More stories

  • in

    Digitally enabled infrastructure for flood and drought research

    Empirical data are crucial for developing risk-management and governance strategies for floods and droughts (H. Kreibich et al. Nature 608, 80–86; 2022). Pending business-case approval, UK Research and Innovation — the government’s main research-funding body — intends to award £38 million (US$44 million) to the Natural Environment Research Council to create a digitally enabled research infrastructure for building resilience against such catastrophes (go.nature.com/3cw1mfn).
    Competing Interests
    The authors declare no competing interests. More

  • in

    Split westerlies over Europe in the early Little Ice Age

    Hurrell, J. W. Decadal trends in the North Atlantic Oscillation: regional temperatures and precipitation. Science 269, 676–679 (1995).ADS 
    CAS 
    PubMed 
    Article 

    Google Scholar 
    Woollings, T. et al. Blocking and its response to climate change. Curr. Clim. Change Rep. 4, 287–300 (2018).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Grams, C. M., Beerli, R., Pfenninger, S., Staffell, I. & Wernli, H. Balancing Europe’s wind-power output through spatial deployment informed by weather regimes. Nat. Clim. Chang. 7, 557–562 (2017).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Madonna, E., Li, C., Grams, C. M. & Woollings, T. The link between eddy-driven jet variability and weather regimes in the North Atlantic-European sector. Q. J. R. Meteorol. Soc. 143, 2960–2972 (2017).ADS 
    Article 

    Google Scholar 
    Tyrlis, E. & Hoskins, B. J. Aspects of a northern hemisphere atmospheric blocking climatology. J. Atmos. Sci. 65, 1638–1652 (2008).ADS 
    Article 

    Google Scholar 
    Barnston, A. G. & Livezey, R. E. Classification, seasonality and persistence of low-frequency atmospheric circulation patterns. Mon. Weather Rev. 115, 1083–1126 (1987).ADS 
    Article 

    Google Scholar 
    Cattiaux, J. et al. Winter 2010 in Europe: A cold extreme in a warming climate. Geophys. Res. Lett. 37, 1–6 (2010).Article 

    Google Scholar 
    Barriopedro, D., García-Herrera, R., Lupo, A. R. & Hernández, E. A climatology of northern hemisphere blocking. J. Clim. 19, 1042–1063 (2006).ADS 
    Article 

    Google Scholar 
    Brunner, L., Hegerl, G. C. & Steiner, A. K. Connecting atmospheric blocking to European temperature extremes in spring. J. Clim. 30, 585–594 (2017).ADS 
    Article 

    Google Scholar 
    Trouet, V. et al. Persistent positive North Atlantic Oscillation mode dominated the Medieval Climate Anomaly. Science 324, 78–80 (2009).ADS 
    CAS 
    PubMed 
    Article 

    Google Scholar 
    Ortega, P. et al. A model-tested North Atlantic Oscillation reconstruction for the past millennium. Nature 523, 71–74 (2015).ADS 
    CAS 
    PubMed 
    Article 

    Google Scholar 
    Moffa-Sánchez, P. et al. Variability in the northern North Atlantic and Arctic Oceans across the last two millennia: A review. Paleoceanogr. Paleoclimatology 34, 1399–1436 (2019).ADS 
    Article 

    Google Scholar 
    Brehm, N. et al. Eleven-year solar cycles over the last millennium revealed by radiocarbon in tree rings. Nat. Geosci. 14, 10–15 (2021).ADS 
    CAS 
    Article 

    Google Scholar 
    Miles, M. W., Andresen, C. S., & Dylmer, C. V. Evidence for extreme export of Arctic sea ice leading the abrupt onset of the Little Ice Age. Sci. Adv. 6, aba4320 (2020).Lapointe, F. & Bradley, R. S. Little Ice Age abruptly triggered by intrusion of Atlantic waters into the Nordic Seas. Sci. Adv. 7, 1–13 (2021).Article 

    Google Scholar 
    Sigl, M. et al. Timing and climate forcing of volcanic eruptions for the past 2,500 years. Nature 523, 543–549 (2015).ADS 
    CAS 
    PubMed 
    Article 

    Google Scholar 
    Pinto, J. G. & Raible, C. C. Past and recent changes in the North Atlantic oscillation. Wiley Interdiscip. Rev. Clim. Chang. 3, 79–90 (2012).Article 

    Google Scholar 
    Lehner, F., Raible, C. C. & Stocker, T. F. Testing the robustness of a precipitation proxy-based North Atlantic Oscillation reconstruction. Quat. Sci. Rev. 45, 85–94 (2012).ADS 
    Article 

    Google Scholar 
    Trouet, V., Scourse, J. D. & Raible, C. C. North Atlantic storminess and Atlantic Meridional Overturning Circulation during the last Millennium: Reconciling contradictory proxy records of NAO variability. Glob. Planet. Chang. 84–85, 48–55 (2012).ADS 
    Article 

    Google Scholar 
    Sousa, P. M. et al. Responses of European precipitation distributions and regimes to different blocking locations. Clim. Dynam. 48, 1141–1160 (2017).ADS 
    Article 

    Google Scholar 
    Bueh, C. & Nakamura, H. Scandinavian pattern and its climatic impact. Q. J. Roy. Meteor. Soc. 133, 2117–2131 (2007).ADS 
    Article 

    Google Scholar 
    Comas-Bru, L. & Mcdermott, F. Impacts of the EA and SCA patterns on the European twentieth century NAO-winter climate relationship. Q. J. Roy. Meteorol. Soc. 140, 354–363 (2014).ADS 
    Article 

    Google Scholar 
    Moore, G. W. K., Renfrew, I. A. & Pickart, R. S. Multidecadal mobility of the North Atlantic Oscillation. J. Clim. 26, 2453–2466 (2013).ADS 
    Article 

    Google Scholar 
    Woollings, T. J., Hoskins, B., Blackburn, M. & Berrisford, P. A new Rossby wave-breaking interpretation of the North Atlantic Oscillation. J. Atmos. Sci. 65, 609–626 (2008).ADS 
    Article 

    Google Scholar 
    Sousa, P. M., Barriopedro, D., García-Herrera, R., Woollings, T. & Trigo, R. M. A new combined detection algorithm for blocking and subtropical ridges. J. Clim. 34, 1–64 (2021).Fairchild, I. J. et al. Controls on trace element (Sr-Mg) compositions of carbonate cave waters: Implications for speleothem climatic records. Chem. Geol. 166, 255–269 (2000).ADS 
    CAS 
    Article 

    Google Scholar 
    Fairchild, I. J. et al. Modification and preservation of environmental signals in speleothems. Earth-Sci. Rev. 75, 105–153 (2006).ADS 
    CAS 
    Article 

    Google Scholar 
    Wassenburg, J. A. et al. Calcite Mg and Sr partition coefficients in cave environments: Implications for interpreting prior calcite precipitation in speleothems. Geochim. Cosmochim. Acta 269, 581–596 (2020).ADS 
    CAS 
    Article 

    Google Scholar 
    Fairchild, I. J. & Treble, P. C. Trace elements in speleothems as recorders of environmental change. Quat. Sci. Rev. 28, 449–468 (2009).ADS 
    Article 

    Google Scholar 
    Day, C. C. & Henderson, G. M. Controls on trace-element partitioning in cave-analogue calcite. Geochim. Cosmochim. Acta 120, 612–627 (2013).ADS 
    CAS 
    Article 

    Google Scholar 
    Wassenburg, J. A. et al. Determination of aragonite trace element distribution coefficients from speleothem calcite–aragonite transitions. Geochim. Cosmochim. Acta 190, 347–367 (2016).ADS 
    CAS 
    Article 

    Google Scholar 
    Moberg, A. et al. Highly variable Northern Hemisphere temperatures reconstructed from low- and high-resolution proxy data. Nature 433, 613–617 (2005).ADS 
    CAS 
    PubMed 
    Article 

