More stories

  • in

    How to tackle the global deforestation crisis

    Imagine if France, Germany, and Spain were completely blanketed in forests — and then all those trees were quickly chopped down. That’s nearly the amount of deforestation that occurred globally between 2001 and 2020, with profound consequences.

    Deforestation is a major contributor to climate change, producing between 6 and 17 percent of global greenhouse gas emissions, according to a 2009 study. Meanwhile, because trees also absorb carbon dioxide, removing it from the atmosphere, they help keep the Earth cooler. And climate change aside, forests protect biodiversity.

    “Climate change and biodiversity make this a global problem, not a local problem,” says MIT economist Ben Olken. “Deciding to cut down trees or not has huge implications for the world.”

    But deforestation is often financially profitable, so it continues at a rapid rate. Researchers can now measure this trend closely: In the last quarter-century, satellite-based technology has led to a paradigm change in charting deforestation. New deforestation datasets, based on the Landsat satellites, for instance, track forest change since 2000 with resolution at 30 meters, while many other products now offer frequent imaging at close resolution.

    “Part of this revolution in measurement is accuracy, and the other part is coverage,” says Clare Balboni, an assistant professor of economics at the London School of Economics (LSE). “On-site observation is very expensive and logistically challenging, and you’re talking about case studies. These satellite-based data sets just open up opportunities to see deforestation at scale, systematically, across the globe.”

    Balboni and Olken have now helped write a new paper providing a road map for thinking about this crisis. The open-access article, “The Economics of Tropical Deforestation,” appears this month in the Annual Review of Economics. The co-authors are Balboni, a former MIT faculty member; Aaron Berman, a PhD candidate in MIT’s Department of Economics; Robin Burgess, an LSE professor; and Olken, MIT’s Jane Berkowitz Carlton and Dennis William Carlton Professor of Microeconomics. Balboni and Olken have also conducted primary research in this area, along with Burgess.

    So, how can the world tackle deforestation? It starts with understanding the problem.

    Replacing forests with farms

    Several decades ago, some thinkers, including the famous MIT economist Paul Samuelson in the 1970s, built models to study forests as a renewable resource; Samuelson calculated the “maximum sustained yield” at which a forest could be cleared while being regrown. These frameworks were designed to think about tree farms or the U.S. national forest system, where a fraction of trees would be cut each year, and then new trees would be grown over time to take their place.

    But deforestation today, particularly in tropical areas, often looks very different, and forest regeneration is not common.

    Indeed, as Balboni and Olken emphasize, deforestation is now rampant partly because the profits from chopping down trees come not just from timber, but from replacing forests with agriculture. In Brazil, deforestation has increased along with agricultural prices; in Indonesia, clearing trees accelerated as the global price of palm oil went up, leading companies to replace forests with palm tree orchards.

    All this tree-clearing creates a familiar situation: The globally shared costs of climate change from deforestation are “externalities,” as economists say, imposed on everyone else by the people removing forest land. It is akin to a company that pollutes into a river, affecting the water quality of residents.

    “Economics has changed the way it thinks about this over the last 50 years, and two things are central,” Olken says. “The relevance of global externalities is very important, and the conceptualization of alternate land uses is very important.” This also means traditional forest-management guidance about regrowth is not enough. With the economic dynamics in mind, which policies might work, and why?

    The search for solutions

    As Balboni and Olken note, economists often recommend “Pigouvian” taxes (named after the British economist Arthur Pigou) in these cases, levied against people imposing externalities on others. And yet, it can be hard to identify who is doing the deforesting.

    Instead of taxing people for clearing forests, governments can pay people to keep forests intact. The UN uses Payments for Environmental Services (PES) as part of its REDD+ (Reducing Emissions from Deforestation and forest Degradation) program. However, it is similarly tough to identify the optimal landowners to subsidize, and these payments may not match the quick cash-in of deforestation. A 2017 study in Uganda showed PES reduced deforestation somewhat; a 2022 study in Indonesia found no reduction; another 2022 study, in Brazil, showed again that some forest protection resulted.

    “There’s mixed evidence from many of these [studies],” Balboni says. These policies, she notes, must reach people who would otherwise clear forests, and a key question is, “How can we assess their success compared to what would have happened anyway?”

    Some places have tried cash transfer programs for larger populations. In Indonesia, a 2020 study found such subsidies reduced deforestation near villages by 30 percent. But in Mexico, a similar program meant more people could afford milk and meat, again creating demand for more agriculture and thus leading to more forest-clearing.

    At this point, it might seem that laws simply banning deforestation in key areas would work best — indeed, about 16 percent of the world’s land overall is protected in some way. Yet the dynamics of protection are tricky. Even with protected areas in place, there is still “leakage” of deforestation into other regions. 

    Still more approaches exist, including “nonstate agreements,” such as the Amazon Soy Moratorium in Brazil, in which grain traders pledged not to buy soy from deforested lands, and reduced deforestation without “leakage.”

    Also, intriguingly, a 2008 policy change in the Brazilian Amazon made agricultural credit harder to obtain by requiring recipients to comply with environmental and land registration rules. The result? Deforestation dropped by up to 60 percent over nearly a decade. 

    Politics and pulp

    Overall, Balboni and Olken observe, beyond “externalities,” two major challenges exist. One, it is often unclear who holds property rights in forests. In these circumstances, deforestation seems to increase. Two, deforestation is subject to political battles.

    For instance, as economist Bard Harstad of Stanford University has observed, environmental lobbying is asymmetric. Balboni and Olken write: “The conservationist lobby must pay the government in perpetuity … while the deforestation-oriented lobby need pay only once to deforest in the present.” And political instability leads to more deforestation because “the current administration places lower value on future conservation payments.”

    Even so, national political measures can work. In the Amazon from 2001 to 2005, Brazilian deforestation rates were three to four times higher than on similar land across the border, but that imbalance vanished once the country passed conservation measures in 2006. However, deforestation ramped up again after a 2014 change in government. Looking at particular monitoring approaches, a study of Brazil’s satellite-based Real-Time System for Detection of Deforestation (DETER), launched in 2004, suggests that a 50 percent annual increase in its use in municipalities created a 25 percent reduction in deforestation from 2006 to 2016.

    How precisely politics matters may depend on the context. In a 2021 paper, Balboni and Olken (with three colleagues) found that deforestation actually decreased around elections in Indonesia. Conversely, in Brazil, one study found that deforestation rates were 8 to 10 percent higher where mayors were running for re-election between 2002 and 2012, suggesting incumbents had deforestation industry support.

    “The research there is aiming to understand what the political economy drivers are,” Olken says, “with the idea that if you understand those things, reform in those countries is more likely.”

