1.
De Schryver, P., Defoirdt, T. & Sorgeloos, P. Early mortality syndrome outbreaks: a microbial management issue in shrimp farming?. PLoS Pathog. 10, e1003919 (2014).
PubMed PubMed Central Google Scholar
2.
Soto-Rodriguez, S. A., Gomez-Gil, B., Lozano-Olvera, R., Betancourt-Lozano, M. & Morales-Covarrubias, M. S. Field and experimental evidence of Vibrio parahaemolyticus as the causative agent of acute hepatopancreatic necrosis disease of cultured shrimp (Litopenaeus vannamei) in Northwestern Mexico. Appl. Environ. Microbiol. 81, 1689–1699 (2015).
PubMed PubMed Central Google Scholar
3.
Mastan, S. A. Incidences of white feces syndrome (WFS) in farm-reared shrimp, Litopenaeus vannamei, Andhra Pradesh. Indo Am. J. Pharm. Res. 5, 3044–3047 (2015).
CAS Google Scholar
4.
Zheng, Y. et al. Bacterial community associated with healthy and diseased Pacific white shrimp (Litopenaeus vannamei) larvae and rearing water across different growth stages. Front. Microbiol. 8, 1–11 (2017).
Google Scholar
5.
Durai, V., Gunalan, B., Johnson, P. M., Maheswaran, M. L. & Pravinkumar, M. Effect on white gut and white feces disease in semi intensive Litopenaeus vannamei shrimp culture system in south Indian state of Tamilnadu. Int. J. Mar. Sci. 5, 1–5 (2015).
Google Scholar
6.
Sriurairatana, S. et al. White feces syndrome of shrimp arises from transformation, sloughing and aggregation of hepatopancreatic microvilli into vermiform bodies superficially resembling gregarines. PLoS ONE 9, e99170 (2014).
ADS PubMed PubMed Central Google Scholar
7.
Sung, H. H., Hsu, S. F., Chen, C. K., Ting, Y. Y. & Chao, W. L. Relationships between disease outbreak in cultured tiger shrimp (Penaeus monodon) and the composition of Vibrio communities in pond water and shrimp hepatopancreas during cultivation. Aquaculture 192, 101–110 (2001).
Google Scholar
8.
Tang, K. F. J. et al. Dense populations of the microsporidian Enterocytozoon hepatopenaei (EHP) in feces of Penaeus vannamei exhibiting white feces syndrome and pathways of their transmission to healthy shrimp. J. Invertebr. Pathol. 140, 1–7 (2016).
PubMed Google Scholar
9.
Piamsomboon, P. et al. Quantification of Enterocytozoon hepatopenaei (EHP) in penaeid shrimps from Southeast Asia and Latin America using taqman probe-based quantitative PCR. Pathogens 8, 4–9 (2019).
Google Scholar
10.
Limsuwan, C. White feces disease in Thailand. Boletines nicovita. 2, 1–3 (2010).
Google Scholar
11.
Tangprasittipap, A. et al. The microsporidian Enterocytozoon hepatopenaei is not the cause of white feces syndrome in whiteleg shrimp Penaeus (Litopenaeus) vannamei. BMC Vet. Res. 9, 139 (2013).
PubMed PubMed Central Google Scholar
12.
Gomez-Gil, B., Roque, A. & Turnbull, J. F. The use and selection of probiotic bacteria for use in the culture of larval aquatic organisms. Aquaculture 191, 259–270 (2000).
Google Scholar
13.
Gullian, M., Thompson, F. & Rodriguez, J. Selection of probiotic bacteria and study of their immunostimulatory effect in Penaeus vannamei. Aquaculture 233, 1–14 (2004).
Google Scholar
14.
Moriarty, D. J. W. Disease control in shrimp aquaculture with probiotic bacteria. In Microbial Biosystems: New Frontiers. Proceedings of the 8th International Symposium on Microbial Ecology (eds Bell, C. R. et al.) 1–7 (Atlantic Canada Society for Microbial Ecology, Halifax, 2013).