    Google Scholar 
    Carolin, S. A. et al. Precise timing of abrupt increase in dust activity in the Middle East coincident with 4.2 ka social change. Proc. Natl Acad. Sci. 116, 67–72 (2019).ADS 
    CAS 
    PubMed 
    Article 

    Google Scholar 
    Mayewski, P. A. et al. Major features and forcing of high-latitude northern hemisphere atmospheric circulation using a 110,000-year-long glaciochemical series. J. Geophys. Res. Ocean 102, 26345–26366 (1997).ADS 
    CAS 
    Article 

    Google Scholar 
    Baker, A., Hellstrom, J. C., Kelly, B. F. J., Mariethoz, G. & Trouet, V. A composite annual-resolution stalagmite record of North Atlantic climate over the last three millennia. Sci. Rep. 5, 10307 (2015).ADS 
    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Orme, L. C. et al. Aeolian sediment reconstructions from the Scottish Outer Hebrides: Late Holocene storminess and the role of the North Atlantic Oscillation. Quat. Sci. Rev. 132, 15–25 (2016).ADS 
    Article 

    Google Scholar 
    Fohlmeister, J. et al. Bunker Cave stalagmites: An archive for central European Holocene climate variability. Clim 8, 1751–1764 (2012).ADS 

    Google Scholar 
    Waltgenbach, S. et al. Climate variability in central Europe during the last 2500 years reconstructed from four high-resolution multi-proxy speleothem records. Geosci. 11, 116 (2021).Breitenbach, S. F. M. et al. Holocene interaction of maritime and continental climate in Central Europe: New speleothem evidence from Central Germany. Glob. Planet. Chang. 176, 144–161 (2019).ADS 
    Article 

    Google Scholar 
    Sundqvist, H. S., Holmgren, K., Moberg, A., Spötl, C. & Mangini, A. Stable isotopes in a stalagmite from NW Sweden document environmental changes over the past 4000 years. Boreas 39, 77–86 (2010).Article 

    Google Scholar 
    Vasskog, K., Paasche, Ø., Nesje, A., Boyle, J. F. & Birks, H. J. B. A new approach for reconstructing glacier variability based on lake sediments recording input from more than one glacier. Quat. Res. 77, 192–204 (2012).Article 

    Google Scholar 
    Fohlmeister, J., Vollweiler, N., Spötl, C. & Mangini, A. COMNISPA II: Update of a mid-European isotope climate record, 11 ka to present. Holocene 23, 749–754 (2013).ADS 
    Article 

    Google Scholar 
    Thatcher, D. L. et al. Hydroclimate variability from western Iberia (Portugal) during the Holocene: Insights from a composite stalagmite isotope record. Holocene 30, 966–981 (2020).ADS 
    Article 

    Google Scholar 
    Martín-Chivelet, J. et al. Land surface temperature changes in Northern Iberia since 4000 yr BP, based on δ13C of speleothems. Glob. Planet. Change 77, 1–12 (2011).ADS 
    Article 

    Google Scholar 
    Fleitmann, D. et al. Timing and climatic impact of Greenland interstadials recorded in stalagmites from northern Turkey. Geophys. Res. Lett. 36, L19707 (2009).ADS 
    Article 
    CAS 

    Google Scholar 
    Ait Brahim, Y. et al. Speleothem records decadal to multidecadal hydroclimate variations in southwestern Morocco during the last millennium. Earth Planet. Sci. Lett. 476, 1–10 (2017).ADS 
    CAS 
    Article 

    Google Scholar 
    Ait Brahim, Y. et al. Ocean and atmospheric circulation during the Holocene: Insights from western Mediterranean speleothems. Geophys. Res. Lett. 46, 7614–7623 (2019).ADS 
    Article 

    Google Scholar 
    Fabiano, F. et al. Euro-Atlantic weather regimes in the PRIMAVERA coupled climate simulations: impact of resolution and mean state biases on model performance. Clim. Dyn. 54, 5031–5048 (2020).Article 

    Google Scholar 
    Müller, J. et al. Holocene cooling culminates in sea ice oscillations in Fram Strait. Quat. Sci. Rev. 47, 1–14 (2012).ADS 
    Article 

    Google Scholar 
    Perner, K., Moros, M., Lloyd, J. M., Jansen, E. & Stein, R. Mid to late Holocene strengthening of the East Greenland Current linked to warm subsurface Atlantic water. Quat. Sci. Rev. 129, 296–307 (2015).ADS 
    Article 

    Google Scholar 
    Sha, L., Jiang, H. & Knudsen, K. L. Diatom evidence of climatic change in Holsteinsborg Dyb, west of Greenland, during the last 1200 years. Holocene 22, 347–358 (2012).ADS 
    Article 

    Google Scholar 
    Miller, G. H. et al. Abrupt onset of the Little Ice Age triggered by volcanism and sustained by sea-ice/ocean feedbacks. Geophys. Res. Lett. 39, 1–5 (2012).Article 

    Google Scholar 
    Lehner, F., Born, A., Raible, C. C. & Stocker, T. F. Amplified inception of European little Ice Age by sea ice-ocean-atmosphere feedbacks. J. Clim. 26, 7586–7602 (2013).ADS 
    Article 

    Google Scholar 
    Spielhagen, R. F. et al. Enhanced modern heat transfer to the Arctic by warm Atlantic water. Science 331, 450–453 (2011).ADS 
    CAS 
    PubMed 
    Article 

    Google Scholar 
    Lapointe, F. et al. Annually resolved Atlantic sea surface temperature variability over the past 2,900 years. Proc. Natl Acad. Sci. 117, 27171–27178 (2020).ADS 
    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Kinnard, C. et al. Reconstructed changes in Arctic sea ice over the past 1,450 years. Nature 479, 509–512 (2011).ADS 
    CAS 
    PubMed 
    Article 

    Google Scholar 
    Ringgaard, I. M., Yang, S., Kaas, E. & Christensen, J. H. Barents-Kara sea ice and European winters in EC-Earth. Clim. Dyn. 54, 3323–3338 (2020).Article 

    Google Scholar 
    Sato, K., Inoue, J. & Watanabe, M. Influence of the Gulf Stream on the Barents Sea ice retreat and Eurasian coldness during early winter. Environ. Res. Lett. 9, 084009 (2014).Crespin, E., Goosse, H., Fichefet, T. & Mann, M. E. The 15th century Arctic warming in coupled model simulations with data assimilation. Clim. Past 5, 389–401 (2009).Article 

    Google Scholar 
    Honda, M., Inoue, J. & Yamane, S. Influence of low Arctic sea-ice minima on anomalously cold Eurasian winters. Geophys. Res. Lett. 36, 1–6 (2009).Article 

    Google Scholar 
    Gong, T. & Luo, D. Ural blocking as an amplifier of the Arctic sea ice decline in winter. J. Clim. 30, 2639–2654 (2017).ADS 
    Article 

    Google Scholar 
    Liu, J., Curry, J. A., Wang, H., Song, M. & Horton, R. M. Impact of declining Arctic sea ice on winter snowfall. Proc. Natl Acad. Sci. 109, 4074–4079 (2012).ADS 
    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Moffa-Sánchez, P., Born, A., Hall, I. R., Thornalley, D. J. R. & Barker, S. Solar forcing of North Atlantic surface temperature and salinity over the past millennium. Nat. Geosci. 7, 275–278 (2014).ADS 
    Article 
    CAS 

    Google Scholar 
    Schwander, M., Rohrer, M., Brönnimann, S. & Malik, A. Influence of solar variability on the occurrence of Central European weather types from 1763 to 2009. Clim. Past 13, 1199–1212 (2017).Article 

