S. Ventilation of the deep Southern Ocean and deglacial CO2 rise. Science 328, 1147–1151 (2010).
    Google Scholar 

    6.
    Piotrowski, A. et al. Reconstructing deglacial North and South Atlantic deep water sourcing using foraminiferal Nd isotopes. Earth Planet. Sci. Lett. 357–358, 289–297 (2012).
    Google Scholar 

    7.
    Burke, A. et al. The glacial mid-depth radiocarbon bulge and its implications for the overturning circulation. Paleoceanogr. Paleoclimatol. 30, 1021–1039 (2015).
    Google Scholar 

    8.
    Robinson, L. F. & van de Flierdt, T. Southern Ocean evidence for reduced export of North Atlantic Deep Water during Heinrich event 1. Geology 37, 195–198 (2009).
    Google Scholar 

    9.
    Anderson, R. F. et al. Deep-sea oxygen depletion and ocean carbon sequestration during the last ice age. Glob. Biogeochem. Cycles 33, 301–317 (2019).
    Google Scholar 

    10.
    Jaccard, S. L. & Galbraith, E. D. Large climate-driven changes of oceanic oxygen concentrations during the last deglaciation. Nat. Geosci. 5, 151–156 (2012).
    Google Scholar 

    11.
    Key, R. M. et al. A global ocean carbon climatology: results from Global Data Analysis Project (GLODAP). Glob. Biogeochem. Cycles 18, GB4031 (2004).
    Google Scholar 

    12.
    Yu, J. et al. Sequestration of carbon in the deep Atlantic during the last glaciation. Nat. Geosci. 9, 319–324 (2016).
    Google Scholar 

    13.
    Burke, A. & Robinson, L. F. The Southern Ocean’s role in carbon exchange during the last deglaciation. Science 335, 557–561 (2012).
    Google Scholar 

    14.
    Skinner, L. C. et al. North Atlantic versus Southern Ocean contributions to a deglacial surge in deep ocean ventilation. Geology 41, 667–670 (2013).
    Google Scholar 

    15.
    Barker, S., Knorr, G., Vautravers, M., Diz, P. & Skinner, L. Extreme deepening of the Atlantic overturning circulation during deglaciation. Nat. Geosci. 3, 567–571 (2010).
    Google Scholar 

    16.
    Adkins, J. F., McIntyre, K. & Schrag, D. P. The salinity, temperature, and δ18O of the glacial deep ocean. Science 298, 1769–1773 (2002).
    Google Scholar 

    17.
    Yu, J. M. & Elderfield, H. Benthic foraminiferal B/Ca ratios reflect deep water carbonate saturation state. Earth Planet. Sci. Lett. 258, 73–86 (2007).
    Google Scholar 

    18.
    Yu, J. et al. Loss of carbon from the deep sea since the Last Glacial Maximum. Science 330, 1084–1087 (2010).
    Google Scholar 

    19.
    Marchitto, T. & Broeker, W. Deep water mass geometry in the glacial Atlantic Ocean: a review of constraints from the paleonutrient proxy Cd/Ca. Geochem. Geophys. Geosyst. 7, (2006).

    20.
    Yu, J. More efficient North Atlantic carbon pump during the Last Glacial Maximum. Nat. Commun. 10, 2170 (2019).
    Google Scholar 

    21.
    Chalk, T. B., Foster, G. L. & Wilson, P. A. Dynamic storage of glacial CO2 in the Atlantic Ocean revealed by boron [CO32−] and pH records. Earth Planet. Sci. Lett. 510, 1–11 (2019).
    Google Scholar 

    22.
    Broecker, W., Yu, J. & Putnam, A. E. Two contributors to the glacial CO2 decline. Earth Planet. Sci. Lett. 429, 191–196 (2015).
    Google Scholar 

    23.
    Yu, J. M., Elderfield, H. & Piotrowski, A. Seawater carbonate ion–δ13C systematics and application to glacial–interglacial North Atlantic Ocean circulation. Earth Planet. Sci. Lett. 271, 209–220 (2008).
    Google Scholar 

    24.
    Menviel, L. et al. Poorly ventilated deep ocean at the Last Glacial Maximum inferred from carbon isotopes: a data-model comparison study. Paleoceanogr. Paleoclimatol. 31, 2–17 (2017).
    Google Scholar 

    25.
    Muglia, J., Skinner, L. & Schmittner, A. Weak overturning circulation and high Southern Ocean nutrient utilization maximized glacial ocean carbon. Earth Planet. Sci. Lett. 496, 47–56 (2018).
    Google Scholar 

    26.
    Hodell, D. A., Charles, C. D. & Sierro, F. J. Late Pleistocene evolution of the ocean’s carbonate system. Earth Planet. Sci. Lett. 192, 109–124 (2001).
    Google Scholar 

    27.
    Gottschalk, J. et al. Past carbonate preservation events in the deep southeast Atlantic Ocean (Cape Basin) and their implications for Atlantic overturning dynamics and marine carbon cycling. Paleoceanogr. Paleoclimatol. 33, 643–663 (2018).
    Google Scholar 

    28.
    Gottschalk, J. et al. Abrupt changes in the southern extent of North Atlantic Deep Water during Dansgaard–Oeschger events. Nat. Geosci. 8, 950–954 (2015).
    Google Scholar 

    29.
    Zhao, N. et al. Glacial–interglacial Nd isotope variability of North Atlantic Deep Water modulated by North American ice sheet. Nat. Commun. 10, 5773 (2019).
    Google Scholar 

    30.
    Roberts, J. et al. Evolution of South Atlantic density and chemical stratification across the last deglaciation. Proc. Natl Acad. Sci. USA 113, 514–519 (2016).
    Google Scholar 

    31.
    Ferrari, R. et al. Antarctic sea ice control on ocean circulation in present and glacial climates. Proc. Natl Acad. Sci. USA 111, 8753–8758 (2014).
    Google Scholar 

    32.
    Adkins, J. F. The role of deep ocean circulation in setting glacial climates. Paleoceanogr. Paleoclimatol. 28, 539–561 (2013).
    Google Scholar 

    33.
    Talley, L. D. Closure of the global overturning circulation through the Indian, Pacific, and Southern oceans: schematics and transports. Oceanography 26, 80–97 (2013).
    Google Scholar 

    34.
    Matsumoto, K., Oba, T., Lynch-Stieglitz, J. & Yamamoto, H. Interior hydrography and circulation of the glacial Pacific Ocean. Q. Sci. Rev. 21, 1693–1704 (2002).
    Google Scholar 

    35.
    Hu, R., Piotrowski, A. M., Bostock, H. C., Crowhurst, S. & Rennie, V. Variability of neodymium isotopes associated with planktonic foraminifera in the Pacific Ocean during the Holocene and Last Glacial Maximum. Earth Planet. Sci. Lett. 447, 130–138 (2016).
    Google Scholar 

    36.
    Keigwin, L. D. North Pacific deep water formation during the latest glaciation. Nature 330, 362–364 (1987).
    Google Scholar 

    37.
    Anderson, D. M. & Archer, D. Glacial–interglacial stability of ocean pH inferred from foraminifer dissolution rates. Nature 416, 70–73 (2002).
    Google Scholar 

    38.
    Rae, J. W. B. et al. Deep water formation in the North Pacific and deglacial CO2 rise. Paleoceanogr. Paleoclimatol. 29, 645–667 (2014).
    Google Scholar 

    39.
    Umling, N. E. & Thunell, R. C. Mid-depth respired carbon storage and oxygenation of the eastern equatorial Pacific over the last 25,000 years. Q. Sci. Rev. 189, 43–56 (2018).
    Google Scholar 

    40.
    Doss, W. & Marchitto, T. M. Glacial deep ocean sequestration of CO2 driven by the eastern equatorial Pacific biologic pump. Earth Planet. Sci. Lett. 377, 43–54 (2013).
    Google Scholar 