Google Scholar
15.
Franco, R. et al. Evaluation of two probiotics used during farm production of white shrimp Litopenaeus vannamei (Crustacea: Decapoda). Aquac. Res. 48, 1936–1950 (2017).
CAS Google Scholar
16.
Zhang, L. et al. Effects of dietary administration of probiotic Halomonas sp. B12 on the intestinal microflora, immunological parameters, and midgut histological structure of shrimp. Fenneropenaeus chinensis. J. World Aquac. Soc. 40, 58–66 (2009).
ADS Google Scholar
17.
Xiong, J. et al. Changes in intestinal bacterial communities are closely associated with shrimp disease severity. Appl. Microbiol. Biotechnol. 99, 6911–6919 (2015).
CAS PubMed Google Scholar
18.
Somboon, M., Purivirojkul, W., Limsuwan, C. & Chuchird, N. Effect of Vibrio spp, in white feces infected shrimp in Chanthaburi, Thailand. Kasetsart Univ. Fish. Res. Bull. 36, 7–15 (2012).
Google Scholar
19.
Amann, R. I., Ludwig, W. & Schleifer, K. H. Phylogenetic identification and in situ detection of individual microbial cells without cultivation. Microbiol. Rev. 59, 143–169 (1995).
CAS PubMed PubMed Central Google Scholar
20.
Hou, D. et al. Intestinal bacterial signatures of white feces syndrome in shrimp. Appl. Microbiol. Biotechnol. 102, 3701–3709 (2018).
CAS PubMed Google Scholar
21.
Xiong, J., Dai, W. & Li, C. Advances, challenges, and directions in shrimp disease control: the guidelines from an ecological perspective. Appl. Microbiol. Biotechnol. 100, 6947–6954 (2016).
CAS PubMed Google Scholar
22.
Huang, Z. et al. Microecological Koch’s postulates reveal that intestinal microbiota dysbiosis contributes to shrimp white feces syndrome. Microbiome 8, 32 (2020).
PubMed PubMed Central Google Scholar
23.
Fan, J. et al. Dynamics of the gut microbiota in developmental stages of Litopenaeus vannamei reveal its association with body weight. Sci. Rep. 9, 734 (2019).
ADS PubMed PubMed Central Google Scholar
24.
Sha, Y. et al. Bacterial population in intestines of Litopenaeus vannamei fed different probiotics or probiotic supernatant. J. Microbiol. Biotechnol. 26, 1736–1745 (2016).
PubMed Google Scholar
25.
Vargas-Albores, F. et al. Bacterial biota of shrimp intestine is significantly modified by the use of a probiotic mixture: a high throughput sequencing approach. Helgol. Mar. Res. 71, 5 (2017).
Google Scholar
26.
Rungrassamee, W. et al. Characterization of intestinal bacteria in wild and domesticated adult black tiger shrimp (Penaeus monodon). PLoS ONE 9, e91853 (2014).
ADS PubMed PubMed Central Google Scholar
27.
Huang, F., Pan, L., Song, M., Tian, C. & Gao, S. Microbiota assemblages of water, sediment, and intestine and their associations with environmental factors and shrimp physiological health. Appl. Microbiol. Biotechnol. 102, 8585–8598 (2018).
CAS PubMed Google Scholar
28.
Grossart, H. P. Ecological consequences of bacterioplankton lifestyles: changes in concepts are needed. Environ. Microbiol. Rep. 2, 706–714 (2010).
PubMed Google Scholar
29.
Lyons, M. M., Ward, J. E., Smolowitz, R., Uhlinger, K. R. & Gast, R. J. Lethal marine snow: pathogen of bivalve mollusc concealed in marine aggregates. Limnol. Oceangr. 50, 1983–1988 (2005).
ADS Google Scholar
30.
