Atmospheric dynamic constraints on Tibetan Plateau freshwater under Paris climate targets
1.
Immerzeel, W. W. et al. Importance and vulnerability of the world’s water towers. Nature 577, 364–369 (2020).
CAS Article Google Scholar
2.
Tian, L. et al. Stable isotopic variations in west China: a consideration of moisture sources. J. Geophys. Res. 112, D10112 (2007).
Google Scholar
3.
Schiemann, R., Lüthi, D. & Schär, C. Seasonality and interannual variability of the westerly jet in the Tibetan Plateau region. J. Clim. 22, 2940–2957 (2009).
Article Google Scholar
4.
Yao, T. et al. A review of climatic controls on δ18O in precipitation over the Tibetan Plateau: observations and simulations. Rev. Geophys. 51, 525–548 (2013).
Article Google Scholar
5.
Huss, M. & Hock, R. Global-scale hydrological response to future glacier mass loss. Nat. Clim. Change 8, 135–140 (2018).
Article Google Scholar
6.
Shea, J. M. & Immerzeel, W. W. An assessment of basin-scale glaciological and hydrological sensitivities in the Hindu Kush-Himalaya. Ann. Glaciol. 57, 308–318 (2016).
Article Google Scholar
7.
Kraaijenbrink, P. D. A., Bierkens, M. F. P., Lutz, A. F. & Immerzeel, W. W. Impact of a global temperature rise of 1.5 degrees Celsius on Asia’s glaciers. Nature 549, 257–260 (2017).
CAS Article Google Scholar
8.
Immerzeel, W. W., Van, B. L. P. & Bierkens, M. F. Climate change will affect the Asian water towers. Science 328, 1382–1385 (2010).
CAS Article Google Scholar
9.
Bookhagen, B. & Burbank, D. W. Toward a complete Himalayan hydrological budget: spatiotemporal distribution of snowmelt and rainfall and their impact on river discharge. J. Geophys. Res. F 115, F03019 (2010).
Google Scholar
10.
Mukhopadhyay, B. & Khan, A. A reevaluation of the snowmelt and glacial melt in river flows within upper Indus basin and its significance in a changing climate. J. Hydrol. 527, 119–132 (2015).
Article Google Scholar
11.
Yao, T. et al. Different glacier status with atmospheric circulations in Tibetan plateau and surroundings. Nat. Clim. Change 2, 663–667 (2012).
Article Google Scholar
12.
Yang, K. et al. Response of hydrological cycle to recent climate changes in the Tibetan plateau. Climatic Change 109, 517–534 (2011).
Article Google Scholar
13.
Yang, W., Guo, X., Yao, T., Zhu, M. & Wang, Y. Recent accelerating mass loss of southeast Tibetan glaciers and the relationship with changes in macroscale atmospheric circulations. Clim. Dynam. 47, 805–815 (2016).
Article Google Scholar
14.
Cuo, L., Zhang, Y., Zhu, F. & Liang, L. Characteristics and changes of streamflow on the Tibetan Plateau: a review. J. Hydrol. 2, 49–68 (2014).
Google Scholar
15.
Wang, Y. et al. Contrasting runoff trends between dry and wet parts of eastern Tibetan Plateau. Sci. Rep. 7, 15458 (2017).
Article CAS Google Scholar
16.
Lutz, A. F., Immerzeel, W. W., Shrestha, A. B. & Bierkens, M. F. P. Consistent increase in high Asia’s runoff due to increasing glacier melt and precipitation. Nat. Clim. Change 4, 587–592 (2014).
Article Google Scholar
17.
Lutz, A. F., Immerzeel, W. W., Kraaijenbrink, P. D., Shrestha, A. B. & Bierkens, M. F. Climate change impacts on the upper Indus hydrology: sources, shifts and extremes. PLoS ONE 11, e0165630 (2016).
CAS Article Google Scholar
18.
Immerzeel, W. W. & Bierkens, M. F. P. Asia’s water balance. Nat. Geosci. 5, 841–842 (2012).
CAS Article Google Scholar
19.
Pepin, N. et al. Elevation-dependent warming in mountain regions of the world. Nat. Clim. Change 5, 424–430 (2015).
Article Google Scholar
20.
Turner, A. G. & Annamalai, H. Climate change and the South Asian summer monsoon. Nat. Clim. Change 2, 587–595 (2012).
Article Google Scholar
21.
Schott, F. A. & McCreary Jr, J. P. The monsoon circulation of the Indian Ocean. Prog. Oceanogr. 51, 1–123 (2001).