    41.
    Kerr, J., Rickaby, R., Yu, J. M., Elderfield, H. & Sadekov, A. Y. The effect of ocean alkalinity and carbon transfer on deep-sea carbonate ion concentration during the past five glacial cycles. Earth Planet. Sci. Lett. 471, 42–53 (2017).
    Google Scholar 

    42.
    Yu, J. et al. Deep South Atlantic carbonate chemistry and increased interocean deep water exchange during last deglaciation. Q. Sci. Rev. 15, 80–89 (2014).
    Google Scholar 

    43.
    Galbraith, E. D. et al. Carbon dioxide release from the North Pacific abyss during the last deglaciation. Nature 449, 890–893 (2007).
    Google Scholar 

    44.
    Ronge, T. A. et al. Radiocarbon constraints on the extent and evolution of the South Pacific glacial carbon pool. Nat. Commun. 7, 11487 (2016).
    Google Scholar 

    45.
    Gottschalk, J. et al. Carbon isotope offsets between benthic foraminifer species of the genus Cibicides (Cibicidoides) in the glacial sub-Antarctic Atlantic. Paleoceanogr. Paleoclimatol. 31, 1583–1602 (2016).
    Google Scholar 

    46.
    Gottschalk, J. et al. Biological and physical controls in the Southern Ocean on past millennial-scale atmospheric CO2 changes. Nat. Commun. 7, 11539 (2016).
    Google Scholar 

    47.
    Basak, C. et al. Breakup of last glacial deep stratification in the South Pacific. Science 359, 900–904 (2018).
    Google Scholar 

    48.
    Jacobel, A. W., McManus, J. F., Anderson, R. F. & Winckler, G. Repeated storage of respired carbon in the equatorial Pacific Ocean over the last three glacial cycles. Nat. Commun. 8, 1727 (2017).
    Google Scholar 

    49.
    Bereiter, B. et al. Revision of the EPICA Dome C CO2 record from 800 to 600 kyr before present. Geophys. Res. Lett. 42, 542–549 (2015).
    Google Scholar 

    50.
    Schlitzer, R. Ocean Data View v.5.3.0 (Alfred Wegener Institute, 2006); https://odv.awi.de/

    51.
    Barker, S., Greaves, M. & Elderfield, H. A. A study of cleaning procedures used for foraminiferal Mg/Ca paleothermometry. Geochem. Geophys. Geosyst. 4, 8407 (2003).
    Google Scholar 

    52.
    Yu, J. M., Elderfield, H., Greaves, M. & Day, J. Preferential dissolution of benthic foraminiferal calcite during laboratory reductive cleaning. Geochem. Geophys. Geosyst. 8, Q06016 (2007).
    Google Scholar 

    53.
    Yu, J. M., Day, J., Greaves, M. & Elderfield, H. Determination of multiple element/calcium ratios in foraminiferal calcite by quadrupole ICP-MS. Geochem. Geophys. Geosyst. 6, Q08P01 (2005).
    Google Scholar 

    54.
    Feely, R. A. et al. Impact of anthropogenic CO2 on the CaCO3 system in the oceans. Science 305, 362–366 (2004).
    Google Scholar 

    55.
    Grant, K. M. et al. Rapid coupling between ice volume and polar temperature over the past 150,000 years. Nature 491, 744–747 (2012).
    Google Scholar 

    56.
    Mackensen, A., Hubberten, H.-W., Bickert, T., Fischer, G. & Fütterer, D. K. The δ13C in benthic foraminiferal tests of Fontbotia wuellerstorfi (Schwager) relative to the δ13C of dissolved inorganic carbon in Souther Ocean deep water: implications for glacial ocean circulation models. Paleoceanogr. Paleoclimatol. 8, 587–610 (1993).
    Google Scholar 

    57.
    Hodell, D. A., Venz, K. A., Charles, C. D. & Ninnemann, U. S. Pleistocene vertical carbon isotope and carbonate gradients in the South Atlantic sector of the Southern Ocean. Geochem. Geophys. Geosyst. 4, 1004 (2003).
    Google Scholar 

    58.
    Curry, W. B. & Oppo, D. Glacial water mass geometry and the distribution of δ13C of ∑CO2 in the western Altantic Ocean. Paleoceanogr. Paleoclimatol. 20, PA1017 (2005).
    Google Scholar 

    59.
    Lisiecki, L. E. & Raymo, M. E. A Pliocene–Pleistocene stack of 57 globally distributed benthic δ18O records. Paleoceanogr. Paleoclimatol. 20, PA1003 (2005).
    Google Scholar 

    60.
    Ninnemann, U. S. & Charles, C. D. Changes in the mode of Southern Ocean circulation over the last glacial cycle revealed by foraminiferal stable isotopic variability. Earth Planet. Sci. Lett. 201, 383–396 (2002).
    Google Scholar  More

  • in

    Adaptation to low parasite abundance affects immune investment and immunopathological responses of cavefish

    1.
    The Global Burden of Disease: 2004 Update (WHO, 2004).
    2.
    Sheldon, B. C. & Verhulst, S. Ecological immunology: costly parasite defences and trade-offs in evolutionary ecology. Trends Ecol. Evol. 11, 317–321 (1996).
    CAS  PubMed  Google Scholar 

    3.
    Schmid-Hempel, P. Variation in immune defence as a question of evolutionary ecology. Proc. R. Soc. B. 270, 357–366 (2003).
    PubMed  Google Scholar 

    4.
    Schmid-Hempel, P. Evolutionary Parasitology (Oxford Univ. Press, 2013).

    5.
    Rook, G. A. Regulation of the immune system by biodiversity from the natural environment: an ecosystem service essential to health. Proc. Natl Acad. Sci. USA 110, 18360–18367 (2013).
    CAS  PubMed  Google Scholar 

    6.
    von Hertzen, L., Hanski, I. & Haahtela, T. Natural immunity. Biodiversity loss and inflammatory diseases are two global megatrends that might be related. EMBO Rep. 12, 1089–1093 (2011).
    Google Scholar 

    7.
    Belkaid, Y. & Hand, T. W. Role of the microbiota in immunity and inflammation. Cell 157, 121–141 (2014).
    CAS  PubMed  PubMed Central  Google Scholar 

    8.
    Lambrecht, B. N. & Hammad, H. The immunology of the allergy epidemic and the hygiene hypothesis. Nat. Immunol. 18, 1076–1083 (2017).
    CAS  PubMed  Google Scholar 

    9.
    Rook, G. A., Martinelli, R. & Brunet, L. R. Innate immune responses to mycobacteria and the downregulation of atopic responses. Curr. Opin. Allergy Clin. Immunol. 3, 337–342 (2003).
    CAS  PubMed  Google Scholar 

    10.
    Rosenblum, M. D., Remedios, K. A. & Abbas, A. K. Mechanisms of human autoimmunity. J. Clin. Invest. 125, 2228–2233 (2015).
    PubMed  PubMed Central  Google Scholar 

    11.
    Lafferty, K. D. Biodiversity loss decreases parasite diversity: theory and patterns. Philos. Trans. R. Soc. Lond. B 367, 2814–2827 (2012).
    Google Scholar 

    12.
    Kamiya, T., O’Dwyer, K., Nakagawa, S. & Poulin, R. Host diversity drives parasite diversity: meta-analytical insights into patterns and causal mechanisms. Ecography 37, 689–697 (2014).
    Google Scholar 

    13.
    McDade, T. W., Georgiev, A. V. & Kuzawa, C. W. Trade-offs between acquired and innate immune defenses in humans. Evol. Med. Public Health 2016, 1–16 (2016).
    PubMed  PubMed Central  Google Scholar 

    14.
    Lindstrom, K. M., Foufopoulos, J., Parn, H. & Wikelski, M. Immunological investments reflect parasite abundance in island populations of Darwin’s finches. Proc. R. Soc. B 271, 1513–1519 (2004).
    PubMed  Google Scholar 