    Google Scholar 
    Martin-Puertas, C. et al. Regional atmospheric circulation shifts induced by a grand solar minimum. Nat. Geosci. 5, 397–401 (2012).ADS 
    CAS 
    Article 

    Google Scholar 
    Ineson, S. et al. Solar forcing of winter climate variability in the northern hemisphere. Nat. Geosci. 4, 753–757 (2011).ADS 
    CAS 
    Article 

    Google Scholar 
    Woollings, T., Lockwood, M., Masato, G., Bell, C. & Gray, L. Enhanced signature of solar variability in Eurasian winter climate. Geophys. Res. Lett. 37, L20805 (2010).Ait Brahim, Y. et al. Multi-decadal to centennial hydro-climate variability and linkage to solar forcing in the Western Mediterranean during the last 1000 years. Sci. Rep. 8, 1–8 (2018).ADS 
    CAS 
    Article 

    Google Scholar 
    Zolotova, N. V. & Ponyavin, D. I. Is the new Grand minimum in progress? J. Geophys. Res. Sp. Phys. 119, 3281–3285 (2014).ADS 
    Article 

    Google Scholar 
    Guarino, M. V. et al. Sea-ice-free Arctic during the Last Interglacial supports fast future loss. Nat. Clim. Chang. 10, 928–932 (2020).ADS 
    Article 

    Google Scholar 
    Scholz, D. & Hoffmann, D. L. StalAge – An algorithm designed for construction of speleothem age models. Quat. Geochronol. 6, 369–382 (2011).Article 

    Google Scholar 
    Shen, C.-C. et al. High-precision and high-resolution carbonate 230Th dating by MC-ICP-MS with SEM protocols. Geochim. Cosmochim. Acta 99, 71–86 (2012).ADS 
    CAS 
    Article 

    Google Scholar 
    Lo, L. et al. Determination of element/Ca ratios in foraminifera and corals using cold- and hot-plasma techniques in inductively coupled plasma sector field mass spectrometry. J. Asian Earth Sci. 81, 115–122 (2014).ADS 
    Article 

    Google Scholar  More

  • in

    The judicious use of finite marine resources can sustain Atlantic salmon (salmo salar) aquaculture to 2100 and beyond

    The State of World Fisheries and Aquaculture 2020: Sustainability in Action (FAO, 2020); https://doi.org/10.4060/ca9229enFish to 2030: Prospects for Fisheries and Aquaculture (World Bank, 2013).OECD–FAO Agricultural Outlook 2020–2029 (OECD and FAO, 2020).Turchini, G. M., Trushenski, J. T. & Glencross, B. D. Thoughts for the future of aquaculture nutrition: realigning perspectives to reflect contemporary issues related to judicious use of marine resources in aquafeeds. N. Am. J. Aquac. 81, 13–39 (2019).Article 

    Google Scholar 
    Fishmeal and Fish Oil—Case Study Monthly Highlights No. 4/2019, 43 (EUMOFA, 2019).Tacon, A. G. J. & Metian, M. Global overview on the use of fish meal and fish oil in industrially compounded aquafeeds: trends and future prospects. Aquaculture 285, 146–158 (2008).CAS 
    Article 

    Google Scholar 
    Cao, L. et al. China’s aquaculture and the world’s wild fisheries. Science 347, 133–135 (2015).ADS 
    CAS 
    Article 

    Google Scholar 
    Aranda, M. Developments on fisheries management in Peru: the new individual vessel quota system for the anchoveta fishery. Fish. Res. 96, 308–312 (2009).Article 

    Google Scholar 
    Shepherd, C. J. & Jackson, A. J. Global fishmeal and fish-oil supply: inputs, outputs and markets. J. Fish Biol. 83, 1046–1066 (2013).CAS 
    Article 

    Google Scholar 
    Cottrell, R. S., Blanchard, J. L., Halpern, B. S., Metian, M. & Froehlich, H. E. Global adoption of novel aquaculture feeds could substantially reduce forage fish demand by 2030. Nat. Food 1, 301–308 (2020).Article 

    Google Scholar 
    Froehlich, H. E., Jacobsen, N. S., Essington, T. E., Clavelle, T. & Halpern, B. S. Avoiding the ecological limits of forage fish for fed aquaculture. Nat. Sustain. 1, 298–303 (2018).Article 

    Google Scholar 
    Turchini, G. M. Fish oils, misconceptions and the environment. Am. J. Public Health 103, e4 (2013).Article 

    Google Scholar 
    Schreiber, M. A. & Halliday, A. Uncommon among the commons? Disentangling the sustainability of the Peruvian anchovy fishery. Ecol. Soc. 18, 12 (2013).
    Google Scholar 
    Tacon, A. G. J. & Metian, M. Fishing for feed or fishing for food: increasing global competition for small pelagic forage fish. Ambio 38, 294–302 (2009).Article 

    Google Scholar 
    Aas, T. S., Ytrestøyl, T. & Åsgård, T. Utilization of feed resources in the production of Atlantic salmon (Salmo salar) in Norway: an update for 2016. Aquac. Rep. 15, 100216 (2019).Article 

    Google Scholar 
    Shepherd, C. J., Monroig, O. & Tocher, D. R. Future availability of raw materials for salmon feeds and supply chain implications: the case of Scottish farmed salmon. Aquaculture 467, 49–62 (2017).Article 

    Google Scholar 
    Tocher, D. R. Omega-3 long-chain polyunsaturated fatty acids and aquaculture in perspective. Aquaculture 449, 94–107 (2015).CAS 
    Article 

    Google Scholar 
    Sissener, N. H. Are we what we eat? Changes to the feed fatty acid composition of farmed salmon and its effects through the food chain. J. Exp. Biol. 221, jeb161521 (2018).Article 

    Google Scholar 
    Sprague, M., Dick, J. R. & Tocher, D. R. Impact of sustainable feeds on omega-3 long-chain fatty acid levels in farmed Atlantic salmon, 2006–2015. Sci. Rep. 6, 21892 (2016).ADS 
    CAS 
    Article 

    Google Scholar 
    Hertrampf, J. W. & Piedad-Pascual, F. Handbook on Ingredients for Aquaculture Feeds (Kluwer Academic, 2000).Sargent, J. & Tacon, A. Development of farmed fish: a nutritionally necessary alternative to meat. Proc. Nutr. Soc. 58, 377–383 (1999).CAS 
    Article 

    Google Scholar 
    Turchini, G. M., Nichols, P. D., Barrow, C. & Sinclair, A. J. Jumping on the omega-3 bandwagon: distinguishing the role of long-chain and short-chain omega-3 fatty acids. Crit. Rev. Food Sci. Nutr. 52, 795–803 (2012).CAS 
    Article 

    Google Scholar 
    Ghasemifard, S., Wang, F., Sinclair, A. J., Elliott, G. & Turchini, G. M. How does high DHA fish oil affect health? A systematic review of evidence. Crit. Rev. Food Sci. Nutr. 59, 1684–1727 (2019).CAS 
    Article 

    Google Scholar 
    EFSA Panel on Dietetic Products, Nutrition and Allergies (NDA) Scientific opinion on the tolerable upper intake level of eicosapentaenoic acid (EPA), docosahexaenoic acid (DHA) and docosapentaenoic acid (DPA). EFSA J. 10, 2815 (2012).Kris-Etherton, P. M., Grieger, J. A. & Etherton, T. D. Dietary reference intakes for DHA and EPA. Prostaglandins Leukot. Essent. Fatty Acids 81, 99–104 (2009).CAS 
    Article 

    Google Scholar 
    Global Recommendations for EPA and DHA Intake (GOED, 2014).GOED Publishes EPA and DHA Intake Recommendations (GOED, 2016).Ghasemifard, S., Sinclair, A. J., Kaur, G., Lewandowski, P. & Turchini, G. M. What is the most effective way of increasing the bioavailability of dietary long chain omega-3 fatty acids—daily vs. weekly administration of fish oil? Nutrients 7, 5628–5645 (2015).CAS 
    Article 