    Looking ahead, Balboni and Olken also suggest that new research estimating the value of intact forest land intact could influence public debates. And while many scholars have studied deforestation in Brazil and Indonesia, fewer have examined the Democratic Republic of Congo, another deforestation leader, and sub-Saharan Africa.

    Deforestation is an ongoing crisis. But thanks to satellites and many recent studies, experts know vastly more about the problem than they did a decade or two ago, and with an economics toolkit, can evaluate the incentives and dynamics at play.

    “To the extent that there’s ambuiguity across different contexts with different findings, part of the point of our review piece is to draw out common themes — the important considerations in determining which policy levers can [work] in different circumstances,” Balboni says. “That’s a fast-evolving area. We don’t have all the answers, but part of the process is bringing together growing evidence about [everything] that affects how successful those choices can be.” More

  • in

    How forests can cut carbon, restore ecosystems, and create jobs

    To limit the frequency and severity of droughts, wildfires, flooding, and other adverse consequences of climate change, nearly 200 countries committed to the Paris Agreement’s long-term goal of keeping global warming well below 2 degrees Celsius. According to the latest United Nations Intergovernmental Panel on Climate Change (IPCC) Report, achieving that goal will require both large-scale greenhouse gas (GHG) emissions reduction and removal of GHGs from the atmosphere.

    At present, the most efficient and scalable GHG-removal strategy is the massive planting of trees through reforestation or afforestation — a “natural climate solution” (NCS) that extracts atmospheric carbon dioxide through photosynthesis and soil carbon sequestration.

    Despite the potential of forestry-based NCS projects to address climate change, biodiversity loss, unemployment, and other societal needs — and their appeal to policymakers, funders, and citizens — they have yet to achieve critical mass, and often underperform due to a mix of interacting ecological, social, and financial constraints. To better understand these challenges and identify opportunities to overcome them, a team of researchers at Imperial College London and the MIT Joint Program on the Science and Policy of Global Change recently studied how environmental scientists, local stakeholders, and project funders perceive the risks and benefits of NCS projects, and how these perceptions impact project goals and performance. To that end, they surveyed and consulted with dozens of recognized experts and organizations spanning the fields of ecology, finance, climate policy, and social science.

    The team’s analysis, which appears in the journal Frontiers in Climate, found two main factors that have hindered the success of forestry-based NCS projects.

    First, the ambition — levels of carbon removal, ecosystem restoration, job creation, and other environmental and social targets — of selected NCS projects is limited by funders’ perceptions of their overall risk. Among other things, funders aim to minimize operational risk (e.g., Will newly planted trees survive and grow?), political risk (e.g., Just how secure is their access to the land where trees will be planted?); and reputational risk (e.g., Will the project be perceived as an exercise in “greenwashing,” or fall way short of its promised environmental and social benefits?). Funders seeking a financial return on their initial investment are also concerned about the dependability of complex monitoring, reporting, and verification methods used to quantify atmospheric carbon removal, biodiversity gains, and other metrics of project performance.

    Second, the environmental and social benefits of NCS projects are unlikely to be realized unless the local communities impacted by these projects are granted ownership over their implementation and outcomes. But while engaging with local communities is critical to project performance, it can be challenging both legally and financially to set up incentives (e.g., payment and other forms of compensation) to mobilize such engagement.

    “Many carbon offset projects raise legitimate concerns about their effectiveness,” says study lead author Bonnie Waring, a senior lecturer at the Grantham Institute on Climate Change and the Environment, Imperial College London. “However, if nature climate solution projects are done properly, they can help with sustainable development and empower local communities.”

    Drawing on surveys and consultations with NCS experts, stakeholders, and funders, the research team highlighted several recommendations on how to overcome key challenges faced by forestry-based NCS projects and boost their environmental and social performance.

    These recommendations include encouraging funders to evaluate projects based on robust internal governance, support from regional and national governments, secure land tenure, material benefits for local communities, and full participation of community members from across a spectrum of socioeconomic groups; improving the credibility and verifiability of project emissions reductions and related co-benefits; and maintaining an open dialogue and shared costs and benefits among those who fund, implement, and benefit from these projects.

    “Addressing climate change requires approaches that include emissions mitigation from economic activities paired with greenhouse gas reductions by natural ecosystems,” says Sergey Paltsev, a co-author of the study and deputy director of the MIT Joint Program. “Guided by these recommendations, we advocate for a proper scaling-up of NCS activities from project levels to help assure integrity of emissions reductions across entire countries.” More

  • in

    Addressing food insecurity in arid regions with an open-source evaporative cooling chamber design

    Anyone who has ever perspired on a hot summer day understands the principle — and critical value — of evaporative cooling. Our bodies produce droplets of sweat when we overheat, and with a dry breeze or nearby fan those droplets will evaporate, absorbing heat in the process creating a welcome cool feeling.

    That same scientific principle, known as evaporative cooling, can be a game-changer for preserving fruits and vegetables grown on smallholder farms, where the wilting dry heat can quickly degrade freshly harvested produce. If those just-picked red peppers and leafy greens are not consumed in short order, or quickly transferred to cold — or at least cool — storage, much of it can go to waste.

    Now, MIT Professor Leon Glicksman of the Building Technology Program within the Department of Architecture, and Research Engineer Eric Verploegen of MIT D-Lab have released their open-source design for a forced-air evaporative cooling chamber that can be built in a used shipping container and powered by either grid electricity or built-in solar panels. With a capacity of 168 produce crates, the chamber offers great promise for smallholder farmers in hot, dry climates who need an affordable method for quickly bringing down the temperature of freshly harvested fruit and vegetables to ensure they stay fresh.

    “Delicate fruits and vegetables are most vulnerable to spoilage if they are picked during the day,” says Verploegen, a longtime proponent of using evaporative cooling to reduce post-harvest waste. “And if refrigerated cold rooms aren’t feasible or affordable,” he continues, “evaporative cooling can make a big difference for farmers and the communities they feed.”

    Verploegen has made evaporative cooling the focus of his work since 2016, initially focusing on small-scale evaporative cooling “Zeer” pots, typically with a capacity between 10 and 100 liters and great for household use, as well as larger double-brick-walled chambers known as zero-energy cooling chambers or ZECCs, which can store between six and 16 vegetable crates at a time. These designs rely on passive airflow. The newly released design for the forced-air evaporative cooling chamber is differentiated from these two more modest designs by the active airflow system, as well as by significantly larger capacity.

    In 2019, Verploegen turned his attention to the idea of building a larger evaporative cooling room and joined forces with Glicksman to explore using forced, instead of passive, airflow to cool fruit and vegetables. After studying existing cold storage options and conducting user research with farmers in Kenya, they came up with the idea to use active evaporative cooling with a used shipping container as the structure of the chamber. As the Covid-19 pandemic was ramping up in 2020, they procured a used 10-foot shipping container, installed it in the courtyard area outside D-Lab near Village Street, and went to work on a prototype of the forced-air evaporative cooling chamber.