Article Google Scholar
22.
Gao, J., Masson-Delmotte, V., Risi, C., He, Y. & Yao, T. What controls precipitation δ18O in the southern Tibetan Plateau at seasonal and intra-seasonal scales? A case study at Lhasa and Nyalam. Tellus B 65, 21043–21055 (2013).
Article CAS Google Scholar
23.
Zhang, L., Su, F., Yang, D., Hao, Z. & Tong, K. Discharge regime and simulation for the upstream of major rivers over Tibetan Plateau. J. Geophys. Res. D 118, 8500–8518 (2013).
Article Google Scholar
24.
Immerzeel, W. W., Droogers, P., De Jong, S. M. & Bierkens, M. F. P. Large-scale monitoring of snow cover and runoff simulation in Himalayan river basins using remote sensing. Remote Sens. Environ. 113, 40–49 (2009).
Article Google Scholar
25.
Kääb, A., Berthier, E., Nuth, C., Gardelle, J. & Arnaud, Y. Contrasting patterns of early twenty-first-century glacier mass change in the Himalayas. Nature 488, 495–498 (2012).
Article CAS Google Scholar
26.
Falkenmark, et al. On the Verge of a New Water Scarcity: A Call for Good Governance and Human Ingenuity (Stockholm International Water Institute, 2007).
27.
Pritchard, H. D. Asia’s shrinking glaciers protect large populations from drought stress. Nature 569, 649–654 (2019).
CAS Article Google Scholar
28.
Falkenmark, M. Meeting water requirements of an expanding world population. Philos. Trans. R. Soc. Lond. B 352, 929–936 (1997).
Article Google Scholar
29.
Jones, B. & O’Neill, B. C. Spatially explicit global population scenarios consistent with the shared socioeconomic pathways. Environ. Res. Lett. 11, 084003 (2016).
Article Google Scholar
30.
Taylor, K. E., Stouffer, R. J. & Meehl, G. A. An overview of CMIP5 and the experiment design. Bull. Am. Meteorol. Soc. 93, 485–498 (2012).
Article Google Scholar
31.
O’Neill, B. C. et al. The scenario model intercomparison project (ScenarioMIP) for CMIP6. Geosci. Model Dev. 9, 3461–3482 (2016).
Article Google Scholar
32.
Van Vuuren, D. P. et al. The representative concentration pathways: an overview. Climatic Change 109, 5–31 (2011).
Article Google Scholar
33.
Hawkins, E. & Sutton, R. The potential to narrow uncertainty in regional climate predictions. Bull. Am. Meteorol. Soc. 90, 1095–1107 (2009).
Article Google Scholar
34.
Anav, A. et al. Evaluating the land and ocean components of the global carbon cycle in the CMIP5 earth system models. J. Clim. 26, 6801–6843 (2013).
Article Google Scholar
35.
Navarro, R. C. et al. High-resolution and bias-corrected CMIP5 projections for climate change impact assessments. Sci. Data 7, 1–14 (2020).
Google Scholar
36.
Seager, R., Naik, N. & Vecchi, G. A. Thermodynamic and dynamic mechanisms for large-scale changes in the hydrological cycle in response to global warming. J. Clim. 23, 4651–4668 (2010).
Article Google Scholar
37.
Tibshirani, R. Regression shrinkage and selection via the lasso. J. R. Stat. Soc. B 58, 267–288 (1996).
Google Scholar
38.
Allan, R. & Ansell, T. A new globally complete monthly historical gridded mean sea level pressure dataset (HadSLP2): 1850–2004. J. Clim. 19, 5816–5842 (2006).
Article Google Scholar
39.
Cox, P. et al. Sensitivity of tropical carbon to climate change constrained by carbon dioxide variability. Nature 494, 341–344 (2013).
CAS Article Google Scholar
40.
O’Callaghan, J. F. & Mark, D. M. The extraction of drainage networks from digital elevation data.Computer Vision Graphics Image Process. 28, 323–344 (1984).
Article Google Scholar
41.
Rogelj, J. et al. Energy system transformations for limiting end-of-century warming to below 1.5 °C. Nat. Clim. Change 5, 519–527 (2015).
Article Google Scholar
42.
Samir, K. C. & Lutz, W. The human core of the shared socioeconomic pathways: population scenarios by age, sex, and level of education for all countries to 2100. Glob. Environ. Change 42, 181–192 (2017).
Article Google Scholar More