More stories

  • in

    Ocean microbes get their diet through a surprising mix of sources, study finds

    One of the smallest and mightiest organisms on the planet is a plant-like bacterium known to marine biologists as Prochlorococcus. The green-tinted microbe measures less than a micron across, and its populations suffuse through the upper layers of the ocean, where a single teaspoon of seawater can hold millions of the tiny organisms.

    Prochlorococcus grows through photosynthesis, using sunlight to convert the atmosphere’s carbon dioxide into organic carbon molecules. The microbe is responsible for 5 percent of the world’s photosynthesizing activity, and scientists have assumed that photosynthesis is the microbe’s go-to strategy for acquiring the carbon it needs to grow.

    But a new MIT study in Nature Microbiology today has found that Prochlorococcus relies on another carbon-feeding strategy, more than previously thought.

    Organisms that use a mix of strategies to provide carbon are known as mixotrophs. Most marine plankton are mixotrophs. And while Prochlorococcus is known to occasionally dabble in mixotrophy, scientists have assumed the microbe primarily lives a phototrophic lifestyle.

    The new MIT study shows that in fact, Prochlorococcus may be more of a mixotroph than it lets on. The microbe may get as much as one-third of its carbon through a second strategy: consuming the dissolved remains of other dead microbes.

    The new estimate may have implications for climate models, as the microbe is a significant force in capturing and “fixing” carbon in the Earth’s atmosphere and ocean.

    “If we wish to predict what will happen to carbon fixation in a different climate, or predict where Prochlorococcus will or will not live in the future, we probably won’t get it right if we’re missing a process that accounts for one-third of the population’s carbon supply,” says Mick Follows, a professor in MIT’s Department of Earth, Atmospheric and Planetary Sciences (EAPS), and its Department of Civil and Environmental Engineering.

    The study’s co-authors include first author and MIT postdoc Zhen Wu, along with collaborators from the University of Haifa, the Leibniz-Institute for Baltic Sea Research, the Leibniz-Institute of Freshwater Ecology and Inland Fisheries, and Potsdam University.

    Persistent plankton

    Since Prochlorococcus was first discovered in the Sargasso Sea in 1986, by MIT Institute Professor Sallie “Penny” Chisholm and others, the microbe has been observed throughout the world’s oceans, inhabiting the upper sunlit layers ranging from the surface down to about 160 meters. Within this range, light levels vary, and the microbe has evolved a number of ways to photosynthesize carbon in even low-lit regions.

    The organism has also evolved ways to consume organic compounds including glucose and certain amino acids, which could help the microbe survive for limited periods of time in dark ocean regions. But surviving on organic compounds alone is a bit like only eating junk food, and there is evidence that Prochlorococcus will die after a week in regions where photosynthesis is not an option.

    And yet, researchers including Daniel Sher of the University of Haifa, who is a co-author of the new study, have observed healthy populations of Prochlorococcus that persist deep in the sunlit zone, where the light intensity should be too low to maintain a population. This suggests that the microbes must be switching to a non-photosynthesizing, mixotrophic lifestyle in order to consume other organic sources of carbon.

    “It seems that at least some Prochlorococcus are using existing organic carbon in a mixotrophic way,” Follows says. “That stimulated the question: How much?”

    What light cannot explain

    In their new paper, Follows, Wu, Sher, and their colleagues looked to quantify the amount of carbon that Prochlorococcus is consuming through processes other than photosynthesis.

    The team looked first to measurements taken by Sher’s team, which previously took ocean samples at various depths in the Mediterranean Sea and measured the concentration of phytoplankton, including Prochlorococcus, along with the associated intensity of light and the concentration of nitrogen — an essential nutrient that is richly available in deeper layers of the ocean and that plankton can assimilate to make proteins.

    Wu and Follows used this data, and similar information from the Pacific Ocean, along with previous work from Chisholm’s lab, which established the rate of photosynthesis that Prochlorococcus could carry out in a given intensity of light.

    “We converted that light intensity profile into a potential growth rate — how fast the population of Prochlorococcus could grow if it was acquiring all it’s carbon by photosynthesis, and light is the limiting factor,” Follows explains.

    The team then compared this calculated rate to growth rates that were previously observed in the Pacific Ocean by several other research teams.

    “This data showed that, below a certain depth, there’s a lot of growth happening that photosynthesis simply cannot explain,” Follows says. “Some other process must be at work to make up the difference in carbon supply.”