    Here’s how it works: Industrial fans draw hot, dry air into the chamber, which is passed through a porous wet pad. The resulting cool and humid air is then forced through the crates of fruits and vegetables stored inside the chamber. The air is then directed through the raised floor and to a channel between the insulation and the exterior container wall, where it flows to the exhaust holes near the top of the side walls.

    Leon Glicksman, a professor of building technology and mechanical engineering, drew on his previous research in natural ventilation and airflow in buildings to come up with the vertical forced-air design pattern for the chamber. “The key to the design is the close control of the airflow strength, and its direction,” he says. “The strength of the airflow passing directly through the crates of fruits and vegetables, and the airflow pathway itself, are what makes this system work so well. The design promotes rapid cooling of a harvest taken directly from the field.”

    In addition to the novel and effective airflow system, the forced-air evaporative cooling chamber represents so much of what D-Lab is known for in its work in low-resourced and off-grid communities: developing low-cost and low-carbon-footprint technologies with partners. Evaporative cooling is no different. Whether connected to the electrical grid or run from solar panels, the forced-air chamber consumes one-quarter the power of refrigerated cold rooms. And, as the chamber is designed to be built in a used shipping container — ubiquitous the world over — the project is a great example of up-cycling.

    Piloting the design

    As with earlier investigations, Verploegen, Glicksman, and their colleagues have worked closely with farmers and community members. For the forced-air system, the team engaged with community partners who are living the need for better cooling and storage conditions for their produce in the climate conditions where evaporative cooling works best. Two partners, one in Kenya and one in India, each built a pilot chamber, testing and informing the process alongside the work being done at MIT.

    In Kenya, where smallholder farms produce 63 percent of total food consumed and over 50 percent of smallholder produce is lost post-harvest, they worked with Solar Freeze, a cold storage company located in in Kibwezi, Kenya. Solar Freeze, whose founder Dysmus Kisilu was a 2019 MIT D-Lab Scale-Ups Fellow, built an off-grid forced-air evaporative cooling chamber at a produce market between Nairobi and Mombasa at a cost of $15,000, powered by solar photovoltaic panels. “The chamber is offering a safety net against huge post-harvest losses previously experienced by local smallholder farmers,” comments Peter Mumo, an entrepreneur and local politician who oversaw the construction of the Solar Freeze chamber in Makuni County, Kenya.

    As much as 30 percent of fruits and vegetables produced in India are wasted each year due to insufficient cold storage capacity, lack of cold storage close to farms, poor transportation infrastructure, and other gaps in the cold chain. Although the climate varies across the subcontinent, the hot desert climate there, such as in Bhuj where the Hunnarshala Foundation is headquartered, is perfect for evaporative cooling. Hunnarshala signed on to build an on-grid system for $8,100, which they located at an organic farm near Bhuj. “We have really encouraging results,” says Mahavir Acharya, executive director of Hunnarshala Foundation. “In peak summer, when the temperature is 42 [Celsius] we are able to get to 26 degrees [Celsius] inside and 95 percent humidity, which is really good conditions for vegetables to remain fresh for three, four, five, six days. In winter we tested [and saw temperatures reduced from] 35 degrees to 24 degrees [Celsius], and for seven days the quality was quite good.”

    Getting the word out

    With the concept validated and pilots well established, the next step is spreading the word.

    “We’re continuing to test and optimize the system, both in Kenya and India, as well as our test chambers here at MIT,” says Verploegen. “We will continue piloting with users and deploying with farmers and vendors, gathering data on the thermal performance, the shelf life of fruits and vegetables in the chamber, and how using the technology impacts the users. And, we’re also looking to engage with cold storage providers who might want to build this or others in the horticulture value chain such as farmer cooperatives, individual farmers, and local governments.”

    To reach the widest number of potential users, Verploegen and the team chose not to pursue a patent and instead set up a website to disseminate the open-source design with detailed guidance on how to build a forced-air evaporative cooling chamber. In addition to the extensive printed documentation, well-illustrated with detailed CAD drawings and video, the team has created instructional videos.

    As co-principal investigator in the early stages of the project, MIT professor of mechanical engineering Dan Frey contributed to the market research phase of the project and the initial conception of chamber design. “These forced-air evaporative cooling chambers have great potential, and the open-source approach is an excellent choice for this project,” says Frey. “The design’s release is a significant milestone on the path to positive impacts.”

    The forced-air evaporative cooling chamber research and design have been supported by the Abdul Latif Jameel Water and Food Systems Lab through an India Grant, Seed Grant, and a Solutions Grant. More

  • in

    Q&A: Gabriela Sá Pessoa on Brazilian politics, human rights in the Amazon, and AI

    Gabriela Sá Pessoa is a journalist passionate about the intersection of human rights and climate change. She came to MIT from The Washington Post, where she worked from her home country of Brazil as a news researcher reporting on the Amazon, human rights violations, and environmental crimes. Before that, she held roles at two of the most influential media outlets in Brazil: Folha de S.Paulo, covering local and national politics, and UOL, where she was assigned to coronavirus coverage and later joined the investigative desk.

    Sá Pessoa was awarded the 2023 Elizabeth Neuffer Fellowship by the International Women’s Media Foundation, which supports its recipient with research opportunities at MIT and further training at The Boston Globe and The New York Times. She is currently based at the MIT Center for International Studies. Recently, she sat down to talk about her work on the Amazon, recent changes in Brazilian politics, and her experience at MIT.

    Q: One focus of your reporting is human rights and environmental issues in the Amazon. As part of your fellowship, you contributed to a recent editorial in The Boston Globe on fighting deforestation in the region. Why is reporting on this topic important?

    A: For many Brazilians, the Amazon is a remote and distant territory, and people living in other parts of the country aren’t fully aware of all of its problems and all of its potential. This is similar to the United States — like many people here, they don’t see how they could be related to the human rights violations and the destruction of the rainforest that are happening.

    But, we are all complicit in the destruction in some ways because the economic forces driving the deforestation of the rainforest all have a market, and these markets are everywhere, in Brazil and here in the U.S. I think it is part of journalism to show people in the U.S., Brazil, and elsewhere that we are part of the problem, and as part of the problem, we should be part of the solution by being aware of it, caring about it, and taking actions that are within our power.

    In the U.S., for example, voters can influence policy like the current negotiations for financial support for fighting deforestation in the Amazon. And as consumers, we can be more aware — is the beef we are consuming related to deforestation? Is the timber on our construction sites coming from the Amazon?

