More stories

  • in

    A new heat engine with no moving parts is as efficient as a steam turbine

    Engineers at MIT and the National Renewable Energy Laboratory (NREL) have designed a heat engine with no moving parts. Their new demonstrations show that it converts heat to electricity with over 40 percent efficiency — a performance better than that of traditional steam turbines.

    The heat engine is a thermophotovoltaic (TPV) cell, similar to a solar panel’s photovoltaic cells, that passively captures high-energy photons from a white-hot heat source and converts them into electricity. The team’s design can generate electricity from a heat source of between 1,900 to 2,400 degrees Celsius, or up to about 4,300 degrees Fahrenheit.

    The researchers plan to incorporate the TPV cell into a grid-scale thermal battery. The system would absorb excess energy from renewable sources such as the sun and store that energy in heavily insulated banks of hot graphite. When the energy is needed, such as on overcast days, TPV cells would convert the heat into electricity, and dispatch the energy to a power grid.

    With the new TPV cell, the team has now successfully demonstrated the main parts of the system in separate, small-scale experiments. They are working to integrate the parts to demonstrate a fully operational system. From there, they hope to scale up the system to replace fossil-fuel-driven power plants and enable a fully decarbonized power grid, supplied entirely by renewable energy.

    “Thermophotovoltaic cells were the last key step toward demonstrating that thermal batteries are a viable concept,” says Asegun Henry, the Robert N. Noyce Career Development Professor in MIT’s Department of Mechanical Engineering. “This is an absolutely critical step on the path to proliferate renewable energy and get to a fully decarbonized grid.”

    Henry and his collaborators have published their results today in the journal Nature. Co-authors at MIT include Alina LaPotin, Kevin Schulte, Kyle Buznitsky, Colin Kelsall, Andrew Rohskopf, and Evelyn Wang, the Ford Professor of Engineering and head of the Department of Mechanical Engineering, along with collaborators at NREL in Golden, Colorado.

    Jumping the gap

    More than 90 percent of the world’s electricity comes from sources of heat such as coal, natural gas, nuclear energy, and concentrated solar energy. For a century, steam turbines have been the industrial standard for converting such heat sources into electricity.

    On average, steam turbines reliably convert about 35 percent of a heat source into electricity, with about 60 percent representing the highest efficiency of any heat engine to date. But the machinery depends on moving parts that are temperature- limited. Heat sources higher than 2,000 degrees Celsius, such as Henry’s proposed thermal battery system, would be too hot for turbines.

    In recent years, scientists have looked into solid-state alternatives — heat engines with no moving parts, that could potentially work efficiently at higher temperatures.

    “One of the advantages of solid-state energy converters are that they can operate at higher temperatures with lower maintenance costs because they have no moving parts,” Henry says. “They just sit there and reliably generate electricity.”

    Thermophotovoltaic cells offered one exploratory route toward solid-state heat engines. Much like solar cells, TPV cells could be made from semiconducting materials with a particular bandgap — the gap between a material’s valence band and its conduction band. If a photon with a high enough energy is absorbed by the material, it can kick an electron across the bandgap, where the electron can then conduct, and thereby generate electricity — doing so without moving rotors or blades.

    To date, most TPV cells have only reached efficiencies of around 20 percent, with the record at 32 percent, as they have been made of relatively low-bandgap materials that convert lower-temperature, low-energy photons, and therefore convert energy less efficiently.

    Catching light

    In their new TPV design, Henry and his colleagues looked to capture higher-energy photons from a higher-temperature heat source, thereby converting energy more efficiently. The team’s new cell does so with higher-bandgap materials and multiple junctions, or material layers, compared with existing TPV designs.

    The cell is fabricated from three main regions: a high-bandgap alloy, which sits over a slightly lower-bandgap alloy, underneath which is a mirror-like layer of gold. The first layer captures a heat source’s highest-energy photons and converts them into electricity, while lower-energy photons that pass through the first layer are captured by the second and converted to add to the generated voltage. Any photons that pass through this second layer are then reflected by the mirror, back to the heat source, rather than being absorbed as wasted heat.

    The team tested the cell’s efficiency by placing it over a heat flux sensor — a device that directly measures the heat absorbed from the cell. They exposed the cell to a high-temperature lamp and concentrated the light onto the cell. They then varied the bulb’s intensity, or temperature, and observed how the cell’s power efficiency — the amount of power it produced, compared with the heat it absorbed — changed with temperature. Over a range of 1,900 to 2,400 degrees Celsius, the new TPV cell maintained an efficiency of around 40 percent.

    “We can get a high efficiency over a broad range of temperatures relevant for thermal batteries,” Henry says.

    The cell in the experiments is about a square centimeter. For a grid-scale thermal battery system, Henry envisions the TPV cells would have to scale up to about 10,000 square feet (about a quarter of a football field), and would operate in climate-controlled warehouses to draw power from huge banks of stored solar energy. He points out that an infrastructure exists for making large-scale photovoltaic cells, which could also be adapted to manufacture TPVs.

    “There’s definitely a huge net positive here in terms of sustainability,” Henry says. “The technology is safe, environmentally benign in its life cycle, and can have a tremendous impact on abating carbon dioxide emissions from electricity production.”

    This research was supported, in part, by the U.S. Department of Energy. More

  • in

    Selective separation could help alleviate critical metals shortage

    New processing methods developed by MIT researchers could help ease looming shortages of the essential metals that power everything from phones to automotive batteries, by making it easier to separate these rare metals from mining ores and recycled materials.

    Selective adjustments within a chemical process called sulfidation allowed professor of metallurgy Antoine Allanore and his graduate student Caspar Stinn to successfully target and separate rare metals, such as the cobalt in a lithium-ion battery, from mixed-metal materials.

    As they report in the journal Nature, their processing techniques allow the metals to remain in solid form and be separated without dissolving the material. This avoids traditional but costly liquid separation methods that require significant energy. The researchers developed processing conditions for 56 elements and tested these conditions on 15 elements.

    Their sulfidation approach, they write in the paper, could reduce the capital costs of metal separation between 65 and 95 percent from mixed-metal oxides. Their selective processing could also reduce greenhouse gas emissions by 60 to 90 percent compared to traditional liquid-based separation.