    The researchers inferred that, in deeper, darker regions of the ocean, Prochlorococcus populations are able to survive and thrive by resorting to mixotrophy, including consuming organic carbon from detritus. Specifically, the microbe may be carrying out osmotrophy — a process by which an organism passively absorbs organic carbon molecules via osmosis.

    Judging by how fast the microbe is estimated to be growing below the sunlit zone, the team calculates that Prochlorococcus obtains up to one-third of its carbon diet through mixotrophic strategies.

    “It’s kind of like going from a specialist to a generalist lifestyle,” Follows says. “If I only eat pizza, then if I’m 20 miles from a pizza place, I’m in trouble, whereas if I eat burgers as well, I could go to the nearby McDonald’s. People had thought of Prochlorococcus as a specialist, where they do this one thing (photosynthesis) really well. But it turns out they may have more of a generalist lifestyle than we previously thought.”

    Chisholm, who has both literally and figuratively written the book on Prochlorococcus, says the group’s findings “expand the range of conditions under which their populations can not only survive, but also thrive. This study changes the way we think about the role of Prochlorococcus in the microbial food web.”

    This research was supported, in part, by the Israel Science Foundation, the U.S. National Science Foundation, and the Simons Foundation. More

  • in

    Small eddies play a big role in feeding ocean microbes

    Subtropical gyres are enormous rotating ocean currents that generate sustained circulations in the Earth’s subtropical regions just to the north and south of the equator. These gyres are slow-moving whirlpools that circulate within massive basins around the world, gathering up nutrients, organisms, and sometimes trash, as the currents rotate from coast to coast.

    For years, oceanographers have puzzled over conflicting observations within subtropical gyres. At the surface, these massive currents appear to host healthy populations of phytoplankton — microbes that feed the rest of the ocean food chain and are responsible for sucking up a significant portion of the atmosphere’s carbon dioxide.

    But judging from what scientists know about the dynamics of gyres, they estimated the currents themselves wouldn’t be able to maintain enough nutrients to sustain the phytoplankton they were seeing. How, then, were the microbes able to thrive?

    Now, MIT researchers have found that phytoplankton may receive deliveries of nutrients from outside the gyres, and that the delivery vehicle is in the form of eddies — much smaller currents that swirl at the edges of a gyre. These eddies pull nutrients in from high-nutrient equatorial regions and push them into the center of a gyre, where the nutrients are then taken up by other currents and pumped to the surface to feed phytoplankton.

    Ocean eddies, the team found, appear to be an important source of nutrients in subtropical gyres. Their replenishing effect, which the researchers call a “nutrient relay,” helps maintain populations of phytoplankton, which play a central role in the ocean’s ability to sequester carbon from the atmosphere. While climate models tend to project a decline in the ocean’s ability to sequester carbon over the coming decades, this “nutrient relay” could help sustain carbon storage over the subtropical oceans.

    “There’s a lot of uncertainty about how the carbon cycle of the ocean will evolve as climate continues to change, ” says Mukund Gupta, a postdoc at Caltech who led the study as a graduate student at MIT. “As our paper shows, getting the carbon distribution right is not straightforward, and depends on understanding the role of eddies and other fine-scale motions in the ocean.”

    Gupta and his colleagues report their findings this week in the Proceedings of the National Academy of Sciences. The study’s co-authors are Jonathan Lauderdale, Oliver Jahn, Christopher Hill, Stephanie Dutkiewicz, and Michael Follows at MIT, and Richard Williams at the University of Liverpool.

    A snowy puzzle

    A cross-section of an ocean gyre resembles a stack of nesting bowls that is stratified by density: Warmer, lighter layers lie at the surface, while colder, denser waters make up deeper layers. Phytoplankton live within the ocean’s top sunlit layers, where the microbes require sunlight, warm temperatures, and nutrients to grow.

    When phytoplankton die, they sink through the ocean’s layers as “marine snow.” Some of this snow releases nutrients back into the current, where they are pumped back up to feed new microbes. The rest of the snow sinks out of the gyre, down to the deepest layers of the ocean. The deeper the snow sinks, the more difficult it is for it to be pumped back to the surface. The snow is then trapped, or sequestered, along with any unreleased carbon and nutrients.

    Oceanographers thought that the main source of nutrients in subtropical gyres came from recirculating marine snow. But as a portion of this snow inevitably sinks to the bottom, there must be another source of nutrients to explain the healthy populations of phytoplankton at the surface. Exactly what that source is “has left the oceanography community a little puzzled for some time,” Gupta says.

