More stories

  • in

    Scale in the study of Indigenous burning

    1.
    Armstrong, C. G. et al. Anthropological contributions to historical ecology: 50 questions, infinite prospects. PLoS ONE 12, e0171883 (2017).
    Article  Google Scholar 
    2.
    Oswald, W. W. et al. Conservation implications of limited Native American impacts in pre-contact New England. Nat. Sustain. 3, 241–246 (2020).
    Article  Google Scholar 

    3.
    Bragdon, K. J. Native People of Southern New England, 1500–1650 Vol. 221 (Univ. Oklahoma Press, 1996).

    4.
    Stone, G. D. Settlement Ecology: The Social and Spatial Organization of Kofyar Agriculture (Univ. Arizona Press, 1996).

    5.
    Whitlock, C. & Anderson, R. S. in Fire and Climatic Change in Temperate Ecosystems of the Western Americas Ecological Studies Vol. 160 (eds Veblen, T. T. et al.) 3–31 (Springer, 2003).

    6.
    Roos, C. I., Williamson, G. J. & Bowman, D. M. J. S. Is anthropogenic pyrodiversity invisible in paleofire records? Fire 2, 42 (2019).
    Article  Google Scholar 

    7.
    Day, G. M. The Indian as an ecological factor in the northeastern forest. Ecology 34, 329–346 (1953).
    Article  Google Scholar 

    8.
    Cronon, W. Changes in the Land: Indians, Colonists, and the Ecology of New England (Hill and Wang, 2011).

    9.
    Trauernicht, C., Brook, B. W., Murphy, B. P., Williamson, G. J. & Bowman, D. M. J. S. Local and global pyrogeographic evidence that indigenous fire management creates pyrodiversity. Ecol. Evol. 5, 1908–1918 (2015).
    Article  Google Scholar 

    10.
    Roos, C. I. et al. Pyrogeography, historical ecology, and the human dimensions of fire regimes. J. Biogeogr. 41, 833–836 (2014).
    Article  Google Scholar 

    11.
    Bowman, D. M. J. S. et al. The human dimension of fire regimes on Earth. J. Biogeogr. 38, 2223–2236 (2011).
    Article  Google Scholar 

    12.
    Swetnam, T. W. et al. Multiscale perspectives of fire, climate and humans in western North America and the Jemez Mountains, USA. Phil. Trans. R. Soc. B 371, 20150168 (2016).
    Article  Google Scholar 

    13.
    Bliege Bird, R., Codding, B. F., Kauhanen, P. G. & Bird, D. W. Aboriginal hunting buffers climate-driven fire-size variability in Australia’s spinifex grasslands. Proc. Natl Acad. Sci. USA 109, 10287–10292 (2012).
    Article  Google Scholar 

    14.
    Roos, C. I., Zedeño, M. N., Hollenback, K. L. & Erlick, M. M. H. Indigenous impacts on North American Great Plains fire regimes of the past millennium. Proc. Natl Acad. Sci. USA 115, 8143–8148 (2018).
    CAS  Article  Google Scholar 

    15.
    Balch, J. K. et al. Human-started wildfires expand the fire niche across the United States. Proc. Natl Acad. Sci. USA 114, 2946–2951 (2017).

    16.
    Flannery, T. The Future Eaters: An Ecological History of the Australasian Lands and People (Grove, 2002). More

  • in

    Integrating agroecological production in a robust post-2020 Global Biodiversity Framework

    Below, we elaborate on how agroecological production can help to support the GBF targets.
    Target 1 — reduce the threats to biodiversity
    Comprehensive spatial planning for diversified agriculture benefits biodiversity conservation and nature’s contributions to people (NCP)7,8, when integrating multiple spatial scales from local to regional and multi-stakeholder participatory approaches. Diversified farmlands enhance biodiversity, biocontrol, pollination and reduce pathogen and pest impact7, thereby contributing to achieve conservation objectives in proximate protected areas, as more protected areas are seeing impact in intensive land use in surrounding areas9. Agroecological practices can considerably reduce the use of synthetic pesticides10, a major cause of biodiversity loss11. A more effective use of fertilizers can reduce nutrient pollution and mitigate climate impacts by maintaining healthier, carbon-sequestering soil microbiota12. Diversified cropping systems can further mitigate greenhouse gas emissions by, for example, non-crop tree diversification in agroforestry systems, thereby enhancing agrobiodiversity benefits13,14.
    Target 2 — meeting people’s needs through sustainable use and benefit sharing
    Agroecological production is a comprehensive framework for the sustainable use of biodiversity that also supports productivity and resilience15. Farmers benefit from diversified systems through increased economic resilience, reduced dependency on agrochemical inputs, and in subsistence systems more diverse and nutritious foods16,17,18. Moreover, agroecological production can reduce negative externalities and off-farm inputs, while increasing biodiversity and NCP19,20. Trade-offs between agroecological approaches and yield are often assumed, but not inherent21. New crop varieties, crop combinations and technological innovations will only further reduce yield gaps between conventional and agroecological production19,22, when the availability is fair and locally appropriate.
    Target 3 — tools and solutions for implementation and mainstreaming
    Eco-certification and agricultural policies — if well informed and implemented — provide important opportunities to encourage diversified farm and landscape measures for conservation23,24. Corporate and government commitments to zero-deforestation and eco-labelling could be enhanced by coupling production and protection goals within innovative investment models that emphasize natural assets. Investing in diversified systems can mitigate environmental vulnerability by embedding resilience into supply chains25. Promotion and equitable participation of indigenous peoples and local communities in decision-making processes is critical to incorporate their perspective on and knowledge about agroecological approaches. Lastly, an understanding of agroecological production, benefits for biodiversity conservation, food security, and overall better quality of life can help to shape new social norms for sustainability6. More

  • in

    Reduced ecosystem services of desert plants from ground-mounted solar energy development

    1.
    Halmo, D. B., Stoffle, R. W. & Evans, M. J. Paitu Nanasuagaindu Pahonupi (Three Sacred Valleys): cultural significance of Gosiute, Paiute, and Ute plants. Hum. Organ. 52, 142–150 (1993).
    Google Scholar 
    2.
    Stoffle, R. W., Halmo, D. B. & Austin, D. E. Cultural landscapes and traditional cultural properties: a southern Paiute view of the Grand Canyon and Colorado River. Am. Indian Q. 21, 229–249 (1997).
    Google Scholar 

    3.
    Lee, R. B. in Man the Hunter (eds Lee, R. B. & DeVore, I.) 30–48 (Aldine, 1968).

    4.
    Smith, M., Veth, P., Hiscock, P. & Wallis, L. A. in Desert Peoples, Archaeological Perspectives Vol. 1 (eds Veth, P. et al.) Ch. 1 (Blackwell, 2005).

    5.
    Stoffle, R. W. & Evans, M. J. Holistic conservation and cultural triage: American Indian perspectives on cultural resources. Hum. Organ 49, 91–99 (1990).
    Google Scholar 

    6.
    Anderson, M. K. Tending the Wild: Native American Knowledge and the Management of California’s Natural Resources (UC Press, 2005).

    7.
    Saenz-Hernandez, C., Corrales-Garcia, J. & Aquino-Perez, G. in Cacti: Biology and Uses (ed. Nobel, P. S.) 211–234 (UC Press, 2002).

    8.
    Larsen, L. & Harlan, S. L. Desert dreamscapes: residential landscape preference and behavior. Landsc. Urban Plan. 78, 8–100 (2006).
    Google Scholar 

    9.
    Rokeach, M. The Nature of Human Values (Free Press, 1973).

    10.
    Schwartz, S. H. & Bilksy, W. Toward a universal psychology structure of human values. J. Person. Soc. Psychol. 58, 878–891 (1987).
    Google Scholar 

    11.
    Kamakura, W. A. & Novak, T. P. Value system segmentation: exploring the meaning of LOV. J. Consum. Res. 19, 119–132 (1992).
    Google Scholar 

    12.
    Moore-O’Leary, K. A. et al. Sustainability of utility-scale solar energy—critical ecological concepts. Front. Ecol. Environ. 15, 385–394 (2017).
    Google Scholar 

    13.
    Hernandez, R. R. et al. Techno-ecological synergies of solar energy produce beneficial outcomes across industrial-ecological boundaries to mitigate global change. Nat. Sustain. 2, 560–568 (2019).
    Google Scholar 

    14.
    Carpenter, S. R. et al. Science for managing ecosystem services: beyond the Millennium Ecosystem Assessment. Proc. Natl Acad. Sci. USA 106, 1305–1312 (2009).
    CAS  Google Scholar 

    15.
    Folke, C. et al. Resilience and sustainable development: building adaptive capacity in a world of transformations. AMBIO 31, 437–440 (2002).
    Google Scholar 

    16.
    Daniel, T. C. et al. Contributions of cultural services to the ecosystem services agenda. Proc. Natl Acad. Sci. USA 109, 8812–8819 (2012).
    CAS  Google Scholar 

    17.
    Chan, K. M. A. et al. Where are cultural and social in ecosystem services? A framework for constructive engagement. BioScience 62, 744–756 (2012).
    Google Scholar 

    18.
    Farber, S. C., Constanza, R. & Wilson, M. A. Economic and ecological concepts for valuing ecosystem services. Ecol. Econ. 41, 375–392 (2002).
    Google Scholar 

    19.
    Copeland, S. M., Bradford, J. B., Duniway, M. C. & Schuster, R. M. Potential impacts of overlapping land-use and climate in a sensitive dryland: a case study of the Colorado Plateau, USA. Ecosphere 8, e01823 (2017).

    20.
    Durant, S. M. et al. Forgotten biodiversity in desert ecosystems. Science 336, 1379–1380 (2012).
    CAS  Google Scholar 

    21.
    McDonald, R. I. et al. Energy sprawl or energy efficiency: climate policy impacts on natural habitat for the United States of America. PLoS ONE 4, e6802 (2009).
    Google Scholar 

    22.
    Hernandez, R. R. et al. Solar energy development impacts on terrestrial ecosystems. Proc. Natl Acad. Sci. USA 112, 13579–13584 (2015a).
    CAS  Google Scholar 

    23.
    Hernandez, R. R. et al. The land-use efficiency of big solar. Environ. Sci. Technol. 48, 1315–1323 (2014).
    CAS  Google Scholar 

    24.
    Lovich, J. E. & Bainbridge, D. Anthropogenic degradation of the southern California desert ecosystem and prospects for natural recovery and restoration. Environ. Manag. 24, 309–326 (1999).
    CAS  Google Scholar 

    25.
    Hoffacker, M. K., Allen, M. F. & Hernandez, R. R. Land sparing opportunities for solar energy development in agricultural landscapes: a case study of the Great Central Valley, CA, USA. Environ. Sci. Technol. 51, 14472–14482 (2017).
    CAS  Google Scholar 

    26.
    Potter, C. Landsat time series analysis of vegetation changes in solar energy development areas of the Lower Colorado Desert, southern California. J. Geosci. Environ. Prot. 4, 1–6 (2016).
    Google Scholar 

    27.
    Li, Y. et al. Climate model shows large-scale wind and solar farms in the Sahara increase rain and vegetation. Science 361, 1019–1022 (2018).
    CAS  Google Scholar 

    28.
    Myers, N., Mittermeier, R. A., Mittermeier, C. G., da Fonseca, G. A. B. & Kent, J. Biodiversity hotspots for conservation priorities. Nature 403, 853–858 (2000).
    CAS  Google Scholar 

    29.
    Bidak, L. M., Kamal, S. A., Halmy, M. W. A. & Heneidy, S. Z. Goods and services provided by native plants in desert ecosystems: examples from the northwestern coastal desert of Egypt. Glob. Ecol. Conserv. 3, 433–447 (2015).
    Google Scholar 

    30.
    Liu, J. et al. Complexity of coupled human and natural systems. Science 317, 1513–1516 (2007).
    CAS  Google Scholar 