    “We were excited to find replacements for processes that had really high levels of water usage and greenhouse gas emissions, such as lithium-ion battery recycling, rare-earth magnet recycling, and rare-earth separation,” says Stinn. “Those are processes that make materials for sustainability applications, but the processes themselves are very unsustainable.”

    The findings offer one way to alleviate a growing demand for minor metals like cobalt, lithium, and rare earth elements that are used in “clean” energy products like electric cars, solar cells, and electricity-generating windmills. According to a 2021 report by the International Energy Agency, the average amount of minerals needed for a new unit of power generation capacity has risen by 50 percent since 2010, as renewable energy technologies using these metals expand their reach.

    Opportunity for selectivity

    For more than a decade, the Allanore group has been studying the use of sulfide materials in developing new electrochemical routes for metal production. Sulfides are common materials, but the MIT scientists are experimenting with them under extreme conditions like very high temperatures — from 800 to 3,000 degrees Fahrenheit — that are used in manufacturing plants but not in a typical university lab.

    “We are looking at very well-established materials in conditions that are uncommon compared to what has been done before,” Allanore explains, “and that is why we are finding new applications or new realities.”

    In the process of synthetizing high-temperature sulfide materials to support electrochemical production, Stinn says, “we learned we could be very selective and very controlled about what products we made. And it was with that understanding that we realized, ‘OK, maybe there’s an opportunity for selectivity in separation here.’”

    The chemical reaction exploited by the researchers reacts a material containing a mix of metal oxides to form new metal-sulfur compounds or sulfides. By altering factors like temperature, gas pressure, and the addition of carbon in the reaction process, Stinn and Allanore found that they could selectively create a variety of sulfide solids that can be physically separated by a variety of methods, including crushing the material and sorting different-sized sulfides or using magnets to separate different sulfides from one another.

    Current methods of rare metal separation rely on large quantities of energy, water, acids, and organic solvents which have costly environmental impacts, says Stinn. “We are trying to use materials that are abundant, economical, and readily available for sustainable materials separation, and we have expanded that domain to now include sulfur and sulfides.”

    Stinn and Allanore used selective sulfidation to separate out economically important metals like cobalt in recycled lithium-ion batteries. They also used their techniques to separate dysprosium — a rare-earth element used in applications ranging from data storage devices to optoelectronics — from rare-earth-boron magnets, or from the typical mixture of oxides available from mining minerals such as bastnaesite.

    Leveraging existing technology

    Metals like cobalt and rare earths are only found in small amounts in mined materials, so industries must process large volumes of material to retrieve or recycle enough of these metals to be economically viable, Allanore explains. “It’s quite clear that these processes are not efficient. Most of the emissions come from the lack of selectivity and the low concentration at which they operate.”

    By eliminating the need for liquid separation and the extra steps and materials it requires to dissolve and then reprecipitate individual elements, the MIT researchers’ process significantly reduces the costs incurred and emissions produced during separation.

    “One of the nice things about separating materials using sulfidation is that a lot of existing technology and process infrastructure can be leveraged,” Stinn says. “It’s new conditions and new chemistries in established reactor styles and equipment.”

    The next step is to show that the process can work for large amounts of raw material — separating out 16 elements from rare-earth mining streams, for example. “Now we have shown that we can handle three or four or five of them together, but we have not yet processed an actual stream from an existing mine at a scale to match what’s required for deployment,” Allanore says.

    Stinn and colleagues in the lab have built a reactor that can process about 10 kilograms of raw material per day, and the researchers are starting conversations with several corporations about the possibilities.

    “We are discussing what it would take to demonstrate the performance of this approach with existing mineral and recycling streams,” Allanore says.

    This research was supported by the U.S. Department of Energy and the U.S. National Science Foundation. More

  • in

    An energy-storage solution that flows like soft-serve ice cream

    Batteries made from an electrically conductive mixture the consistency of molasses could help solve a critical piece of the decarbonization puzzle. An interdisciplinary team from MIT has found that an electrochemical technology called a semisolid flow battery can be a cost-competitive form of energy storage and backup for variable renewable energy (VRE) sources such as wind and solar. The group’s research is described in a paper published in Joule.

    “The transition to clean energy requires energy storage systems of different durations for when the sun isn’t shining and the wind isn’t blowing,” says Emre Gençer, a research scientist with the MIT Energy Initiative (MITEI) and a member of the team. “Our work demonstrates that a semisolid flow battery could be a lifesaving as well as economical option when these VRE sources can’t generate power for a day or longer — in the case of natural disasters, for instance.”

    The rechargeable zinc-manganese dioxide (Zn-MnO2) battery the researchers created beat out other long-duration energy storage contenders. “We performed a comprehensive, bottom-up analysis to understand how the battery’s composition affects performance and cost, looking at all the trade-offs,” says Thaneer Malai Narayanan SM ’18, PhD ’21. “We showed that our system can be cheaper than others, and can be scaled up.”

    Narayanan, who conducted this work at MIT as part of his doctorate in mechanical engineering, is the lead author of the paper. Additional authors include Gençer, Yunguang Zhu, a postdoc in the MIT Electrochemical Energy Lab; Gareth McKinley, the School of Engineering Professor of Teaching Innovation and professor of mechanical engineering at MIT; and Yang Shao-Horn, the JR East Professor of Engineering, a professor of mechanical engineering and of materials science and engineering, and a member of the Research Laboratory of Electronics (RLE), who directs the MIT Electrochemical Energy Lab.

    Going with the flow

    In 2016, Narayanan began his graduate studies, joining the Electrochemical Energy Lab, a hotbed of research and exploration of solutions to mitigate climate change, which is centered on innovative battery chemistry and decarbonizing fuels and chemicals. One exciting opportunity for the lab: developing low- and no-carbon backup energy systems suitable for grid-scale needs when VRE generation flags.                                                  

    While the lab cast a wide net, investigating energy conversion and storage using solid oxide fuel cells, lithium-ion batteries, and metal-air batteries, among others, Narayanan took a particular interest in flow batteries. In these systems, two different chemical (electrolyte) solutions with either negative or positive ions are pumped from separate tanks, meeting across a membrane (called the stack). Here, the ion streams react, converting electrical energy to chemical energy — in effect, charging the battery. When there is demand for this stored energy, the solution gets pumped back to the stack to convert chemical energy into electrical energy again.