    Swirls at the edge

    In their new study, the team sought to simulate a subtropical gyre to see what other dynamics may be at work. They focused on the North Pacific gyre, one of the Earth’s five major gyres, which circulates over most of the North Pacific Ocean, and spans more than 20 million square kilometers. 

    The team started with the MITgcm, a general circulation model that simulates the physical circulation patterns in the atmosphere and oceans. To reproduce the North Pacific gyre’s dynamics as realistically as possible, the team used an MITgcm algorithm, previously developed at NASA and MIT, which tunes the model to match actual observations of the ocean, such as ocean currents recorded by satellites, and temperature and salinity measurements taken by ships and drifters.  

    “We use a simulation of the physical ocean that is as realistic as we can get, given the machinery of the model and the available observations,” Lauderdale says.

    Play video

    An animation of the North Pacific Ocean shows phosphate nutrient concentrations at 500 meters below the ocean surface. The swirls represent small eddies transporting phosphate from the nutrient-rich equator (lighter colors), northward toward the nutrient-depleted subtropics (darker colors). This nutrient relay mechanism helps sustain biological activity and carbon sequestration in the subtropical ocean. Credit: Oliver Jahn

    The realistic model captured finer details, at a resolution of less than 20 kilometers per pixel, compared to other models that have a more limited resolution. The team combined the simulation of the ocean’s physical behavior with the Darwin model — a simulation of microbe communities such as phytoplankton, and how they grow and evolve with ocean conditions.

    The team ran the combined simulation of the North Pacific gyre over a decade, and created animations to visualize the pattern of currents and the nutrients they carried, in and around the gyre. What emerged were small eddies that ran along the edges of the enormous gyre and appeared to be rich in nutrients.

    “We were picking up on little eddy motions, basically like weather systems in the ocean,” Lauderdale says. “These eddies were carrying packets of high-nutrient waters, from the equator, north into the center of the gyre and downwards along the sides of the bowls. We wondered if these eddy transfers made an important delivery mechanism.”

    Surprisingly, the nutrients first move deeper, away from the sunlight, before being returned upwards where the phytoplankton live. The team found that ocean eddies could supply up to 50 percent of the nutrients in subtropical gyres.

    “That is very significant,” Gupta says. “The vertical process that recycles nutrients from marine snow is only half the story. The other half is the replenishing effect of these eddies. As subtropical gyres contribute a significant part of the world’s oceans, we think this nutrient relay is of global importance.”

    This research was supported, in part, by the Simons Foundation and NASA. More

  • in

    Cracking the carbon removal challenge

    By most measures, MIT chemical engineering spinoff Verdox has been enjoying an exceptional year. The carbon capture and removal startup, launched in 2019, announced $80 million in funding in February from a group of investors that included Bill Gates’ Breakthrough Energy Ventures. Then, in April — after recognition as one of the year’s top energy pioneers by Bloomberg New Energy Finance — the company and partner Carbfix won a $1 million XPRIZE Carbon Removal milestone award. This was the first round in the Musk Foundation’s four-year, $100 million-competition, the largest prize offered in history.

    “While our core technology has been validated by the significant improvement of performance metrics, this external recognition further verifies our vision,” says Sahag Voskian SM ’15, PhD ’19, co-founder and chief technology officer at Verdox. “It shows that the path we’ve chosen is the right one.”

    The search for viable carbon capture technologies has intensified in recent years, as scientific models show with increasing certainty that any hope of avoiding catastrophic climate change means limiting CO2 concentrations below 450 parts per million by 2100. Alternative energies will only get humankind so far, and a vast removal of CO2 will be an important tool in the race to remove the gas from the atmosphere.

    Voskian began developing the company’s cost-effective and scalable technology for carbon capture in the lab of T. Alan Hatton, the Ralph Landau Professor of Chemical Engineering at MIT. “It feels exciting to see ideas move from the lab to potential commercial production,” says Hatton, a co-founder of the company and scientific advisor, adding that Verdox has speedily overcome the initial technical hiccups encountered by many early phase companies. “This recognition enhances the credibility of what we’re doing, and really validates our approach.”