    31.
    Walsh, J. R., Carpenter, S. R. & Vander Zanden, M. J. Invasive species triggers massive loss of ecosystem services through a trophic cascade. Proc. Natl Acad. Sci. USA 113, 4081–4085 (2016).
    CAS  Google Scholar 

    32.
    Brooks, M. L. & Matchett, J. R. Spatial and temporal patterns of wildfires in the Mojave Desert, 1980-2004. J. Arid Environ. 67, 148–164 (2006).
    Google Scholar 

    33.
    Goettsch, B. et al. High proportion of cactus species threatened with extinction. Nat. Plants 1, 15142 (2015).
    CAS  Google Scholar 

    34.
    Drennan, P. M. & Nobel, P. S. Responses of CAM species to increasing atmospheric CO2 concentrations. Plant Cell Environ. 23, 767–781 (2000).
    CAS  Google Scholar 

    35.
    Díaz, S. et al. Incorporating plant functional diversity effects in ecosystem service assessments. Proc. Natl Acad. Sci. USA 104, 20684–20689 (2007).
    Google Scholar 

    36.
    Daily, G. C. & Matson, P. A. Ecosystem services: from theory to implementation. Proc. Natl Acad. Sci. USA 105, 9455–9456 (2008).
    CAS  Google Scholar 

    37.
    Kuletz, V. L. The Tainted Desert: Environmental and Social Ruin in the American West (Routledge, 1998).

    38.
    Adamson, J. American Indian Literature, Environmental Justice, and Ecocriticism (Univ. Arizona Press, 2001).

    39.
    Romero, H., Mendez, M. & Smith, P. Mining development and environmental injustice in the Atacama Desert of northern Chile. Environ. Justice 5, 70–76 (2012).
    Google Scholar 

    40.
    Vine, D. Base Nation: How U.S. Military Bases Abroad Harm America and the World (Henry Holt and Co., 2015).

    41.
    Tsosie, R. Indigenous people and environmental justice: the impact of climate change. Univ. Col. Law Rev. 78, 1625–1678 (2007).
    Google Scholar 

    42.
    Mulvaney, D. Identifying the roots of Green Civil War over utility-scale solar energy projects on public lands across the American Southwest. J. Land Use Sci. 12, 493–515 (2017).
    Google Scholar 

    43.
    Brookshire, D. & Kaza, N. Planning for seven generations: energy planning of American Indian tribes. Energy Policy 62, 1506–1514 (2013).
    Google Scholar 

    44.
    Bronin, S. C. The promise and perils of renewable energy on tribal lands. Tulane Environ. Law J. 26, 221–237 (2013).
    Google Scholar 

    45.
    Polis, G. A. The Ecology of Desert Communities (Univ. Arizona Press, 1991).

    46.
    Aranda-Rickert, A., Diez, P. & Marazzi, B. Extrafloral nectar fuels ant life in deserts. AoB PLANTS 6, plu068 (2014).
    Google Scholar 

    47.
    Rickleffs, R. E. & Hainsworth, F. R. Tenperature regulation in nestling cactus wren: the nest environment. Condor 71, 32–37 (1969).
    Google Scholar 

    48.
    Pfeiler, E. & Markow, T. A. Phylogeography of the cactophilic Drosophila and other arthropods associated with cactus necroses in the Sonoran Desert. Insects 2, 218–231 (2011).
    Google Scholar 

    49.
    Pellmyr, O., Thompson, J. N., Brown, J. M. & Harrison, R. G. Evolution of pollination and mutualism in the yucca moth lineage. Am. Nat. 148, 827–847 (1996).
    Google Scholar 

    50.
    Abella, S. R. & Berry, K. H. Enhancing and restoring habitat for the desert tortoise. J. Fish. Wildl. Manag. 7, 255–279 (2016).
    Google Scholar 

    51.
    Hernandez, R. R. et al. Efficient use of land to meet sustainable energy needs. Nat. Clim. Change 5, 353–358 (2015).
    Google Scholar 

    52.
    Clark, W. C., van Kerkhoff, L., Lebel, L. & Gallopin, G. C. Crafting usable knowledge for sustainable development. Proc. Natl Acad. Sci. USA 113, 4570–4578 (2016).
    CAS  Google Scholar  More

  • in

    Structure and co-occurrence patterns of bacterial communities associated with white faeces disease outbreaks in Pacific white-leg shrimp Penaeus vannamei aquaculture

    1.
    De Schryver, P., Defoirdt, T. & Sorgeloos, P. Early mortality syndrome outbreaks: a microbial management issue in shrimp farming?. PLoS Pathog. 10, e1003919 (2014).
    PubMed  PubMed Central  Google Scholar 
    2.
    Soto-Rodriguez, S. A., Gomez-Gil, B., Lozano-Olvera, R., Betancourt-Lozano, M. & Morales-Covarrubias, M. S. Field and experimental evidence of Vibrio parahaemolyticus as the causative agent of acute hepatopancreatic necrosis disease of cultured shrimp (Litopenaeus vannamei) in Northwestern Mexico. Appl. Environ. Microbiol. 81, 1689–1699 (2015).
    PubMed  PubMed Central  Google Scholar 

    3.
    Mastan, S. A. Incidences of white feces syndrome (WFS) in farm-reared shrimp, Litopenaeus vannamei, Andhra Pradesh. Indo Am. J. Pharm. Res. 5, 3044–3047 (2015).
    CAS  Google Scholar 

    4.
    Zheng, Y. et al. Bacterial community associated with healthy and diseased Pacific white shrimp (Litopenaeus vannamei) larvae and rearing water across different growth stages. Front. Microbiol. 8, 1–11 (2017).
    Google Scholar 

    5.
    Durai, V., Gunalan, B., Johnson, P. M., Maheswaran, M. L. & Pravinkumar, M. Effect on white gut and white feces disease in semi intensive Litopenaeus vannamei shrimp culture system in south Indian state of Tamilnadu. Int. J. Mar. Sci. 5, 1–5 (2015).
    Google Scholar 

    6.
    Sriurairatana, S. et al. White feces syndrome of shrimp arises from transformation, sloughing and aggregation of hepatopancreatic microvilli into vermiform bodies superficially resembling gregarines. PLoS ONE 9, e99170 (2014).
    ADS  PubMed  PubMed Central  Google Scholar 

    7.
    Sung, H. H., Hsu, S. F., Chen, C. K., Ting, Y. Y. & Chao, W. L. Relationships between disease outbreak in cultured tiger shrimp (Penaeus monodon) and the composition of Vibrio communities in pond water and shrimp hepatopancreas during cultivation. Aquaculture 192, 101–110 (2001).
    Google Scholar 

    8.
    Tang, K. F. J. et al. Dense populations of the microsporidian Enterocytozoon hepatopenaei (EHP) in feces of Penaeus vannamei exhibiting white feces syndrome and pathways of their transmission to healthy shrimp. J. Invertebr. Pathol. 140, 1–7 (2016).
    PubMed  Google Scholar 

    9.
    Piamsomboon, P. et al. Quantification of Enterocytozoon hepatopenaei (EHP) in penaeid shrimps from Southeast Asia and Latin America using taqman probe-based quantitative PCR. Pathogens 8, 4–9 (2019).
    Google Scholar 

    10.
    Limsuwan, C. White feces disease in Thailand. Boletines nicovita. 2, 1–3 (2010).
    Google Scholar 

    11.
    Tangprasittipap, A. et al. The microsporidian Enterocytozoon hepatopenaei is not the cause of white feces syndrome in whiteleg shrimp Penaeus (Litopenaeus) vannamei. BMC Vet. Res. 9, 139 (2013).
    PubMed  PubMed Central  Google Scholar 

    12.
    Gomez-Gil, B., Roque, A. & Turnbull, J. F. The use and selection of probiotic bacteria for use in the culture of larval aquatic organisms. Aquaculture 191, 259–270 (2000).
    Google Scholar 

    13.
    Gullian, M., Thompson, F. & Rodriguez, J. Selection of probiotic bacteria and study of their immunostimulatory effect in Penaeus vannamei. Aquaculture 233, 1–14 (2004).
    Google Scholar 

    14.
    Moriarty, D. J. W. Disease control in shrimp aquaculture with probiotic bacteria. In Microbial Biosystems: New Frontiers. Proceedings of the 8th International Symposium on Microbial Ecology (eds Bell, C. R. et al.) 1–7 (Atlantic Canada Society for Microbial Ecology, Halifax, 2013).
    Google Scholar 

    15.
    Franco, R. et al. Evaluation of two probiotics used during farm production of white shrimp Litopenaeus vannamei (Crustacea: Decapoda). Aquac. Res. 48, 1936–1950 (2017).
    CAS  Google Scholar 

    16.
    Zhang, L. et al. Effects of dietary administration of probiotic Halomonas sp. B12 on the intestinal microflora, immunological parameters, and midgut histological structure of shrimp. Fenneropenaeus chinensis. J. World Aquac. Soc. 40, 58–66 (2009).
    ADS  Google Scholar 

    17.
    Xiong, J. et al. Changes in intestinal bacterial communities are closely associated with shrimp disease severity. Appl. Microbiol. Biotechnol. 99, 6911–6919 (2015).
    CAS  PubMed  Google Scholar 

    18.
    Somboon, M., Purivirojkul, W., Limsuwan, C. & Chuchird, N. Effect of Vibrio spp, in white feces infected shrimp in Chanthaburi, Thailand. Kasetsart Univ. Fish. Res. Bull. 36, 7–15 (2012).
    Google Scholar 

    19.
    Amann, R. I., Ludwig, W. & Schleifer, K. H. Phylogenetic identification and in situ detection of individual microbial cells without cultivation. Microbiol. Rev. 59, 143–169 (1995).
    CAS  PubMed  PubMed Central  Google Scholar 

    20.
    Hou, D. et al. Intestinal bacterial signatures of white feces syndrome in shrimp. Appl. Microbiol. Biotechnol. 102, 3701–3709 (2018).
    CAS  PubMed  Google Scholar 

    21.
    Xiong, J., Dai, W. & Li, C. Advances, challenges, and directions in shrimp disease control: the guidelines from an ecological perspective. Appl. Microbiol. Biotechnol. 100, 6947–6954 (2016).
    CAS  PubMed  Google Scholar 

    22.
    Huang, Z. et al. Microecological Koch’s postulates reveal that intestinal microbiota dysbiosis contributes to shrimp white feces syndrome. Microbiome 8, 32 (2020).
    PubMed  PubMed Central  Google Scholar 

    23.
    Fan, J. et al. Dynamics of the gut microbiota in developmental stages of Litopenaeus vannamei reveal its association with body weight. Sci. Rep. 9, 734 (2019).
    ADS  PubMed  PubMed Central  Google Scholar 

    24.
    Sha, Y. et al. Bacterial population in intestines of Litopenaeus vannamei fed different probiotics or probiotic supernatant. J. Microbiol. Biotechnol. 26, 1736–1745 (2016).
    PubMed  Google Scholar 

    25.
    Vargas-Albores, F. et al. Bacterial biota of shrimp intestine is significantly modified by the use of a probiotic mixture: a high throughput sequencing approach. Helgol. Mar. Res. 71, 5 (2017).
    Google Scholar 

    26.
    Rungrassamee, W. et al. Characterization of intestinal bacteria in wild and domesticated adult black tiger shrimp (Penaeus monodon). PLoS ONE 9, e91853 (2014).
    ADS  PubMed  PubMed Central  Google Scholar 

    27.
    Huang, F., Pan, L., Song, M., Tian, C. & Gao, S. Microbiota assemblages of water, sediment, and intestine and their associations with environmental factors and shrimp physiological health. Appl. Microbiol. Biotechnol. 102, 8585–8598 (2018).
    CAS  PubMed  Google Scholar 