    The duration of time that flow batteries can discharge, releasing the stored electricity, is determined by the volume of positively and negatively charged electrolyte solutions streaming through the stack. In theory, as long as these solutions keep flowing, reacting, and converting the chemical energy to electrical energy, the battery systems can provide electricity.

    “For backup lasting more than a day, the architecture of flow batteries suggests they can be a cheap option,” says Narayanan. “You recharge the solution in the tanks from sun and wind power sources.” This renders the entire system carbon free.

    But while the promise of flow battery technologies has beckoned for at least a decade, the uneven performance and expense of materials required for these battery systems has slowed their implementation. So, Narayanan set out on an ambitious journey: to design and build a flow battery that could back up VRE systems for a day or more, storing and discharging energy with the same or greater efficiency than backup rivals; and to determine, through rigorous cost analysis, whether such a system could prove economically viable as a long-duration energy option.

    Multidisciplinary collaborators

    To attack this multipronged challenge, Narayanan’s project brought together, in his words, “three giants, scientists all well-known in their fields”:  Shao-Horn, who specializes in chemical physics and electrochemical science, and design of materials; Gençer, who creates detailed economic models of emergent energy systems at MITEI; and McKinley, an expert in rheology, the physics of flow. These three also served as his thesis advisors.

    “I was excited to work in such an interdisciplinary team, which offered a unique opportunity to create a novel battery architecture by designing charge transfer and ion transport within flowable semi-solid electrodes, and to guide battery engineering using techno-economics of such flowable batteries,” says Shao-Horn.

    While other flow battery systems in contention, such as the vanadium redox flow battery, offer the storage capacity and energy density to back up megawatt and larger power systems, they depend on expensive chemical ingredients that make them bad bets for long duration purposes. Narayanan was on the hunt for less-pricey chemical components that also feature rich energy potential.

    Through a series of bench experiments, the researchers came up with a novel electrode (electrical conductor) for the battery system: a mixture containing dispersed manganese dioxide (MnO2) particles, shot through with an electrically conductive additive, carbon black. This compound reacts with a conductive zinc solution or zinc plate at the stack, enabling efficient electrochemical energy conversion. The fluid properties of this battery are far removed from the watery solutions used by other flow batteries.

    “It’s a semisolid — a slurry,” says Narayanan. “Like thick, black paint, or perhaps a soft-serve ice cream,” suggests McKinley. The carbon black adds the pigment and the electric punch. To arrive at the optimal electrochemical mix, the researchers tweaked their formula many times.

    “These systems have to be able to flow under reasonable pressures, but also have a weak yield stress so that the active MnO2 particles don’t sink to the bottom of the flow tanks when the system isn’t being used, as well as not separate into a battery/oily clear fluid phase and a dense paste of carbon particles and MnO2,” says McKinley.

    This series of experiments informed the technoeconomic analysis. By “connecting the dots between composition, performance, and cost,” says Narayanan, he and Gençer were able to make system-level cost and efficiency calculations for the Zn-MnO2 battery.

    “Assessing the cost and performance of early technologies is very difficult, and this was an example of how to develop a standard method to help researchers at MIT and elsewhere,” says Gençer. “One message here is that when you include the cost analysis at the development stage of your experimental work, you get an important early understanding of your project’s cost implications.”

    In their final round of studies, Gençer and Narayanan compared the Zn-MnO2 battery to a set of equivalent electrochemical battery and hydrogen backup systems, looking at the capital costs of running them at durations of eight, 24, and 72 hours. Their findings surprised them: For battery discharges longer than a day, their semisolid flow battery beat out lithium-ion batteries and vanadium redox flow batteries. This was true even when factoring in the heavy expense of pumping the MnO2 slurry from tank to stack. “I was skeptical, and not expecting this battery would be competitive, but once I did the cost calculation, it was plausible,” says Gençer.

    But carbon-free battery backup is a very Goldilocks-like business: Different situations require different-duration solutions, whether an anticipated overnight loss of solar power, or a longer-term, climate-based disruption in the grid. “Lithium-ion is great for backup of eight hours and under, but the materials are too expensive for longer periods,” says Gençer. “Hydrogen is super expensive for very short durations, and good for very long durations, and we will need all of them.” This means it makes sense to continue working on the Zn-MnO2 system to see where it might fit in.

    “The next step is to take our battery system and build it up,” says Narayanan, who is working now as a battery engineer. “Our research also points the way to other chemistries that could be developed under the semi-solid flow battery platform, so we could be seeing this kind of technology used for energy storage in our lifetimes.”

    This research was supported by Eni S.p.A. through MITEI. Thaneer Malai Narayanan received an Eni-sponsored MIT Energy Fellowship during his work on the project. More

  • in

    The reasons behind lithium-ion batteries’ rapid cost decline

    Lithium-ion batteries, those marvels of lightweight power that have made possible today’s age of handheld electronics and electric vehicles, have plunged in cost since their introduction three decades ago at a rate similar to the drop in solar panel prices, as documented by a study published last March. But what brought about such an astonishing cost decline, of about 97 percent?

    Some of the researchers behind that earlier study have now analyzed what accounted for the extraordinary savings. They found that by far the biggest factor was work on research and development, particularly in chemistry and materials science. This outweighed the gains achieved through economies of scale, though that turned out to be the second-largest category of reductions.

    The new findings are being published today in the journal Energy and Environmental Science, in a paper by MIT postdoc Micah Ziegler, recent graduate student Juhyun Song PhD ’19, and Jessika Trancik, a professor in MIT’s Institute for Data, Systems and Society.

    The findings could be useful for policymakers and planners to help guide spending priorities in order to continue the pathway toward ever-lower costs for this and other crucial energy storage technologies, according to Trancik. Their work suggests that there is still considerable room for further improvement in electrochemical battery technologies, she says.

    The analysis required digging through a variety of sources, since much of the relevant information consists of closely held proprietary business data. “The data collection effort was extensive,” Ziegler says. “We looked at academic articles, industry and government reports, press releases, and specification sheets. We even looked at some legal filings that came out. We had to piece together data from many different sources to get a sense of what was happening.” He says they collected “about 15,000 qualitative and quantitative data points, across 1,000 individual records from approximately 280 references.”