    At the heart of this approach is technology Voskian describes as “elegant and efficient.” Most attempts to grab carbon from an exhaust flow or from air itself require a great deal of energy. Voskian and Hatton came up with a design whose electrochemistry makes carbon capture appear nearly effortless. Their invention is a kind of battery: conductive electrodes coated with a compound called polyanthraquinone, which has a natural chemical attraction to carbon dioxide under certain conditions, and no affinity for CO2 when these conditions are relaxed. When activated by a low-level electrical current, the battery charges, reacting with passing molecules of CO2 and pulling them onto its surface. Once the battery becomes saturated, the CO2 can be released with a flip of voltage as a pure gas stream.

    “We showed that our technology works in a wide range of CO2 concentrations, from the 20 percent or higher found in cement and steel industry exhaust streams, down to the very diffuse 0.04 percent in air itself,” says Hatton. Climate change science suggests that removing CO2 directly from air “is an important component of the whole mitigation strategy,” he adds.

    “This was an academic breakthrough,” says Brian Baynes PhD ’04, CEO and co-founder of Verdox. Baynes, a chemical engineering alumnus and a former associate of Hatton’s, has many startups to his name, and a history as a venture capitalist and mentor to young entrepreneurs. When he first encountered Hatton and Voskian’s research in 2018, he was “impressed that their technology showed it could reduce energy consumption for certain kinds of carbon capture by 70 percent compared to other technologies,” he says. “I was encouraged and impressed by this low-energy footprint, and recommended that they start a company.”

    Neither Hatton nor Voskian had commercialized a product before, so they asked Baynes to help them get going. “I normally decline these requests, because the costs are generally greater than the upside,” Baynes says. “But this innovation had the potential to move the needle on climate change, and I saw it as a rare opportunity.”

    The Verdox team has no illusions about the challenge ahead. “The scale of the problem is enormous,” says Voskian. “Our technology must be in a position to capture mega- and gigatons of CO2 from air and emission sources.” Indeed, the International Panel on Climate Change estimates the world must remove 10 gigatons of CO2 per year by 2050 in order to keep global temperature rise under 2 degrees Celsius.

    To scale up successfully and at a pace that could meet the world’s climate challenge, Verdox must become “a business that works in a technoeconomic sense,” as Baynes puts it. This means, for instance, ensuring its carbon capture system offers clear and competitive cost benefits when deployed. Not a problem, says Voskian: “Our technology, because it uses electric energy, can be easily integrated into the grid, working with solar and wind on a plug-and-play basis.” The Verdox team believes their carbon footprint will beat that of competitors by orders of magnitude.

    The company is pushing past a series of technical obstacles as it ramps up: enabling the carbon capture battery to run hundreds of thousands of cycles before its performance wanes, and enhancing the polyanthraquinone chemistry so that the device is even more selective for CO2.

    After hurtling past critical milestones, Verdox is now working with its first announced commercial client: Norwegian aluminum company Hydro, which aims to eliminate CO2 from the exhaust of its smelters as it transitions to zero-carbon production.

    Verdox is also developing systems that can efficiently pull CO2 out of ambient air. “We’re designing units that would look like rows and rows of big fans that bring the air into boxes containing our batteries,” he says. Such approaches might prove especially useful in locations such as airfields, where there are higher-than-normal concentrations of CO2 emissions present.

    All this captured carbon needs to go somewhere. With XPRIZE partner Carbfix, which has a decade-old, proven method for mineralizing captured CO2 and depositing it in deep underground caverns, Verdox will have a final resting place for CO2 that cannot immediately be reused for industrial applications such as new fuels or construction materials.

    With its clients and partners, the team appears well-positioned for the next round of the carbon removal XPRIZE competition, which will award up to $50 million to the group that best demonstrates a working solution at a scale of at least 1,000 tons removed per year, and can present a viable blueprint for scaling to gigatons of removal per year.

    Can Verdox meaningfully reduce the planet’s growing CO2 burden? Voskian is sure of it. “Going at our current momentum, and seeing the world embrace carbon capture, this is the right path forward,” he says. “With our partners, deploying manufacturing facilities on a global scale, we will make a dent in the problem in our lifetime.” More

  • in

    A lasting — and valuable — legacy

    Betar Gallant, MIT associate professor and Class of 1922 Career Development Chair in Mechanical Engineering, grew up in a curious, independently minded family. Her mother had multiple jobs over the years, including in urban planning and in the geospatial field. Her father, although formally trained in English, read textbooks of all kinds from cover to cover, taught himself numerous technical fields including engineering, and worked successfully in them. When Gallant was very young, she and her father did science experiments in the basement.