    15.
    Mayer, A., Mora, T., Rivoire, O. & Walczak, A. M. Diversity of immune strategies explained by adaptation to pathogen statistics. Proc. Natl Acad. Sci. USA 113, 8630–8635 (2016).
    CAS  PubMed  Google Scholar 

    16.
    Scharsack, J. P., Kalbe, M., Harrod, C. & Rauch, G. Habitat-specific adaptation of immune responses of stickleback (Gasterosteus aculeatus) lake and river ecotypes. Proc. R. Soc. B 274, 1523–1532 (2007).
    PubMed  Google Scholar 

    17.
    Kaczorowski, K. J. et al. Continuous immunotypes describe human immune variation and predict diverse responses. Proc. Natl Acad. Sci. USA 114, E6097–E6106 (2017).
    CAS  PubMed  Google Scholar 

    18.
    Herman, A. et al. The role of gene flow in rapid and repeated evolution of cave-related traits in Mexican tetra, Astyanax mexicanus. Mol. Ecol. 27, 4397–4416 (2018).
    CAS  PubMed  PubMed Central  Google Scholar 

    19.
    Fumey, J. et al. Evidence for late Pleistocene origin of Astyanax mexicanus cavefish. BMC Evol. Biol. 18, 43 (2018).
    PubMed  PubMed Central  Google Scholar 

    20.
    Gibert, J. & Deharveng, L. Subterranean ecosystems: a truncated functional biodiversity. BioScience 52, 473–481 (2002).

    21.
    Tabin, J. A. et al. Temperature preference of cave and surface populations of Astyanax mexicanus. Dev. Biol. 441, 338–344 (2018).
    CAS  PubMed  PubMed Central  Google Scholar 

    22.
    Abolins, S. et al. The comparative immunology of wild and laboratory mice, Mus musculus domesticus. Nat. Commun. 8, 14811 (2017).
    PubMed  PubMed Central  Google Scholar 

    23.
    Trama, A. M. et al. Lymphocyte phenotypes in wild-caught rats suggest potential mechanisms underlying increased immune sensitivity in post-industrial environments. Cell Mol. Immunol. 9, 163–174 (2012).
    CAS  PubMed  PubMed Central  Google Scholar 

    24.
    Aspiras, A. C., Rohner, N., Martineau, B., Borowsky, R. L. & Tabin, C. J. Melanocortin 4 receptor mutations contribute to the adaptation of cavefish to nutrient-poor conditions. Proc. Natl Acad. Sci. USA 112, 9668–9673 (2015).
    CAS  PubMed  Google Scholar 

    25.
    Xiong, S., Krishnan, J., Peuss, R. & Rohner, N. Early adipogenesis contributes to excess fat accumulation in cave populations of Astyanax mexicanus. Dev. Biol. 441, 297–304 (2018).
    CAS  PubMed  Google Scholar 

    26.
    Wiens, G. D. & Vallejo, R. L. Temporal and pathogen-load dependent changes in rainbow trout (Oncorhynchus mykiss) immune response traits following challenge with biotype 2 Yersinia ruckeri. Fish Shellfish Immunol. 29, 639–647 (2010).
    CAS  PubMed  Google Scholar 

    27.
    Krishnan, J. et al. Comparative transcriptome analysis of wild and lab populations of Astyanax mexicanus uncovers differential effects of environment and morphotype on gene expression. J. Exp. Zool. B https://doi.org/10.1002/jez.b.22933 (2020).

    28.
    Moller, A. M., Korytar, T., Kollner, B., Schmidt-Posthaus, H. & Segner, H. The teleostean liver as an immunological organ: intrahepatic immune cells (IHICs) in healthy and benzo[a]pyrene challenged rainbow trout (Oncorhynchus mykiss). Dev. Comp. Immunol. 46, 518–529 (2014).
    CAS  PubMed  Google Scholar 

    29.
    Traver, D. et al. Transplantation and in vivo imaging of multilineage engraftment in zebrafish bloodless mutants. Nat. Immunol. 4, 1238–1246 (2003).
    CAS  PubMed  Google Scholar 

    30.
    Stockdale, W. T. et al. Heart regeneration in the Mexican cavefish. Cell Rep. 25, 1997–2007 (2018).
    CAS  PubMed  PubMed Central  Google Scholar 

    31.
    Ramsey, S. et al. Transcriptional noise and cellular heterogeneity in mammalian macrophages. Philos. Trans. R. Soc. Lond. B. 361, 495–506 (2006).
    CAS  Google Scholar 

    32.
    Ogryzko, N. V., Renshaw, S. A. & Wilson, H. L. The IL-1 family in fish: swimming through the muddy waters of inflammasome evolution. Dev. Comp. Immunol. 46, 53–62 (2014).

    33.
    Wittamer, V., Bertrand, J. Y., Gutschow, P. W. & Traver, D. Characterization of the mononuclear phagocyte system in zebrafish. Blood 117, 7126–7135 (2011).
    CAS  PubMed  Google Scholar 

    34.
    Sunyer, J. O. Evolutionary and functional relationships of B cells from fish and mammals: Insights into their novel roles in phagocytosis and presentation of particulate antigen. Infect. Disord. Drug Targets 12, 200–212 (2012).
    CAS  PubMed  PubMed Central  Google Scholar 

    35.
    Lugo-Villarino, G. et al. Identification of dendritic antigen-presenting cells in the zebrafish. Proc. Natl Acad. Sci. USA 107, 15850–15855 (2010).
    CAS  PubMed  Google Scholar 

    36.
    Haugland, G. T. et al. Phagocytosis and respiratory burst activity in lumpsucker (Cyclopterus lumpus L.) leucocytes analysed by flow cytometry. PLoS ONE 7, e47909 (2012).
    CAS  PubMed  PubMed Central  Google Scholar 

    37.
    Lieschke, G. J. & Trede, N. S. Fish immunology. Curr. Biol. 19, R678–R682 (2009).
    CAS  PubMed  Google Scholar 

    38.
    Balla, K. M. et al. Eosinophils in the zebrafish: prospective isolation, characterization, and eosinophilia induction by helminth determinants. Blood 116, 3944–3954 (2010).
    CAS  PubMed  PubMed Central  Google Scholar 

    39.
    Bolnick, D. I., Shim, K. C., Schmerer, M. & Brock, C. D. Population-specific covariation between immune function and color of nesting male threespine stickleback. PLoS ONE 10, e0126000 (2015).
    PubMed  PubMed Central  Google Scholar 

    40.
    Peuß, R. et al. Label-independent flow cytometry and unsupervised neural network method for de novo clustering of cell populations. Preprint at bioRxiv https://doi.org/10.1101/603035 (2020).

    41.
    van der Meer, W., Scott, C. S. & de Keijzer, M. H. Automated flagging influences the inconsistency and bias of band cell and atypical lymphocyte morphological differentials. Clin. Chem. Lab. Med. 42, 371–377 (2004).
    PubMed  Google Scholar 

    42.
    Getz, G. S. Thematic review series: the immune system and atherogenesis. Bridging the innate and adaptive immune systems. J. Lipid Res. 46, 619–622 (2005).
    CAS  PubMed  Google Scholar 

    43.
    Wan, F. et al. Characterization of gammadelta T cells from zebrafish provides insights into their important role in adaptive humoral immunity. Front. Immunol. 7, 675 (2016).
    PubMed  Google Scholar 

    44.
    Shilpi, Paul,S. & Lal, G. Role of gamma-delta (gammadelta) T cells in autoimmunity. J. Leukoc. Biol. 97, 259–271 (2015).
    PubMed  Google Scholar 

    45.
    Fan, X. & Rudensky, A. Y. Hallmarks of tissue-resident lymphocytes. Cell 164, 1198–1211 (2016).
    CAS  PubMed  PubMed Central  Google Scholar 

    46.
    Papotto, P. H., Reinhardt, A., Prinz, I. & Silva-Santos, B. Innately versatile: gammadelta17 T cells in inflammatory and autoimmune diseases. J. Autoimmun. 87, 26–37 (2018).
    CAS  PubMed  Google Scholar 

