Ion sieving by a two-dimensional Ti3C2Tx alginate lamellar membrane with stable interlayer spacing
1.
Nair, R. R., Wu, H., Jayaram, P. N., Grigorieva, I. V. & Geim, A. K. Unimpeded permeation of water through helium-leak-tight graphene-based membranes. Science 335, 442–444 (2012).
ADS CAS PubMed Google Scholar
2.
Joshi, R. et al. Precise and ultrafast molecular sieving through graphene oxide membranes. Science 343, 752–754 (2014).
ADS CAS PubMed Google Scholar
3.
Cheng, C., Jiang, G., Simon, G. P., Liu, Z. & Li, D. Low-voltage electrostatic modulation of ion diffusion through layered graphene-based nanoporous membranes. Nat. Nanotechnol. 13, 685–690 (2018).
ADS CAS PubMed Google Scholar
4.
Mouterde, T. et al. Molecular streaming and its voltage control in Ångström-Scale channels. Nature 567, 87–90 (2019).
ADS CAS PubMed Google Scholar
5.
Koenig, S. P., Wang, L., Pellegrino, J. & Bunch, J. S. Selective molecular sieving through porous graphene. Nat. Nanotechnol. 7, 728–732 (2012).
ADS CAS PubMed Google Scholar
6.
Surwade, S. et al. Water desalination using nanoporous single-layer graphene. Nat. Nanotechnol. 10, 459–464 (2015).
ADS CAS PubMed Google Scholar
7.
Zhao, J. et al. Etching gas-sieving nanopores in single-layer graphene with an angstrom precision for high-performance gasmixture separation. Sci. Adv. 5, eaav1851 (2019).
ADS CAS PubMed PubMed Central Google Scholar
8.
Huang, S. et al. Single-Layer graphene membranes by crack-free transfer for gas mixture separation. Nat. Commun. 9, 2632 (2018).
ADS PubMed PubMed Central Google Scholar
9.
Raidongia, K. & Huang, J. Nanofluidic ion transport through reconstructed layered materials. J. Am. Chem. Soc. 134, 16528–16531 (2012).
CAS PubMed Google Scholar
10.
Kim, H. et al. Selective gas transport through few-layered graphene and graphene oxide membranes. Science 342, 91–95 (2013).
ADS CAS PubMed Google Scholar
11.
Liu, G., Jin, W. & Xu, N. Two-dimensional-material membranes: a new family of high-performance separation membranes. Angew. Chem. 55, 2–16 (2016).
Google Scholar
12.
Abraham, J. et al. Tunable sieving of ions using graphene oxide membranes. Nat. Nanotechnol. 12, 546–551 (2017).
ADS CAS PubMed Google Scholar
13.
Yang, Q. et al. Ultrathin graphene-based membrane with precise molecular sieving and ultrafast solvent permeation. Nat. Mater. 16, 1198–1202 (2017).
ADS CAS PubMed Google Scholar
14.
Abozar, A., Phillip, S., Samuel, T. & Martin Large-area graphene-based nanofiltration membranes by shear alignment of discotic nematic liquid crystals of graphene oxide. Nat. Commun. 7, 1–12 (2016).
Google Scholar
15.
Sun, P. et al. Selective ion penetration of graphene oxide membranes. Acs Nano 7, 428–437 (2013).
CAS PubMed Google Scholar
16.
Liu, Y., Wang, N., Cao, Z. & Jürgen, C. Molecular sieving through interlayer galleries. Mater. Chem. 2, 1235–1238 (2014).
CAS Google Scholar
17.
Deng, M., Kwac, K., Li, M., Jung, Y. & Park, H. G. Stability molecular sieving, and ion diffusion selectivity of a lamellar membrane from 2D molybdenum disulfide. Nano Lett. 17, 2342–2348 (2017).
ADS CAS PubMed Google Scholar
18.
Sun, L., Huang, H. & Peng, X. Laminar MoS2 membranes for molecule separation. Chem. Commun. 49, 10718–10720 (2013).
CAS Google Scholar
19.
Chen, C. et al. Functionalized boron nitride membranes with ultrafast solvent transport performance for molecular separation. Nat. Commun. 9, 1902 (2018).
ADS PubMed PubMed Central Google Scholar
20.
Yury, G. & Babak, A. The rise of MXenes. Acs Nano 13, 8491–8494 (2019).
Google Scholar
21.
Anasori, B., Lukatskaya, M. R. & Gogotsi, Y. 2D metal carbides and nitrides (MXenes) for energy storage. Nat. Rev. Mater. 2, 16098 (2017).