    28.
    Grossart, H. P. Ecological consequences of bacterioplankton lifestyles: changes in concepts are needed. Environ. Microbiol. Rep. 2, 706–714 (2010).
    PubMed  Google Scholar 

    29.
    Lyons, M. M., Ward, J. E., Smolowitz, R., Uhlinger, K. R. & Gast, R. J. Lethal marine snow: pathogen of bivalve mollusc concealed in marine aggregates. Limnol. Oceangr. 50, 1983–1988 (2005).
    ADS  Google Scholar 

    30.
    Lyons, M. M. et al. Theory of island biogeography on a microscopic scale: organic aggregates as islands for aquatic pathogens. Aquat. Microb. Ecol. 60, 1–13 (2010).
    Google Scholar 

    31.
    Kramer, A. M., Lyons, M. M., Dobbs, F. C. & Drake, J. M. Bacterial colonization and extinction on marine aggregates: stochastic model of species presence and abundance. Ecol. Evol. 3, 4300–4309 (2013).
    PubMed  PubMed Central  Google Scholar 

    32.
    Ekasari, J. et al. The size of biofloc determines the nutritional composition and the nitrogen recovery by aquaculture animals. Aquaculture 426, 105–111 (2014).
    Google Scholar 

    33.
    Hargreaves, J. A. Biofloc production systems for aquaculture. SRAC Publ. 4503, 1–12 (2013).
    Google Scholar 

    34.
    Beardsley, C., Moss, S., Malfatti, F. & Azam, F. Quantitative role of shrimp fecal bacteria in organicmatter fluxes in a recirculating shrimp aquaculture system. FEMS Microbiol. Ecol. 77, 134–145 (2011).
    CAS  PubMed  Google Scholar 

    35.
    Alfiansah, Y. R. et al. Bacterial abundance and community composition in pond water from shrimp aquaculture systems with different stocking densities. Front. Microbiol. 9, 2457 (2018).
    PubMed  PubMed Central  Google Scholar 

    36.
    Xiong, J. et al. The temporal scaling of bacterioplankton composition: high turnover and predictability during shrimp cultivation. Microb. Ecol. 67, 256–264 (2014).
    PubMed  Google Scholar 

    37.
    Yang, W. et al. Nutrient enrichment during shrimp cultivation alters bacterioplankton assemblies and destroys community stability. Ecotoxicol. Environ. Saf. 156, 366–374 (2018).
    CAS  PubMed  Google Scholar 

    38.
    Boyd, C. E. & Tucker, C. S. pH in Handbook for Aquaculture Water Quality 95–112 (Craftmaster Printers, Auburn, Alabama, 2002).
    Google Scholar 

    39.
    Zhang, D. et al. Bacterioplankton assemblages as biological indicators of shrimp health status. Ecol. Indic. 38, 218–224 (2014).
    CAS  Google Scholar 

    40.
    Chankaew, S., O-Thong, S. & Songnoi, Y. Halomonas sp. SKNB4, a proficient ammonium oxidizing bacterium. In Proceeding of the 3rd National Meeting on Biodiversity Management in Thailand 4, 186–191 (2016).

    41.
    Chankaew, S., O-Thong, S. & Sangnoi, Y. Nitrogen removal efficiency of salt-tolerant heterotrophic nitrifying bacteria. Chiang Mai J. Sci 44, 1–10 (2017).
    Google Scholar 

    42.
    Sangnoi, Y., Chankaew, S. & O-Thong, S. Indigenous Halomonas spp., the potential nitrifying bacteria for saline ammonium waste water treatment. Pak. J. Biol. Sci. 20, 52–58 (2016).
    Google Scholar 

    43.
    Bourne, D. G. et al. Microbial community dynamics in a larval aquaculture system of the tropical rock lobster Panulirus ornatus. Aquaculture 242, 31–51 (2004).
    Google Scholar 

    44.
    Li, Y. et al. Diversity of cultivable protease-producing bacteria in Laizhou Bay sediments, Bohai Sea, China. Front. Microbiol. 8, 1–10 (2017).
    ADS  Google Scholar 

    45.
    Cao, H. et al. Isolation and characterization of a denitrifying Acinetobacter baumannii H1 using NO2–N as nitrogen source from shrimp farming ponds. Afr. J. Microbiol. Res. 6, 2258–2264 (2012).
    ADS  CAS  Google Scholar 

    46.
    Vijayan, K. K. et al. A brackishwater isolate of Pseudomonas PS-102, a potential antagonistic bacterium against pathogenic vibrios in penaeid and non-penaeid rearing systems. Aquaculture 251, 192–200 (2006).
    CAS  Google Scholar 

    47.
    Luis-Villaseñor, I. E. et al. Effect of beneficial bacteria on larval culture of Pacific whiteleg shrimp Litopenaeus vannamei. Afr. J. Microbiol. Res. 7, 3471–3478 (2013).
    Google Scholar 

    48.
    Liu, Y. et al. PHB-degrading bacteria isolated from the gastrointestinal tract of aquatic animals as protective actors against luminescent vibriosis. FEMS Microbiol. Ecol. 74, 196–204 (2010).
    CAS  PubMed  Google Scholar 

    49.
    Shade, A. et al. Fundamentals of microbial community resistance and resilience. Front. Microbiol. 3, 1–19 (2012).
    ADS  Google Scholar 

    50.
    Dai, W., Qiu, Q., Chen, J. & Xiong, J. Gut eukaryotic disease-discriminatory taxa are indicative of Pacific white shrimp (Litopenaeus vannamei) white feces syndrome. Aquaculture 506, 154–160 (2019).
    Google Scholar 

    51.
    Ventosa, A., Nieto, J. J. & Oren, A. Biology of moderately halophilic aerobic bacteria. Microbiol. Mol. Biol. Rev. 62, 504–544 (1998).
    CAS  PubMed  PubMed Central  Google Scholar 

    52.
    DiRita, V. J. Co-ordinate expression of virulence genes by ToxR in Vibrio cholerae. Mol. Microbiol. 6, 451–458 (1992).
    CAS  PubMed  Google Scholar 

    53.
    Williams, S. L., Jensen, R. V., Kuhn, D. D. & Stevens, A. M. Analyzing the metabolic capabilities of a Vibrio parahaemolyticus strain that causes early mortality syndrome in shrimp. Aquaculture 476, 44–48 (2017).
    CAS  Google Scholar 

    54.
    Sirikharin, R. et al. Characterization and PCR detection of binary, pir-like toxins from Vibrio parahaemolyticus isolates that cause acute hepatopancreatic necrosis disease (AHPND) in shrimp. PLoS ONE 10, e0126987 (2015).
    PubMed  PubMed Central  Google Scholar 

    55.
    Whitaker, W. B. et al. Modulation of responses of Vibrio parahaemolyticus O3:K6 to pH and temperature stresses by growth at different salt concentrations. Appl. Environ. Microbiol. 76, 4720–4729 (2010).
    CAS  PubMed  PubMed Central  Google Scholar 

    56.
    Alonzo, K. H. F., Cadiz, R. E., Traifalgar, R. F. M. & Corre, V. L. Immune responses and susceptibility to Vibrio parahaemolyticus colonization of juvenile Penaeus vannamei at increased water temperature. AACL Bioflux 10, 1238–1247 (2017).
    Google Scholar 

    57.
    Gomez-Gil, B., Roque, A. & Velasco-Blanco, G. Culture of Vibrio alginolyticus C7b, a potential probiotic bacterium, with the microalga Chaetoceros muelleri. Aquaculture 211, 43–48 (2002).
    Google Scholar 

    58.
    Zorriehzahra, M. J. et al. Probiotics as beneficial microbes in aquaculture: an update on their multiple modes of action: a review. Vet Q 36, 228–241 (2016).
    PubMed  Google Scholar 

    59.
    Allison, S. D. & Martiny, J. B. H. Resistance, resilience, and redundancy in microbial communities. Proc. Natl. Acad. Sci. USA 105, 11512–11519 (2008).
    ADS  CAS  PubMed  Google Scholar 

    60.
    Mandakovic, D. et al. Structure and co-occurrence patterns in microbial communities under acute environmental stress reveal ecological factors fostering resilience. Sci. Rep. 8, 5875 (2018).
    ADS  PubMed  PubMed Central  Google Scholar 

    61.
    Anjaini, J., Fadjar, M., Andayani, S., Agustin, I. & Bayu, I. Histopathological in gills, hepatopancreas and gut of white shrimp (Litopenaeus vannamei) infected white feces disease (WFD). Res. J. Life Sci. 5, 183–194 (2018).
    Google Scholar 

    62.
    Nercessian, O., Noyes, E., Kalyuzhnaya, M. G., Lidstrom, M. E. & Chistoserdova, L. Bacterial populations active in metabolism of C1 compounds in the sediment of Lake Washington, a freshwater lake. Appl. Environ. Microbiol. 71, 6885–6899 (2005).
    CAS  PubMed  PubMed Central  Google Scholar 

    63.
    Green, M. R. & Sambrook, J. Isolation of high-molecular-weight DNA using organic solvents. Cold Spring Harb. Protoc. 10, 356–359 (2017).
    Google Scholar 

    64.
    Klindworth, A. et al. Evaluation of general 16S ribosomal RNA gene PCR primers for classical and next-generation sequencing-based diversity studies. Nucleic Acids Res. 41, e1 (2013).
    CAS  PubMed  Google Scholar 

    65.
    Bolger, A. M., Lohse, M. & Usadel, B. Trimmomatic: a flexible trimmer for Illumina sequence data. Bioinformatics 30, 2114–2120 (2014).
    CAS  PubMed  PubMed Central  Google Scholar 

    66.
    Zhang, J., Kobert, K., Flouri, T. & Stamatakis, A. PEAR: a fast and accurate Illumina Paired-End reAd mergeR. Bioinformatics 30, 614–620 (2014).
    CAS  PubMed  Google Scholar 

    67.
    Eren, A. M. et al. Oligotyping: Differentiating between closely related microbial taxa using 16S rRNA gene data. Methods Ecol. Evol. 4, 1111–1119 (2013).
    PubMed Central  Google Scholar 

    68.
    Ramette, A. & Buttigieg, P. L. The R package OTU2ot for implementing the entropy decomposition of nucleotide variation in sequence data. Front. Microbiol. 5, 1–9 (2014).
    Google Scholar 

    69.
    Utter, D. R., Mark Welch, J. L. & Borisy, G. G. Individuality, stability, and variability of the plaque microbiome. Front. Microbiol. 7, 564 (2016).
    PubMed  PubMed Central  Google Scholar 

    70.
    Pruesse, E., Peplies, J. & Glöckner, F. O. SINA: accurate high-throughput multiple sequence alignment of ribosomal RNA genes. Bioinformatics 28, 1823–1829 (2012).
    CAS  PubMed  PubMed Central  Google Scholar 

    71.
    Kurtz, Z. D. et al. Sparse and compositionally robust inference of microbial ecological networks. PLoS Comput. Biol. 11, 1–25 (2015).
    Google Scholar 

    72.
    Csárdi, G. & Nepusz, T. The igraph software package for complex network research. InterJournal Complex Syst. 1695, 1–9 (2006).
    Google Scholar 

    73.
    Langfelder, P. & Horvath, S. WGCNA: an R package for weighted correlation network analysis. BMC Bioinform 9, 559 (2008).
    Google Scholar 

    74.
    Breiman, L., Cutler, A., Liaw, A. & Wiener, M. Breiman and Cutler’s random forests for classification and regression version 4.6–14. 14 pp. https://www.stat.berkeley.edu/~breiman/RandomForests/ (2018).

    75.
    Oksanen, J. Vegan: Community Ecology Package. R package version 2.4–3. 1–12. https://CRAN.R-project.org/package=vegan. (2017)..

    76.
    Pinheiro, J. et al. Linear and Nonlinear Mixed Effects Models. 157 pp. R package version 3.1–131, https://CRAN.R-project.org/package=nlme. (2017).