    47.
    Fay, N. S., Larson, E. C. & Jameson, J. M. Chronic Inflammation and gammadelta T. Cells Front. Immunol. 7, 210 (2016).
    PubMed  Google Scholar 

    48.
    Rossi, D. J. et al. Cell intrinsic alterations underlie hematopoietic stem cell aging. Proc. Natl Acad. Sci. USA 102, 9194–9199 (2005).
    CAS  PubMed  Google Scholar 

    49.
    Bolli, N. et al. Expression of the cytoplasmic NPM1 mutant (NPMc+) causes the expansion of hematopoietic cells in zebrafish. Blood 115, 3329–3340 (2010).
    CAS  PubMed  PubMed Central  Google Scholar 

    50.
    Stachura, D. L. et al. Clonal analysis of hematopoietic progenitor cells in the zebrafish. Blood 118, 1274–1282 (2011).
    CAS  PubMed  PubMed Central  Google Scholar 

    51.
    Reavie, L. et al. Regulation of hematopoietic stem cell differentiation by a single ubiquitin ligase-substrate complex. Nat. Immunol. 11, 207–215 (2010).
    CAS  PubMed  PubMed Central  Google Scholar 

    52.
    Cabezas-Wallscheid, N. et al. Identification of regulatory networks in HSCs and their immediate progeny via integrated proteome, transcriptome, and DNA methylome analysis. Cell Stem Cell 15, 507–522 (2014).
    CAS  PubMed  Google Scholar 

    53.
    Cheng, J. et al. Hematopoietic defects in mice lacking the sialomucin CD34. Blood 87, 479–490 (1996).
    CAS  PubMed  Google Scholar 

    54.
    Anjos-Afonso, F. et al. CD34(–) cells at the apex of the human hematopoietic stem cell hierarchy have distinctive cellular and molecular signatures. Cell Stem Cell 13, 161–174 (2013).
    CAS  PubMed  Google Scholar 

    55.
    Amin, R. H. & Schlissel, M. S. Foxo1 directly regulates the transcription of recombination-activating genes during B cell development. Nat. Immunol. 9, 613–622 (2008).
    CAS  PubMed  PubMed Central  Google Scholar 

    56.
    Han, S., Zheng, B., Schatz, D. G., Spanopoulou, E. & Kelsoe, G. Neoteny in lymphocytes: Rag1 and Rag2 expression in germinal center B cells. Science 274, 2094–2097 (1996).
    CAS  PubMed  Google Scholar 

    57.
    Naito, Y. et al. Germinal center marker GL7 probes activation-dependent repression of N-glycolylneuraminic acid, a sialic acid species involved in the negative modulation of B-cell activation. Mol. Cell Biol. 27, 3008–3022 (2007).
    CAS  PubMed  PubMed Central  Google Scholar 

    58.
    Laszlo, G., Hathcock, K. S., Dickler, H. B. & Hodes, R. J. Characterization of a novel cell-surface molecule expressed on subpopulations of activated T and B cells. J. Immunol. 150, 5252–5262 (1993).
    CAS  PubMed  Google Scholar 

    59.
    Fänge, R. & Nilsson, S. The fish spleen: structure and function. Experientia 41, 152–158 (1985).
    PubMed  Google Scholar 

    60.
    Steinel, N. C. & Bolnick, D. I. Melanomacrophage centers as a histological indicator of immune function in fish and other poikilotherms. Front. Immunol. 8, 827 (2017).
    PubMed  PubMed Central  Google Scholar 

    61.
    Cervenak, L., Magyar, A., Boja, R. & Laszlo, G. Differential expression of GL7 activation antigen on bone marrow B cell subpopulations and peripheral B cells. Immunol. Lett. 78, 89–96 (2001).
    CAS  PubMed  Google Scholar 

    62.
    Secombes, C. J., Wang, T. & Bird, S. The interleukins of fish. Dev. Comp. Immunol. 35, 1336–1345 (2011).
    CAS  PubMed  Google Scholar 

    63.
    Weisberg, S. P. et al. Obesity is associated with macrophage accumulation in adipose tissue. J. Clin. Invest. 112, 1796–1808 (2003).
    CAS  PubMed  PubMed Central  Google Scholar 

    64.
    Christ, A. et al. Western diet triggers NLRP3-dependent innate immune reprogramming. Cell 172, 162–175 e114 (2018).
    CAS  PubMed  PubMed Central  Google Scholar 

    65.
    McAlpine, C. S. et al. Sleep modulates haematopoiesis and protects against atherosclerosis. Nature 566, 383–387 (2019).

    66.
    Heidt, T. et al. Chronic variable stress activates hematopoietic stem cells. Nat. Med. 20, 754–758 (2014).
    CAS  PubMed  PubMed Central  Google Scholar 

    67.
    Mitchell, R. G., Russell, W. H. & Elliott, W. R. Mexican Eyeless Characin Fishes, Genus Astyanax: Environment, Distribution, and Evolution (Texas Tech Press, 1977).

    68.
    Espinasa, L. et al. A new cave locality for Astyanax cavefish in Sierra de El Abra, Mexico. Subterr. Biol. 26, 39–53 (2018).
    Google Scholar 

    69.
    Embryo Surface Sanitation (Egg Bleaching) Protocol https://zebrafish.org/wiki/protocols/ess (ZIRC, 2019).

    70.
    Peuß, R., Eggert, H., Armitage, S. A. & Kurtz, J. Downregulation of the evolutionary capacitor Hsp90 is mediated by social cues. Proc. R. Soc. B 282, 20152041 (2015).
    PubMed  Google Scholar 

    71.
    Pfaffl, M. W., Horgan, G. W. & Dempfle, L. Relative expression software tool (REST(C)) for group-wise comparison and statistical analysis of relative expression results in real-time PCR. Nucleic Acids Res. 30, 36e (2002).
    Google Scholar 

    72.
    Zhang, Y. A. et al. IgT, a primitive immunoglobulin class specialized in mucosal immunity. Nat. Immunol. 11, 827–835 (2010).
    CAS  PubMed  PubMed Central  Google Scholar 

    73.
    Rowe, R. G., Mandelbaum, J., Zon, L. I. & Daley, G. Q. Engineering hematopoietic stem cells: lessons from development. Cell Stem Cell 18, 707–720 (2016).
    CAS  PubMed  PubMed Central  Google Scholar 

    74.
    Stachura, D. L. et al. The zebrafish granulocyte colony-stimulating factors (Gcsfs): 2 paralogous cytokines and their roles in hematopoietic development and maintenance. Blood 122, 3918–3928 (2013).
    CAS  PubMed  PubMed Central  Google Scholar 

    75.
    de Jong, J. L. & Zon, L. I. Use of the zebrafish system to study primitive and definitive hematopoiesis. Ann. Rev. Genet. 39, 481–501 (2005).
    PubMed  Google Scholar 

    76.
    Athanasiadis, E. I. et al. Single-cell RNA-sequencing uncovers transcriptional states and fate decisions in haematopoiesis. Nat. Commun. 8, 2045 (2017).
    PubMed  PubMed Central  Google Scholar 

    77.
    Zeng, A. et al. Prospectively isolated tetraspanin(+) neoblasts are adult pluripotent stem cells underlying planaria regeneration. Cell 173, 1593–1608 (2018).
    CAS  PubMed  Google Scholar 

    78.
    Schindelin, J. et al. Fiji: an open-source platform for biological-image analysis. Nat. Methods 9, 676–682 (2012).
    CAS  Google Scholar 

    79.
    Sun, K. et al. Endotrophin triggers adipose tissue fibrosis and metabolic dysfunction. Nat. Commun. 5, 3485 (2014).
    PubMed  PubMed Central  Google Scholar 

    80.
    R Core Team R: A Language and Environment for Statistical Computing (R Foundation for Statistical Computing, 2014).