    Data from the earliest times are hardest to access and can have the greatest uncertainties, Trancik says, but by comparing different data sources from the same period they have attempted to account for these uncertainties.

    Overall, she says, “we estimate that the majority of the cost decline, more than 50 percent, came from research-and-development-related activities.” That included both private sector and government-funded research and development, and “the vast majority” of that cost decline within that R&D category came from chemistry and materials research.

    That was an interesting finding, she says, because “there were so many variables that people were working on through very different kinds of efforts,” including the design of the battery cells themselves, their manufacturing systems, supply chains, and so on. “The cost improvement emerged from a diverse set of efforts and many people, and not from the work of only a few individuals.”

    The findings about the importance of investment in R&D were especially significant, Ziegler says, because much of this investment happened after lithium-ion battery technology was commercialized, a stage at which some analysts thought the research contribution would become less significant. Over roughly a 20-year period starting five years after the batteries’ introduction in the early 1990s, he says, “most of the cost reduction still came from R&D. The R&D contribution didn’t end when commercialization began. In fact, it was still the biggest contributor to cost reduction.”

    The study took advantage of an analytical approach that Trancik and her team initially developed to analyze the similarly precipitous drop in costs of silicon solar panels over the last few decades. They also applied the approach to understand the rising costs of nuclear energy. “This is really getting at the fundamental mechanisms of technological change,” she says. “And we can also develop these models looking forward in time, which allows us to uncover the levers that people could use to improve the technology in the future.”

    One advantage of the methodology Trancik and her colleagues have developed, she says, is that it helps to sort out the relative importance of different factors when many variables are changing all at once, which typically happens as a technology improves. “It’s not simply adding up the cost effects of these variables,” she says, “because many of these variables affect many different cost components. There’s this kind of intricate web of dependencies.” But the team’s methodology makes it possible to “look at how that overall cost change can be attributed to those variables, by essentially mapping out that network of dependencies,” she says.

    This can help provide guidance on public spending, private investments, and other incentives. “What are all the things that different decision makers could do?” she asks. “What decisions do they have agency over so that they could improve the technology, which is important in the case of low-carbon technologies, where we’re looking for solutions to climate change and we have limited time and limited resources? The new approach allows us to potentially be a bit more intentional about where we make those investments of time and money.”

    “This paper collects data available in a systematic way to determine changes in the cost components of lithium-ion batteries between 1990-1995 and 2010-2015,” says Laura Diaz Anadon, a professor of climate change policy at Cambridge University, who was not connected to this research. “This period was an important one in the history of the technology, and understanding the evolution of cost components lays the groundwork for future work on mechanisms and could help inform research efforts in other types of batteries.”

    The research was supported by the Alfred P. Sloan Foundation, the Environmental Defense Fund, and the MIT Technology and Policy Program. More

  • in

    Making the case for hydrogen in a zero-carbon economy

    As the United States races to achieve its goal of zero-carbon electricity generation by 2035, energy providers are swiftly ramping up renewable resources such as solar and wind. But because these technologies churn out electrons only when the sun shines and the wind blows, they need backup from other energy sources, especially during seasons of high electric demand. Currently, plants burning fossil fuels, primarily natural gas, fill in the gaps.

    “As we move to more and more renewable penetration, this intermittency will make a greater impact on the electric power system,” says Emre Gençer, a research scientist at the MIT Energy Initiative (MITEI). That’s because grid operators will increasingly resort to fossil-fuel-based “peaker” plants that compensate for the intermittency of the variable renewable energy (VRE) sources of sun and wind. “If we’re to achieve zero-carbon electricity, we must replace all greenhouse gas-emitting sources,” Gençer says.

    Low- and zero-carbon alternatives to greenhouse-gas emitting peaker plants are in development, such as arrays of lithium-ion batteries and hydrogen power generation. But each of these evolving technologies comes with its own set of advantages and constraints, and it has proven difficult to frame the debate about these options in a way that’s useful for policymakers, investors, and utilities engaged in the clean energy transition.

    Now, Gençer and Drake D. Hernandez SM ’21 have come up with a model that makes it possible to pin down the pros and cons of these peaker-plant alternatives with greater precision. Their hybrid technological and economic analysis, based on a detailed inventory of California’s power system, was published online last month in Applied Energy. While their work focuses on the most cost-effective solutions for replacing peaker power plants, it also contains insights intended to contribute to the larger conversation about transforming energy systems.

    “Our study’s essential takeaway is that hydrogen-fired power generation can be the more economical option when compared to lithium-ion batteries — even today, when the costs of hydrogen production, transmission, and storage are very high,” says Hernandez, who worked on the study while a graduate research assistant for MITEI. Adds Gençer, “If there is a place for hydrogen in the cases we analyzed, that suggests there is a promising role for hydrogen to play in the energy transition.”

    Adding up the costs

    California serves as a stellar paradigm for a swiftly shifting power system. The state draws more than 20 percent of its electricity from solar and approximately 7 percent from wind, with more VRE coming online rapidly. This means its peaker plants already play a pivotal role, coming online each evening when the sun goes down or when events such as heat waves drive up electricity use for days at a time.

    “We looked at all the peaker plants in California,” recounts Gençer. “We wanted to know the cost of electricity if we replaced them with hydrogen-fired turbines or with lithium-ion batteries.” The researchers used a core metric called the levelized cost of electricity (LCOE) as a way of comparing the costs of different technologies to each other. LCOE measures the average total cost of building and operating a particular energy-generating asset per unit of total electricity generated over the hypothetical lifetime of that asset.

    Selecting 2019 as their base study year, the team looked at the costs of running natural gas-fired peaker plants, which they defined as plants operating 15 percent of the year in response to gaps in intermittent renewable electricity. In addition, they determined the amount of carbon dioxide released by these plants and the expense of abating these emissions. Much of this information was publicly available.

    Coming up with prices for replacing peaker plants with massive arrays of lithium-ion batteries was also relatively straightforward: “There are no technical limitations to lithium-ion, so you can build as many as you want; but they are super expensive in terms of their footprint for energy storage and the mining required to manufacture them,” says Gençer.