    77.
    Warnes, A. G. R. et al. Various R programming tools for plotting data. 45 pp. https://CRAN.R-project.org/package=gplots. (2016).

    78.
    Diepenbroek, M. et al. Towards an integrated biodiversity and ecological research data management and archiving platform : the German federation for the curation of biological data ( GFBio ). Inform. 2014 – Big Data Komplexität meistern. GI-Edition Lect. Notes Informatics – Proc. P-232, 1711–1724 (2014).

    79.
    Yilmaz, P. et al. Minimum information about a marker gene sequence (MIMARKS) and minimum information about any (x) sequence (MIxS) specifications. Nat. Biotechnol. 29, 415–420 (2011).
    CAS  PubMed  PubMed Central  Google Scholar  More

  • in

    Preference and familiarity mediate spatial responses of a large herbivore to experimental manipulation of resource availability

    Study area
    The study area is located in the north-eastern Italian Alps (Argentario range, in Val di Cembra and Valsugana; Autonomous Province of Trento), covers c. 16 km2 and ranges between 500 and 1,000 m a.s.l. The topography is generally mild, but steeper slopes ( > 30°) occur in the northern portion. The climate is continental and characterized by a mean temperature of 1.0 °C in January and 21.0 °C in July, and a mean annual rainfall of 966 mm (average 2000–2018; https://www.meteotrentino.it). There is occasional snow cover between December and March, although the soil is mostly frozen at night. The study area is covered by 80.0% forest, mostly as relatively homogeneous secondary growth stands interspersed with small pastures. The forests are dominated by Pinus sylvestris with abundant shrub undergrowth, and by mixed stands of Fagus sylvatica, Picea abies and Abies alba and, to a lower extent, by Quercus petraea stands.
    Roe deer is the primary large herbivore in the study area (6–9 individuals km−2; ref. values from Autonomous Province of Trento Wildlife Office). Adult roe deer do not have natural predators in this landscape, but young fawns may be predated by red fox (Vulpes vulpes). The fine-scale food selection of roe deer in the Alps has been described as mainly dependent on shrubs or regeneration of tree species as well as a diversity of herbaceous plants from the undergrowth from spring to fall, switching between items according to the temporal trends of availability48. In the winter time, roe deer strongly select for forested environments and opportunistically for supplemental food where available22.
    Supplemental feeding management of roe deer is conducted at  > 50 distinct feeding sites within the study area (FS; Supplementary Information S1: Fig. S1) and authorized year-round within a larger zone of c. 45 km2 (official authorization: “Autonomous Province of Trento order n. 2852/2013”). FS are typically shaped as wooden hopper dispensers that provide a continuous supply of corn accessible through a tray (Fig. 1). They have been deployed and provided continuously with food (at least in fall and winter) for many years (i.e., for longer that the average lifespan of roe deer in our study area). They are managed by private hunters for roe deer but are also attended sporadically by red deer (Cervus elaphus), as well as non-target mammals (Meles meles, Sciurus vulgaris, Apodemus sp., Microtus sp.) and birds (Garrulus glandarius, Columba palumbus).
    Experimental design
    We took advantage of roe deer use of a focal, identifiable resource—the FS—to design an in situ experimental manipulation of resource availability. We created three successive experimental phases based on the availability of this resource—pre-closure, closure and post-closure—by physically managing the accessibility of food at the FS. During the closure phase, access to forage at FS was transitorily restricted by placing wooden boards obstructing the tray; boards were then removed again in the post-closure phase (Fig. 1).
    The experiment was conducted between January and April, when the use of high-nutritional supplemental feed (i.e., corn) by roe deer is the most intense17, for three consecutive winters (2017, 2018 and 2019). We implemented the experiment on 18 individuals, of which seven could be manipulated in two consecutive years—five individuals were recaptured and two collar deployments spanned two winters—leading to a total of 25 individual winter trajectories i.e., “animal-years” (21 adults: 15 females, 6 males; 4 yearlings: 2 females, 2 males; sample size n = 4, 11 and 10 in 2017, 2018 and 2019 respectively; see Supplementary Information S1 for details). Because roe deer captures at middle to low density in Alpine, heavily forested environments are rare events that have to rely on low-efficiency techniques such as box traps and because we had to account for stakeholder acceptance, repeating the experiment on single individuals in consecutive years allowed us to take full advantage of our sample.
    Roe deer were captured using baited box traps (n = 21 capture events) or net drives (n = 2), and were fitted with GPS-GSM radio collars programmed to acquire hourly GPS locations for a year, after which they were released via a drop-off mechanism. Captures and marking were performed complying with ethical and welfare rules, under authorization of the Wildlife Committee of the Autonomous Province of Trento (Resolution of the Provincial Government n. 602, under approval of the Wildlife Committee of 20/09/2011, and successive integration approved on the 23/04/2015); all methods and experiments were carried out in accordance with the relevant guidelines and regulations. Radio-collared roe deer moved an average of 61.2 m per hour. This value of the average hourly movement distance (l) was subsequently utilized in the analyses described below.
    For all captured animals, we assumed a post-capture response in ranging behaviour. We therefore considered the first re-visitation of the capture location as a likely sign of resettlement in the original range and we used this time as onset of the experimental pre-closure phase. Although not all the individuals were manipulated at the same time, we avoided interference between capture operations and FS manipulations, and between co-occurring different manipulation phases (i.e., ensuring that co-occurring manipulations occurred in separate areas).
    During the pre-closure phase, we ensured a continuous supply of food at all managed FS—i.e., that were provisioned at least once in the month prior to the experiment—located within 500 m of each roe deer locations (known through twice-daily download of GSM-transmitted GPS relocations). At the end of the pre-closure phase, we identified the “manipulated” FS (M) for each individual as the managed FS with the largest number of locations within a radius (l) during this initial phase, and considered it as the FS to which an individual is most familiar. All other managed FS were considered as “alternate” (A) FS. During the closure phase, corn was made inaccessible at M for a duration of approximately 15 days, depending on personnel availabilities (min = 14.0 days, max = 18.1, mean = 15.5). M was then re-opened, thereby initiating the post-closure phase. During both pre- and post-closure phases, corn was available ad libitum at M. All A FS had corn available ad libitum throughout the duration of the experiment. To ensure a continuous supply of food during the experiment, field personnel visited and replenished the FS every third day. Across the experimental manipulations, we used a total of twelve distinct FS as M, and 23 distinct FS as A (mean = 4.04 A sites per animal-year, (sigma hspace{0.17em})= 1.43; of these, an average of 1.76, (sigma hspace{0.17em})= 1.13, were actually used by roe deer; see Supplementary Information S1: Table S1 for details on the identity of M and A for all animal-years). M sites were separate from A sites by an average distance of 702.5 m ((sigma hspace{0.17em})= 310.5), and M and used A sites by an averaged distance of 567.5 m ((sigma hspace{0.17em})= 235.7).
    Data preparation
    To ensure meaningful comparisons between animal-years, we homogenized the durations of each experimental phase to the minimum length of the closure phase in our sample (i.e., 14 days). Specifically, we truncated the movement data by removing initial excess positions for the pre-closure and closure phases, and terminal excess positions for the post-closure phase. GPS acquisition success was extremely high (99.57% during the experiment) and we did not interpolate missing fixes in the collected data.
    The analyses of space-use and movement behaviour were based on spatially-explicit, raw movement trajectories. The analyses of resource use, instead, relied on spatially-implicit, state time series derived from the underlying movement data. To this end, we created an initial time series, for each animal-year, by intersecting the relocations with three spatial domains: vegetation (the matrix; V), manipulated FS (M) and alternate FS (A). We converted FS locations (M and A) into areas by buffering them. To investigate the sensitivity of buffer choice we considered six buffer sizes: l (i.e., 61.2 m) multiplied by 0.5, 1, 1.5, 2, 3 and 4. We associated all locations falling outside M and A to the state V. The three-state time series was then converted into three single-state presence/absence time series.
    Preference for feeding sites
    We calculated each individual’s preference for FS (({h}_{FS})) as the relative use of FS over natural vegetation during the pre-closure phase (i.e., the proportion of GPS fixes classified as either M or A). Because preference is considered to be temporally dynamic37, we chose to evaluate ({h}_{FS}) for each year separately in case individuals were manipulated in two separate winters. This reasoning allowed to account for the influence of individual condition and of the relative quality and quantity of vegetation resources on ({h}_{FS}). We included ({h}_{FS}) in all space-use, movement, and resource use analyses described below.
    The variability of ({h}_{FS}) across animal-years was maximal when FS attendance was defined as a GPS location within a distance equal to the population mean hourly step length (l) i.e., 61.2 m from the FS (interquartile range = 0.278, mean = 0.343; Supplementary Information S2: Table S1). Accordingly, the results described below are based on this definition (see Supplementary Information S6 for a sensitivity analysis). At this scale, ({h}_{FS}) did not differ consistently between sex (mean for females = 0.346; mean for males = 0.336; t-test: p value = 0.901).
    Analysis
    We analysed how the experimental manipulation, and its interaction with both preference for FS and sex, affected roe deer space-use, movement behaviour, and resource use.
    General modelling approach
    We analysed the roe deer responses to the experiment using mixed effect models. The final fixed-effect structure was developed progressively, beginning with simple formulations and evaluating the consistency of our results to ascertain that our data could support more complex formulations. For example, regarding the analysis of home range size, we first fitted a simple function of the experimental phase (i.e., home range size ~ Phase), then evaluated a potential additive effect of preference for feeding sites (i.e., home range size ~ Phase + ({h}_{FS})), and then an interaction between the two covariates (i.e., home range size ~ Phase + ({h}_{FS})+ Phase:({h}_{FS})). We repeated this procedure when evaluating the effects of sex, and eventually, assessed the full fixed effect structure. We did not find irregularities in the behaviour of the nested models (i.e., marked changes in absolute parameter values or sign). In the full model, fixed effect terms were dropped when statistically non-significant (p value  > 0.05). We considered “animal-year” as the sampling unit to account for the fact that an individual may respond independently to manipulations in different years. The choice of an “animal-year” random effect (instead of an “animal” random effect) did not qualitatively affect our results (Supplementary Information S8).
    Space-use
    We assessed the changes of home range and core area sizes (P1.1), and space-use overlap (P1.2, P3.1) between experimental phases. We calculated utilization distributions (UD)49 for each animal-year and experimental phase using a Gaussian kernel density estimation. After visual inspection, we chose to compute the UDs at a spatial resolution of 10 m and with a fixed bandwidth set to half the average hourly movement distance (i.e., l/2 = 30.6 m).
    For home range and core area sizes, we calculated the area (in hectares) corresponding to the 95% and 50% UD contours, respectively, during each experimental phase (Phase; three levels; reference level: Pre-closure). We then analysed the log-transformed areas using a linear mixed-effect model (LMM) with five fixed effects: Phase, ({h}_{FS}), Sex (categorical predictor; reference level: Female), and two interaction terms (Phase:({h}_{FS}) and Phase:Sex). We included animal-year (ind) as random intercept.
    We estimated the space-use overlaps for three pairs of UDs—pre- and post-closure, pre-closure and closure, and closure and post-closure (Contrast; three levels; reference level: Pre-/Closure)—using the volume of intersection statistic (VI)50. VI ranges from 0 (no overlap) to 1 (complete overlap). We analysed the logit-transformed overlaps using an LMM with Contrast, hFS, Sex, Contrast:hFS and Contrast:Sex as fixed effects, and ind as random intercept.
    Movement behaviour
    We investigated the movement responses of roe deer to the experiment (P1.3) by analysing the changes in hourly step length (Euclidean distance between two successive relocations) and turning angle ({theta }_{t}) (angle between two successive movement steps). We analysed the log-transformed step length, ({s}_{t}) and, because turning angles range between (-pi) and (pi), and were symmetric around 0, the logit-transformed absolute turning angle, ({varphi }_{t}=logleft(frac{left|{theta }_{t}right|}{1-left|{theta }_{t}right|}right)). We used LMMs with Phase, ({h}_{FS}), Sex, Phase:hFS and Phase:Sex as fixed effects, and ind as random intercept. Because step length was characterized by strong serial autocorrelation at short temporal lags and at circadian periodicities (a common pattern in animal movement trajectories51), we also included step length measured at lags 1, 2 and 24 h (i.e., ({s}_{t-1},{s}_{t-2}),({s}_{t-24})) as fixed effects to reduce the autocorrelation of the model residuals.
    Resource use
    To test whether the experiment led to a transitory change in resource use (P1.4a–b, P3.2), we fitted separate mixed-effect logistic regression models to the three single-state presence/absence time series (({u}_{M,t}), ({u}_{A,t}) and ({u}_{V,t})) using Phase, ({h}_{FS}), Sex, Phase:({h}_{FS}) and Phase:Sex as fixed effects, and ind as random intercept. The pre-closure level for Phase was dropped for ({u}_{V}) to avoid circularity (({h}_{FS}=1-{{stackrel{-}{u}}_{V,t}}_{Pre-closure})). We also included the response variables measured at lags 1, 2 and 24 h (e.g., ({u}_{M,t-1},{u}_{M,t-2}),({u}_{M,t-24})) as fixed effects to reduce the autocorrelation of the model residuals. However, for the sake of conciseness and clarity, we omitted these response lags when visualizing resource use predictions. Because the model results were consistent regardless of the inclusion of the response lags (Supplementary Information S5: Tables S1, S2), this decision had no impact on the interpretation. Two animal-years were excluded from the analyses of resource use due to the absence of suitable A-state: F4-2017 did not seem to have visited any alternate FS (A) prior to the experiment; and F16-2016 had two distinct, highly-used FS during pre-closure, but only the second most visited FS could be manipulated (due to stakeholder acceptance). While the use of A was more variable when including these two outliers, the general patterns remained unchanged (Supplementary Information S5: Tables S1, S3).
    Software
    All analyses were conducted in the R environment52. We used the packages adehabitatLT and adehabitatHR53 for the spatial analyses, fitted all mixed-effect models via Maximum Likelihood with the package lme454. We obtained the p-values for the fixed effects using afex55 and coefficients of determination using MuMin56.
    Ethical statement
    All experimental protocols and data collection were approved by the Wildlife Committee of the Autonomous Province of Trento (Resolution of the Provincial Government n. 602, under approval of the Wildlife Committee of 20/09/2011, and successive integration approved on the 23/04/2015). All experiments and methods were performed in accordance with relevant guideline and regulations. More