    Truth is, in Brazil, we have turned our backs to the Amazon for so long. It’s our duty to protect it for the sake of climate change. If we don’t take care of it, there will be serious consequences to our local climate, our local communities, and for the whole world. It’s a huge matter of human rights because our living depends on that, both locally and globally.

    Q: Before coming to MIT, you were at The Washington Post in São Paulo, where you contributed to reporting on the recent presidential election. What changes do you expect to see with the new Lula administration?

    A: To climate and environment, the first signs were positive. But the optimism did not last a semester, as politics is imposing itself. Lula is facing increasing difficulty building a majority in a conservative Congress, over which agribusiness holds tremendous power and influence. As we speak, environmental policy is under Congress’s attack. A committee in the House has just passed a ruling drowning power from the environmental minister, Marina Silva, and from the recently created National Indigenous People Ministry, led by Sonia Guajajara. Both Marina and Sonia are global ecological and human rights champions, and I wonder what the impact would be if Congress ratifies these changes. It is still unclear how it would impact the efforts to fight deforestation.

    In addition, there is an internal dispute in the government between environmentalists and those in favor of mining and big infrastructure projects. Petrobras, the state-run oil company, is trying to get authorization to research and drill offshore oil reserves in the mouth of the Amazon River. The federal environmental protection agency did a conclusive report suspending the operation, saying it is critical and threatens the region’s sensitive environment and indigenous communities. And, of course, it would be another source of greenhouse gas emissions. ​

    That said, it’s not a denialist government. I should mention the quick response from the administration to the Yanomami genocide earlier this year. In January, an independent media organization named Sumaúma reported on the deaths of over five hundred indigenous children from the Yanomami community in the Amazon over the past four years. This was a huge shock in Brazil, and the administration responded immediately. They sent task forces to the region and are now expelling the illegal miners that were bringing diseases and were ultimately responsible for these humanitarian tragedies. To be clear: It is still a problem. It’s not solved. But this is already a good example of positive action.

    Fighting deforestation in the Amazon and the Cerrado, another biome critical to climate regulation in Brazil, will not be easy. Rebuilding the environmental policy will take time, and the agencies responsible for enforcement are understaffed. In addition, environmental crime has become more sophisticated, connecting with other major criminal organizations in the country. In April, for the first time, there was a reduction in deforestation in the Amazon after two consecutive months of higher numbers. These are still preliminary data, and it is still too early to confirm whether they signal a turning point and may indicate a tendency for deforestation to decrease. On the other hand, the Cerrado registered record deforestation in April.

    There are problems everywhere in the economy and politics that Lula will have to face. In the first week of the new term, on Jan. 8, we saw an insurrection in Brasília, the country’s capital, from Bolsonaro voters who wouldn’t accept the election results. The events resembled what Americans saw in the Capitol attacks in 2021. We also seem to have imported problems from the United States, like mass killings in schools. We never used to have them in Brazil, but we are seeing them now. I’m curious to see how the country will address those problems and if the U.S. can also inspire solutions to that. That’s something I’m thinking about, being here: Are there solutions here? What are they?

    Q: What have you learned so far from MIT and your fellowship?

    A: It’s hard to put everything into words! I’m mostly taking courses and attending lectures on pressing issues to humanity, like existential threats such as climate change, artificial intelligence, biosecurity, and more.

    I’m learning about all these issues, but also, as a journalist, I think that I’m learning more about how I can incorporate the scientific approach into my work; for example, being more pro-positive. I am already a rigorous journalist, but I am thinking about how I can be more rigorous and more transparent about my methods. Being in the academic and scientific environment is inspiring that way.

    I am also learning a lot about how to cover scientific topics and thinking about how technology can offer us solutions (and problems). I’m learning so much that I think I will need some time to digest and fully understand what this period means for me!

    Q: You mentioned artificial intelligence. Would you like to weigh in on this subject and what you have been learning?

    A: It has been a particularly good semester to be at MIT. Generative artificial intelligence, which became more popular after ChatGPT, has been a topic of intense discussion this semester, and I was able to attend many classes, seminars, and events about AI here, especially from a policy perspective.

    Algorithms have influenced the economy, society, and public health for many years. It has had great outcomes, but also injustice. Popular systems like ChatGPT have made this technology incredibly popular and accessible, even for those with no computer knowledge. This is scary and, at the same time, very exciting. Here, I learned that we need guardrails for artificial intelligence, just like other technologies. Think of the pharmaceutical or automobile industries, which have to meet safety criteria before putting a new product on the market. But with artificial intelligence, it’s going to be different; supply chains are very complex and sometimes not very transparent, and the speed at which new resources develop is so fast that it challenges the policymaker’s ability to respond.

    Artificial intelligence is changing the world radically. It’s exciting to have the privilege of being here and seeing these discussions take place. After all, I have a future to report on. At least, I hope so!

    Q: What are you working on going forward?

    A: After MIT, I am going to New York, where I’ll be working with The New York Times in their internship program. I’m really excited about that because it will be a different pace from MIT. I am also doing research on carbon credit markets and hope to continue that project, either in a reporting or academic environment. 

    Honestly, I feel inspired to keep studying. I would love to spend more time here at MIT. I would love to do a master’s or join any program here. I’m going to work on coming back to academia because I think that I need to learn more from the academic environment. I hope that it’s at MIT because honestly, it’s the most exciting environment that I’ve ever been in, with all the people here from different fields and different backgrounds. I’m not a scientist, but it’s inspiring to be with them, and if there’s a way that I could contribute to their work in a way that they’re contributing to my work, I’ll be thrilled to spend more time here. More

  • in

    Six ways MIT is taking action on climate

    From reuse and recycling to new carbon markets, events during Earth Month at MIT spanned an astonishing range of ideas and approaches to tackling the climate crisis. The MIT Climate Nucleus offered funding to departments and student organizations to develop programming that would showcase the countless initiatives underway to make a better world.

    Here are six — just six of many — ways the MIT community is making a difference on climate right now.

    1. Exchanging knowledge with policymakers to meet local, regional, and global challenges

    Creating solutions begins with understanding the problem.

    Speaking during the annual Earth Day Colloquium of the MIT Energy Initiative (MITEI) about the practical challenges of implementing wind-power projects, for instance, Massachusetts State Senator Michael J. Barrett offered a sobering assessment.

    The senate chair of the Joint Committee on Telecommunications, Utilities, and Energy, Barrett reported that while the coast of Massachusetts provides a conducive site for offshore wind, economic forces have knocked a major offshore wind installation project off track. The combination of the pandemic and global geopolitical instability has led to such great supply chain disruptions and rising commodity costs that a project considered necessary for the state to meet its near-term climate goals now faces delays, he said.

    Like others at MIT, MITEI researchers keep their work grounded in the real-world constraints and possibilities for decarbonization, engaging with policymakers and industry to understand the on-the-ground challenges to technological and policy-based solutions and highlight the opportunities for greatest impact.