    But then came the hard part: nailing down the costs of hydrogen-fired electricity generation. “The most difficult thing is finding cost assumptions for new technologies,” says Hernandez. “You can’t do this through a literature review, so we had many conversations with equipment manufacturers and plant operators.”

    The team considered two different forms of hydrogen fuel to replace natural gas, one produced through electrolyzer facilities that convert water and electricity into hydrogen, and another that reforms natural gas, yielding hydrogen and carbon waste that can be captured to reduce emissions. They also ran the numbers on retrofitting natural gas plants to burn hydrogen as opposed to building entirely new facilities. Their model includes identification of likely locations throughout the state and expenses involved in constructing these facilities.

    The researchers spent months compiling a giant dataset before setting out on the task of analysis. The results from their modeling were clear: “Hydrogen can be a more cost-effective alternative to lithium-ion batteries for peaking operations on a power grid,” says Hernandez. In addition, notes Gençer, “While certain technologies worked better in particular locations, we found that on average, reforming hydrogen rather than electrolytic hydrogen turned out to be the cheapest option for replacing peaker plants.”

    A tool for energy investors

    When he began this project, Gençer admits he “wasn’t hopeful” about hydrogen replacing natural gas in peaker plants. “It was kind of shocking to see in our different scenarios that there was a place for hydrogen.” That’s because the overall price tag for converting a fossil-fuel based plant to one based on hydrogen is very high, and such conversions likely won’t take place until more sectors of the economy embrace hydrogen, whether as a fuel for transportation or for varied manufacturing and industrial purposes.

    A nascent hydrogen production infrastructure does exist, mainly in the production of ammonia for fertilizer. But enormous investments will be necessary to expand this framework to meet grid-scale needs, driven by purposeful incentives. “With any of the climate solutions proposed today, we will need a carbon tax or carbon pricing; otherwise nobody will switch to new technologies,” says Gençer.

    The researchers believe studies like theirs could help key energy stakeholders make better-informed decisions. To that end, they have integrated their analysis into SESAME, a life cycle and techno-economic assessment tool for a range of energy systems that was developed by MIT researchers. Users can leverage this sophisticated modeling environment to compare costs of energy storage and emissions from different technologies, for instance, or to determine whether it is cost-efficient to replace a natural gas-powered plant with one powered by hydrogen.

    “As utilities, industry, and investors look to decarbonize and achieve zero-emissions targets, they have to weigh the costs of investing in low-carbon technologies today against the potential impacts of climate change moving forward,” says Hernandez, who is currently a senior associate in the energy practice at Charles River Associates. Hydrogen, he believes, will become increasingly cost-competitive as its production costs decline and markets expand.

    A study group member of MITEI’s soon-to-be published Future of Storage study, Gençer knows that hydrogen alone will not usher in a zero-carbon future. But, he says, “Our research shows we need to seriously consider hydrogen in the energy transition, start thinking about key areas where hydrogen should be used, and start making the massive investments necessary.”

    Funding for this research was provided by MITEI’s Low-Carbon Energy Centers and Future of Storage study. More

  • in

    Energy storage from a chemistry perspective

    The transition toward a more sustainable, environmentally sound electrical grid has driven an upsurge in renewables like solar and wind. But something as simple as cloud cover can cause grid instability, and wind power is inherently unpredictable. This intermittent nature of renewables has invigorated the competitive landscape for energy storage companies looking to enhance power system flexibility while enabling the integration of renewables.

    “Impact is what drives PolyJoule more than anything else,” says CEO Eli Paster. “We see impact from a renewable integration standpoint, from a curtailment standpoint, and also from the standpoint of transitioning from a centralized to a decentralized model of energy-power delivery.”

    PolyJoule is a Billerica, Massachusetts-based startup that’s looking to reinvent energy storage from a chemistry perspective. Co-founders Ian Hunter of MIT’s Department of Mechanical Engineering and Tim Swager of the Department of Chemistry are longstanding MIT professors considered luminaries in their respective fields. Meanwhile, the core team is a small but highly skilled collection of chemists, manufacturing specialists, supply chain optimizers, and entrepreneurs, many of whom have called MIT home at one point or another.

    “The ideas that we work on in the lab, you’ll see turned into products three to four years from now, and they will still be innovative and well ahead of the curve when they get to market,” Paster says. “But the concepts come from the foresight of thinking five to 10 years in advance. That’s what we have in our back pocket, thanks to great minds like Ian and Tim.”

    PolyJoule takes a systems-level approach married to high-throughput, analytical electrochemistry that has allowed the company to pinpoint a chemical cell design based on 10,000 trials. The result is a battery that is low-cost, safe, and has a long lifetime. It’s capable of responding to base loads and peak loads in microseconds, allowing the same battery to participate in multiple power markets and deployment use cases.

    In the energy storage sphere, interesting technologies abound, but workable solutions are few and far between. But Paster says PolyJoule has managed to bridge the gap between the lab and the real world by taking industry concerns into account from the beginning. “We’ve taken a slightly contrarian view to all of the other energy storage companies that have come before us that have said, ‘If we build it, they will come.’ Instead, we’ve gone directly to the customer and asked, ‘If you could have a better battery storage platform, what would it look like?’”

    With commercial input feeding into the thought processes behind their technological and commercial deployment, PolyJoule says they’ve designed a battery that is less expensive to make, less expensive to operate, safer, and easier to deploy.

    Traditionally, lithium-ion batteries have been the go-to energy storage solution. But lithium has its drawbacks, including cost, safety issues, and detrimental effects on the environment. But PolyJoule isn’t interested in lithium — or metals of any kind, in fact. “We start with the periodic table of organic elements,” says Paster, “and from there, we derive what works at economies of scale, what is easy to converge and convert chemically.”

    Having an inherently safer chemistry allows PolyJoule to save on system integration costs, among other things. PolyJoule batteries don’t contain flammable solvents, which means no added expenses related to fire mitigation. Safer chemistry also means ease of storage, and PolyJoule batteries are currently undergoing global safety certification (UL approval) to be allowed indoors and on airplanes. Finally, with high power built into the chemistry, PolyJoule’s cells can be charged and discharged to extremes, without the need for heating or cooling systems.