  • in

    Unravelling the different causes of nitrate and ammonium effects on coral bleaching

    1.
    Dubinsky, Z. & Jokiel, P. L. Ratio of energy and nutrient fluxes regulates symbiosis between zooxanthellae and corals. Pac. Sci. 48, 313–324 (1994).
    Google Scholar 
    2.
    LaJeunesse, T. C. et al. Systematic revision of Symbiodiniaceae highlights the antiquity and diversity of coral endosymbionts. Curr. Biol. 28, 2570–2580 (2018).
    CAS  PubMed  Google Scholar 

    3.
    Falkowski, P. G., Dubinsky, Z., Muscatine, L. & Porter, J. W. Light and the bioenergetics of a symbiotic coral. Bioscience 34, 705–709 (1984).
    CAS  Google Scholar 

    4.
    Grover, R., Maguer, J.-F., Reynaud-Vaganay, S. & Ferrier-Pagès, C. Uptake of ammonium by the scleractinian coral Stylophora pistillata: effect of feeding, light, and ammonium concentrations. Limnol. Oceanogr. 47, 782–790 (2002).
    ADS  Google Scholar 

    5.
    Grover, R., Maguer, J.-F., Allemand, D. & Ferrier-Pagès, C. Nitrate uptake in the scleractinian coral Stylophora pistillata. Limnol. Oceanogr. 48, 2266–2274 (2003).
    ADS  CAS  Google Scholar 

    6.
    Godinot, C., Ferrier-Pagès, C. & Grover, R. Kinetics of phosphate uptake by the scleractinian coral Stylophora pistillata. Limnol. Oceanogr. 54, 1627–1633 (2009).
    ADS  Google Scholar 

    7.
    Muscatine, L., McCloskey, L. R. & Marian, R. E. Estimating the daily contribution of carbon from zooxanthellae to coral animal respiration. Limnol. Oceanogr. 26, 601–611 (1981).
    ADS  CAS  Google Scholar 

    8.
    Trembley, P., Grover, R., Maguer, J.-F., Legendre, L. & Ferrier-Pagè, C. Autotrophic carbon budget in coral tissue: a new 13C-based model of photosynthate translocation. J. Exp. Biol. 215, 1384–1393 (2012).
    Google Scholar 

    9.
    Hoegh-Guldberg, O. et al. Coral reefs under rapid climate change and ocean acidification. Science 318, 1737–1742 (2007).
    ADS  CAS  PubMed  Google Scholar 

    10.
    Claar, D. C., Szostek, L., McDevitt-Irwin, J. M., Schanze, J. J. & Baum, J. K. Global patterns and impacts of El Niño events on coral reefs: A meta-analysis. PLoS ONE 13, e0190957 (2018).
    PubMed  PubMed Central  Google Scholar 

    11.
    Lough, J. M., Anderson, K. D. & Ughes, T. P. Increasing thermal stress for tropical coral reefs: 1871–2017. Sci. Rep. 8, 6079 (2018).
    ADS  CAS  PubMed  PubMed Central  Google Scholar 

    12.
    Hughes, T. P. et al. Spatial and temporal patterns of mass bleaching of corals in the Anthropocene. Science 359, 80–83 (2018).
    ADS  CAS  PubMed  Google Scholar 

    13.
    Lapointe, B. E., Brewton, R. A., Herren, L. W., Porter, J. W. & Hu, C. Nitrogen enrichment, altered stoichiometry, and coral reef decline at Looe Key, Florida Keys, USA: a 3-decade study. Mar. Biol. 166, 108 (2019).
    Google Scholar 

    14.
    Wiedenmann, J. et al. Nutrient enrichment can increase the susceptibility of reef corals to bleaching. Nat. Clim. Chang. 3, 160–164 (2013).
    ADS  CAS  Google Scholar 

    15.
    Burkepile, D. E. et al. Nitrogen identity drives differential impacts of nutrients on coral bleaching and mortality. Ecosystems https://doi.org/10.1007/s10021-019-00433-2 (2019).
    Article  Google Scholar 

    16.
    Shantz, A. A. & Burkepile, D. E. Context-dependent effects of nutrient loading on the coral-algal mutualism. Ecology 95, 1995–2005 (2014).
    PubMed  Google Scholar 

    17.
    Nordemar, I., Nyströn, M. & Dizon, R. Effects of elevated seawater temperature and nitrate enrichment on the branching coral Porites cylindrica in the absence of particulate food. Mar. Biol. 142, 669–677 (2003).
    CAS  Google Scholar 

    18.
    Béraud, E., Gevaert, F., Rottier, C. & Ferrier-Pagès, C. The response of the scleractinian coral Turbinaria reniformis to thermal stress depends on the nitrogen status of the coral holobiont. J. Exp. Biol. 216, 2665–2674 (2013).
    PubMed  Google Scholar 

    19.
    Ezzat, L., Maguer, J.-F., Grover, R. & Ferrier-Pagès, C. Limited phosphorus availability is the Achilles heel of tropical reef corals in a warming ocean. Sci. Rep. 6, 31768 (2015).
    ADS  Google Scholar 

    20.
    Lesser, M. P. Elevated temperatures and ultraviolet radiation cause oxidative stress and inhibit photosynthesis in symbiotic dinoflagellates. Limnol. Oceanogr. 41, 271–283 (1996).
    ADS  CAS  Google Scholar 

    21.
    Lesser, M. P. Oxidative stress causes coral bleaching during exposure to elevated temperatures. Coral Reefs 16, 187–192 (1997).
    ADS  Google Scholar 

    22.
    Lesser, M. P. Oxidative stress in marine environments: biochemistry and physiological Ecology. Annu. Rev. Physiol. 68, 253–278 (2006).
    CAS  PubMed  Google Scholar 

    23.
    Downs, C. A. et al. Oxidative stress and seasonal coral bleaching. Free Rad. Biol. Med. 33, 533–543 (2002).
    CAS  PubMed  Google Scholar 

    24.
    Perez, S. & Weis, V. Nitric oxide and cnidarians bleaching: an eviction notice mediates breakdown of a symbiosis. J. Exp. Biol. 209, 2804–2810 (2006).
    CAS  PubMed  Google Scholar 

    25.
    Weis, V. M. Cellular mechanisms of Cnidarian bleaching: stress causes the collapse of symbiosis. J. Exp. Biol. 211, 59–66 (2008).
    Google Scholar 

    26.
    Halliwell, B. & Gutteridge, J.M.C. (eds.) Free Radicals in Biology and Medicine. (Oxford, 2007).

    27.
    Pörtner, H. O. & Farrell, A. P. Physiology and climate change. Science 322, 690–692 (2008).
    PubMed  Google Scholar 

    28.
    Sokolova, I. M. Energy-Limited tolerance to stress as a conceptual framework to integrate the effects of multiple stressors. Integ. Comp. Biol. 53, 597–608 (2013).
    Google Scholar 

    29.
    Dominguez-Valdivia, M. D. et al. Nitrogen nutrtion and antioxidant metabolism in ammonium-tolerant and –sensitive plants. Phys. Plant. 132, 359–369 (2008).
    CAS  Google Scholar 

    30.
    Bouchard, J. N. & Yamasaki, H. Heat stress stimulates nitric oxide production in Symbiodinium microadriaticum: a possible linkage between nitric oxide and the coral bleaching phenomenon. Plant. Cell Physiol. 49, 641–652 (2008).
    CAS  PubMed  Google Scholar 

    31.
    Yamasaki, H. & Sakihama, Y. Simultaneous production of nitric oxide and peroxynitrite by plant nitrate reducatase: in vitro evidence for the NR*dependent formation of active nitrogen species. FEBS. 468, 89–92 (2000).
    CAS  Google Scholar 

    32.
    Bethke, P. C., Badger, M. R. & Jones, R. L. Apoplastic synthesis of nitric oxide by plant tissues. Plant. Cell. 16, 332–341 (2004).
    CAS  PubMed  PubMed Central  Google Scholar 

    33.
    Tischner, R., Planchet, E. & Kaiser, W. M. Mitochondrial electron transport as a source of nitric oxide in the unicellular green algae Chlorella sorokiniana. FEBS Lett. 576, 151–155 (2004).
    CAS  PubMed  Google Scholar 

    34.
    Planchet, E., Gupta, K. J., Sonoda, M. & Kaiser, W. M. Nitric oxide emission from tabacco leaves and cell suspensions: rate limiting factors and evidence for the involvement of mitochondrial electron transport. Plant. J. 41, 732–743 (2005).
    CAS  PubMed  Google Scholar 

    35.
    Bartesaghi, S. & Radi, R. Fundamentals on the biochemistry of peroxynitrite and protein tyrosine nitration. Redox. Biol. 14, 618–625 (2018).
    CAS  PubMed  Google Scholar 

    36.
    Brodie, J., Devlin, M., Heynes, D. & Waterhouse, J. Assessment of the eutrophication status of the Great Barrier Reef lagoon (Australia). Biogeochemistry 106, 281–302 (2011).
    CAS  Google Scholar 

    37.
    Govers, L. L., Lamers, L. P., Bouma, T. J., de Brouwer, J. H. & van Katwijk, M. M. Eutrophication threatens Caribbean seagrass: an example from Curaçao and Bonaire. Mar. Poll. Bull. 89, 481–486 (2014).
    CAS  Google Scholar 