Lyons, M. M. et al. Theory of island biogeography on a microscopic scale: organic aggregates as islands for aquatic pathogens. Aquat. Microb. Ecol. 60, 1–13 (2010).
Google Scholar
31.
Kramer, A. M., Lyons, M. M., Dobbs, F. C. & Drake, J. M. Bacterial colonization and extinction on marine aggregates: stochastic model of species presence and abundance. Ecol. Evol. 3, 4300–4309 (2013).
PubMed PubMed Central Google Scholar
32.
Ekasari, J. et al. The size of biofloc determines the nutritional composition and the nitrogen recovery by aquaculture animals. Aquaculture 426, 105–111 (2014).
Google Scholar
33.
Hargreaves, J. A. Biofloc production systems for aquaculture. SRAC Publ. 4503, 1–12 (2013).
Google Scholar
34.
Beardsley, C., Moss, S., Malfatti, F. & Azam, F. Quantitative role of shrimp fecal bacteria in organicmatter fluxes in a recirculating shrimp aquaculture system. FEMS Microbiol. Ecol. 77, 134–145 (2011).
CAS PubMed Google Scholar
35.
Alfiansah, Y. R. et al. Bacterial abundance and community composition in pond water from shrimp aquaculture systems with different stocking densities. Front. Microbiol. 9, 2457 (2018).
PubMed PubMed Central Google Scholar
36.
Xiong, J. et al. The temporal scaling of bacterioplankton composition: high turnover and predictability during shrimp cultivation. Microb. Ecol. 67, 256–264 (2014).
PubMed Google Scholar
37.
Yang, W. et al. Nutrient enrichment during shrimp cultivation alters bacterioplankton assemblies and destroys community stability. Ecotoxicol. Environ. Saf. 156, 366–374 (2018).
CAS PubMed Google Scholar
38.
Boyd, C. E. & Tucker, C. S. pH in Handbook for Aquaculture Water Quality 95–112 (Craftmaster Printers, Auburn, Alabama, 2002).
Google Scholar
39.
Zhang, D. et al. Bacterioplankton assemblages as biological indicators of shrimp health status. Ecol. Indic. 38, 218–224 (2014).
CAS Google Scholar
40.
Chankaew, S., O-Thong, S. & Songnoi, Y. Halomonas sp. SKNB4, a proficient ammonium oxidizing bacterium. In Proceeding of the 3rd National Meeting on Biodiversity Management in Thailand 4, 186–191 (2016).
41.
Chankaew, S., O-Thong, S. & Sangnoi, Y. Nitrogen removal efficiency of salt-tolerant heterotrophic nitrifying bacteria. Chiang Mai J. Sci 44, 1–10 (2017).
Google Scholar
42.
Sangnoi, Y., Chankaew, S. & O-Thong, S. Indigenous Halomonas spp., the potential nitrifying bacteria for saline ammonium waste water treatment. Pak. J. Biol. Sci. 20, 52–58 (2016).
Google Scholar
43.
Bourne, D. G. et al. Microbial community dynamics in a larval aquaculture system of the tropical rock lobster Panulirus ornatus. Aquaculture 242, 31–51 (2004).
Google Scholar
44.
Li, Y. et al. Diversity of cultivable protease-producing bacteria in Laizhou Bay sediments, Bohai Sea, China. Front. Microbiol. 8, 1–10 (2017).
ADS Google Scholar
45.
Cao, H. et al. Isolation and characterization of a denitrifying Acinetobacter baumannii H1 using NO2–N as nitrogen source from shrimp farming ponds. Afr. J. Microbiol. Res. 6, 2258–2264 (2012).
ADS CAS Google Scholar
46.
Vijayan, K. K. et al. A brackishwater isolate of Pseudomonas PS-102, a potential antagonistic bacterium against pathogenic vibrios in penaeid and non-penaeid rearing systems. Aquaculture 251, 192–200 (2006).
CAS Google Scholar
47.