    Google Scholar 
    Cottrell, R. S. et al. Time to rethink trophic levels in aquaculture policy. Rev. Aquac. https://doi.org/10.1111/raq.12535 (2021).Shepherd, C. & Little, D. Aquaculture-are the criticisms justified? Environmental impacts and use of resources with special reference to farming Atlantic salmon. World 4, 37–52 (2014).
    Google Scholar 
    Tacon, A. G. J. & Metian, M. Feed matters: satisfying the feed demand of aquaculture. Rev. Fish. Sci. Aquac. 23, 1–10 (2015).Article 

    Google Scholar 
    Mock, T. S. et al. Seasonal effects on growth and product quality in Atlantic salmon fed diets containing terrestrial oils as assessed by a long-term, on-farm growth trial. Aquac. Nutr. https://doi.org/10.1111/anu.13200 (2020).Jackson, A. & Newton, R. W. Project to Model the Use of Fisheries By-products in the Production of Marine Ingredients with Special Reference to the Omega 3 Fatty Acids, EPA and DHA (IFFO, 2016).Wijkström, U. N. Is feeding fish with fish a viable practice? in Farming the Waters for People and Food: Proc. Global Conference on Aquaculture 2010 (eds Subasinghe, R.P. et al.) 33–55 (FAO and NACA, 2012).The Evolution of Sustainability Metrics for Marine Ingredients—New (IFFO, 2022); https://www.iffo.com/evolution-sustainability-metrics-marine-ingredients-newColombo, S. M. & Turchini, G. M. ‘Aquafeed 3.0’: creating a more resilient aquaculture industry with a circular bioeconomy framework. Rev. Aquac. 13, 1156–1158 (2021).Article 

    Google Scholar 
    Asche, F. & Tveterås, S. On the relationship between aquaculture and reduction fisheries. J. Agric. Econ. 55, 245–265 (2004).Article 

    Google Scholar 
    Alder, J., Campbell, B., Karpouzi, V., Kaschner, K. & Pauly, D. Forage fish: from ecosystems to markets. Annu. Rev. Environ. Resour. 33, 153–166 (2008).Article 

    Google Scholar 
    Welch, A. et al. From fishing to the sustainable farming of carnivorous marine finfish. Rev. Fish. Sci. 18, 235–247 (2010).Article 

    Google Scholar 
    Tanner, J. E. Southern Bluefin Tuna Aquaculture Subprogram: Tuna Environment Subproject—Development of Regional Environmental Sustainability Assessments for Tuna Sea-Cage Aquaculture Project No. 2001/104 (FRDC, 2007).Jeffriess, B. A Review of Tuna Growth Performance in Ranching and Farming Operations (ASBTIA, 2015).Kaushik, T. & Max, S. Taking the fish-in fish-out ratio a step further. Aquac. Eur. 35, 15–17 (2010).
    Google Scholar 
    Bou, M. et al. Requirements of n-3 very long-chain PUFA in Atlantic salmon (Salmo salar L): effects of different dietary levels of EPA and DHA on fish performance and tissue composition and integrity. Br. J. Nutr. 117, 30–47 (2017).CAS 
    Article 

    Google Scholar 
    NRC Nutrient Requirements of Fish and Shrimp (National Academies Press, 2011); https://doi.org/10.17226/13039Rosenlund, G., Torstensen, B. E., Stubhaug, I., Usman, N. & Sissener, N. H. Atlantic salmon require long-chain n-3 fatty acids for optimal growth throughout the seawater period. J. Nutr. Sci. 5, e19 (2016).Article 

    Google Scholar 
    Mock, T. S. et al. A systematic review and analysis of long-term growth trials on the effect of diet on omega-3 fatty acid levels in the fillet tissue of post-smolt Atlantic salmon. Aquaculture 516, 734643 (2020).CAS 
    Article 

    Google Scholar 
    Mock, T. S. et al. The impact of dietary protein:lipid ratio on growth performance, fatty acid metabolism, product quality and waste output in Atlantic salmon (Salmo salar). Aquaculture 501, 191–201 (2019).CAS 
    Article 

    Google Scholar 
    Sanden, M., Stubhaug, I., Berntssen, M. H. G., Lie, Ø. & Torstensen, B. E. Atlantic salmon (Salmo salar L.) as a net producer of long-chain marine ω-3 fatty acids. J. Agric. Food Chem. 59, 12697–12706 (2011).CAS 
    Article 

    Google Scholar 
    Fishery and Aquaculture Statistics (FishStatJ) (FAO Fisheries and Aquaculture Division, 2022).Ytrestøyl, T., Aas, T. S. & Åsgård, T. Utilisation of feed resources in production of Atlantic salmon (Salmo salar) in Norway. Aquaculture 448, 365–374 (2015).Article 

    Google Scholar  More

  • in

    These rules for an ocean economy would help the whole planet

    My office at the University of California, Santa Barbara, looks out over the coastline. The United States’ first set of offshore oil platforms dot the skyline, the source of the 1969 oil spill that started the modern environmental movement. Enormous cargo ships traverse an ocean mega-highway, bringing goods from around the world and occasionally striking and killing whales. Surfers ride waves, sailing boats head for the islands and, on clear days, the beaches crawl with sunbathers. Recreational fishers cast their lines from the pier, commercial fishers set lobster traps along the coast, and a small mussel farm is hidden below the water just offshore.All of these activities are part of an intensifying ‘blue economy’, withdrawing value from the oceans that cover 71% of our planet. In many ways, this is a good thing. Shipping goods by sea is one of the most environmentally friendly ways to conduct global trade; farmed seafood is highly nutritious and often sustainable; offshore wind has the potential to generate huge amounts of green energy. But soon the already warming, already crowded ocean will reach the same points of no return that humans have reached on much of the land.Indeed, aquaculture, or farming seafood, has increased about 5% each year for the past 30 years, and experts anticipate that this growth will continue for the next few decades. Offshore wind is rapidly expanding; the United Kingdom is building a 1,000-square-kilometre metropolis of wind turbines off its coast, and China quadrupled offshore wind production just last year, adding the equivalent of roughly 17 nuclear power plants. An even more enormous area for wind farms has been proposed off the US Atlantic coast, at 7,000 square kilometres, nearly the size of Puerto Rico. And by 2050, the amount of goods travelling by sea is expected to triple as a result of increasing global population, wealth and trade.This is the dilemma at the centre of my research. For 20 years, I’ve studied how uses of the ocean cumulatively damage marine ecosystems, but also support vibrant human communities. From this work, I’ve come to feel there needs to be a collective deal to ensure that the economic benefits of the blue economy outweigh the ecological costs. I propose that any new ocean activities should be sustainable and also contribute to reduce pressure on the land.There is precedent for such give-and-take deals. In the United States and elsewhere, developers who encroach on wetlands and streams must create or restore equivalent habitats elsewhere, often at ratios of two-to-one or significantly greater (for example, 10 hectares of new wetland for every hectare destroyed). Carbon credits operate in a similar way; fees paid for emissions can go towards planting forests or building renewable energy infrastructure.A planetary deal of this kind should adhere to three constraints to be fair and effective.First, insist on real gains — not coincidental ones. If coal-fired power plants are already being phased out, this shouldn’t count as a balancing factor for new offshore wind. If conservation easements already protect fallow farmland, this can’t work as the counterpoint to new aquaculture farms.Second, actions need to be managed mainly through policy and regulations, not free markets. Left to their own devices, markets rarely incentivize sustainability or truly compensate for damage done to the environment. For example, evidence shows that increasing the amount of farmed fish in a free market does not reduce meat production.Finally, large corporations should bear the brunt of the costs of the planetary deal. Encouraging small operators often improves environmental justice while increasing local livelihoods and economic security by keeping owners and workers local. Compensatory requirements should be proportionally less for these small operators and progressively more for larger ones, analogous to the way income tax works in much of the world.So what might this planetary deal look like? For example, to receive a lease for a new 100-square-kilometre offshore wind farm, a company must restore twice as much coastal habitat. This restored habitat must be additional to any existing efforts to protect habitat, such as current global targets to protect 30% of land and sea.Or, for a new commercial offshore fish farm, enough land used for livestock should be permanently fallowed to remove a volume of livestock equivalent to the intended fish production. Such ‘habitat credits’ could be traded in the same way as carbon credits. The cattle farmer would get paid a tradable credit per reduced cattle head and hectare; an aquaculture company would need to purchase that credit to cover the increase in fish production.None of these options is politically easy — many will say that such policy and market regulation will slow progress and can be circumvented by determined bad actors — but in my opinion we must embrace them. They will require local, national and international coordination and enforcement, as well as public support. Science can help to inform and monitor effectiveness; government agencies will need to determinedly implement change. Moving forward with the blue economy without concomitant reductions in human pressures on both land and sea will simply sacrifice our oceans without planetary gain. That is no deal at all.