    2. Developing new ways to prevent, mitigate, and adapt to the effects of climate change

    An estimated 20 percent of MIT faculty work on some aspect of the climate crisis, an enormous research effort distributed throughout the departments, labs, centers, and institutes.

    About a dozen such projects were on display at a poster session coordinated by the Abdul Latif Jameel Water and Food Systems Lab (J-WAFS), Environmental Solutions Initiative (ESI), and MITEI.

    Students and postdocs presented innovations including:

    Graduate student Alexa Reese Canaan describes her research on household energy consumption to Massachusetts State Senator Michael J. Barrett, chair of the Joint Committee on Telecommunications, Utilities, and Energy.

    Photo: Caitlin Cunningham

    Previous item
    Next item

    3. Preparing students to meet the challenges of a climate-changed world

    Faculty and staff from more than 30 institutions of higher education convened at the MIT Symposium on Advancing Climate Education to exchange best practices and innovations in teaching and learning. Speakers and participants considered paths to structural change in higher education, the imperative to place equity and justice at the center of new educational approaches, and what it means to “educate the whole student” so that graduates are prepared to live and thrive in a world marked by global environmental and economic disruption.

    Later in April, MIT faculty voted to approve the creation of a new joint degree program in climate system science and engineering.

    4. Offering climate curricula to K-12 teachers

    At a daylong conference on climate education for K-12 schools, the attendees were not just science teachers. Close to 50 teachers of arts, literature, history, math, mental health, English language, world languages, and even carpentry were all hungry for materials and approaches to integrate into their curricula. They were joined by another 50 high school students, ready to test out the workshops and content developed by MIT Climate Action Through Education (CATE), which are already being piloted in at least a dozen schools.

    The CATE initiative is led by Christopher Knittel, the George P. Shultz Professor of Energy Economics at the MIT Sloan School of Management, deputy director for policy at MITEI, and faculty director of the MIT Center for Energy and Environmental Policy Research. The K-12 Climate Action and Education Conference was hosted as a collaboration with the Massachusetts Teachers Association Climate Action Network and Earth Day Boston.

    “We will be honest about the threats posed by climate change, but also give students a sense of agency that they can do something about this,” Knittel told MITEI Energy Futures earlier this spring. “And for the many teachers — especially non-science teachers — starved for knowledge and background material, CATE offers resources to give them confidence to implement our curriculum.”

    High school students and K-12 teachers participated in a workshop on “Exploring a Green City,” part of the Climate Action and Education Conference on April 1.

    Photo: Tony Rinaldo

    Previous item
    Next item

    5. Guiding our communities in making sense of the coming changes

    The arts and humanities, vital in their own right, are also central to the sharing of scientific knowledge and its integration into culture, behavior, and decision-making. A message well-delivered can reach new audiences and prompt reflection and reckoning on ethics and values, identity, and optimism.

    The Climate Machine, part of ESI’s Arts and Climate program, produced an evening art installation on campus featuring dynamic, large-scale projections onto the façade of MIT’s new music building and a musical performance by electronic duo Warung. Passers-by were invited to take a Climate Identity Quiz, with the responses reflected in the visuals. Another exhibit displayed the results of a workshop in which attendees had used an artificial intelligence art tool to imagine the future of their hometowns, while another highlighted native Massachusetts wildlife.

    The Climate Machine is an MIT research project undertaken in collaboration with record label Anjunabeats. The collaborative team imagines interactive experiences centered on sustainability that could be deployed at musical events and festivals to inspire climate action.

    Dillon Ames (left) and Aaron Hopkins, known as the duo Warung, perform a live set during the Climate Machine art installation.

    Photo: Caitlin Cunningham

    Previous item
    Next item

    6. Empowering students to seize this unique policy moment

    ESI’s TILclimate Podcast, which breaks down important climate topics for general listeners, held a live taping at the MIT Museum and offered an explainer on three recent, major pieces of federal legislation: the Inflation Reduction Act of 2022, the Bipartisan Infrastructure Bill of 2021, and the CHIPS and Science Act of 2022.

    The combination of funding and financial incentives for energy- and climate-related projects, along with reinvestment in industrial infrastructure, create “a real moment and an opportunity,” said special guest Elisabeth Reynolds, speaking with host Laur Hesse Fisher. Reynolds was a member of the National Economic Council from 2021 to 2022, serving as special assistant to the president for manufacturing and economic development; after leaving the White House, Reynolds returned to MIT, where she is a lecturer in MIT’s Department of Urban Studies and Planning.

    For students, the opportunities to engage have never been better, Reynolds urged: “There is so much need. … Find a way to contribute, and find a way to help us make this transformation.”

    “What we’re embarking on now, you just can’t overstate the significance of it,” she said.

    For more information on how MIT is advancing climate action across education; research and innovation; policy; economic, social, and environmental justice; public and global engagement; sustainable campus operations; and more, visit Fast Forward: MIT’s Climate Action Plan for the Decade. The actions described in the plan aim to accelerate the global transition to net-zero carbon emissions, and to “educate and empower the next generation.” More

  • in

    3 Questions: Can disused croplands help mitigate climate change?

    As the world struggles to meet internationally agreed targets for reducing greenhouse gas emissions, methods of removing carbon dioxide such as reforestation of cleared areas have become an increasingly important strategy. But little attention has been paid to the potential for abandoned or marginal croplands to be restored to natural vegetation as an additional carbon sink, say MIT assistant professor of civil and environmental engineering César Terrer, recent visiting MIT doctoral student Stephen M. Bell, and six others, in a recent open-access paper in the journal Nature Communications. Here, Terrer and Bell explain the potential use of these “post-agricultural” lands to help in the fight against damaging climate change.

    Q: How significant is the potential of unused agricultural lands as a carbon sink to help mitigate climate change?

    Bell: We know of these huge instances of land abandonment and post-agricultural succession throughout history, like following the collapse of major cities from ancient Mesopotamia to the Mayans. And when the Europeans arrived in the Americas in the 15th century, so many people died and so much forest grew back on abandoned farmland that it helped cool the entire planet and was potentially a driver of the coldest part of the so-called “Little Ice Age” period.

    Today, we have abandoned farmland all over the Mediterranean region, where I did my PhD field work. As young people left rural areas for the cities throughout the 20th century, farmers couldn’t pass on their land to anyone, and the land succeeded back into shrub lands and forests. The biggest recent example of abandonment is for sure the collapse of the Soviet Union, where an estimated 60 million hectares of forest regrew when support for collective farming stopped, resulting in one of the largest carbon sinks ever attributed to a single event.