    38.
    Naumann, M. S., Bednarz, V. N., Ferse, S. C., Niggl, W. & Wild, C. Monitoring of coastal coral reefs near Dahab (Gulf of Aqaba, red sea) indicates local eutrophication as potential cause for change in benthic communities. Environ. Monit. Assess. 187, 1–14 (2015).
    CAS  Google Scholar 

    39.
    Rouzé, H., Lecellier, G., Langlade, M., Planes, S. & Berteaux-Lecellier, V. Fringing reefs exposed to different levels of eutrophication and sedimentation can support similar benthic communities. Mar. Pollut. Bull. 92, 212–221 (2015).
    PubMed  Google Scholar 

    40.
    Hoogenboom, M., Beraud, E. & Ferrier-Pagè, C. Relationship between symbiont density and photosynthetic carbon acquisition in the temperate coral Cladocora caespitosa. Coral Reefs 29, 21–29 (2010).
    ADS  Google Scholar 

    41.
    Bradford, M. M. A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal. Biochem. 7, 248–254 (1976).
    Google Scholar 

    42.
    Jeffrey, S. & Humphrey, G. New spectrophotometric equations for determining chlorophylls a, b, c1 and c2 in higher plants, algae and natural phytoplankton. Biochem. Physiol. Pfl. 167, 191–194 (1975).
    CAS  Google Scholar 

    43.
    Veal, C. J., Carmi, M., Fine, M. & Hoegh-Guldberg, O. Increasing the accuracy of surface area estimation using single wax dipping of coral fragments. Coral Reefs 29, 893–897 (2010).
    ADS  Google Scholar 

    44.
    Jones, R. J., Kildea, T. & Hoegh-Guldberg, O. PAM chlorophyll fluorometry: a new in situ technique for stress assessment in scleractinian corals, used to examine the effects of cyanide from cyanide fishing. Mar. Pollut. Bull. 38, 864–874 (1999).
    CAS  Google Scholar 

    45.
    Jones, R. The ecotoxicological effects of photosystem II herbicides on corals. Mar. Pollut. Bull. 51, 495–506 (2005).
    CAS  PubMed  Google Scholar 

    46.
    Davies, P. S. Short-term growth measurements of corals using an accurate buoyant weighing technique. Mar. Biol. 101, 389–395 (1989).
    Google Scholar 

    47.
    Aguiar, R. B. et al. Estradiol valerate and tibolone: effects upon brain oxidative stress and blood biochemistry during aging in female rats. Biogerontology 9, 285–298 (2008).
    CAS  PubMed  Google Scholar 

    48.
    Oakes, K. D. & van der Kraak, G. J. Utility of the TBARS assay in detecting oxidative stress in white sucker (Catostomus commersoni) populations exposed to pulp mill effluent. Aquat. Toxicol. 63, 447–463 (2003).
    CAS  PubMed  Google Scholar 

    49.
    Huang, D., Ou, B. & Prior, R. L. The chemistry behind antioxidant capacity assays. J. Agric. Food. Chem. 53, 1841–1856 (2005).
    CAS  PubMed  Google Scholar 

    50.
    Sokolova, I. M., Frederich, M., Bagwe, R., Lanning, G. & Sukhotin, A. A. Energy homeostasis as an integrative tool for assessing limits of envirnmental stress tolerance in aquatic organisms. Mar. Environ. Res. 79, 1–15 (2012).
    CAS  PubMed  Google Scholar 

    51.
    Underwood, A. J. Experiments in Ecology: Their Logical Design and Interpretation Using Analysis of Variance (Cambridge University Press, Cambridge, U.K., 1997).
    Google Scholar 

    52.
    Halliwell, B. Biochemistry of oxidative stress. Biochem. Soc. Trans. 35, 1147–1150 (2007).
    CAS  PubMed  Google Scholar 

    53.
    Havaux, M. & Niyogi, K. K. The violaxanthin cycle protects plants from photooxidative damage by more than one mechanism. Proc. Natl. Acad. Sci. USA 96, 8762–8767 (1999).
    ADS  CAS  PubMed  Google Scholar 

    54.
    Tardy, F. & Havaux, M. Thylakoid membrane fluidity and thermostability during the operation of the xanthophyll cycle in higher-plant chloroplasts. Biochim. Biophys. Acta. 1330, 179–193 (1997).
    CAS  PubMed  Google Scholar 

    55.
    Downs, C. A., Mueller, E., Phillips, S., Fauth, J. E. & Woodley, C. M. A molecular biomarker system for assessing the health of coral (Montastrea faveolata) during heat stress. Mar. Biotechnol. 2, 533–544 (2000).
    CAS  PubMed  Google Scholar 

    56.
    Krueger, T. et al. Differential coral bleaching—contrasting the activity and response of enzymatic antioxidants in symbiotic partners under thermal stress. Comp. Biochem. Physiol. Part A: Mol. Integ. Physiol. 190, 15–25 (2015).
    CAS  Google Scholar 

    57.
    Marangoni, L. F. B. et al. Oxidative stress biomarkers as potential tools in reef degradation monitoring: a study case in a South Atlantic reef under influence of the 2015–2016 El Niño/Southern Oscillation (ENSO). Ecol. Ind. 106, 105533 (2019).
    CAS  Google Scholar 

    58.
    Morris, L. A., Voolstra, C. R., Quigley, K. M., Bourne, D. G. & Bay, L. K. Nutrient availability and metabolism affect the stability of coral-Symbiodiniaceae Symbioses. Trends Microbiol. 8, 678–689 (2019).
    Google Scholar 

    59.
    Axenov-Gribanov, D. V. et al. A cellular and metabolic assessment of the thermal stress responses in the endemic gastropod Benedictia limnaeoides ongurensis from Lake Baikal. Comp. Biochem. Physiol. Part B. 167, 16–22 (2013).
    Google Scholar 

    60.
    Larade, S. & Storey, K. B. A profile of metabolic responses to anoxia in marine invertebrates. In Sensing, Signaling and Cell Adaptation (eds Storey, K. B. & Storey, J. M.) 27–46 (Elsevier, Amsterdam, 2002).
    Google Scholar 

    61.
    Philip, A., Macdonald, A. L. & Watt, P. W. Lactate—a signal coordinating cell and systemic function. J. Exp. Biol. 208, 4561–4575 (2005).
    Google Scholar 

    62.
    Riobò, N. A. et al. Nitric oxide inhibits mitochondrial NADH:ubiquinone reductase activity through peroxynitrite formation. Biochem. J. 359, 139–145 (2001).
    PubMed  PubMed Central  Google Scholar 

    63.
    Wang, Y. & Ruby, E. G. The roles of NO in microbial symbioses. Cell. Microbiol. 13, 518–526 (2013).
    Google Scholar 

    64.
    Higuchi, T., Yuyama, I. & Nakamura, T. The combined effects of nitrate with high temperature and high light intensity on coral bleaching and antioxidant enzyme activities. Reg. S. Mar. Sci. 2, 27–31 (2015).
    Google Scholar 

    65.
    Muscatine, L. & Porter, J. W. Reef corals-mutualistic symbioses adapted to nutrient-poor environments. Bioscience 27, 454–460 (1977).
    Google Scholar 

    66.
    Ezzat, L., Maguer, J.-F., Grover, R. & Ferrier-Pagès, C. New insights into carbon acquisition and exchanges within the coral-dinoflagellate symbiosis under NH4+ and NO3− supply. Proc. R. Soc. B. 282, 20150610 (2015).
    PubMed  Google Scholar 

    67.
    Cunning, R. & Baker, A. C. Excess algal symbionts increase the susceptibility of reef corals to bleaching. Nat. Clim. Change 3, 259–262 (2013).
    ADS  Google Scholar 

    68.
    Meyer, J. L. & Schultz, E. T. Migrating haemulid fishes as a source of nutrients and organic matter on coral reefs. Limnol. Oceanogr. 30, 146–156 (1985).
    ADS  Google Scholar  More

  • in

    Global wind patterns and the vulnerability of wind-dispersed species to climate change

    1.
    Bellard, C., Bertelsmeier, C., Leadley, P., Thuiller, W. & Courchamp, F. Impacts of climate change on the future of biodiversity. Ecol. Lett. 15, 365–377 (2012).
    Google Scholar 
    2.
    Hampe, A. Plants on the move: the role of seed dispersal and initial population establishment for climate-driven range expansions. Acta Oecol. 37, 666–673 (2011).
    Google Scholar 

    3.
    Kremer, A. et al. Long‐distance gene flow and adaptation of forest trees to rapid climate change. Ecol. Lett. 15, 378–392 (2012).
    Google Scholar 

    4.
    Pecl, G. T. et al. Biodiversity redistribution under climate change: impacts on ecosystems and human well-being. Science 355, eaai9214 (2017).
    Google Scholar 

    5.
    Felicísimo, Á. M., Muñoz, J. & González-Solis, J. Ocean surface winds drive dynamics of transoceanic aerial movements. PLoS ONE 3, e2928 (2008).
    Google Scholar 

    6.
    Gillespie, R. G. et al. Long-distance dispersal: a framework for hypothesis testing. Trends Ecol. Evol. 27, 47–56 (2012).
    Google Scholar 

    7.
    Muñoz, J., Felicísimo, Á. M., Cabezas, F., Burgaz, A. R. & Martínez, I. Wind as a long-distance dispersal vehicle in the Southern Hemisphere. Science 304, 1144–1147 (2004).
    Google Scholar 

    8.
    Smith, D. J. et al. Intercontinental dispersal of bacteria and archaea by transpacific winds. Appl. Environ. Microbiol. 79, 1134–1139 (2013).
    CAS  Google Scholar 

    9.
    Austerlitz, F., Dutech, C., Smouse, P. E., Davis, F. & Sork, V. L. Estimating anisotropic pollen dispersal: a case study in Quercus lobata. Heredity 99, 193–204 (2007).
    CAS  Google Scholar 

    10.
    Bullock, J. M. & Clarke, R. T. Long distance seed dispersal by wind: measuring and modelling the tail of the curve. Oecologia 124, 506–521 (2000).
    CAS  Google Scholar 

    11.
    Gassmann, M. I. & Pérez, C. F. Trajectories associated to regional and extra-regional pollen transport in the southeast of Buenos Aires province, Mar del Plata (Argentina). Int. J. Biometeorol. 50, 280–291 (2006).
    Google Scholar 

    12.
    Skarpaas, O. & Shea, K. Dispersal patterns, dispersal mechanisms, and invasion wave speeds for invasive thistles. Am. Naturalist 170, 421–430 (2007).
    Google Scholar 

    13.
    Wang, Z. F. et al. Pollen and seed flow under different predominant winds in wind-pollinated and wind-dispersed species Engelhardia roxburghiana. Tree Genet. Genomes 12, 19 (2016).
    CAS  Google Scholar 

    14.
    Soubeyrand, S., Enjalbert, J., Sanchez, A. & Sache, I. Anisotropy, in density and in distance, of the dispersal of yellow rust of wheat: experiments in large field plots and estimation. Phytopathology 97, 1315–1324 (2007).
    CAS  Google Scholar 

    15.
    Born, C., le Roux, P. C., Spohr, C., McGeoch, M. A. & van Vuuren, B. J. Plant dispersal in the sub‐Antarctic inferred from anisotropic genetic structure. Mol. Ecol. 21, 184–194 (2012).
    Google Scholar 

    16.
    Geremew, A., Woldemariam, M. G., Kefalew, A., Stiers, I. & Triest, L. Isotropic and anisotropic processes influence fine-scale spatial genetic structure of a keystone tropical plant. AoB Plants 10, plx076 (2018).
    Google Scholar 

    17.
    Brown, J. K. & Hovmøller, M. S. Aerial dispersal of pathogens on the global and continental scales and its impact on plant disease. Science 297, 537–541 (2002).
    CAS  Google Scholar 