    Competing Interests
    The author declares no competing interests. More

  • in

    Climate change threatens terrestrial water storage over the Tibetan Plateau

    Yao, T. et al. The imbalance of the Asian water tower. Nat. Rev. Earth Environ. https://doi.org/10.1038/s43017-022-00299-4 (2022).Yao, T. et al. Different glacier status with atmospheric circulations in Tibetan Plateau and surroundings. Nat. Clim. Change 2, 663–667 (2012).Article 

    Google Scholar 
    Moelg, T., Maussion, F. & Scherer, D. Mid-latitude westerlies as a driver of glacier variability in monsoonal High Asia. Nat. Clim. Change 4, 68–73 (2014).Article 

    Google Scholar 
    Tapley, B. D. et al. Contributions of GRACE to understanding climate change. Nat. Clim. Change 9, 358–369 (2019).Article 

    Google Scholar 
    Kraaijenbrink, P. D. A., Bierkens, M. F. P., Lutz, A. F. & Immerzeel, W. W. Impact of a global temperature rise of 1.5 degrees Celsius on Asia’s glaciers. Nature 549, 257–260 (2017).CAS 
    Article 

    Google Scholar 
    Houborg, R., Rodell, M., Li, B., Reichle, R. & Zaitchik, B. F. Drought indicators based on model-assimilated Gravity Recovery and Climate Experiment (GRACE) terrestrial water storage observations. Water Resour. Res. 48, W07525 (2012).Article 

    Google Scholar 
    Long, D. et al. GRACE satellite monitoring of large depletion in water storage in response to the 2011 drought in Texas. Geophys. Res. Lett. 40, 3395–3401 (2013).Article 

    Google Scholar 
    Long, D. et al. Drought and flood monitoring for a large karst plateau in Southwest China using extended GRACE data. Remote Sens. Environ. 155, 145–160 (2014).Article 

    Google Scholar 
    Reager, J. T., Thomas, B. F. & Famiglietti, J. S. River basin flood potential inferred using GRACE gravity observations at several months lead time. Nat. Geosci. 7, 589–593. (2014).Article 
    CAS 

    Google Scholar 
    Pokhrel, Y. N. et al. Model estimates of sea-level change due to anthropogenic impacts on terrestrial water storage. Nat. Geosci. 5, 389–392 (2012).CAS 
    Article 

    Google Scholar 
    Jacob, T., Wahr, J., Pfeffer, W. T. & Swenson, S. Recent contributions of glaciers and ice caps to sea level rise. Nature 482, 514–518 (2012).CAS 
    Article 

    Google Scholar 
    Immerzeel, W. W. et al. Importance and vulnerability of the world’s water towers. Nature 577, 364–369 (2020).CAS 
    Article 

    Google Scholar 
    Scanlon, B. R. et al. Global models underestimate large decadal declining and rising water storage trends relative to GRACE satellite data. Proc. Natl Acad. Sci. USA 115, E1080–E1089 (2018).CAS 
    Article 

    Google Scholar 
    Pokhrel, Y. N. et al. Incorporation of groundwater pumping in a global land surface model with the representation of human impacts. Water Resour. Res. 51, 78–96 (2015).Article 

    Google Scholar 
    Pokhrel, Y. et al. Global terrestrial water storage and drought severity under climate change. Nat. Clim. Change 11, 226–233 (2021).Article 

    Google Scholar 
    Brun, F., Berthier, E., Wagnon, P., Kaab, A. & Treichler, D. A spatially resolved estimate of High Mountain Asia glacier mass balances from 2000 to 2016. Nat. Geosci. 10, 668–673 (2017).CAS 
    Article 

    Google Scholar 
    Zhao, F., Long, D., Li, X., Huang, Q. & Han, P. Rapid glacier mass loss in the Southeastern Tibetan Plateau since the year 2000 from satellite observations. Remote Sens. Environ. 270, 112853 (2022).Article 

    Google Scholar 
    Farinotti, D., Immerzeel, W. W., de Kok, R. J., Quincey, D. J. & Dehecq, A. Manifestations and mechanisms of the Karakoram glacier anomaly. Nat. Geosci. 13, 8–16 (2020).CAS 
    Article 

    Google Scholar 
    Forsythe, N., Fowler, H. J., Li, X.-F., Blenkinsop, S. & Pritchard, D. Karakoram temperature and glacial melt driven by regional atmospheric circulation variability. Nat. Clim. Change 7, 664–670 (2017).Article 

    Google Scholar 
    Zhang, G. et al. Lake volume and groundwater storage variations in Tibetan Plateau’s endorheic basin. Geophys. Res. Lett. 44, 5550–5560 (2017).Article 

    Google Scholar 
    Li, X. et al. High-temporal-resolution water level and storage change data sets for lakes on the Tibetan Plateau during 2000–2017 using multiple altimetric missions and Landsat-derived lake shoreline positions. Earth Syst. Sci. Data 11, 1603–1627 (2019).Article 

    Google Scholar 
    Wang, T. et al. Permafrost thawing puts the frozen carbon at risk over the Tibetan Plateau. Sci. Adv. 6, eaaz3513 (2020).CAS 
    Article 

    Google Scholar 
    Zheng, G. et al. Remote sensing spatiotemporal patterns of frozen soil and the environmental controls over the Tibetan Plateau during 2002–2016. Remote Sens. Environ. 247, 111927 (2020).Article 

    Google Scholar 
    Rodell, M. et al. Emerging trends in global freshwater availability. Nature 557, 651–659 (2018).CAS 
    Article 

    Google Scholar 
    Tapley, B. D., Bettadpur, S., Ries, J. C., Thompson, P. F. & Watkins, M. M. GRACE measurements of mass variability in the Earth system. Science 305, 503–505 (2004).CAS 
    Article 

    Google Scholar 
    Jing, W., Zhang, P. & Zhao, X. A comparison of different GRACE solutions in terrestrial water storage trend estimation over Tibetan Plateau. Sci. Rep. 9, 1765 (2019).Article 
    CAS 

    Google Scholar 
    Viviroli, D., Kummu, M., Meybeck, M., Kallio, M. & Wada, Y. Increasing dependence of lowland populations on mountain water resources. Nat. Sustain. 3, 917–928 (2020).Article 

    Google Scholar 
    Zhang, G., Yao, T., Xie, H., Kang, S. & Lei, Y. Increased mass over the Tibetan Plateau: from lakes or glaciers? Geophys. Res. Lett. 40, 2125–2130 (2013).Article 

    Google Scholar 
    Biemans, H. et al. Importance of snow and glacier meltwater for agriculture on the Indo–Gangetic Plain. Nat. Sustain. 2, 594–601 (2019).Article 