    “From raw material to product delivery, we examine each step in the value chain with an eye towards reducing costs,” says Paster. It all starts with designing the chemistry around earth-abundant elements, which allows the small startup to compete with larger suppliers, even at smaller scales. Consider the fact that PolyJoule’s differentiating material cost is less than $1 per kilogram, whereas lithium carbonate sells for $20 per kilogram.

    On the manufacturing side, Paster explains that PolyJoule cuts costs by making their cells in old paper mills and warehouses, employing off-the-shelf equipment previously used for tissue paper or newspaper printing. “We use equipment that has been around for decades because we don’t want to create a cutting-edge technology that requires cutting-edge manufacturing,” he says. “We want to create a cutting-edge technology that can be deployed in industrialized nations and in other nations that can benefit the most from energy storage.”

    PolyJoule’s first customer is an industrial distributed energy consumer with baseline energy consumption that increases by a factor of 10 when the heavy machinery kicks on twice a day. In the early morning and late afternoon, it consumes about 50 kilowatts for 20 minutes to an hour, compared to a baseline rate of 5  kilowatts. It’s an application model that is translatable to a variety of industries. Think wastewater treatment, food processing, and server farms — anything with a fluctuation in power consumption over a 24-hour period.

    By the end of the year, PolyJoule will have delivered its first 10 kilowatt-hour system, exiting stealth mode and adding commercial viability to demonstrated technological superiority. “What we’re seeing, now is massive amounts of energy storage being added to renewables and grid-edge applications,” says Paster. “We anticipated that by 12-18 months, and now we’re ramping up to catch up with some of the bigger players.” More

  • in

    Designing better batteries for electric vehicles

    The urgent need to cut carbon emissions is prompting a rapid move toward electrified mobility and expanded deployment of solar and wind on the electric grid. If those trends escalate as expected, the need for better methods of storing electrical energy will intensify.

    “We need all the strategies we can get to address the threat of climate change,” says Elsa Olivetti PhD ’07, the Esther and Harold E. Edgerton Associate Professor in Materials Science and Engineering. “Obviously, developing technologies for grid-based storage at a large scale is critical. But for mobile applications — in particular, transportation — much research is focusing on adapting today’s lithium-ion battery to make versions that are safer, smaller, and can store more energy for their size and weight.”

    Traditional lithium-ion batteries continue to improve, but they have limitations that persist, in part because of their structure. A lithium-ion battery consists of two electrodes — one positive and one negative — sandwiched around an organic (carbon-containing) liquid. As the battery is charged and discharged, electrically charged particles (or ions) of lithium pass from one electrode to the other through the liquid electrolyte.

    One problem with that design is that at certain voltages and temperatures, the liquid electrolyte can become volatile and catch fire. “Batteries are generally safe under normal usage, but the risk is still there,” says Kevin Huang PhD ’15, a research scientist in Olivetti’s group.

    Another problem is that lithium-ion batteries are not well-suited for use in vehicles. Large, heavy battery packs take up space and increase a vehicle’s overall weight, reducing fuel efficiency. But it’s proving difficult to make today’s lithium-ion batteries smaller and lighter while maintaining their energy density — that is, the amount of energy they store per gram of weight.

    To solve those problems, researchers are changing key features of the lithium-ion battery to make an all-solid, or “solid-state,” version. They replace the liquid electrolyte in the middle with a thin, solid electrolyte that’s stable at a wide range of voltages and temperatures. With that solid electrolyte, they use a high-capacity positive electrode and a high-capacity, lithium metal negative electrode that’s far thinner than the usual layer of porous carbon. Those changes make it possible to shrink the overall battery considerably while maintaining its energy-storage capacity, thereby achieving a higher energy density.

    “Those features — enhanced safety and greater energy density — are probably the two most-often-touted advantages of a potential solid-state battery,” says Huang. He then quickly clarifies that “all of these things are prospective, hoped-for, and not necessarily realized.” Nevertheless, the possibility has many researchers scrambling to find materials and designs that can deliver on that promise.

    Thinking beyond the lab

    Researchers have come up with many intriguing options that look promising — in the lab. But Olivetti and Huang believe that additional practical considerations may be important, given the urgency of the climate change challenge. “There are always metrics that we researchers use in the lab to evaluate possible materials and processes,” says Olivetti. Examples might include energy-storage capacity and charge/discharge rate. When performing basic research — which she deems both necessary and important — those metrics are appropriate. “But if the aim is implementation, we suggest adding a few metrics that specifically address the potential for rapid scaling,” she says.

    Based on industry’s experience with current lithium-ion batteries, the MIT researchers and their colleague Gerbrand Ceder, the Daniel M. Tellep Distinguished Professor of Engineering at the University of California at Berkeley, suggest three broad questions that can help identify potential constraints on future scale-up as a result of materials selection. First, with this battery design, could materials availability, supply chains, or price volatility become a problem as production scales up? (Note that the environmental and other concerns raised by expanded mining are outside the scope of this study.) Second, will fabricating batteries from these materials involve difficult manufacturing steps during which parts are likely to fail? And third, do manufacturing measures needed to ensure a high-performance product based on these materials ultimately lower or raise the cost of the batteries produced?

    To demonstrate their approach, Olivetti, Ceder, and Huang examined some of the electrolyte chemistries and battery structures now being investigated by researchers. To select their examples, they turned to previous work in which they and their collaborators used text- and data-mining techniques to gather information on materials and processing details reported in the literature. From that database, they selected a few frequently reported options that represent a range of possibilities.

    Materials and availability

    In the world of solid inorganic electrolytes, there are two main classes of materials — the oxides, which contain oxygen, and the sulfides, which contain sulfur. Olivetti, Ceder, and Huang focused on one promising electrolyte option in each class and examined key elements of concern for each of them.

    The sulfide they considered was LGPS, which combines lithium, germanium, phosphorus, and sulfur. Based on availability considerations, they focused on the germanium, an element that raises concerns in part because it’s not generally mined on its own. Instead, it’s a byproduct produced during the mining of coal and zinc.

    To investigate its availability, the researchers looked at how much germanium was produced annually in the past six decades during coal and zinc mining and then at how much could have been produced. The outcome suggested that 100 times more germanium could have been produced, even in recent years. Given that supply potential, the availability of germanium is not likely to constrain the scale-up of a solid-state battery based on an LGPS electrolyte.