    18.
    Vanschoenwinkel, B., Gielen, S., Seaman, M. & Brendonck, L. Any way the wind blows—frequent wind dispersal drives species sorting in ephemeral aquatic communities. Oikos 117, 125–134 (2008).
    Google Scholar 

    19.
    Ahmed, S., Compton, S. G., Butlin, R. K. & Gilmartin, P. M. Wind-borne insects mediate directional pollen transfer between desert fig trees 160 kilometers apart. Proc. Natl Acad. Sci. USA 106, 20342–20347 (2009).
    CAS  Google Scholar 

    20.
    Larson-Johnson, K. Field observations of Carpinus (Betulaceae) demonstrate high dispersal asymmetry and inform migration simulations with implications for times of rapid climate change. Int. J. Plant Sci. 177, 389–399 (2016).
    Google Scholar 

    21.
    Nathan, R. et al. Spread of North American wind‐dispersed trees in future environments. Ecol. Lett. 14, 211–219 (2011).
    Google Scholar 

    22.
    Sorte, C. J. Predicting persistence in a changing climate: flow direction and limitations to redistribution. Oikos 122, 161–170 (2013).
    Google Scholar 

    23.
    Loarie, S. R. et al. The velocity of climate change. Nature 462, 1052–1055 (2009).
    CAS  Google Scholar 

    24.
    Molinos, J. G., Burrows, M. T. & Poloczanska, E. S. Ocean currents modify the coupling between climate change and biogeographical shifts. Sci. Rep. 7, 1332 (2017).
    Google Scholar 

    25.
    Higgins, S. I. et al. Forecasting plant migration rates: managing uncertainty for risk assessment. J. Ecol. 91, 341–347 (2003).
    Google Scholar 

    26.
    Bullock, J. M. et al. Modelling spread of British wind‐dispersed plants under future wind speeds in a changing climate. J. Ecol. 100, 104–115 (2012).
    Google Scholar 

    27.
    Kuparinen, A., Katul, G., Nathan, R. & Schurr, F. M. Increases in air temperature can promote wind-driven dispersal and spread of plants. Proc. R. Soc. B 276, 3081–3087 (2009).
    Google Scholar 

    28.
    Davis, H. G., Taylor, C. M., Lambrinos, J. G. & Strong, D. R. Pollen limitation causes an Allee effect in a wind-pollinated invasive grass (Spartina alterniflora). Proc. Natl Acad. Sci. USA 101, 13804–13807 (2004).
    CAS  Google Scholar 

    29.
    Dullinger, S., Dirnböck, T. & Grabherr, G. Patterns of shrub invasion into high mountain grasslands of the Northern Calcareous Alps, Austria. Arct. Antarct. Alp. Res. 35, 434–441 (2003).
    Google Scholar 

    30.
    Payette, S. The range limit of boreal tree species in Québec-Labrador: an ecological and palaeoecological interpretation. Rev. Palaeobot. Palynol. 79, 7–30 (1993).
    Google Scholar 

    31.
    Sandel, B., Monnet, A. C., Govaerts, R. & Vorontsova, M. Late Quaternary climate stability and the origins and future of global grass endemism. Ann. Bot. 119, 279–288 (2016).
    Google Scholar 

    32.
    Svenning, J. C. & Skov, F. Could the tree diversity pattern in Europe be generated by postglacial dispersal limitation? Ecol. Lett. 10, 453–460 (2007).
    Google Scholar 

    33.
    Schurr, F. M. et al. Colonization and persistence ability explain the extent to which plant species fill their potential range. Glob. Ecol. Biogeogr. 16, 449–459 (2007).
    Google Scholar 

    34.
    Saha, S. et al. The NCEP Climate Forecast System Reanalysis. Bull. Am. Meteorol. Soc. 91, 1015–1058 (2010).
    Google Scholar 

    35.
    Hamann, A., Roberts, D. R., Barber, Q. E., Carroll, C. & Nielsen, S. E. Velocity of climate change algorithms for guiding conservation and management. Glob. Change Biol. 21, 997–1004 (2015).
    Google Scholar 

    36.
    Kling, M. M., Auer, S. L., Comer, P. J., Ackerly, D. D. & Hamilton, H. Multiple axes of ecological vulnerability to climate change. Glob. Change Biol. 26, 2798–2813 (2020).
    Google Scholar 

    37.
    Keeley, A. T. et al. New concepts, models, and assessments of climate-wise connectivity. Environ. Res. Lett. 13, 073002 (2018).
    Google Scholar 

    38.
    Savage, D., Barbetti, M. J., MacLeod, W. J., Salam, M. U. & Renton, M. Timing of propagule release significantly alters the deposition area of resulting aerial dispersal. Diversity Distrib. 16, 288–299 (2010).
    Google Scholar 

    39.
    Nathan, R. et al. Long‐distance biological transport processes through the air: can nature’s complexity be unfolded in silico? Divers. Distrib. 11, 131–137 (2005).
    Google Scholar 

    40.
    Zeller, K. A., McGarigal, K. & Whiteley, A. R. Estimating landscape resistance to movement: a review. Landsc. Ecol. 27, 777–797 (2012).
    Google Scholar 

    41.
    Treml, E. A., Halpin, P. N., Urban, D. L. & Pratson, L. F. Modeling population connectivity by ocean currents, a graph-theoretic approach for marine conservation. Landsc. Ecol. 23, 19–36 (2008).
    Google Scholar 

    42.
    Fernández‐López, J. & Schliep, K. rWind: download, edit and include wind data in ecological and evolutionary analysis. Ecography 42, 804–810 (2019).
    Google Scholar 

    43.
    Thompson, S. & Katul, G. Plant propagation fronts and wind dispersal: an analytical model to upscale from seconds to decades using superstatistics. Am. Naturalist 171, 468–479 (2008).
    Google Scholar 

    44.
    Savage, D., Barbetti, M. J., MacLeod, W. J., Salam, M. U. & Renton, M. Can mechanistically parameterised, anisotropic dispersal kernels provide a reliable estimate of wind-assisted dispersal? Ecol. Model. 222, 1673–1682 (2011).
    Google Scholar 

    45.
    Regal, P. J. Pollination by wind and animals: ecology of geographic patterns. Annu. Rev. Ecol. Syst. 13, 497–524 (1982).
    Google Scholar 

    46.
    Carroll, C., Lawler, J. J., Roberts, D. R. & Hamann, A. Biotic and climatic velocity identify contrasting areas of vulnerability to climate change. PLoS ONE 10, e0140486 (2015).
    Google Scholar 

    47.
    Jackson, S. T. & Sax, D. F. Balancing biodiversity in a changing environment: extinction debt, immigration credit and species turnover. Trends Ecol. Evol. 25, 153–160 (2010).
    Google Scholar 

    48.
    Ackerly, D. D. et al. The geography of climate change: implications for conservation biogeography. Divers. Distrib. 16, 476–487 (2010).
    Google Scholar 

    49.
    Owens, J. N. The Reproductive Biology of Lodgepole Pine Extension Note 07 (Forest Genetics Council of British Columbia, 2006).

    50.
    Bontrager, M. & Angert, A. L. Gene flow improves fitness at a range edge under climate change. Evol. Lett. 3, 55–68 (2019).
    Google Scholar 

    51.
    Sexton, J. P., Strauss, S. Y. & Rice, K. J. Gene flow increases fitness at the warm edge of a species’ range. Proc. Natl Acad. Sci. USA 108, 11704–11709 (2011).
    CAS  Google Scholar 

    52.
    Rehfeldt, G. E., Ying, C. C., Spittlehouse, D. L. & Hamilton, D. A. Jr Genetic responses to climate in Pinus contorta: niche breadth, climate change, and reforestation. Ecol. Monogr. 69, 375–407 (1999).
    Google Scholar 

    53.
    Wang, T., O’Neill, G. A. & Aitken, S. N. Integrating environmental and genetic effects to predict responses of tree populations to climate. Ecol. Appl. 20, 153–163 (2010).
    CAS  Google Scholar 

    54.
    Karger, D. N. et al. Climatologies at high resolution for the Earth’s land surface areas. Sci. Data 4, 170122 (2017).
    Google Scholar 

    55.
    Dobrowski, S. Z. et al. The climate velocity of the contiguous United States during the 20th century. Glob. Change Biol. 19, 241–251 (2013).
    Google Scholar 

    56.
    van Etten, J. R Package gdistance: distances and routes on geographical grids. J. Stat. Softw. 76, 1–21 (2017).
    Google Scholar 

    57.
    IPCC Special Report on Global Warming of 1.5 °C (eds Masson-Delmotte, V. et al.) (WMO, 2018).

    58.
    Schleussner, C. F. et al. Differential climate impacts for policy-relevant limits to global warming: the case of 1.5 °C and 2 °C. Earth Syst. Dyn. 7, 327–351 (2016).
    Google Scholar 

    59.
    Little, E. L. Jr Atlas of United States Trees. Volume 1, Conifers and Important Hardwoods Miscellaneous Publication 1146 (US Department of Agriculture, 1971).

    60.
    Wang, T., Hamann, A., Yanchuk, A., O’Neill, G. A. & Aitken, S. N. Use of response functions in selecting lodgepole pine populations for future climates. Glob. Change Biol. 12, 2404–2416 (2006).
    Google Scholar 

    61.
    Phillips, S. J., Anderson, R. P. & Schapire, R. E. Maximum entropy modeling of species geographic distributions. Ecol. Model. 190, 231–259 (2006).
    Google Scholar 

    62.
    Taylor, K. E., Stouffer, R. J. & Meehl, G. A. An overview of CMIP5 and the experiment design. Bull. Am. Meteorol. Soc. 93, 485–498 (2012).
    Google Scholar 

    63.
    R Core Team (2017). R: A Language and Environment for Statistical Computing (R Foundation for Statistical Computing, 2017); https://www.R-project.org/

    64.
    Kling, M. M. & Ackerly, D. D. Scripts and Data used in ‘Global Wind Patterns and the Vulnerability of Wind-Dispersed Species to Climate Change (Zenodo Repository, 2020); https://doi.org/10.5281/zenodo.3860687

    65.
    Kling, M. M. Windscape R Package v.1.0.0 (Zenodo Repository, 2020); https://doi.org/10.5281/zenodo.3857730 More

  • in

    Last glacial atmospheric CO2 decline due to widespread Pacific deep-water expansion

    1.
    Oppo, D. et al. Data constraints on glacial Atlantic water mass geometry and properties. Paleoceanogr. Paleoclimatol. 33, 1013–1034 (2018).
    Google Scholar 
    2.
    Lynch-Stieglitz, J. et al. Atlantic meridional overturning circulation during the Last Glacial Maximum. Science 316, 66–69 (2007).
    Google Scholar 

    3.
    Howe, J. N. W. et al. North Atlantic Deep Water production during the Last Glacial Maximum. Nat. Commun. 7, 11765 (2016).
    Google Scholar 

    4.
    Gebbie, G. How much did Glacial North Atlantic Water shoal? Paleoceanogr. Paleoclimatol. 29, 190–209 (2014).
    Google Scholar 

    5.
    Skinner, L., Fallon, S. J., Waelbroeck, C., Michel, E. & Barker, S. Ventilation of the deep Southern Ocean and deglacial CO2 rise. Science 328, 1147–1151 (2010).
    Google Scholar 

    6.
    Piotrowski, A. et al. Reconstructing deglacial North and South Atlantic deep water sourcing using foraminiferal Nd isotopes. Earth Planet. Sci. Lett. 357–358, 289–297 (2012).
    Google Scholar 

    7.
    Burke, A. et al. The glacial mid-depth radiocarbon bulge and its implications for the overturning circulation. Paleoceanogr. Paleoclimatol. 30, 1021–1039 (2015).
    Google Scholar 