Luis-Villaseñor, I. E. et al. Effect of beneficial bacteria on larval culture of Pacific whiteleg shrimp Litopenaeus vannamei. Afr. J. Microbiol. Res. 7, 3471–3478 (2013).
Google Scholar
48.
Liu, Y. et al. PHB-degrading bacteria isolated from the gastrointestinal tract of aquatic animals as protective actors against luminescent vibriosis. FEMS Microbiol. Ecol. 74, 196–204 (2010).
CAS PubMed Google Scholar
49.
Shade, A. et al. Fundamentals of microbial community resistance and resilience. Front. Microbiol. 3, 1–19 (2012).
ADS Google Scholar
50.
Dai, W., Qiu, Q., Chen, J. & Xiong, J. Gut eukaryotic disease-discriminatory taxa are indicative of Pacific white shrimp (Litopenaeus vannamei) white feces syndrome. Aquaculture 506, 154–160 (2019).
Google Scholar
51.
Ventosa, A., Nieto, J. J. & Oren, A. Biology of moderately halophilic aerobic bacteria. Microbiol. Mol. Biol. Rev. 62, 504–544 (1998).
CAS PubMed PubMed Central Google Scholar
52.
DiRita, V. J. Co-ordinate expression of virulence genes by ToxR in Vibrio cholerae. Mol. Microbiol. 6, 451–458 (1992).
CAS PubMed Google Scholar
53.
Williams, S. L., Jensen, R. V., Kuhn, D. D. & Stevens, A. M. Analyzing the metabolic capabilities of a Vibrio parahaemolyticus strain that causes early mortality syndrome in shrimp. Aquaculture 476, 44–48 (2017).
CAS Google Scholar
54.
Sirikharin, R. et al. Characterization and PCR detection of binary, pir-like toxins from Vibrio parahaemolyticus isolates that cause acute hepatopancreatic necrosis disease (AHPND) in shrimp. PLoS ONE 10, e0126987 (2015).
PubMed PubMed Central Google Scholar
55.
Whitaker, W. B. et al. Modulation of responses of Vibrio parahaemolyticus O3:K6 to pH and temperature stresses by growth at different salt concentrations. Appl. Environ. Microbiol. 76, 4720–4729 (2010).
CAS PubMed PubMed Central Google Scholar
56.
Alonzo, K. H. F., Cadiz, R. E., Traifalgar, R. F. M. & Corre, V. L. Immune responses and susceptibility to Vibrio parahaemolyticus colonization of juvenile Penaeus vannamei at increased water temperature. AACL Bioflux 10, 1238–1247 (2017).
Google Scholar
57.
Gomez-Gil, B., Roque, A. & Velasco-Blanco, G. Culture of Vibrio alginolyticus C7b, a potential probiotic bacterium, with the microalga Chaetoceros muelleri. Aquaculture 211, 43–48 (2002).
Google Scholar
58.
Zorriehzahra, M. J. et al. Probiotics as beneficial microbes in aquaculture: an update on their multiple modes of action: a review. Vet Q 36, 228–241 (2016).
PubMed Google Scholar
59.
Allison, S. D. & Martiny, J. B. H. Resistance, resilience, and redundancy in microbial communities. Proc. Natl. Acad. Sci. USA 105, 11512–11519 (2008).
ADS CAS PubMed Google Scholar
60.
Mandakovic, D. et al. Structure and co-occurrence patterns in microbial communities under acute environmental stress reveal ecological factors fostering resilience. Sci. Rep. 8, 5875 (2018).
ADS PubMed PubMed Central Google Scholar
61.
Anjaini, J., Fadjar, M., Andayani, S., Agustin, I. & Bayu, I. Histopathological in gills, hepatopancreas and gut of white shrimp (Litopenaeus vannamei) infected white feces disease (WFD). Res. J. Life Sci. 5, 183–194 (2018).
Google Scholar
62.