    So, when we look back at the past, we know there’s potential. Of course, these are huge events, and no one is proposing to replicate anything like that. We need to use land for multiple purposes, but looking back at these big examples, we know there is potential for abandoned or restored agricultural land to be carbon sinks. And so that tells us to dig deeper into this question and get a better idea of realistic scenarios, a better understanding of the climate change mitigation potential of agricultural cessation in the most strategic places.

    Terrer: More than 115 billion tons of carbon have been lost from soils due to agricultural practices that disturb soil integrity — such as tilling, monoculture farming, removing crop residue, excessive use of fertilizers and pesticides, and over-grazing. To put this into perspective, the amount of carbon lost is equivalent to the total CO2 emissions ever produced in the United States.

    Our current research synthesizes field data from thousands of experiments, aiming to understand the factors that influence soil carbon accrual in abandoned croplands transitioning back to forests or natural grasslands. We’re working to quantify the potential for carbon sequestration in these soils over 30-, 50-, and 100-year time frames and mapping the areas with the greatest potential for carbon storage. This includes both increases in soil carbon and in vegetation biomass.

    Q: What are some of the key uncertainties in evaluating this potential for unused cropland to serve as a carbon sink, and how could those uncertainties be addressed?

    Bell: We use this word uncertainties in two ways. Specifically, the longevity of potential recarbonization, and the intensity of the potential recarbonization. Those are two factors, two aspects that we need to quantify to reduce our uncertainty.

    So, how long will the land recarbonize, regardless of the intensity? If the carbon level is going up, that’s good. If there’s more carbon increasing in the soil, we know that it came from somewhere, it came from the atmosphere. But how long does that happen? We know soil can get saturated. It can reach its carbon capacity limit, it won’t continue to increase the carbon stock, and the recarbonization curve will flatten out. When does that happen? Is it after a hundred years? Is it after 20 years?

    But the world’s soils are very diverse and complex, so what might be true in one place is not true in another place. It may take a longer time to reach saturation for more fertile soils in the Midwest U.S. than less fertile soils in the Southwest, for example. Alternatively, sometimes soils in drier areas like in the Southwest may never reach true saturation if they are degraded and have stalled recovery following abandonment.

    The second uncertainty is intensity: How high on the y-axis on the chart of recarbonization does saturation occur? With the analogy comparing U.S. soils, you might have a relatively huge carbon increase on an abandoned farm in the Southwest, but because the soil is not very carbon-rich it’s not a large increase in absolute terms. In the Midwest, there might only be a small relative increase, but that increase could be much more in total than in the Southwest. These are just nuances to keep in mind as we look at this at the global scale.

    These nuances are essentially uncertainties. Soil carbon responses to agricultural land abandonment is complicated, and unfortunately it hasn’t been studied in much detail so far. We need to reduce those uncertainties to get a better understanding of the recarbonization potential. This is easier said than done because not only do we have these temporal data uncertainties, but we also have spatial uncertainties. We don’t have very good maps of past and present post-agricultural landscapes.

    Q: Can this potential use of post-agricultural lands be implemented without putting global food supplies at risk? How can these needs be balanced?

    Terrer: As to whether utilizing post-agricultural lands for carbon sequestration can be implemented without jeopardizing global food supplies, and how to balance these needs, our recent research provides valuable insights.

    The challenge, of course, lies in balancing cropland restoration for climate mitigation with food security for a growing global population. Abandoned croplands represent an opportunity for carbon sequestration without impacting active agricultural lands. However, the available area of abandoned croplands is insufficient to make a substantial impact on climate mitigation on its own.

    Thus, our proposal also emphasizes the importance of closing yield gaps, which involves increasing crop production per hectare to its theoretical limits. This would enable us to maintain or even increase global crop yields using only a fraction of the currently cultivated area, allowing the remaining land to be dedicated to climate mitigation efforts. By pursuing this strategy, we estimate that over half of the amount of soil carbon lost so far due to agriculture could be recovered, while ensuring food security for the world’s population. More

  • in

    J-WAFS announces 2023 seed grant recipients

    Today, the Abdul Latif Jameel Water and Food Systems Lab (J-WAFS) announced its ninth round of seed grants to support innovative research projects at MIT. The grants are designed to fund research efforts that tackle challenges related to water and food for human use, with the ultimate goal of creating meaningful impact as the world population continues to grow and the planet undergoes significant climate and environmental changes.Ten new projects led by 15 researchers from seven different departments will be supported this year. The projects address a range of challenges by employing advanced materials, technology innovations, and new approaches to resource management. The new projects aim to remove harmful chemicals from water sources, develop monitoring and other systems to help manage various aquaculture industries, optimize water purification materials, and more.“The seed grant program is J-WAFS’ flagship grant initiative,” says J-WAFS executive director Renee J. Robins. “The funding is intended to spur groundbreaking MIT research addressing complex issues that are challenging our water and food systems. The 10 projects selected this year show great promise, and we look forward to the progress and accomplishments these talented researchers will make,” she adds.The 2023 J-WAFS seed grant researchers and their projects are:Sara Beery, an assistant professor in the Department of Electrical Engineering and Computer Science (EECS), is building the first completely automated system to estimate the size of salmon populations in the Pacific Northwest (PNW).Salmon are a keystone species in the PNW, feeding human populations for the last 7,500 years at least. However, overfishing, habitat loss, and climate change threaten extinction of salmon populations across the region. Accurate salmon counts during their seasonal migration to their natal river to spawn are essential for fisheries’ regulation and management but are limited by human capacity. Fish population monitoring is a widespread challenge in the United States and worldwide. Beery and her team are working to build a system that will provide a detailed picture of the state of salmon populations in unprecedented, spatial, and temporal resolution by combining sonar sensors and computer vision and machine learning (CVML) techniques. The sonar will capture individual fish as they swim upstream and CVML will train accurate algorithms to interpret the sonar video for detecting, tracking, and counting fish automatically while adapting to changing river conditions and fish densities.Another aquaculture project is being led by Michael Triantafyllou, the Henry L. and Grace Doherty Professor in Ocean Science and Engineering in the Department of Mechanical Engineering, and Robert Vincent, the assistant director at MIT’s Sea Grant Program. They are working with Otto Cordero, an associate professor in the Department of Civil and Environmental Engineering, to control harmful bacteria blooms in aquaculture algae feed production.

    Aquaculture in the United States represents a $1.5 billion industry annually and helps support 1.7 million jobs, yet many American hatcheries are not able to keep up with demand. One barrier to aquaculture production is the high degree of variability in survival rates, most likely caused by a poorly controlled microbiome that leads to bacterial infections and sub-optimal feed efficiency. Triantafyllou, Vincent, and Cordero plan to monitor the microbiome composition of a shellfish hatchery in order to identify possible causing agents of mortality, as well as beneficial microbes. They hope to pair microbe data with detail phenotypic information about the animal population to generate rapid diagnostic tests and explore the potential for microbiome therapies to protect larvae and prevent future outbreaks. The researchers plan to transfer their findings and technology to the local and regional aquaculture community to ensure healthy aquaculture production that will support the expansion of the U.S. aquaculture industry.