    8.
    Robinson, L. F. & van de Flierdt, T. Southern Ocean evidence for reduced export of North Atlantic Deep Water during Heinrich event 1. Geology 37, 195–198 (2009).
    Google Scholar 

    9.
    Anderson, R. F. et al. Deep-sea oxygen depletion and ocean carbon sequestration during the last ice age. Glob. Biogeochem. Cycles 33, 301–317 (2019).
    Google Scholar 

    10.
    Jaccard, S. L. & Galbraith, E. D. Large climate-driven changes of oceanic oxygen concentrations during the last deglaciation. Nat. Geosci. 5, 151–156 (2012).
    Google Scholar 

    11.
    Key, R. M. et al. A global ocean carbon climatology: results from Global Data Analysis Project (GLODAP). Glob. Biogeochem. Cycles 18, GB4031 (2004).
    Google Scholar 

    12.
    Yu, J. et al. Sequestration of carbon in the deep Atlantic during the last glaciation. Nat. Geosci. 9, 319–324 (2016).
    Google Scholar 

    13.
    Burke, A. & Robinson, L. F. The Southern Ocean’s role in carbon exchange during the last deglaciation. Science 335, 557–561 (2012).
    Google Scholar 

    14.
    Skinner, L. C. et al. North Atlantic versus Southern Ocean contributions to a deglacial surge in deep ocean ventilation. Geology 41, 667–670 (2013).
    Google Scholar 

    15.
    Barker, S., Knorr, G., Vautravers, M., Diz, P. & Skinner, L. Extreme deepening of the Atlantic overturning circulation during deglaciation. Nat. Geosci. 3, 567–571 (2010).
    Google Scholar 

    16.
    Adkins, J. F., McIntyre, K. & Schrag, D. P. The salinity, temperature, and δ18O of the glacial deep ocean. Science 298, 1769–1773 (2002).
    Google Scholar 

    17.
    Yu, J. M. & Elderfield, H. Benthic foraminiferal B/Ca ratios reflect deep water carbonate saturation state. Earth Planet. Sci. Lett. 258, 73–86 (2007).
    Google Scholar 

    18.
    Yu, J. et al. Loss of carbon from the deep sea since the Last Glacial Maximum. Science 330, 1084–1087 (2010).
    Google Scholar 

    19.
    Marchitto, T. & Broeker, W. Deep water mass geometry in the glacial Atlantic Ocean: a review of constraints from the paleonutrient proxy Cd/Ca. Geochem. Geophys. Geosyst. 7, (2006).

    20.
    Yu, J. More efficient North Atlantic carbon pump during the Last Glacial Maximum. Nat. Commun. 10, 2170 (2019).
    Google Scholar 

    21.
    Chalk, T. B., Foster, G. L. & Wilson, P. A. Dynamic storage of glacial CO2 in the Atlantic Ocean revealed by boron [CO32−] and pH records. Earth Planet. Sci. Lett. 510, 1–11 (2019).
    Google Scholar 

    22.
    Broecker, W., Yu, J. & Putnam, A. E. Two contributors to the glacial CO2 decline. Earth Planet. Sci. Lett. 429, 191–196 (2015).
    Google Scholar 

    23.
    Yu, J. M., Elderfield, H. & Piotrowski, A. Seawater carbonate ion–δ13C systematics and application to glacial–interglacial North Atlantic Ocean circulation. Earth Planet. Sci. Lett. 271, 209–220 (2008).
    Google Scholar 

    24.
    Menviel, L. et al. Poorly ventilated deep ocean at the Last Glacial Maximum inferred from carbon isotopes: a data-model comparison study. Paleoceanogr. Paleoclimatol. 31, 2–17 (2017).
    Google Scholar 

    25.
    Muglia, J., Skinner, L. & Schmittner, A. Weak overturning circulation and high Southern Ocean nutrient utilization maximized glacial ocean carbon. Earth Planet. Sci. Lett. 496, 47–56 (2018).
    Google Scholar 

    26.
    Hodell, D. A., Charles, C. D. & Sierro, F. J. Late Pleistocene evolution of the ocean’s carbonate system. Earth Planet. Sci. Lett. 192, 109–124 (2001).
    Google Scholar 

    27.
    Gottschalk, J. et al. Past carbonate preservation events in the deep southeast Atlantic Ocean (Cape Basin) and their implications for Atlantic overturning dynamics and marine carbon cycling. Paleoceanogr. Paleoclimatol. 33, 643–663 (2018).
    Google Scholar 

    28.
    Gottschalk, J. et al. Abrupt changes in the southern extent of North Atlantic Deep Water during Dansgaard–Oeschger events. Nat. Geosci. 8, 950–954 (2015).
    Google Scholar 

    29.
    Zhao, N. et al. Glacial–interglacial Nd isotope variability of North Atlantic Deep Water modulated by North American ice sheet. Nat. Commun. 10, 5773 (2019).
    Google Scholar 

    30.
    Roberts, J. et al. Evolution of South Atlantic density and chemical stratification across the last deglaciation. Proc. Natl Acad. Sci. USA 113, 514–519 (2016).
    Google Scholar 

    31.
    Ferrari, R. et al. Antarctic sea ice control on ocean circulation in present and glacial climates. Proc. Natl Acad. Sci. USA 111, 8753–8758 (2014).
    Google Scholar 

    32.
    Adkins, J. F. The role of deep ocean circulation in setting glacial climates. Paleoceanogr. Paleoclimatol. 28, 539–561 (2013).
    Google Scholar 

    33.
    Talley, L. D. Closure of the global overturning circulation through the Indian, Pacific, and Southern oceans: schematics and transports. Oceanography 26, 80–97 (2013).
    Google Scholar 

    34.
    Matsumoto, K., Oba, T., Lynch-Stieglitz, J. & Yamamoto, H. Interior hydrography and circulation of the glacial Pacific Ocean. Q. Sci. Rev. 21, 1693–1704 (2002).
    Google Scholar 

    35.
    Hu, R., Piotrowski, A. M., Bostock, H. C., Crowhurst, S. & Rennie, V. Variability of neodymium isotopes associated with planktonic foraminifera in the Pacific Ocean during the Holocene and Last Glacial Maximum. Earth Planet. Sci. Lett. 447, 130–138 (2016).
    Google Scholar 

    36.
    Keigwin, L. D. North Pacific deep water formation during the latest glaciation. Nature 330, 362–364 (1987).
    Google Scholar 

    37.
    Anderson, D. M. & Archer, D. Glacial–interglacial stability of ocean pH inferred from foraminifer dissolution rates. Nature 416, 70–73 (2002).
    Google Scholar 

    38.
    Rae, J. W. B. et al. Deep water formation in the North Pacific and deglacial CO2 rise. Paleoceanogr. Paleoclimatol. 29, 645–667 (2014).
    Google Scholar 

    39.
    Umling, N. E. & Thunell, R. C. Mid-depth respired carbon storage and oxygenation of the eastern equatorial Pacific over the last 25,000 years. Q. Sci. Rev. 189, 43–56 (2018).
    Google Scholar 

    40.
    Doss, W. & Marchitto, T. M. Glacial deep ocean sequestration of CO2 driven by the eastern equatorial Pacific biologic pump. Earth Planet. Sci. Lett. 377, 43–54 (2013).
    Google Scholar 

    41.
    Kerr, J., Rickaby, R., Yu, J. M., Elderfield, H. & Sadekov, A. Y. The effect of ocean alkalinity and carbon transfer on deep-sea carbonate ion concentration during the past five glacial cycles. Earth Planet. Sci. Lett. 471, 42–53 (2017).
    Google Scholar 

    42.
    Yu, J. et al. Deep South Atlantic carbonate chemistry and increased interocean deep water exchange during last deglaciation. Q. Sci. Rev. 15, 80–89 (2014).
    Google Scholar 

    43.
    Galbraith, E. D. et al. Carbon dioxide release from the North Pacific abyss during the last deglaciation. Nature 449, 890–893 (2007).
    Google Scholar 

    44.
    Ronge, T. A. et al. Radiocarbon constraints on the extent and evolution of the South Pacific glacial carbon pool. Nat. Commun. 7, 11487 (2016).
    Google Scholar 

    45.
    Gottschalk, J. et al. Carbon isotope offsets between benthic foraminifer species of the genus Cibicides (Cibicidoides) in the glacial sub-Antarctic Atlantic. Paleoceanogr. Paleoclimatol. 31, 1583–1602 (2016).
    Google Scholar 

    46.
    Gottschalk, J. et al. Biological and physical controls in the Southern Ocean on past millennial-scale atmospheric CO2 changes. Nat. Commun. 7, 11539 (2016).
    Google Scholar 

    47.
    Basak, C. et al. Breakup of last glacial deep stratification in the South Pacific. Science 359, 900–904 (2018).
    Google Scholar 

    48.
    Jacobel, A. W., McManus, J. F., Anderson, R. F. & Winckler, G. Repeated storage of respired carbon in the equatorial Pacific Ocean over the last three glacial cycles. Nat. Commun. 8, 1727 (2017).
    Google Scholar 

    49.
    Bereiter, B. et al. Revision of the EPICA Dome C CO2 record from 800 to 600 kyr before present. Geophys. Res. Lett. 42, 542–549 (2015).
    Google Scholar 

    50.
    Schlitzer, R. Ocean Data View v.5.3.0 (Alfred Wegener Institute, 2006); https://odv.awi.de/

    51.
    Barker, S., Greaves, M. & Elderfield, H. A. A study of cleaning procedures used for foraminiferal Mg/Ca paleothermometry. Geochem. Geophys. Geosyst. 4, 8407 (2003).
    Google Scholar 

    52.
    Yu, J. M., Elderfield, H., Greaves, M. & Day, J. Preferential dissolution of benthic foraminiferal calcite during laboratory reductive cleaning. Geochem. Geophys. Geosyst. 8, Q06016 (2007).
    Google Scholar 

    53.
    Yu, J. M., Day, J., Greaves, M. & Elderfield, H. Determination of multiple element/calcium ratios in foraminiferal calcite by quadrupole ICP-MS. Geochem. Geophys. Geosyst. 6, Q08P01 (2005).
    Google Scholar 

    54.
    Feely, R. A. et al. Impact of anthropogenic CO2 on the CaCO3 system in the oceans. Science 305, 362–366 (2004).
    Google Scholar 

    55.
    Grant, K. M. et al. Rapid coupling between ice volume and polar temperature over the past 150,000 years. Nature 491, 744–747 (2012).
    Google Scholar 

    56.
    Mackensen, A., Hubberten, H.-W., Bickert, T., Fischer, G. & Fütterer, D. K. The δ13C in benthic foraminiferal tests of Fontbotia wuellerstorfi (Schwager) relative to the δ13C of dissolved inorganic carbon in Souther Ocean deep water: implications for glacial ocean circulation models. Paleoceanogr. Paleoclimatol. 8, 587–610 (1993).
    Google Scholar 

    57.
    Hodell, D. A., Venz, K. A., Charles, C. D. & Ninnemann, U. S. Pleistocene vertical carbon isotope and carbonate gradients in the South Atlantic sector of the Southern Ocean. Geochem. Geophys. Geosyst. 4, 1004 (2003).
    Google Scholar 

    58.
    Curry, W. B. & Oppo, D. Glacial water mass geometry and the distribution of δ13C of ∑CO2 in the western Altantic Ocean. Paleoceanogr. Paleoclimatol. 20, PA1017 (2005).
    Google Scholar 

    59.
    Lisiecki, L. E. & Raymo, M. E. A Pliocene–Pleistocene stack of 57 globally distributed benthic δ18O records. Paleoceanogr. Paleoclimatol. 20, PA1003 (2005).
    Google Scholar 

    60.
    Ninnemann, U. S. & Charles, C. D. Changes in the mode of Southern Ocean circulation over the last glacial cycle revealed by foraminiferal stable isotopic variability. Earth Planet. Sci. Lett. 201, 383–396 (2002).
    Google Scholar  More