    It wasn’t until she was in her teenage years, though, that she says she got drawn into science. Her father, who had fallen ill five years before, died when Gallant was 16, and while grieving, “when I was missing him the most,” she started to look at what had captivated her father.

    “I started to take a deeper interest in the things he had spent his life working on as a way to feel closer to him in his absence,” Gallant says. “I spent a few long months one summer looking through some of the things he had worked on, and found myself reading physics textbooks. That was enough, and I was hooked.”

    The love for independently finding and understanding solutions, that she had apparently inherited from her parents, eventually took her to the professional love of her life: electrochemistry.

    As an undergraduate at MIT, Gallant did an Undergraduate Research Opportunities Program project with Professor Yang Shao-Horn’s research group that went from her sophomore year through her senior thesis. This was Gallant’s first official exposure to electrochemistry.

    “When I met Yang, she showed me very quickly how challenging and enriching electrochemistry can be, and there was real conviction and excitement in how she and her group members talked about research,” Gallant says. “It was totally eye-opening, and I’m fortunate that she was a (relatively rare) electrochemist in a mechanical engineering department, or else I likely would not have been able to go down that road.”

    Play video

    Gallant earned three degrees at MIT (’08, SM ’10, and PhD ’13). Before joining the MIT faculty in 2016, she was a Kavli Nanoscience Institute Prize Postdoctoral Fellow at Caltech in the Division of Chemistry and Chemical Engineering.

    Her passion for electrochemistry is enormous. “Electrons are just dazzling — they power so much of our everyday world, and are the key to a renewable future,” she says, explaining that despite electrons’ amazing potential, isolated electrons cannot be stored and produced on demand, because “nature doesn’t allow excessive amounts of charge imbalances to accumulate.”

    Electrons can, however, be stored on molecules, in bonds and in metal ions or nonmetal centers that are able to lose and gain electrons — as long as positive charge transfers occur to accommodate the electrons.

    “Here’s where chemistry rears its head,” Gallant says. “What types of molecules or materials can behave in this way? How do we store as much charge as possible while making the weight and volume as low as possible?”

    Gallant points out that early battery developers using lithium and ions built a technology that “has arguably shaped our modern world more than any other.

    “If you look at some early papers, the concepts of how a lithium-ion battery or a lithium metal anode worked were sketched out by hand — they had been deduced to be true, before the field even had the tools to prove all the mechanisms were actually occurring — yet even now, those ideas are still turning out to be right!”

    Gallant says, “that’s because if you truly understand the basic principles of electrochemistry, you can start to intuit how systems will behave. Once you can do that, you can really begin to engineer better materials and devices.”

    Truly her father’s daughter, Gallant’s emphasis is on independently finding solutions.

    “Ultimately, it’s a race to have the best mental models,” she says. “A great lab and lots of funding and personnel to run it are very nice, but the most valuable tools in the toolbox are solid mental models and a way of thinking about electrochemistry, which is actually very personalized depending on the researcher.”

    She says one project with immediate impact that’s coming out of her Gallant Energy and Carbon Conversion Lab relates to primary (non-rechargeable) battery work that she and her team are working to commercialize. It involves injecting new electrochemically active electrolytes into leading high-energy batteries as they’re being assembled. Replacing a conventional electrolyte with the new chemistry decreases the normally inactive weight of the battery and boosts the energy substantially, Gallant says. One important application of such batteries would be for medical devices such as pacemakers.

    “If you can extend lifetime, you’re talking about longer times between invasive replacement surgeries, which really affects patient quality of life,” she says.

    Gallant’s team is also leading efforts to enable higher-energy rechargeable lithium-ion batteries for electric vehicles. Key to a step-change in energy, and therefore driving range, is to use a lithium metal anode in place of graphite. Lithium metal is highly reactive, however, with all battery electrolytes, and its interface needs to be stabilized in ways that still elude researchers. Gallant’s team is developing design guidelines for such interfaces, and for next-generation electrolytes to form and sustain these interfaces. Gallant says that applying the technology to that purpose and commercializing it would be “a bit longer-term, but I believe this change to lithium anodes will happen, and it’s just a matter of when.”