    The situation looked less promising with the researchers’ selected oxide, LLZO, which consists of lithium, lanthanum, zirconium, and oxygen. Extraction and processing of lanthanum are largely concentrated in China, and there’s limited data available, so the researchers didn’t try to analyze its availability. The other three elements are abundantly available. However, in practice, a small quantity of another element — called a dopant — must be added to make LLZO easy to process. So the team focused on tantalum, the most frequently used dopant, as the main element of concern for LLZO.

    Tantalum is produced as a byproduct of tin and niobium mining. Historical data show that the amount of tantalum produced during tin and niobium mining was much closer to the potential maximum than was the case with germanium. So the availability of tantalum is more of a concern for the possible scale-up of an LLZO-based battery.

    But knowing the availability of an element in the ground doesn’t address the steps required to get it to a manufacturer. So the researchers investigated a follow-on question concerning the supply chains for critical elements — mining, processing, refining, shipping, and so on. Assuming that abundant supplies are available, can the supply chains that deliver those materials expand quickly enough to meet the growing demand for batteries?

    In sample analyses, they looked at how much supply chains for germanium and tantalum would need to grow year to year to provide batteries for a projected fleet of electric vehicles in 2030. As an example, an electric vehicle fleet often cited as a goal for 2030 would require production of enough batteries to deliver a total of 100 gigawatt hours of energy. To meet that goal using just LGPS batteries, the supply chain for germanium would need to grow by 50 percent from year to year — a stretch, since the maximum growth rate in the past has been about 7 percent. Using just LLZO batteries, the supply chain for tantalum would need to grow by about 30 percent — a growth rate well above the historical high of about 10 percent.

    Those examples demonstrate the importance of considering both materials availability and supply chains when evaluating different solid electrolytes for their scale-up potential. “Even when the quantity of a material available isn’t a concern, as is the case with germanium, scaling all the steps in the supply chain to match the future production of electric vehicles may require a growth rate that’s literally unprecedented,” says Huang.

    Materials and processing

    In assessing the potential for scale-up of a battery design, another factor to consider is the difficulty of the manufacturing process and how it may impact cost. Fabricating a solid-state battery inevitably involves many steps, and a failure at any step raises the cost of each battery successfully produced. As Huang explains, “You’re not shipping those failed batteries; you’re throwing them away. But you’ve still spent money on the materials and time and processing.”

    As a proxy for manufacturing difficulty, Olivetti, Ceder, and Huang explored the impact of failure rate on overall cost for selected solid-state battery designs in their database. In one example, they focused on the oxide LLZO. LLZO is extremely brittle, and at the high temperatures involved in manufacturing, a large sheet that’s thin enough to use in a high-performance solid-state battery is likely to crack or warp.

    To determine the impact of such failures on cost, they modeled four key processing steps in assembling LLZO-based batteries. At each step, they calculated cost based on an assumed yield — that is, the fraction of total units that were successfully processed without failing. With the LLZO, the yield was far lower than with the other designs they examined; and, as the yield went down, the cost of each kilowatt-hour (kWh) of battery energy went up significantly. For example, when 5 percent more units failed during the final cathode heating step, cost increased by about $30/kWh — a nontrivial change considering that a commonly accepted target cost for such batteries is $100/kWh. Clearly, manufacturing difficulties can have a profound impact on the viability of a design for large-scale adoption.

    Materials and performance

    One of the main challenges in designing an all-solid battery comes from “interfaces” — that is, where one component meets another. During manufacturing or operation, materials at those interfaces can become unstable. “Atoms start going places that they shouldn’t, and battery performance declines,” says Huang.

    As a result, much research is devoted to coming up with methods of stabilizing interfaces in different battery designs. Many of the methods proposed do increase performance; and as a result, the cost of the battery in dollars per kWh goes down. But implementing such solutions generally involves added materials and time, increasing the cost per kWh during large-scale manufacturing.

    To illustrate that trade-off, the researchers first examined their oxide, LLZO. Here, the goal is to stabilize the interface between the LLZO electrolyte and the negative electrode by inserting a thin layer of tin between the two. They analyzed the impacts — both positive and negative — on cost of implementing that solution. They found that adding the tin separator increases energy-storage capacity and improves performance, which reduces the unit cost in dollars/kWh. But the cost of including the tin layer exceeds the savings so that the final cost is higher than the original cost.

    In another analysis, they looked at a sulfide electrolyte called LPSCl, which consists of lithium, phosphorus, and sulfur with a bit of added chlorine. In this case, the positive electrode incorporates particles of the electrolyte material — a method of ensuring that the lithium ions can find a pathway through the electrolyte to the other electrode. However, the added electrolyte particles are not compatible with other particles in the positive electrode — another interface problem. In this case, a standard solution is to add a “binder,” another material that makes the particles stick together.

    Their analysis confirmed that without the binder, performance is poor, and the cost of the LPSCl-based battery is more than $500/kWh. Adding the binder improves performance significantly, and the cost drops by almost $300/kWh. In this case, the cost of adding the binder during manufacturing is so low that essentially all the of the cost decrease from adding the binder is realized. Here, the method implemented to solve the interface problem pays off in lower costs.

    The researchers performed similar studies of other promising solid-state batteries reported in the literature, and their results were consistent: The choice of battery materials and processes can affect not only near-term outcomes in the lab but also the feasibility and cost of manufacturing the proposed solid-state battery at the scale needed to meet future demand. The results also showed that considering all three factors together — availability, processing needs, and battery performance — is important because there may be collective effects and trade-offs involved.

    Olivetti is proud of the range of concerns the team’s approach can probe. But she stresses that it’s not meant to replace traditional metrics used to guide materials and processing choices in the lab. “Instead, it’s meant to complement those metrics by also looking broadly at the sorts of things that could get in the way of scaling” — an important consideration given what Huang calls “the urgent ticking clock” of clean energy and climate change.