ADS CAS Google Scholar
22.
Anasori, B. et al. Two-dimensional, ordered, double transition metals carbides (MXenes). ACS Nano 9, 9507–9516 (2015).
CAS PubMed Google Scholar
23.
Lao, J., Lv, R., Gao, J. & Wang, P. Aqueous stable Ti3C2 MXene membrane with fast and photo-switchable nanofluidic transport. ACS Nano 12, 12464–12471 (2018).
CAS PubMed Google Scholar
24.
Zheng, S., Tu, Q., Urban, J. J., Li, S. & Mi, B. Swelling of graphene oxide membranes in aqueous solution: characterization of interlayer spacing and insight into water transport mechanisms. ACS Nano 11, 6440–6450 (2017).
CAS PubMed Google Scholar
25.
Frey, N. C. et al. Prediction of synthesis of 2D metal carbides and nitrides (MXenes) and their precursors with positive and unlabeled machine learning. ACS Nano 13, 3031–3041 (2019).
CAS PubMed Google Scholar
26.
Sarycheva, A. et al. 2D titanium carbide (MXene) for wireless communication. Sci. Adv. 4, eaau0920 (2018).
ADS PubMed PubMed Central Google Scholar
27.
Mendoza-Sánchez, B. & Gogotsi, Y. Synthesis of two-dimensional materials for capacitive energy storage. Adv. Mater. 28, 6104–6135 (2016).
PubMed Google Scholar
28.
Shahzad, F. et al. Electromagnetic interference shielding with 2D transition metal carbides (MXenes). Science 353, 1137–1140 (2016).
ADS CAS PubMed Google Scholar
29.
Liu, H. et al. A novel nitrite biosensor based on the direct electrochemistry of hemoglobin immobilized on MXene-Ti3C2. Sens. Actuators B Chem. 218, 60–66 (2015).
CAS Google Scholar
30.
Ding., L. et al. Two-dimensional lamellar membrane: MXene nanosheet stacks angew. Chem. Int. Ed. 56, 1825–1829 (2017).
CAS Google Scholar
31.
Ren, C. et al. Charge- and size-selective ion sieving through Ti3C2Tx MXene membranes. Phys. Chem. Lett. 6, 4026–4031 (2015).
CAS Google Scholar
32.
Lu, S. et al. Self-crosslinked MXene (Ti3C2Tx) membranes with good antiswelling property for monovalent metal ion exclusion. ACS Nano 13, 10535–10544 (2019).
CAS PubMed Google Scholar
33.
Cohen-Tanugi, D., McGovern, R. K., Dave, S. H., Lienhard, J. H. & Grossman, J. C. Quantifying the potential of ultra-permeable membranes for water desalination. Energy Environ. Sci. 7, 1134–1141 (2014).
CAS Google Scholar
34.
Jain, T. et al. Heterogeneous sub-continuum ionic transport in statistically isolated graphene nanopores. Nat. Nanotech 10, 1053–1057 (2015).
ADS CAS Google Scholar
35.
Thomas, M., Corry, B. & Hilder, T. A. What have we learnt about the mechanisms of rapid water transport, ion rejection and selectivity in nanopores from molecular simulation. Small 10, 1453–1465 (2014).
CAS PubMed Google Scholar
36.
Richards, L. A., Schafer, A. I., Richards, B. S. & Corry, B. The importance of dehydration in determining ion transport in narrow pores. Small 8, 1701–1709 (2012).
CAS PubMed Google Scholar
37.
Mashtalir, O. et al. Intercalation and delamination of layered carbides and carbonitrides. Nat. Commun. 4, 1716 (2013).
ADS PubMed Google Scholar
38.
Ghidiu, M., Lukatskaya, M. R., Zhao, M., Gogotsi, Y. & Barsoum, M. W. Conductive two-dimensional titanium carbide ‘Clay’ with high volumetric capacitance. Nature 516, 78–81 (2014).
ADS CAS Google Scholar
39.
Chen, L. et al. Ion sieving in graphene oxide membranes via cationic control of interlayer spacing. Nature 505, 380–383 (2017).
ADS Google Scholar
40.
Ding, L. et al. Effective ion sieving with Ti3C2Tx MXene membranes for production of drinking water from seawater. Nat. Sustain 3, 296–302 (2020).
Google Scholar
41.
Thebo, K. H. et al. Highly stable graphene-oxide-based membranes with superior permeability. Nat. Commun. 9, 1486 (2018).