    About six years ago, when Gallant founded her lab, she and her team started introducing carbon dioxide into batteries as a way to experiment with electrochemical conversion of the greenhouse gas. She says they realized that batteries do not present the best practical technology to mitigate CO2, but their experimentation did open up new paths to carbon capture and conversion. “That work allowed us to think creatively, and we started to realize that there is tremendous potential to manipulate CO2 reactions by carefully designing the electrochemical environment.” That led her team to the idea of conducting electrochemical transformations on CO2 from a captured state bound to a capture sorbent, replacing the energy-intense regeneration step of today’s capture processes and streamlining the process.  

    “Now we’re seeing other researchers working on that, too, and taking this idea in exciting directions — it’s a very challenging and very rich topic,” she says.

    Gallant has won awards including an MIT Bose Fellowship, the Army Research Office Young Investigator Award, the Scialog Fellowship in Energy Storage and in Negative Emissions Science, a CAREER award from the National Science Foundation, the Ruth and Joel Spira Award for Distinguished Teaching at MIT, the Electrochemical Society (ECS) Battery Division Early Career award, and an ECS-Toyota Young Investigator Award.

    These days, Gallant does some of her best thinking while brainstorming with her research group members and with her husband, who is also an academic. She says being a professor at MIT means she has “a queue of things to think about,” but she sometimes gets awarded with a revelation.

    “My brain gets overloaded because I can’t think through everything instantaneously; ideas have to get in line! So there’s a lot going on in the background at all times,” she say. “I don’t know how it works, but sometimes I’ll be going for a walk or doing something else, and an idea breaks through. Those are the fun ones.” More

  • in

    Turning carbon dioxide into valuable products

    Carbon dioxide (CO2) is a major contributor to climate change and a significant product of many human activities, notably industrial manufacturing. A major goal in the energy field has been to chemically convert emitted CO2 into valuable chemicals or fuels. But while CO2 is available in abundance, it has not yet been widely used to generate value-added products. Why not?

    The reason is that CO2 molecules are highly stable and therefore not prone to being chemically converted to a different form. Researchers have sought materials and device designs that could help spur that conversion, but nothing has worked well enough to yield an efficient, cost-effective system.

    Two years ago, Ariel Furst, the Raymond (1921) and Helen St. Laurent Career Development Professor of Chemical Engineering at MIT, decided to try using something different — a material that gets more attention in discussions of biology than of chemical engineering. Already, results from work in her lab suggest that her unusual approach is paying off.

    The stumbling block

    The challenge begins with the first step in the CO2 conversion process. Before being transformed into a useful product, CO2 must be chemically converted into carbon monoxide (CO). That conversion can be encouraged using electrochemistry, a process in which input voltage provides the extra energy needed to make the stable CO2 molecules react. The problem is that achieving the CO2-to-CO conversion requires large energy inputs — and even then, CO makes up only a small fraction of the products that are formed.

    To explore opportunities for improving this process, Furst and her research group focused on the electrocatalyst, a material that enhances the rate of a chemical reaction without being consumed in the process. The catalyst is key to successful operation. Inside an electrochemical device, the catalyst is often suspended in an aqueous (water-based) solution. When an electric potential (essentially a voltage) is applied to a submerged electrode, dissolved CO2 will — helped by the catalyst — be converted to CO.

    But there’s one stumbling block: The catalyst and the CO2 must meet on the surface of the electrode for the reaction to occur. In some studies, the catalyst is dispersed in the solution, but that approach requires more catalyst and isn’t very efficient, according to Furst. “You have to both wait for the diffusion of CO2 to the catalyst and for the catalyst to reach the electrode before the reaction can occur,” she explains. As a result, researchers worldwide have been exploring different methods of “immobilizing” the catalyst on the electrode.

    Connecting the catalyst and the electrode

    Before Furst could delve into that challenge, she needed to decide which of the two types of CO2 conversion catalysts to work with: the traditional solid-state catalyst or a catalyst made up of small molecules. In examining the literature, she concluded that small-molecule catalysts held the most promise. While their conversion efficiency tends to be lower than that of solid-state versions, molecular catalysts offer one important advantage: They can be tuned to emphasize reactions and products of interest.

    Two approaches are commonly used to immobilize small-molecule catalysts on an electrode. One involves linking the catalyst to the electrode by strong covalent bonds — a type of bond in which atoms share electrons; the result is a strong, essentially permanent connection. The other sets up a non-covalent attachment between the catalyst and the electrode; unlike a covalent bond, this connection can easily be broken.