    81.
    Benjamini, Y. & Hochberg, Y. Controlling the false discovery rate: a practical and powerful approach to multiple testing. J. R. Stat. Soc. B 57, 289–300 (1995).
    Google Scholar  More

  • in

    Carbon loss from northern circumpolar permafrost soils amplified by rhizosphere priming

    1.
    McGuire, A. D. et al. Dependence of the evolution of carbon dynamics in the northern permafrost region on the trajectory of climate change. Proc. Natl Acad. Sci. USA 115, 3882–2887 (2018).
    Google Scholar 
    2.
    Schuur, E. A. G. et al. Climate change and the permafrost carbon feedback. Nature 520, 171–179 (2015).
    Google Scholar 

    3.
    Koven, C. D. et al. A simplified, data-constrained approach to estimate the permafrost carbon-climate feedback. Phil. Trans. R. Soc. A 373, 20140423 (2015).
    Google Scholar 

    4.
    Xu, L. et al. Temperature and vegetation seasonality diminishment over northern lands. Nat. Clim. Change 3, 581–586 (2013).
    Google Scholar 

    5.
    Huo, C., Luo, Y. & Cheng, W. Rhizosphere priming effect: a meta-analysis. Soil Biol. Biochem. 111, 78–84 (2017).
    Google Scholar 

    6.
    Bingeman, C., Varner, J. & Martin, W. The effect of the addition of organic materials on the decomposition of an organic soil. Soil Sci. Soc. Am. J. 17, 34–38 (1953).
    Google Scholar 

    7.
    Fontaine, S. et al. Stability of organic carbon in deep soil layers controlled by fresh carbon supply. Nature 450, 277–280 (2007).
    Google Scholar 

    8.
    Kuzyakov, Y., Friedel, J. K. & Stahr, K. Review of mechanisms and quantification of priming effects. Soil Biol. Biochem. 32, 1485–1498 (2000).
    Google Scholar 

    9.
    Keiluweit, M. et al. Mineral protection of soil carbon counteracted by root exudates. Nat. Clim. Change 5, 588–595 (2015).
    Google Scholar 

    10.
    Zhang, W., Wang, X. & Wang, S. Addition of external organic carbon and native soil organic carbon decomposition: a meta-analysis. PLoS ONE 8, e54779 (2013).
    Google Scholar 

    11.
    Dijkstra, F. A. & Cheng, W. Interactions between soil and tree roots accelerate long-term soil carbon decomposition. Ecol. Lett. 10, 1046–1053 (2007).
    Google Scholar 

    12.
    Hartley, I. P. et al. A potential loss of carbon associated with greater plant growth in the European Arctic. Nat. Clim. Change 2, 875–879 (2012).
    Google Scholar 

    13.
    Parker, T. C., Subke, J.-A. & Wookey, P. A. Rapid carbon turnover beneath shrub and tree vegetation is associated with low soil carbon stocks at a subarctic treeline. Glob. Change Biol. 21, 2070–2081 (2015).
    Google Scholar 

    14.
    Sulman, B. N. et al. Feedbacks between plant N demand and rhizosphere priming depend on type of mycorrhizal association. Ecol. Lett. 20, 1043–1053 (2017).
    Google Scholar 

    15.
    Wild, B. et al. Input of easily available organic C and N stimulates microbial decomposition of soil organic matter in arctic permafrost soil. Soil Biol. Biochem. 75, 143–151 (2014).
    Google Scholar 

    16.
    Wild, B. et al. Plant-derived compounds stimulate the decomposition of organic matter in arctic permafrost soils. Sci. Rep. 6, 25607 (2016).
    Google Scholar 

    17.
    Pegoraro, E. et al. Glucose addition increases the magnitude and decreases the age of soil respired carbon in a long-term permafrost incubation study. Soil Biol. Biochem. 129, 201–211 (2019).
    Google Scholar 

    18.
    Rousk, K., Michelsen, A. & Rousk, J. Microbial control of soil organic matter mineralization responses to labile carbon in subarctic climate change treatments. Glob. Change Biol. 22, 4150–4161 (2016).
    Google Scholar 

    19.
    Walz, J., Knoblauch, C., Boehme, L. & Pfeiffer, E.-M. Regulation of soil organic matter decomposition in permafrost-affected Siberian tundra soils—impact of oxygen availability, freezing and thawing, temperature, and labile organic matter. Soil Biol. Biochem. 110, 34–43 (2017).
    Google Scholar 

    20.
    Hartley, I. P., Hopkins, D. W., Sommerkorn, M. & Wookey, P. A. The response of organic matter mineralisation to nutrient and substrate additions in sub-arctic soils. Soil Biol. Biochem. 42, 92–100 (2010).
    Google Scholar 

    21.
    Hugelius, G. et al. Estimated stocks of circumpolar permafrost carbon with quantified uncertainty ranges and identified data gaps. Biogeosciences 11, 6573–6593 (2014).
    Google Scholar 

    22.
    Harden, J. W. et al. Field information links permafrost carbon to physical vulnerabilities of thawing. Geophys. Res. Lett. 39, L15704 (2012).
    Google Scholar 

    23.
    Beer, C. et al. Terrestrial gross carbon dioxide uptake: global distribution and covariation with climate. Science 329, 834–839 (2010).
    Google Scholar 

    24.
    Koven, C. D., Lawrence, D. M. & Riley, W. J. Permafrost carbon–climate feedback is sensitive to deep soil carbon decomposability but not deep soil nitrogen dynamics. Proc. Natl Acad. Sci. USA 112, 3752–3757 (2015).
    Google Scholar 

    25.
    Walker, D. A. et al. The Circumpolar Arctic vegetation map. J. Veg. Sci. 16, 267–282 (2005).
    Google Scholar 

    26.
    Bengtson, P., Barker, J. & Grayston, S. J. Evidence of a strong coupling between root exudation, C and N availability, and stimulated SOM decomposition caused by rhizosphere priming effects. Ecol. Evol. 2, 1843–1852 (2012).
    Google Scholar 

    27.
    Walker, T. N. et al. Vascular plants promote ancient peatland carbon loss with climate warming. Glob. Change Biol. 22, 1880–1889 (2016).
    Google Scholar 

    28.
    Basiliko, N., Stewart, H., Roulet, N. T. & Moore, T. R. Do root exudates enhance peat decomposition? Geomicrobiol. J. 29, 374–378 (2012).
    Google Scholar 

    29.
    Gavazov, K. et al. Vascular plant-mediated controls on atmospheric carbon assimilation and peat carbon decomposition under climate change. Glob. Change Biol. 24, 3911–3921 (2018).
    Google Scholar 

    30.
    Knoblauch, C., Beer, C., Liebner, S. & Grigoriev, M. N. Methane production as key to the greenhouse gas budget of thawing permafrost. Nat. Clim. Change 8, 309–312 (2018).
    Google Scholar 

    31.
    Gentsch, N. et al. Temperature response of permafrost soil carbon is attenuated by mineral protection. Glob. Change Biol. 24, 3401–3415 (2018).
    Google Scholar 

    32.
    Kuzyakov, Y. Priming effects: interactions between living and dead organic matter. Soil Biol. Biochem. 42, 1363–1371 (2010).
    Google Scholar 

    33.
    Schenk, H. J. & Jackson, R. B. The global biogeography of roots. Ecol. Monogr. 72, 311–328 (2002).
    Google Scholar 

    34.
    Keuper, F. et al. Experimentally increased nutrient availability at the permafrost thaw front selectively enhances biomass production of deep-rooting subarctic peatland species. Glob. Change Biol. 23, 4257–4266 (2017).
    Google Scholar 

    35.
    Blume-Werry, G., Milbau, A., Teuber, L. M., Johansson, M. & Dorrepaal, E. Dwelling in the deep—strongly increased root growth and rooting depth enhance plant interactions with thawing permafrost soil. New Phytol. 223, 1328–1339 (2019).
    Google Scholar 