    David Des Marais is the Cecil and Ida Green Career Development Professor in the Department of Civil and Environmental Engineering. His 2023 J-WAFS project seeks to understand plant growth responses to elevated carbon dioxide (CO2) in the atmosphere, in the hopes of identifying breeding strategies that maximize crop yield under future CO2 scenarios.Today’s crop plants experience higher atmospheric CO2 than 20 or 30 years ago. Crops such as wheat, oat, barley, and rice typically increase their growth rate and biomass when grown at experimentally elevated atmospheric CO2. This is known as the so-called “CO2 fertilization effect.” However, not all plant species respond to rising atmospheric CO2 with increased growth, and for the ones that do, increased growth doesn’t necessarily correspond to increased crop yield. Using specially built plant growth chambers that can control the concentration of CO2, Des Marais will explore how CO2 availability impacts the development of tillers (branches) in the grass species Brachypodium. He will study how gene expression controls tiller development, and whether this is affected by the growing environment. The tillering response refers to how many branches a plant produces, which sets a limit on how much grain it can yield. Therefore, optimizing the tillering response to elevated CO2 could greatly increase yield. Des Marais will also look at the complete genome sequence of Brachypodium, wheat, oat, and barley to help identify genes relevant for branch growth.Darcy McRose, an assistant professor in the Department of Civil and Environmental Engineering, is researching whether a combination of plant metabolites and soil bacteria can be used to make mineral-associated phosphorus more bioavailable.The nutrient phosphorus is essential for agricultural plant growth, but when added as a fertilizer, phosphorus sticks to the surface of soil minerals, decreasing bioavailability, limiting plant growth, and accumulating residual phosphorus. Heavily fertilized agricultural soils often harbor large reservoirs of this type of mineral-associated “legacy” phosphorus. Redox transformations are one chemical process that can liberate mineral-associated phosphorus. However, this needs to be carefully controlled, as overly mobile phosphorus can lead to runoff and pollution of natural waters. Ideally, phosphorus would be made bioavailable when plants need it and immobile when they don’t. Many plants make small metabolites called coumarins that might be able to solubilize mineral-adsorbed phosphorus and be activated and inactivated under different conditions. McRose will use laboratory experiments to determine whether a combination of plant metabolites and soil bacteria can be used as a highly efficient and tunable system for phosphorus solubilization. She also aims to develop an imaging platform to investigate exchanges of phosphorus between plants and soil microbes.Many of the 2023 seed grants will support innovative technologies to monitor, quantify, and remediate various kinds of pollutants found in water. Two of the new projects address the problem of per- and polyfluoroalkyl substances (PFAS), human-made chemicals that have recently emerged as a global health threat. Known as “forever chemicals,” PFAS are used in many manufacturing processes. These chemicals are known to cause significant health issues including cancer, and they have become pervasive in soil, dust, air, groundwater, and drinking water. Unfortunately, the physical and chemical properties of PFAS render them difficult to detect and remove.Aristide Gumyusenge, the Merton C. Assistant Professor of Materials Science and Engineering, is using metal-organic frameworks for low-cost sensing and capture of PFAS. Most metal-organic frameworks (MOFs) are synthesized as particles, which complicates their high accuracy sensing performance due to defects such as intergranular boundaries. Thin, film-based electronic devices could enable the use of MOFs for many applications, especially chemical sensing. Gumyusenge’s project aims to design test kits based on two-dimensional conductive MOF films for detecting PFAS in drinking water. In early demonstrations, Gumyusenge and his team showed that these MOF films can sense PFAS at low concentrations. They will continue to iterate using a computation-guided approach to tune sensitivity and selectivity of the kits with the goal of deploying them in real-world scenarios.Carlos Portela, the Brit (1961) and Alex (1949) d’Arbeloff Career Development Professor in the Department of Mechanical Engineering, and Ariel Furst, the Cook Career Development Professor in the Department of Chemical Engineering, are building novel architected materials to act as filters for the removal of PFAS from water. Portela and Furst will design and fabricate nanoscale materials that use activated carbon and porous polymers to create a physical adsorption system. They will engineer the materials to have tunable porosities and morphologies that can maximize interactions between contaminated water and functionalized surfaces, while providing a mechanically robust system.Rohit Karnik is a Tata Professor and interim co-department head of the Department of Mechanical Engineering. He is working on another technology, his based on microbead sensors, to rapidly measure and monitor trace contaminants in water.Water pollution from both biological and chemical contaminants contributes to an estimated 1.36 million deaths annually. Chemical contaminants include pesticides and herbicides, heavy metals like lead, and compounds used in manufacturing. These emerging contaminants can be found throughout the environment, including in water supplies. The Environmental Protection Agency (EPA) in the United States sets recommended water quality standards, but states are responsible for developing their own monitoring criteria and systems, which must be approved by the EPA every three years. However, the availability of data on regulated chemicals and on candidate pollutants is limited by current testing methods that are either insensitive or expensive and laboratory-based, requiring trained scientists and technicians. Karnik’s project proposes a simple, self-contained, portable system for monitoring trace and emerging pollutants in water, making it suitable for field studies. The concept is based on multiplexed microbead-based sensors that use thermal or gravitational actuation to generate a signal. His proposed sandwich assay, a testing format that is appealing for environmental sensing, will enable both single-use and continuous monitoring. The hope is that the bead-based assays will increase the ease and reach of detecting and quantifying trace contaminants in water for both personal and industrial scale applications.Alexander Radosevich, a professor in the Department of Chemistry, and Timothy Swager, the John D. MacArthur Professor of Chemistry, are teaming up to create rapid, cost-effective, and reliable techniques for on-site arsenic detection in water.Arsenic contamination of groundwater is a problem that affects as many as 500 million people worldwide. Arsenic poisoning can lead to a range of severe health problems from cancer to cardiovascular and neurological impacts. Both the EPA and the World Health Organization have established that 10 parts per billion is a practical threshold for arsenic in drinking water, but measuring arsenic in water at such low levels is challenging, especially in resource-limited environments where access to sensitive laboratory equipment may not be readily accessible. Radosevich and Swager plan to develop reaction-based chemical sensors that bind and extract electrons from aqueous arsenic. In this way, they will exploit the inherent reactivity of aqueous arsenic to selectively detect and quantify it. This work will establish the chemical basis for a new method of detecting trace arsenic in drinking water.Rajeev Ram is a professor in the Department of Electrical Engineering and Computer Science. His J-WAFS research will advance a robust technology for monitoring nitrogen-containing pollutants, which threaten over 15,000 bodies of water in the United States alone.Nitrogen in the form of nitrate, nitrite, ammonia, and urea can run off from agricultural fertilizer and lead to harmful algal blooms that jeopardize human health. Unfortunately, monitoring these contaminants in the environment is challenging, as sensors are difficult to maintain and expensive to deploy. Ram and his students will work to establish limits of detection for nitrate, nitrite, ammonia, and urea in environmental, industrial, and agricultural samples using swept-source Raman spectroscopy. Swept-source Raman spectroscopy is a method of detecting the presence of a chemical by using a tunable, single mode laser that illuminates a sample. This method does not require costly, high-power lasers or a spectrometer. Ram will then develop and demonstrate a portable system that is capable of achieving chemical specificity in complex, natural environments. Data generated by such a system should help regulate polluters and guide remediation.Kripa Varanasi, a professor in the Department of Mechanical Engineering, and Angela Belcher, the James Mason Crafts Professor and head of the Department of Biological Engineering, will join forces to develop an affordable water disinfection technology that selectively identifies, adsorbs, and kills “superbugs” in domestic and industrial wastewater.Recent research predicts that antibiotic-resistance bacteria (superbugs) will result in $100 trillion in health care expenses and 10 million deaths annually by 2050. The prevalence of superbugs in our water systems has increased due to corroded pipes, contamination, and climate change. Current drinking water disinfection technologies are designed to kill all types of bacteria before human consumption. However, for certain domestic and industrial applications there is a need to protect the good bacteria required for ecological processes that contribute to soil and plant health. Varanasi and Belcher will combine material, biological, process, and system engineering principles to design a sponge-based water disinfection technology that can identify and destroy harmful bacteria while leaving the good bacteria unharmed. By modifying the sponge surface with specialized nanomaterials, their approach will be able to kill superbugs faster and more efficiently. The sponge filters can be deployed under very low pressure, making them an affordable technology, especially in resource-constrained communities.In addition to the 10 seed grant projects, J-WAFS will also fund a research initiative led by Greg Sixt. Sixt is the research manager for climate and food systems at J-WAFS, and the director of the J-WAFS-led Food and Climate Systems Transformation (FACT) Alliance. His project focuses on the Lake Victoria Basin (LVB) of East Africa. The second-largest freshwater lake in the world, Lake Victoria straddles three countries (Uganda, Tanzania, and Kenya) and has a catchment area that encompasses two more (Rwanda and Burundi). Sixt will collaborate with Michael Hauser of the University of Natural Resources and Life Sciences, Vienna, and Paul Kariuki, of the Lake Victoria Basin Commission.The group will study how to adapt food systems to climate change in the Lake Victoria Basin. The basin is facing a range of climate threats that could significantly impact livelihoods and food systems in the expansive region. For example, extreme weather events like droughts and floods are negatively affecting agricultural production and freshwater resources. Across the LVB, current approaches to land and water management are unsustainable and threaten future food and water security. The Lake Victoria Basin Commission (LVBC), a specialized institution of the East African Community, wants to play a more vital role in coordinating transboundary land and water management to support transitions toward more resilient, sustainable, and equitable food systems. The primary goal of this research will be to support the LVBC’s transboundary land and water management efforts, specifically as they relate to sustainability and climate change adaptation in food systems. The research team will work with key stakeholders in Kenya, Uganda, and Tanzania to identify specific capacity needs to facilitate land and water management transitions. The two-year project will produce actionable recommendations to the LVBC. More