    Google Scholar 
    Lutz, A. F. et al. South Asian agriculture increasingly dependent on meltwater and groundwater. Nat. Clim. Change 12, 566–573 (2022).Article 

    Google Scholar 
    Gao, J., Yao, T., Masson-Delmotte, V., Steen-Larsen, H. C. & Wang, W. Collapsing glaciers threaten Asia’s water supplies. Nature 565, 19–21 (2019).CAS 
    Article 

    Google Scholar 
    Liu, B. et al. Causes of the outburst of Zonag Lake in Hoh Xil,Tibetan Plateau, and its impact on surrounding environment. J. Glaciol. Geocryol. 38, 305–311 (2016).
    Google Scholar 
    Yao, X., Liu, S., Sun, M., Guo, W. & Zhang, X. Changes of Kusai Lake in Hoh Xil region and causes of its water overflowing. Acta Geogr. Sin. 67, 689–698 (2012).
    Google Scholar 
    Rounce, D. R., Hock, R. & Shean, D. E. Glacier mass change in High Mountain Asia through 2100 using the open-source Python Glacier Evolution Model (PyGEM). Front. Earth Sci. 7, 331 (2020).Article 

    Google Scholar 
    Qin, Y. et al. Agricultural risks from changing snowmelt. Nat. Clim. Change 10, 459–465 (2020).Article 

    Google Scholar 
    Jain, M. et al. Groundwater depletion will reduce cropping intensity in India. Sci. Adv. 7, eabd2849 (2021).Article 

    Google Scholar 
    Murakami, D. & Yamagata, Y. Estimation of gridded population and GDP scenarios with spatially explicit statistical downscaling. Sustainability 11, 2106 (2019).Article 

    Google Scholar 
    De Stefano, L., Petersen-Perlman, J. D., Sproles, E. A., Eynard, J. & Wolf, A. T. Assessment of transboundary river basins for potential hydro-political tensions. Glob. Environ. Change 45, 35–46 (2017).Article 

    Google Scholar 
    Landerer, F. W. et al. Extending the global mass change data record: GRACE follow-on instrument and science data performance. Geophys. Res. Lett. 47, e2020GL088306 (2020).Article 

    Google Scholar 
    Scanlon, B. R. et al. Global evaluation of new GRACE mascon products for hydrologic applications. Water Resour. Res. 52, 9412–9429 (2016).Article 

    Google Scholar 
    Cleveland, R. B., Cleveland, W. S., McRae, J. E. & Terpenning, I. STL: a seasonal-trend decomposition procedure based on loess. J. Off. Stat. 6, 3–73 (1990).
    Google Scholar 
    Bergmann, I., Ramillien, G. & Frappart, F. Climate-driven interannual ice mass evolution in Greenland. Glob. Planet. Change 82-83, 1–11 (2012).Article 

    Google Scholar 
    Frappart, F., Ramillien, G. & Ronchail, J. Changes in terrestrial water storage versus rainfall and discharges in the Amazon basin. Int. J. Climatol. 33, 3029–3046 (2013).Article 

    Google Scholar 
    Rateb, A. et al. Comparison of groundwater storage changes from GRACE satellites with monitoring and modeling of major US aquifers. Water Resour. Res. 56, e2020WR027556 (2020).Article 

    Google Scholar 
    Huss, M. Density assumptions for converting geodetic glacier volume change to mass change. Cryosphere 7, 877–887 (2013).Article 

    Google Scholar 
    Wang, J., Wang, L., Li, M., Zhu, L. & Li, X. Lake area and volume variation data in the endorheic basin of the Tibetan Plateau from 1989 to 2019. Zenodo https://doi.org/10.5281/zenodo.5543615 (2021).Sun, A. Y. et al. Combining physically based modeling and deep learning for fusing GRACE satellite data: can we learn from mismatch? Water Resour. Res. 55, 1179–1195 (2019).Article 

    Google Scholar 
    Govindaraju, R. S. & Artific, A. T. C. A. Artificial neural networks in hydrology. I: preliminary concepts. J. Hydrol. Eng. 5, 115–123 (2000).Article 

    Google Scholar 
    Sun, A. Y., Scanlon, B. R, Save, H. & Rateb, A. Reconstruction of GRACE total water storage through automated machine learning. Water Resour. Res. 57, e2020WR028666 (2020).Sun, Z., Long, D., Yang, W., Li, X. & Pan, Y. Reconstruction of GRACE data on changes in total water storage over the global land surface and 60 basins. Water Resour. Res. 56, e2019WR026250 (2020).
    Google Scholar 
    Gupta, H. V., Kling, H., Yilmaz, K. K. & Martinez, G. F. Decomposition of the mean squared error and NSE performance criteria: implications for improving hydrological modelling. J. Hydrol. 377, 80–91 (2009).Article 

    Google Scholar 
    Kling, H., Fuchs, M. & Paulin, M. Runoff conditions in the upper Danube basin under an ensemble of climate change scenarios. J. Hydrol. 424, 264–277 (2012).Article 

    Google Scholar 
    Ramirez-Villegas, J., Challinor, A. J., Thornton, P. K. & Jarvis, A. Implications of regional improvement in global climate models for agricultural impact research. Environ. Res. Lett. 8, 024018 (2013).Article 

    Google Scholar 
    Hawkins, E., Osborne, T. M., Ho, C. K. & Challinor, A. J. Calibration and bias correction of climate projections for crop modelling: an idealised case study over Europe. Agric. For. Meteorol. 170, 19–31 (2013).Article 

    Google Scholar 
    Hersbach, H. et al. The ERA5 global reanalysis. Q. J. R. Meteorol. Soc. 146, 1999–2049 (2020).Article 

    Google Scholar 
    Li, X. et al. Evapotranspiration estimation for Tibetan Plateau headwaters using conjoint terrestrial and atmospheric water balances and multisource remote sensing. Water Resour. Res. 55, 8608–8630 (2019).Article 

    Google Scholar 
    Cannon, A. J., Sobie, S. R. & Murdock, T. Q. Bias correction of GCM precipitation by quantile mapping: how well do methods preserve changes in quantiles and extremes? J. Clim. 28, 6938–6959 (2015).Article 

    Google Scholar 
    Gutowski, W. J. et al. Temporal–spatial scales of observed and simulated precipitation in central US climate. J. Clim. 16, 3841–3847 (2003).Article 

    Google Scholar 
    Tan, J., Huffman, G. J., Bolvin, D. T. & Nelkin, E. J. IMERG V06: changes to the morphing algorithm. J. Atmos. Ocean. Technol. 36, 2471–2482 (2019).Article 

    Google Scholar 
    Wada, Y., de Graaf, I. E. M. & van Beek, L. P. H. High-resolution modeling of human and climate impacts on global water resources. J. Adv. Model. Earth Syst. 8, 735–763 (2016).Article 

    Google Scholar 
    Wang, J. et al. Recent global decline in endorheic basin water storages. Nat. Geosci. 11, 926–932 (2018).CAS 
    Article 

    Google Scholar 
    Hewitt, K. Glacier change, concentration, and elevation effects in the Karakoram Himalaya, Upper Indus Basin. Mt. Res. Dev. 31, 188–200 (2011).Article 

    Google Scholar 
    Zhang, G. Dataset of River Basins map over the TP (2016) (National Tibetan Plateau Data Center, 2019); https://doi.org/10.11888/BaseGeography.tpe.249465.fileBrun, F., Berthier, E., Wagnon, P., Kääb, A. & Treichler, D. Elevation changes of High Mountain Asia from 2000 to 2016, links to GeoTIFFs. PANGAEA https://doi.org/10.1594/PANGAEA.876545 (2017).Li, X. et al. A high temporal resolution lake data set from multisource altimetric missions and Landsat archives of water level and storage changes on the Tibetan Plateau during 2000–2017. PANGAEA https://doi.org/10.1594/PANGAEA.898411 (2019).Li, X. Y. et al. Supplementary data to: Climate change threatens terrestrial water storage over the Tibetan Plateau. Zenodo https://doi.org/10.5281/zenodo.6784501 (2022).Li, X. Y. & Long, D. Supplementary code to: Climate change threatens terrestrial water storage over the Tibetan Plateau. Zenodo https://doi.org/10.5281/zenodo.6784641 (2022). More