    36.
    Finger, R. A. et al. Effects of permafrost thaw on nitrogen availability and plant–soil interactions in a boreal Alaskan lowland. J. Ecol. 104, 1542–1554 (2016).
    Google Scholar 

    37.
    Keuper, F. et al. A frozen feast: thawing permafrost increases plant-available nitrogen in subarctic peatlands. Glob. Change Biol. 18, 1998–2007 (2012).
    Google Scholar 

    38.
    Wild, B. et al. Amino acid production exceeds plant nitrogen demand in Siberian tundra. Environ. Res. Lett. 13, 034002 (2018).
    Google Scholar 

    39.
    Pearson, R. G. et al. Shifts in Arctic vegetation and associated feedbacks under climate change. Nat. Clim. Change 3, 673–677 (2013).
    Google Scholar 

    40.
    Lindahl, B. D. & Tunlid, A. Ectomycorrhizal fungi—potential organic matter decomposers, yet not saprotrophs. New Phytol. 205, 1443–1447 (2015).
    Google Scholar 

    41.
    Zak, D. R. et al. Exploring the role of ectomycorrhizal fungi in soil carbon dynamics. New Phytol. 223, 33–39 (2019).
    Google Scholar 

    42.
    Soudzilovskaia, N. A. et al. Global mycorrhizal plant distribution linked to terrestrial carbon stocks. Nat. Commun. 10, 5077 (2019).

    43.
    Tedersoo, L. & Bahram, M. Mycorrhizal types differ in ecophysiology and alter plant nutrition and soil processes. Biol. Rev. 94, 1857–1880 (2019).
    Google Scholar 

    44.
    Hultman, J. et al. Multi-omics of permafrost, active layer and thermokarst bog soil microbiomes. Nature 521, 208–212 (2015).
    Google Scholar 

    45.
    Monteux, S. et al. Long-term in situ permafrost thaw effects on bacterial communities and potential aerobic respiration. ISME J. 12, 2129–2141 (2018).
    Google Scholar 

    46.
    Mackelprang, R. et al. Metagenomic analysis of a permafrost microbial community reveals a rapid response to thaw. Nature 480, 368–371 (2011).
    Google Scholar 

    47.
    Johnston, E. R. et al. Responses of tundra soil microbial communities to half a decade of experimental warming at two critical depths. Proc. Natl Acad. Sci. USA 116, 15096–15105 (2019).
    Google Scholar 

    48.
    Monteux, S. A Song of Ice and Mud: Interactions of Microbes with Roots, Fauna and Carbon in Warming Permafrost-Affected Soils. PhD thesis, Umeå Univ. (2018).

    49.
    Turetsky, M. R. et al. Carbon release through abrupt permafrost thaw. Nat. Geosci. 13, 138–143 (2020).
    Google Scholar 

    50.
    Wik, M., Varner, R. K., Anthony, K. W., MacIntyre, S. & Bastviken, D. Climate-sensitive northern lakes and ponds are critical components of methane release. Nat. Geosci. 9, 99–105 (2016).
    Google Scholar 

    51.
    Shakhova, N. et al. Ebullition and storm-induced methane release from the East Siberian Arctic Shelf. Nat. Geosci. 7, 64–70 (2014).
    Google Scholar 

    52.
    Goodwin, P. et al. Pathways to 1.5 °C and 2 °C warming based on observational and geological constraints. Nat. Geosci. 11, 102–107 (2018).
    Google Scholar 

    53.
    Brown, J., Ferrians, O. J. Jr, Heginbottom, J. A. & Melnikov, E. S. Circum-Arctic Map of Permafrost and Ground-Ice Conditions Version 2 (National Snow and Ice Data Center, 2002).

    54.
    Hugelius, G. et al. The Northern Circumpolar Soil Carbon Database: spatially distributed datasets of soil coverage and soil carbon storage in the northern permafrost regions. Earth Syst. Sci. Data 5, 3–13 (2013).
    Google Scholar 

    55.
    Hugelius, G. et al. A new data set for estimating organic carbon storage to 3 m depth in soils of the northern circumpolar permafrost region. Earth Syst. Sci. Data 5, 393–402 (2013).
    Google Scholar 

    56.
    Lawrence, D. M., Slater, A. G. & Swenson, S. C. Simulation of present-day and future permafrost and seasonally frozen ground conditions in CCSM4. J. Clim. 25, 2207–2225 (2012).
    Google Scholar 

    57.
    Fontaine, S., Bardoux, G., Abbadie, L. & Mariotti, A. Carbon input to soil may decrease soil carbon content. Ecol. Lett. 7, 314–320 (2004).
    Google Scholar 

    58.
    Mooshammer, M. et al. Adjustment of microbial nitrogen use efficiency to carbon:nitrogen imbalances regulates soil nitrogen cycling. Nat. Commun. 5, 3694 (2014).
    Google Scholar 

    59.
    Sinsabaugh, R. L., Manzoni, S., Moorhead, D. L. & Richter, A. Carbon use efficiency of microbial communities: stoichiometry, methodology and modelling. Ecol. Lett. 16, 930–939 (2013).
    Google Scholar 

    60.
    Sinsabaugh, R. L. et al. Stoichiometry of microbial carbon use efficiency in soils. Ecol. Monogr. 86, 172–189 (2016).
    Google Scholar 

    61.
    Gentsch, N. et al. Storage and transformation of organic matter fractions in cryoturbated permafrost soils across the Siberian Arctic. Biogeosciences 12, 4525–4542 (2015).
    Google Scholar 

    62.
    Kuzyakov, Y. Review: factors affecting rhizosphere priming effects. J. Plant Nutr. Soil Sci. 165, 382–396 (2002).
    Google Scholar 

    63.
    Hinsinger, P., Bengough, A. G., Vetterlein, D. & Young, I. M. Rhizosphere: biophysics, biogeochemistry and ecological relevance. Plant Soil 321, 117–152 (2009).
    Google Scholar 

    64.
    Jones, D. L. & Murphy, D. V. Microbial response time to sugar and amino acid additions to soil. Soil Biol. Biochem. 39, 2178–2182 (2007).
    Google Scholar 

    65.
    Boddy, E., Roberts, P., Hill, P. W., Farrar, J. & Jones, D. L. Turnover of low molecular weight dissolved organic C (DOC) and microbial C exhibit different temperature sensitivities in Arctic tundra soils. Soil Biol. Biochem. 40, 1557–1566 (2008).
    Google Scholar 

    66.
    Global Agro-Ecological Zones (GAEZ v3.0) (FAO/IIASA, 2010).

    67.
    Zhang, Y., Xu, M., Chen, H. & Adams, J. Global pattern of NPP to GPP ratio derived from MODIS data: effects of ecosystem type, geographical location and climate. Glob. Ecol. Biogeogr. 18, 280–290 (2009).
    Google Scholar 

    68.
    Jones, D. L., Nguyen, C. & Finlay, R. D. Carbon flow in the rhizosphere: carbon trading at the soil–root interface. Plant Soil 321, 5–33 (2009).
    Google Scholar 

    69.
    Kuzyakov, Y. & Larionova, A. A. Root and rhizomicrobial respiration: a review of approaches to estimate respiration by autotrophic and heterotrophic organisms in soil. J. Plant Nutr. Soil Sci. 168, 503–520 (2005).
    Google Scholar 

    70.
    Bond-Lamberty, B., Bailey, V. L., Chen, M., Gough, C. M. & Vargas, R. Globally rising soil heterotrophic respiration over recent decades. Nature 560, 80–83 (2018).
    Google Scholar 

    71.
    Bond-Lamberty, B., Wang, C. & Gower, S. T. A global relationship between the heterotrophic and autotrophic components of soil respiration? Glob. Change Biol. 10, 1756–1766 (2004).
    Google Scholar 

    72.
    Hibbard, K. A., Law, B. E., Reichstein, M. & Sulzman, J. An analysis of soil respiration across Northern Hemisphere temperate ecosystems. Biogeochemistry 73, 29–70 (2005).
    Google Scholar 