  • in

    Finding “hot spots” where compounding environmental and economic risks converge

    A computational tool developed by researchers at the MIT Joint Program on the Science and Policy of Global Change pinpoints specific counties within the United States that are particularly vulnerable to economic distress resulting from a transition from fossil fuels to low-carbon energy sources. By combining county-level data on employment in fossil fuel (oil, natural gas, and coal) industries with data on populations below the poverty level, the tool identifies locations with high risks for transition-driven economic hardship. It turns out that many of these high-risk counties are in the south-central U.S., with a heavy concentration in the lower portions of the Mississippi River.

    The computational tool, which the researchers call the System for the Triage of Risks from Environmental and Socio-economic Stressors (STRESS) platform, almost instantly displays these risk combinations on an easy-to-read visual map, revealing those counties that stand to gain the most from targeted green jobs retraining programs.  

    Drawing on data that characterize land, water, and energy systems; biodiversity; demographics; environmental equity; and transportation networks, the STRESS platform enables users to assess multiple, co-evolving, compounding hazards within a U.S. geographical region from the national to the county level. Because of its comprehensiveness and precision, this screening-level visualization tool can pinpoint risk “hot spots” that can be subsequently investigated in greater detail. Decision-makers can then plan targeted interventions to boost resilience to location-specific physical and economic risks.

    The platform and its applications are highlighted in a new study in the journal Frontiers in Climate.

    “As risks to natural and managed resources — and to the economies that depend upon them — become more complex, interdependent, and compounding amid rapid environmental and societal changes, they require more and more human and computational resources to understand and act upon,” says MIT Joint Program Deputy Director C. Adam Schlosser, the lead author of the study. “The STRESS platform provides decision-makers with an efficient way to combine and analyze data on those risks that matter most to them, identify ‘hot spots’ of compounding risk, and design interventions to minimize that risk.”

    In one demonstration of the STRESS platform’s capabilities, the study shows that national and global actions to reduce greenhouse gas emissions could simultaneously reduce risks to land, water, and air quality in the upper Mississippi River basin while increasing economic risks in the lower basin, where poverty and unemployment are already disproportionate. In another demonstration, the platform finds concerning “hot spots” where flood risk, poverty, and nonwhite populations coincide.

    The risk triage platform is based on an emerging discipline called multi-sector dynamics (MSD), which seeks to understand and model compounding risks and potential tipping points across interconnected natural and human systems. Tipping points occur when these systems can no longer sustain multiple, co-evolving stresses, such as extreme events, population growth, land degradation, drinkable water shortages, air pollution, aging infrastructure, and increased human demands. MSD researchers use observations and computer models to identify key precursory indicators of such tipping points, providing decision-makers with critical information that can be applied to mitigate risks and boost resilience in natural and managed resources. With funding from the U.S. Department of Energy, the MIT Joint Program has since 2018 been developing MSD expertise and modeling tools and using them to explore compounding risks and potential tipping points in selected regions of the United States.

    Current STRESS platform data includes more than 100 risk metrics at the county-level scale, but data collection is ongoing. MIT Joint Program researchers are continuing to develop the STRESS platform as an “open-science tool” that welcomes input from academics, researchers, industry and the general public. More