Nercessian, O., Noyes, E., Kalyuzhnaya, M. G., Lidstrom, M. E. & Chistoserdova, L. Bacterial populations active in metabolism of C1 compounds in the sediment of Lake Washington, a freshwater lake. Appl. Environ. Microbiol. 71, 6885–6899 (2005).
CAS PubMed PubMed Central Google Scholar
63.
Green, M. R. & Sambrook, J. Isolation of high-molecular-weight DNA using organic solvents. Cold Spring Harb. Protoc. 10, 356–359 (2017).
Google Scholar
64.
Klindworth, A. et al. Evaluation of general 16S ribosomal RNA gene PCR primers for classical and next-generation sequencing-based diversity studies. Nucleic Acids Res. 41, e1 (2013).
CAS PubMed Google Scholar
65.
Bolger, A. M., Lohse, M. & Usadel, B. Trimmomatic: a flexible trimmer for Illumina sequence data. Bioinformatics 30, 2114–2120 (2014).
CAS PubMed PubMed Central Google Scholar
66.
Zhang, J., Kobert, K., Flouri, T. & Stamatakis, A. PEAR: a fast and accurate Illumina Paired-End reAd mergeR. Bioinformatics 30, 614–620 (2014).
CAS PubMed Google Scholar
67.
Eren, A. M. et al. Oligotyping: Differentiating between closely related microbial taxa using 16S rRNA gene data. Methods Ecol. Evol. 4, 1111–1119 (2013).
PubMed Central Google Scholar
68.
Ramette, A. & Buttigieg, P. L. The R package OTU2ot for implementing the entropy decomposition of nucleotide variation in sequence data. Front. Microbiol. 5, 1–9 (2014).
Google Scholar
69.
Utter, D. R., Mark Welch, J. L. & Borisy, G. G. Individuality, stability, and variability of the plaque microbiome. Front. Microbiol. 7, 564 (2016).
PubMed PubMed Central Google Scholar
70.
Pruesse, E., Peplies, J. & Glöckner, F. O. SINA: accurate high-throughput multiple sequence alignment of ribosomal RNA genes. Bioinformatics 28, 1823–1829 (2012).
CAS PubMed PubMed Central Google Scholar
71.
Kurtz, Z. D. et al. Sparse and compositionally robust inference of microbial ecological networks. PLoS Comput. Biol. 11, 1–25 (2015).
Google Scholar
72.
Csárdi, G. & Nepusz, T. The igraph software package for complex network research. InterJournal Complex Syst. 1695, 1–9 (2006).
Google Scholar
73.
Langfelder, P. & Horvath, S. WGCNA: an R package for weighted correlation network analysis. BMC Bioinform 9, 559 (2008).
Google Scholar
74.
Breiman, L., Cutler, A., Liaw, A. & Wiener, M. Breiman and Cutler’s random forests for classification and regression version 4.6–14. 14 pp. https://www.stat.berkeley.edu/~breiman/RandomForests/ (2018).
75.
Oksanen, J. Vegan: Community Ecology Package. R package version 2.4–3. 1–12. https://CRAN.R-project.org/package=vegan. (2017)..
76.
Pinheiro, J. et al. Linear and Nonlinear Mixed Effects Models. 157 pp. R package version 3.1–131, https://CRAN.R-project.org/package=nlme. (2017).
77.
Warnes, A. G. R. et al. Various R programming tools for plotting data. 45 pp. https://CRAN.R-project.org/package=gplots. (2016).
78.
Diepenbroek, M. et al. Towards an integrated biodiversity and ecological research data management and archiving platform : the German federation for the curation of biological data ( GFBio ). Inform. 2014 – Big Data Komplexität meistern. GI-Edition Lect. Notes Informatics – Proc. P-232, 1711–1724 (2014).
79.
Yilmaz, P. et al. Minimum information about a marker gene sequence (MIMARKS) and minimum information about any (x) sequence (MIxS) specifications. Nat. Biotechnol. 29, 415–420 (2011).
CAS PubMed PubMed Central Google Scholar More