ADS PubMed PubMed Central Google Scholar
42.
Hung, W. et al. Cross-linking with diamine monomers to prepare composite graphene oxide-framework membranes with varying D-Spacing. Chem. Mater. 26, 2983–2990 (2014).
CAS Google Scholar
43.
Hu, M. & Mi, B. Enabling graphene oxide nanosheets as water separation membranes. Environ. Sci. Technol. 47, 3715–3723 (2013).
ADS CAS PubMed Google Scholar
44.
Zhang, Y., Zhang, S. & Chung, T. Nanometric graphene oxide framework membranes with enhanced heavy metal removal via nanofiltration. Environ. Sci. Technol. 49, 10235–10242 (2015).
ADS CAS PubMed Google Scholar
45.
Halim, J. et al. X-ray photoelectron spectroscopy of select multi-layered transition metal carbides (MXenes). Appl. Surf. Sci. 362, 406–417 (2016).
ADS CAS Google Scholar
46.
Zhang, M. et al. Controllable ion transport by surface-charged graphene oxide membrane. Nat. Commun. 10, 1253 (2019).
ADS PubMed PubMed Central Google Scholar
47.
Levi, M. D. et al. Solving the capacitive paradox of 2D MXene using electrochemical quartz-crystal admittance and in situ electronic conductance measurements. Adv. Energy Mater. 5, 1400815 (2015).
Google Scholar
48.
Brus, J. et al. Structure and dynamics of alginate gels cross-linked by polyvalent ions probed via solid state NMR spectroscopy. Biomacromolecules 18, 2478–2488 (2017).
CAS PubMed Google Scholar
49.
Zhang, M. J. et al. Mechanistic insights into alginate fouling caused by calcium ions based on terahertz time-domain spectra analyses and DFT calculations. Water Res. 129, 337–346 (2018).
ADS CAS PubMed Google Scholar
50.
Guo, Z. W. et al. Fabrication of efficient alginate composite beads embedded with N-doped carbon dots and their application for enhanced rare earth elements adsorption from aqueous solutions. J. Colloid Interface Sci. 562, 224–234 (2020).
ADS CAS PubMed Google Scholar
51.
Li, Z. T. et al. Synthesis and thermal stability of two-dimensional carbide MXene Ti3C2. Mater. Sci. Eng. B 191, 33–40 (2015).
CAS Google Scholar
52.
Rasool, K. et al. Efficient antibacterial membrane based on two-dimensional Ti3C2Tx (MXene) nanosheets. Sci. Rep. 7, 1598 (2017).
ADS PubMed PubMed Central Google Scholar
53.
Peng, J. et al. The effect of hydration number on the interfacial transport of sodium ions. Nature 557, 701–707 (2018).
ADS CAS PubMed Google Scholar
54.
Agulhon, P., Markova, V., Robitzer, M., Françoise, Q. & Tzonka, M. Structure of alginate gels: interaction of diuronate units with divalent cations from density functional calculations. Biomacromolecules 13, 1899–1907 (2012).
CAS PubMed Google Scholar
55.
Boya X. The development of carboxylic acid separation by nanofiltration membrane for carboxylate platform using lingnocellulosic biomass. The Pennsylvania State University 53–55 (2014).
56.
Wu, J., Gerstandt, K., Majumder, M., Zhan, X. & Hinds, B. J. Highly efficient electroosmotic flow through functionalized carbon nanotube membranes. Nanoscale 3, 3321–3328 (2011).
ADS CAS PubMed Google Scholar
57.
Li, J., Peng, R. & Li, D. Q. Effects of ion size, ion valence and pH of electrolyte solutions on EOF velocity in single nanochannels. Anal. Chim. Acta 1059, 68–79 (2019).
ADS CAS PubMed Google Scholar
58.
Bocquet, Lydéric & Charlaix, E. Nanofluidics from bulk to interfaces. Chem. Soc. Rev. 3, 1073–1095 (2010).
Google Scholar
59.
Alhabeb, M. et al. Guidelines for synthesis and processing of 2D titanium carbide (Ti3C2Tx MXene). Chem. Mater. 29, 7633–7644 (2017).
CAS Google Scholar
60.
Liu, X. et al. Porous diffusion dialysis membranes for rapid acid recovery. J. Mater. Sci. 502, 76–83 (2016).
Google Scholar
61.
Ji, W. et al. Self-organized nanostructured anion exchange membranes for acid recovery. Chem. Eng. J. 382, 122838 (2020).
Google Scholar More