    73.
    Buckland, S. T. Monte Carlo confidence intervals. Biometrics 40, 811–817 (1984).
    Google Scholar 

    74.
    Hijmans, R. J., Cameron, S. E., Parra, J. L., Jones, P. G. & Jarvis, A. Very high resolution interpolated climate surfaces for global land areas. Int. J. Climatol. 25, 1965–1978 (2005).
    Google Scholar 

    75.
    Kummu, M., de Moel, H., Ward, P. J. & Varis, O. Dryad Data from: How close do we live to water? A global analysis of population distance to freshwater bodies. (Dryad Digital Repository, 2011); https://doi.org/10.5061/dryad.71c6r

    76.
    Kummu, M., Moel, H., de Ward, P. J. & Varis, O. How close do we live to water? A global analysis of population distance to freshwater bodies. PLoS ONE 6, e20578 (2011).
    Google Scholar 

    77.
    Iwahashi, J. & Pike, R. J. Automated classifications of topography from DEMs by an unsupervised nested-means algorithm and a three-part geometric signature. Geomorphology 86, 409–440 (2007).
    Google Scholar  More

  • in

    A seawater-sulfate origin for early Earth’s volcanic sulfur

    1.
    Farquhar, J., Zerkle, A. L. & Bekker, A. in The Atmosphere – History 2nd edn, Vol. 6 (ed. Farquhar, J.) 91–138 (Elsevier, 2014).
    2.
    Lyons, T. W., Reinhard, C. T. & Planesky, N. J. The rise of oxygen in Earth’s early ocean and atmosphere. Nature 506, 307–315 (2014).
    Google Scholar 

    3.
    Holland, H. D. Volcanic gases, black smokers and the great oxidation event. Geochim. Cosmochim. Acta 66, 3811–3826 (2002).
    Google Scholar 

    4.
    Kump, L. R. & Barley, M. E. Increased subaerial volcanism and the rise of atmospheric oxygen 2.5 billion years ago. Nature 448, 1033–1036 (2007).
    Google Scholar 

    5.
    Korenaga, J. Crustal evolution and mantle dynamics through Earth history. Philos. Trans. R. Soc. A 376, 2017048 (2018).
    Google Scholar 

    6.
    Canfield, D. E. The early history of atmospheric oxygen: homage to Robert M. Garrels. Annu. Rev. Earth Planet. Sci. 33, 1–36 (2005).
    Google Scholar 

    7.
    Holland, H. D. The oxygenation of the atmosphere and oceans. Philos. Trans. R. Soc. B. 363, 903–915 (2006).
    Google Scholar 

    8.
    Gaillard, F., Scaillet, B. & Arndt, N. T. Atmospheric oxygenation caused by a change in volcanic degassing pressure. Nature 478, 228–232 (2011).
    Google Scholar 

    9.
    Farquhar, J., Bao, H. M. & Thiemens, M. Atmospheric influence of Earth’s earliest sulfur cycle. Science 289, 756–758 (2000).
    Google Scholar 

    10.
    Pavlov, A. A. & Kasting, J. F. Mass-independent fractionation of sulfur isotopes in Archean sediments: strong evidence for an anoxic Archean atmosphere. Astrobiology 2, 27–41 (2002).
    Google Scholar 

    11.
    Symonds, R. B., Rose, W. I., Bluth, G. J. S. & Gerlach, T. M. in Volatiles in Magmas Vol. 30 (eds Caroll, M. R. & Halloway, J. R.) 1–66 (Mineralogical Society of America, 1994).

    12.
    Oppenheimer, C., Fischer, T. P. & Scaillet, B. in The Crust 2nd edn, Vol. 4 (ed. Rudnick, R. L.) 111–179 (Elsevier, 2014).

    13.
    National Academies of Sciences, Engineering and Medicine. Volcanic Eruptions and their Repose, Unrest, Precursors, and Timing (The National Academy Press, 2017).

    14.
    Drummond, S. E. Jr Boiling and Mixing of Hydrothermal Fluids: Chemical Effects on Mineral Precipitation. PhD thesis, Pennsylvania State Univ. (1981).

    15.
    German, C. R. & Von Damm, K. L. in The Oceans and Marine Geochemistry Vol. 6 (ed. Elderfield, H.) 181–222 (Elsevier, 2006).

    16.
    Giggenbach, W. F. Redox processes governing the chemistry of fumarolic gas discharges from White Island, New Zealand. Appl. Geochem. 2, 143–161 (1987).
    Google Scholar 

    17.
    Lasaga, A. C. & Ohmoto, H. The oxygen geochemical cycle: dynamics and stability. Geochim. Cosmochim. Acta 66, 361–381 (2002).
    Google Scholar 

    18.
    Ohmoto, H. in The Precambrian Earth: Tempos and Events Vol. 12 (eds Erickson, P. G. et. al.) 361–387 (Elsevier, 2004).

    19.
    Ohmoto, H. et al. Oxygen, iron and sulfur geochemical cycles on early Earth: paradigms and contradictions. Geol. Soc. Am. Spec. Pap. 504, 55–95 (2014).
    Google Scholar 

    20.
    Burnham, C. W. & Ohmoto, H. in Granitic Magmatism and Related Mineralization Vol. 8 (eds. Ishihara, S. & Takenouchi, S.) 1–11 (1980).

    21.
    Berry, A. J. et al. A re-assessment of the oxidation state of iron in MORB glasses. Earth Planet. Sci. Lett. 483, 114–123 (2018).
    Google Scholar 

    22.
    Carroll, M. R. & Webster, J. D. in Volatiles in Magmas Vol. 30 (eds Caroll, M. R. & Halloway, J. R.) 231–280 (Mineralogical Society of America, 1994).

    23.
    Carmichael, I. S. E. The redox states of basic and silicic magmas: a reflection of their source region? Contrib. Mineral. Petrol. 106, 129–141 (1991).
    Google Scholar 

    24.
    Frost, D. J. & McCammon, C. A. The redox state of Earth’s mantle. Annu. Rev. Earth Planet. Sci. 36, 389–420 (2008).
    Google Scholar 

    25.
    Evans, K. A. The redox budget of subduction zones. Earth Sci. Rev. 113, 11–32 (2012).
    Google Scholar 

    26.
    Richards, J. P. The oxidation state, and sulfur and Cu contents of arc magmas: implications for metallurgy. Lithos 233, 27–45 (2015).
    Google Scholar 

    27.
    Chappell, B. W. & White, A. J. R. Two contrasting granite types. Pac. Geol. 8, 173–174 (1974).
    Google Scholar 

    28.
    Ishihara, S. The magnetite-series and ilmenite-series granitic rocks. Min. Geol. 27, 291–305 (1977).
    Google Scholar 

    29.
    Savarino, J. et al. UV induced mass-independent sulfur isotope fractionation in stratospheric volcanic sulfate. Geophys. Res. Lett. 30, 2131 (2003).
    Google Scholar 

    30.
    Hattori, S. et al. SO2 photoexcitation mechanism links mass-independent sulfur isotopic fractionation in cryospheric sulfate to climate impacting volcanism. Proc. Natl Acad. Sci. USA 110, 17661–17656 (2019).
    Google Scholar 

    31.
    Whitehill, A. R., Jiang, B., Guo, H. & Ono, S. SO2 photolysis as a source for sulfur mass-independent isotope signatures in stratospheric aerosols. Atmos. Chem. Phys. 15, 1843–1864 (2015).
    Google Scholar 

    32.
    Sasaki, A. & Ishihara, S. Sulfur isotopic composition of the magnetite-series and ilmenite-series granitoids in Japan. Contrib. Mineral. Petrol. 68, 107–115 (1979).
    Google Scholar 

    33.
    Alt, J. C., Shanks, W. C. & Jackson, M. C. Cycling of sulfur in subduction zones: the geochemistry of sulfur in the Mariana Island Arc and back-arc trough. Earth Planet. Sci. Lett. 119, 477–494 (1993).
    Google Scholar 

    34.
    Ohmoto, H. et al. Chemical processes of Kuroko formation. Econ. Geol. Mon. 5, 570–604 (1983).

    35.
    Ohmoto, H. Formation of volcanogenic massive sulfide deposits: the Kuroko perspective. Ore Geol. Rev. 10, 135–177 (1996).
    Google Scholar 

    36.
    Ohmoto, H. & Goldhaber, M. B. in Geochemistry of Hydrothermal Ore Deposits 3rd edn (ed. Barnes, H. L.) 517–611 (Wiley, 1997).