  • in

    Inequality of household water security follows a Development Kuznets Curve

    UN. United Nations Secretary-General’s Plan: Water Action Decade 2018-2028. http://www.wateractiondecade.org/wp-content/uploads/2018/03/UN-SG-Action-Plan_Water-Action-Decade-web.pdf (2018).UNESCO. Water Security and the Sustainable Development Goals (Series 1): Global Water Security Issues (GWSI) Series. United Nations Educational, Scientific and Cultural Organization (UNESCO) vol. 2005 (2019).Bakker, K. Water security: research challenges and opportunities. Science 337, 914–915 (2012).ADS 
    CAS 
    PubMed 
    Article 

    Google Scholar 
    Vörösmarty, C. J. et al. Global threats to human water security and river biodiversity—Supplementary information. Nature 467, 555–561 (2010).ADS 
    PubMed 
    Article 
    CAS 

    Google Scholar 
    Hoekstra, A. Y., Buurman, J. & Van Ginkel, K. C. H. Urban water security: A review. Environ. Res. Lett. 13, 053002 (2018).Article 

    Google Scholar 
    Hannah, D. M. et al. Water and sanitation for all in a pandemic. Nat. Sustain. 3, 773–775 (2020).Article 

    Google Scholar 
    Keeler, B. L., Derickson, K. D., Waters, H. & Walker, R. Advancing water equity demands new approaches to sustainability science. One Earth 2, 211–213 (2020).ADS 
    Article 

    Google Scholar 
    UN-Water. The United Nations World Water Development Report 2019: Leaving no one behind. (UNESCO, Paris, 2019).
    Google Scholar 
    United Nations Development Programme. Human Development Report 2019: Beyond income, beyond averages, beyond today. (UNDP, New York, 2019).Book 

    Google Scholar 
    Stern, D. I. The environmental Kuznets curve after 25 years. J. Bioeconomics 19, 7–28 (2017).Article 

    Google Scholar 
    Deininger, K. & Squire, L. New ways of looking at old issues: Inequality and growth. J. Dev. Econ. 57, 259–287 (1998).Article 

    Google Scholar 
    Grossman, G. M. & Krueger, A. B. Environmental impacts of a North American Free Trade Agreement. National Bureau of Economic Research Working Paper. No. 3194, Cambridge (1991).Dasgupta, S., Laplante, B., Wang, H. & Wheeler, D. Confronting the environmental Kuznets curve. J. Econ. Perspect. 16, 147–168 (2002).Article 

    Google Scholar 
    Sarkodie, S. A. & Strezov, V. A review on Environmental Kuznets Curve hypothesis using bibliometric and meta-analysis. Sci. Total Environ. 649, 128–145 (2019).ADS 
    CAS 
    PubMed 
    Article 

    Google Scholar 
    Dinda, S. Environmental Kuznets curve hypothesis: a survey. Ecol. Econ. 49, 431–455 (2004).Article 

    Google Scholar 
    Cole, M. A., Rayner, A. J. & Bates, J. M. The environmental Kuznets curve: An empirical analysis. Environ. Dev. Econ. 2, 401–416 (1997).Article 

    Google Scholar 
    Fodha, M. & Zaghdoud, O. Economic growth and pollutant emissions in Tunisia: An empirical analysis of the environmental Kuznets curve. Energy Policy 38, 1150–1156 (2010).CAS 
    Article 

    Google Scholar 
    Acaravci, A. & Ozturk, I. On the relationship between energy consumption, CO2 emissions and economic growth in Europe. Energy 35, 5412–5420 (2010).Article 

    Google Scholar 
    Kais, S. & Sami, H. An econometric study of the impact of economic growth and energy use on carbon emissions: Panel data evidence from fifty eight countries. Renew. Sustain. Energy Rev. 59, 1101–1110 (2016).Article 

    Google Scholar 
    Lee, C. C., Chiu, Y., Bin & Sun, C. H. The environmental Kuznets curve hypothesis for water pollution: Do regions matter? Energy Policy 38, 12–23 (2010).CAS 
    Article 

    Google Scholar 
    Orubu, C. O. & Omotor, D. G. Environmental quality and economic growth: Searching for environmental Kuznets curves for air and water pollutants in Africa. Energy Policy 39, 4178–4188 (2011).CAS 
    Article 

    Google Scholar 
    Jepson, W. E., Wutich, A., Colllins, S. M., Boateng, G. O. & Young, S. L. Progress in household water insecurity metrics: a cross-disciplinary approach. Wiley Interdiscip. Rev. Water 4, e1214 (2017).Article 

    Google Scholar 
    Ridzuan, S. Inequality and the environmental Kuznets curve. J. Clean. Prod. 228, 1472–1481 (2019).Article 

    Google Scholar 
    Berthe, A. & Elie, L. Mechanisms explaining the impact of economic inequality on environmental deterioration. Ecol. Econ. 116, 191–200 (2015).Article 

    Google Scholar 
    Dinda, S. A Theor. Basis Environ. Kuznets Curve 53, 403–413 (2005).
    Google Scholar 
    Duarte, R., Pinilla, V. & Serrano, A. Is there an environmental Kuznets curve for water use? A panel smooth transition regression approach. Econ. Model. 31, 518–527 (2013).Article 

    Google Scholar 
    Katz, D. Water use and economic growth: Reconsidering the Environmental Kuznets Curve relationship. J. Clean. Prod. 88, 205–213 (2015).Article 

    Google Scholar 
    Paolo Miglietta, P., De Leo, F. & Toma, P. Environmental Kuznets curve and the water footprint: an empirical analysis. Water Environ. J. 31, 20–30 (2017).Article 

    Google Scholar 
    Gari, S. R., Newton, A. & Icely, J. D. A review of the application and evolution of the DPSIR framework with an emphasis on coastal social-ecological systems. Ocean Coast. Manag. 103, 63–77 (2015).Article 

    Google Scholar 
    Patrício, J., Elliott, M., Mazik, K., Papadopoulou, K. N. & Smith, C. J. DPSIR-Two decades of trying to develop a unifying framework for marine environmental management? Front. Mar. Sci. 3, 1–14 (2016).
    Google Scholar 
    Gari, S. R., Ortiz Guerrero, C. E., A-Uribe, B., Icely, J. D. & Newton, A. A DPSIR-analysis of water uses and related water quality issues in the Colombian Alto and Medio Dagua Community Council. Water Sci. 32, 318–337 (2018).Article 

    Google Scholar 
    Rosinger, A. Y. & Young, S. L. The toll of household water insecurity on health and human biology: Current understandings and future directions. Wiley Interdiscip. Rev. Water 7, 1–22 (2020).Article 

    Google Scholar 
    Kristensen, P. The DPSIR Framework. Paper Presented at the 27-29 September 2004 Workshop on a Comprehensive/Detailed Assessment of the Vulnerability of Water Resources to Environmental Changes in Africa Using River Basin Approach. UNEP Headquarters, Nairobi, Kenya (2004).Young, S. L. et al. Perspective: The importance of water security for ensuring food security, good nutrition, and well-being. Adv. Nutr. 12, 1058–1073 (2021).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Roy Chowdhury, R. & Moran, E. F. Turning the curve: A critical review of Kuznets approaches. Appl. Geogr. 32, 3–11 (2012).Article 