    This research was supported by the Seed Fund Program of the MIT Energy Initiative (MITEI) Low-Carbon Energy Center for Energy Storage; by Shell, a founding member of MITEI; and by the U.S. Department of Energy’s Office of Energy Efficiency and Renewable Energy, Vehicle Technologies Office, under the Advanced Battery Materials Research Program. The text mining work was supported by the National Science Foundation, the Office of Naval Research, and MITEI.

    This article appears in the Spring 2021 issue of Energy Futures, the magazine of the MIT Energy Initiative. More

  • in

    What will happen to sediment plumes associated with deep-sea mining?

    In certain parts of the deep ocean, scattered across the seafloor, lie baseball-sized rocks layered with minerals accumulated over millions of years. A region of the central Pacific, called the Clarion Clipperton Fracture Zone (CCFZ), is estimated to contain vast reserves of these rocks, known as “polymetallic nodules,” that are rich in nickel and cobalt  — minerals that are commonly mined on land for the production of lithium-ion batteries in electric vehicles, laptops, and mobile phones.

    As demand for these batteries rises, efforts are moving forward to mine the ocean for these mineral-rich nodules. Such deep-sea-mining schemes propose sending down tractor-sized vehicles to vacuum up nodules and send them to the surface, where a ship would clean them and discharge any unwanted sediment back into the ocean. But the impacts of deep-sea mining — such as the effect of discharged sediment on marine ecosystems and how these impacts compare to traditional land-based mining — are currently unknown.

    Now oceanographers at MIT, the Scripps Institution of Oceanography, and elsewhere have carried out an experiment at sea for the first time to study the turbulent sediment plume that mining vessels would potentially release back into the ocean. Based on their observations, they developed a model that makes realistic predictions of how a sediment plume generated by mining operations would be transported through the ocean.

    The model predicts the size, concentration, and evolution of sediment plumes under various marine and mining conditions. These predictions, the researchers say, can now be used by biologists and environmental regulators to gauge whether and to what extent such plumes would impact surrounding sea life.

    “There is a lot of speculation about [deep-sea-mining’s] environmental impact,” says Thomas Peacock, professor of mechanical engineering at MIT. “Our study is the first of its kind on these midwater plumes, and can be a major contributor to international discussion and the development of regulations over the next two years.”

    The team’s study appears today in Nature Communications: Earth and Environment.

    Peacock’s co-authors at MIT include lead author Carlos Muñoz-Royo, Raphael Ouillon, Chinmay Kulkarni, Patrick Haley, Chris Mirabito, Rohit Supekar, Andrew Rzeznik, Eric Adams, Cindy Wang, and Pierre Lermusiaux, along with collaborators at Scripps, the U.S. Geological Survey, and researchers in Belgium and South Korea.

    Play video

    Out to sea

    Current deep-sea-mining proposals are expected to generate two types of sediment plumes in the ocean: “collector plumes” that vehicles generate on the seafloor as they drive around collecting nodules 4,500 meters below the surface; and possibly “midwater plumes” that are discharged through pipes that descend 1,000 meters or more into the ocean’s aphotic zone, where sunlight rarely penetrates.

    In their new study, Peacock and his colleagues focused on the midwater plume and how the sediment would disperse once discharged from a pipe.

    “The science of the plume dynamics for this scenario is well-founded, and our goal was to clearly establish the dynamic regime for such plumes to properly inform discussions,” says Peacock, who is the director of MIT’s Environmental Dynamics Laboratory.

    To pin down these dynamics, the team went out to sea. In 2018, the researchers boarded the research vessel Sally Ride and set sail 50 kilometers off the coast of Southern California. They brought with them equipment designed to discharge sediment 60 meters below the ocean’s surface.  

    “Using foundational scientific principles from fluid dynamics, we designed the system so that it fully reproduced a commercial-scale plume, without having to go down to 1,000 meters or sail out several days to the middle of the CCFZ,” Peacock says.

    Over one week the team ran a total of six plume experiments, using novel sensors systems such as a Phased Array Doppler Sonar (PADS) and epsilometer developed by Scripps scientists to monitor where the plumes traveled and how they evolved in shape and concentration. The collected data revealed that the sediment, when initially pumped out of a pipe, was a highly turbulent cloud of suspended particles that mixed rapidly with the surrounding ocean water.

    “There was speculation this sediment would form large aggregates in the plume that would settle relatively quickly to the deep ocean,” Peacock says. “But we found the discharge is so turbulent that it breaks the sediment up into its finest constituent pieces, and thereafter it becomes dilute so quickly that the sediment then doesn’t have a chance to stick together.”

    Dilution

    The team had previously developed a model to predict the dynamics of a plume that would be discharged into the ocean. When they fed the experiment’s initial conditions into the model, it produced the same behavior that the team observed at sea, proving the model could accurately predict plume dynamics within the vicinity of the discharge.

    The researchers used these results to provide the correct input for simulations of ocean dynamics to see how far currents would carry the initially released plume.

    “In a commercial operation, the ship is always discharging new sediment. But at the same time the background turbulence of the ocean is always mixing things. So you reach a balance. There’s a natural dilution process that occurs in the ocean that sets the scale of these plumes,” Peacock says. “What is key to determining the extent of the plumes is the strength of the ocean turbulence, the amount of sediment that gets discharged, and the environmental threshold level at which there is impact.”

    Based on their findings, the researchers have developed formulae to calculate the scale of a plume depending on a given environmental threshold. For instance, if regulators determine that a certain concentration of sediments could be detrimental to surrounding sea life, the formula can be used to calculate how far a plume above that concentration would extend, and what volume of ocean water would be impacted over the course of a 20-year nodule mining operation.

    “At the heart of the environmental question surrounding deep-sea mining is the extent of sediment plumes,” Peacock says. “It’s a multiscale problem, from micron-scale sediments, to turbulent flows, to ocean currents over thousands of kilometers. It’s a big jigsaw puzzle, and we are uniquely equipped to work on that problem and provide answers founded in science and data.”

    The team is now working on collector plumes, having recently returned from several weeks at sea to perform the first environmental monitoring of a nodule collector vehicle in the deep ocean in over 40 years.

    This research was supported in part by the MIT Environmental Solutions Initiative, the UC Ship Time Program, the MIT Policy Lab, the 11th Hour Project of the Schmidt Family Foundation, the Benioff Ocean Initiative, and Fundación Bancaria “la Caixa.” More