    37.
    Kishima, N. A thermodynamic study on the pyrite–pyrrhotite–magnetite–water system at 300–500 °C with relevance to the fugacity/concentration quotient of aqueous H2S. Geochim. Cosmochim. Acta 53, 2143–2155 (1989).
    Google Scholar 

    38.
    Schoonen, M. A. A. & Barnes, H. L. Mechanisms of pyrite and marcasite formation from solutions. III. Hydrothermal processes. Geochim. Cosmochim. Acta 55, 3491–3504 (1991).
    Google Scholar 

    39.
    Graham, U. M. & Ohmoto, H. Experimental study of formation mechanisms of hydrothermal pyrite. Geochim. Cosmochim. Acta 58, 2187–2202 (1994).
    Google Scholar 

    40.
    Kerrich, R. & Said, N. Extreme positive Ce anomalies in a 3.0 Ga submarine volcanic sequence, Murchison Province: oxygenated marine bottom waters. Chem. Geol. 280, 232–241 (2011).
    Google Scholar 

    41.
    Kerrich, R., Said, N., Manikyamba, C. & Wyman, D. Sampling oxygenated Archean hydrosphere: implications from fractionations of Th/U and Ce/Ce* in hydrothermally altered volcanic sequences. Gondwana Res. 23, 506–525 (2013).
    Google Scholar 

    42.
    van Keken, P. E., Kiefer, B. & Peacock, S. M. High-resolution models of subduction zones: implications for mineral dehydration reactions and the transport of water into the deep mantle. Geochem. Geophys. Geosyst. 3, 1056 (2002).
    Google Scholar 

    43.
    Hyndman, R. D. & Peacock, S. M. Serpentinization of the forearc mantle. Earth Planet. Sci. Lett. 212, 417–432 (2003).
    Google Scholar 

    44.
    Tomkins, A. G. & Evans, K. A. Separate zones of sulfate and sulfide release from subducted mafic oceanic crust. Earth Planet. Sci. Lett. 428, 73–83 (2015).
    Google Scholar 

    45.
    Scaillet, B., Clemente, B., Evans, B. & Pichavant, M. Redox control of sulfur degassing in silicic magmas. J. Geophys. Res. 103, 23937–23949 (1998).
    Google Scholar 

    46.
    Wallace, P. J. Volatiles in subduction zone magmas: concentrations and fluxes based on melt inclusions and volcanic gas data. J. Volcanol. 140, 217–240 (2005).
    Google Scholar 

    47.
    Jugo, P. J. Sulfur content at sulfide saturation in oxidized magmas. Geology 37, 415–418 (2009).
    Google Scholar 

    48.
    Ishihara, S. et al. in Evolution of Early Earth’s Atmosphere, Hydrosphere and Biosphere—Constraints from Ore Deposits Vol. 198 (eds Kesler, S. E. & Ohmoto, H.) 67–80 (Geological Society of America, 2006).

    49.
    Barboni, M. et al. Early formation of the Moon 4.51 billion years ago. Sci. Adv. 2017, 1602365 (2017).
    Google Scholar 

    50.
    Delano, J. W. Redox history of the Earth’s interior since ~3,900 Ma: implications for prebiotic molecules. Orig. Life Evol. Biosphere 31, 311–341 (2001).
    Google Scholar 

    51.
    Nicklas, R. W., Puchtel, I. S. & Ash, R. D. Redox state of the Archean mantle: evidence from V partitioning in 3.5–2.4 Ga komatiites. Geochim. Cosmochim. Acta 222, 447–446 (2018).
    Google Scholar 

    52.
    Li, Z.-X. A. & Lee, C.-T. A. The constancy of upper mantle fO2 through time inferred from V/Sc ratios in basalts. Earth Planet. Sci. Lett. 228, 483–493 (2004).
    Google Scholar 

    53.
    Trail, D., Watson, E. B. & Tailby, N. D. The oxidation state of Hadean magmas and implications for early Earth’s atmosphere. Nature 480, 79–83 (2011).
    Google Scholar 

    54.
    Watanabe, Y., Farquhar, J. & Ohmoto, H. Anomalous fractionations of sulfur isotopes during thermochemical sulfate reduction. Science 324, 370–373 (2008).
    Google Scholar 

    55.
    Oduro, H. et al. Evidence of magnetic isotope effects during thermochemical sulfate reduction. Proc. Natl Acad. Sci. USA 108, 17635–17638 (2011).
    Google Scholar 

    56.
    Ohmoto et al. (Bio)geochemical cycles of S, C, Fe, and O on the hotter Archean Earth. Goldschmidt Abstr. 2018, abstr. 1913 (2018).

    57.
    Ohmoto, H., Watanabe, Y. & Kumazawa, K. Evidence from massive siderite beds for a CO2-rich atmosphere before ~1.8 billion years ago. Nature 429, 395–399 (2004).
    Google Scholar 

    58.
    Finlayson-Pitts, B. J. & Pitts, J. N. Chemistry of the Upper and Lower Atmosphere (Academic Press, 1999).

    59.
    Seccombe, P. K. Sulphur isotope and trace metal composition of stratiform sulphides as an ore guide in the Canadian Shield. J. Geochem. Explor. 8, 117–137 (1977).
    Google Scholar 

    60.
    Jamieson, J. W., Wing, B. A., Farquhar, J. & Hamington, M. D. Neoarchaean seawater sulphate concentrations from sulphur isotopes in massive sulphide ore. Nat. Geosci. 6, 61–64 (2013).
    Google Scholar 

    61.
    Vaughan, D. J. & Craig, J. R. in Geochemistry of Hydrothermal Ore Deposits 2nd edn (ed. Barnes, H. L.) 367–434 (Wiley, 1979).

    62.
    Mysen, B. & Boettcher, A. L. Melting of a hydrous mantle. I. Phase relations of natural peridotite at high pressures and temperatures with controlled activities of water, carbon dioxide and hydrogen. J. Petrol. 16, 520–548 (1975).
    Google Scholar 

    63.
    Gaetani, G. & Grove, T. L. The influence of water on melting of mantle peridotite. Contrib. Mineral. Petrol. 131, 323–346 (1998).
    Google Scholar 

    64.
    Henderson, P. & Henderson, G. M. The Cambridge Handbook of Earth Science Data (Cambridge Univ. Press, 2009).

    65.
    Deines, P. & Harris, J. W. Sulfide inclusion chemistry and carbon isotopes of African diamonds. Geochim. Cosmochim. Acta 59, 3173–3188 (1995).
    Google Scholar 

    66.
    Rudnick, R. L., Eldridge, C. S. & Bulanova, G. P. Diamond growth history from in situ measurement of Pb and S isotopic compositions of sulfide inclusions. Geology 21, 13–16 (1993).
    Google Scholar 

    67.
    Farquhar, J. et al. Mass-independent sulfur of inclusions in diamond and sulfur recycling on early earth. Science 298, 2369–2371 (2002).
    Google Scholar 

    68.
    Hickman, A. H. Review of the Pilbara Craton and Fortescue Basin, Western Australia: crustal evolution providing environments for early life. Isl. Arc 21, 1–31 (2012).
    Google Scholar 

    69.
    van Kranendonk, M. J., Smithies, R. H., Hickman, A. H. & Champion, D. C. in Earth’s Oldest Rocks (eds van Kranendonk, M. J. et al.) 307–337 (Elsevier, 2007). More