    Google Scholar 
    Octavianti, T. & Staddon, C. A review of 80 assessment tools measuring water security. Wiley Interdiscip. Rev. Water 8, 1–24 (2021).Article 

    Google Scholar 
    Young, S. L. et al. The Household Water InSecurity Experiences (HWISE) Scale: Development and validation of a household water insecurity measure for low-income and middle-income countries. BMJ Glob. Heal. 4, e001750 (2019).Article 

    Google Scholar 
    Young, S. L. et al. Development and validation protocol for an instrument to measure household water insecurity across cultures and ecologies: The Household Water InSecurity Experiences (HWISE) Scale. BMJ Open 9, e023558 (2019).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Zogheib, C. et al. Exploring a water data, evidence, and governance theory. Water Secur. 4–5, 19–25 (2018).Article 

    Google Scholar 
    Özokcu, S. & Özdemir, Ö. Economic growth, energy, and environmental Kuznets curve. Renew. Sustain. Energy Rev. 72, 639–647 (2017).Article 

    Google Scholar 
    Gain, A. K., Giupponi, C. & Wada, Y. Measuring global water security towards sustainable development goals. Environ. Res. Lett. 11, 124015 (2016).ADS 
    Article 

    Google Scholar 
    Purvis, B., Mao, Y. & Robinson, D. Three pillars of sustainability: in search of conceptual origins. Sustain. Sci. 14, 681–695 (2019).Article 

    Google Scholar 
    Mensah, J. Sustainable development: Meaning, history, principles, pillars, and implications for human action: Literature review. Cogent Soc. Sci. 5, 1653531 (2019).
    Google Scholar 
    UN. Transforming our world: The 2030 agenda for sustainable development. (UN, 2015). https://doi.org/10.1007/s13398-014-0173-7.2.Galbraith, J. K. Global inequality and global macroeconomics. J. Policy Model. 29, 587–607 (2007).Article 

    Google Scholar 
    Meehan, K. et al. Exposing the myths of household water insecurity in the global north: A critical review. Wiley Interdiscip. Rev. Water 7, 1–20 (2020).Article 

    Google Scholar 
    Deitz, S. & Meehan, K. Plumbing poverty: mapping hot spots of racial and geographic inequality in U.S. household water insecurity. Ann. Am. Assoc. Geogr. 109, 1092–1109 (2019).
    Google Scholar 
    Sachs, J. D. et al. Six transformations to achieve the sustainable development goals. Nat. Sustain. 2, 805–814 (2019).Article 

    Google Scholar 
    UN-DESA. Concepts of inequality. Development Issues 1, 1–2 (2015).
    Google Scholar 
    Eagle, N. The emerging world’s inequality time bomb. World Economic Forum (2014).Dorling, D. Peak inequality: Britain’s ticking time bomb. (Policy Press, Bristol, 2018).Book 

    Google Scholar 
    Stoler, J. et al. Cash water expenditures are associated with household water insecurity, food insecurity, and perceived stress in study sites across 20 low- and middle-income countries. Sci. Total Environ. 716, 135881 (2020).ADS 
    CAS 
    PubMed 
    Article 

    Google Scholar 
    Pearson, A. L. et al. Interpersonal conflict over water is associated with household demographics, domains of water insecurity, and regional conflict: evidence from nine sites across eight sub-Saharan African countries. Water. 13, 1150 (2021).Article 

    Google Scholar 
    Dixit, S. M. et al. Addressing disruptions in childhood routine immunisation services during the COVID-19 pandemic: Perspectives from Nepal, Senegal and Liberia. BMJ Glob. Heal. 6, 1–8 (2021).
    Google Scholar 
    Damania, R., Desbureaux, S., Rodella, A.-S., Russ, J. & Zaveri, E. Quality Unknown: The Invisible Water Crisis. (World Bank, Washington, DC, 2019).Book 

    Google Scholar 
    Mao, F. et al. HESS opinions: A conceptual framework for assessing socio-hydrological resilience under change. Hydrol. Earth Syst. Sci. 21, 3655–3670 (2017).ADS 
    Article 

    Google Scholar 
    Jacob, A. et al. Transformation Towards Sustainable and Resilient Societies in Asia and the Pacific. https://www.adb.org/publications/sustainable-resilient-societies-asia-pacific (2018) https://doi.org/10.22617/TCS189274-2.Ziervogel, G., Cowen, A. & Ziniades, J. Moving from adaptive to transformative capacity: Building foundations for inclusive, thriving, and regenerative urban settlements. Sustain 8, 955 (2016).Article 

    Google Scholar 
    Venkataramanan, V. et al. In pursuit of ‘safe’ water: The burden of personal injury from water fetching in 21 low-income and middle-income countries. BMJ Glob. Heal. 5, e003328 (2020).Article 

    Google Scholar 
    Young, S. L. et al. Validity of a four-item household water insecurity experiences scale for assessing water issues related to health and well-being. Am. J. Trop. Med. Hyg. 104, 391–394 (2021).PubMed 
    Article 

    Google Scholar 
    Park, W. G. & Brat, D. A. A Global Kuznets curve? Kyklos 48, 105–131 (1995).Article 

    Google Scholar 
    Schoder, J. Inequality with ordinal data: cross-disciplinary review of methodologies and application to life satisfaction in Europe. Geographies of Uneven Development Working Paper. University of Salzburg, Salzburg, Austria (2014).Kalmijn, W. & Veenhoven, R. Measuring inequality of happiness in nations: In search for proper statistics. J. Happiness Stud. 6, 357–396 (2005).Article 

    Google Scholar 
    Blair, J. & Lacy, M. G. Statistics of ordinal variation. Sociol. Methods Res. 28, 251–280 (2000).Article 

    Google Scholar 
    Van Der Eijk, C. Measuring agreement in ordered rating scales. Qual. Quant. 35, 325–341 (2001).Article 

    Google Scholar 
    Demakakos, P., Nazroo, J., Breeze, E. & Marmot, M. Socioeconomic status and health: The role of subjective social status. Soc. Sci. Med. 67, 330–340 (2008).PubMed 
    Article 

    Google Scholar 
    Marmot, M. Status syndrome. Significance 1, 150–154 (2004).MathSciNet 
    Article 

    Google Scholar 
    Adler, N. et al. Social status and health: A comparison of British civil servants in Whitehall-II with European- and African-Americans in CARDIA. Soc. Sci. Med. 66, 1034–1045 (2008).PubMed 
    Article 

    Google Scholar 
    Ghaed, S. G. & Gallo, L. C. Subjective social status, objective socioeconomic status, and cardiovascular risk in women. Heal. Psychol. 26, 668–674 (2007).Article 

    Google Scholar 
    Operario, D., Adler, N. E. & Williams, D. R. Subjective social status: Reliability and predictive utility for global health. Psychol. Heal. 19, 237–246 (2004).Article 

    Google Scholar 
    Zell, E., Strickhouser, J. E. & Krizan, Z. Subjective social status and health: A meta-analysis of community and society ladders. Heal. Psychol. 37, 979–987 (2018).Article 

    Google Scholar 
    Lind, J. T. & Mehlum, H. With or without u? The appropriate test for a U-shaped relationship. Oxf. Bull. Econ. Stat. 72, 109–118 (2010).Article 

    Google Scholar 
    R Core Team. R: A language and environment for statistical computing. R Found. Stat. Comput. (2013).Ruedin, D. An Introduction to the R Package Agrmt. Package at https://CRAN.R-project.org/package=agrmt (2021). More

  • in

    Mining wastewater for hydrogen

    The availability of abundant green hydrogen (H2) fuels is important for decarbonization and the green energy transition. However, the production of large supplies of green H2 has so far been limited by the high energy consumption, high-purity water demand and the complexities of H2 transportation and distribution.
    This is a preview of subscription content More