    Neither approach is ideal. In the former case, the catalyst and electrode are firmly attached, ensuring efficient reactions; but when the activity of the catalyst degrades over time (which it will), the electrode can no longer be accessed. In the latter case, a degraded catalyst can be removed; but the exact placement of the small molecules of the catalyst on the electrode can’t be controlled, leading to an inconsistent, often decreasing, catalytic efficiency — and simply increasing the amount of catalyst on the electrode surface without concern for where the molecules are placed doesn’t solve the problem.

    What was needed was a way to position the small-molecule catalyst firmly and accurately on the electrode and then release it when it degrades. For that task, Furst turned to what she and her team regard as a kind of “programmable molecular Velcro”: deoxyribonucleic acid, or DNA.

    Adding DNA to the mix

    Mention DNA to most people, and they think of biological functions in living things. But the members of Furst’s lab view DNA as more than just genetic code. “DNA has these really cool physical properties as a biomaterial that people don’t often think about,” she says. “DNA can be used as a molecular Velcro that can stick things together with very high precision.”

    Furst knew that DNA sequences had previously been used to immobilize molecules on surfaces for other purposes. So she devised a plan to use DNA to direct the immobilization of catalysts for CO2 conversion.

    Her approach depends on a well-understood behavior of DNA called hybridization. The familiar DNA structure is a double helix that forms when two complementary strands connect. When the sequence of bases (the four building blocks of DNA) in the individual strands match up, hydrogen bonds form between complementary bases, firmly linking the strands together.

    Using that behavior for catalyst immobilization involves two steps. First, the researchers attach a single strand of DNA to the electrode. Then they attach a complementary strand to the catalyst that is floating in the aqueous solution. When the latter strand gets near the former, the two strands hybridize; they become linked by multiple hydrogen bonds between properly paired bases. As a result, the catalyst is firmly affixed to the electrode by means of two interlocked, self-assembled DNA strands, one connected to the electrode and the other to the catalyst.

    Better still, the two strands can be detached from one another. “The connection is stable, but if we heat it up, we can remove the secondary strand that has the catalyst on it,” says Furst. “So we can de-hybridize it. That allows us to recycle our electrode surfaces — without having to disassemble the device or do any harsh chemical steps.”

    Experimental investigation

    To explore that idea, Furst and her team — postdocs Gang Fan and Thomas Gill, former graduate student Nathan Corbin PhD ’21, and former postdoc Amruta Karbelkar — performed a series of experiments using three small-molecule catalysts based on porphyrins, a group of compounds that are biologically important for processes ranging from enzyme activity to oxygen transport. Two of the catalysts involve a synthetic porphyrin plus a metal center of either cobalt or iron. The third catalyst is hemin, a natural porphyrin compound used to treat porphyria, a set of disorders that can affect the nervous system. “So even the small-molecule catalysts we chose are kind of inspired by nature,” comments Furst.

    In their experiments, the researchers first needed to modify single strands of DNA and deposit them on one of the electrodes submerged in the solution inside their electrochemical cell. Though this sounds straightforward, it did require some new chemistry. Led by Karbelkar and third-year undergraduate researcher Rachel Ahlmark, the team developed a fast, easy way to attach DNA to electrodes. For this work, the researchers’ focus was on attaching DNA, but the “tethering” chemistry they developed can also be used to attach enzymes (protein catalysts), and Furst believes it will be highly useful as a general strategy for modifying carbon electrodes.

    Once the single strands of DNA were deposited on the electrode, the researchers synthesized complementary strands and attached to them one of the three catalysts. When the DNA strands with the catalyst were added to the solution in the electrochemical cell, they readily hybridized with the DNA strands on the electrode. After half-an-hour, the researchers applied a voltage to the electrode to chemically convert CO2 dissolved in the solution and used a gas chromatograph to analyze the makeup of the gases produced by the conversion.

    The team found that when the DNA-linked catalysts were freely dispersed in the solution, they were highly soluble — even when they included small-molecule catalysts that don’t dissolve in water on their own. Indeed, while porphyrin-based catalysts in solution often stick together, once the DNA strands were attached, that counterproductive behavior was no longer evident.

    The DNA-linked catalysts in solution were also more stable than their unmodified counterparts. They didn’t degrade at voltages that caused the unmodified catalysts to degrade. “So just attaching that single strand of DNA to the catalyst in solution makes those catalysts more stable,” says Furst. “We don’t even have to put them on the electrode surface to see improved stability.” When converting CO2 in this way, a stable catalyst will give a steady current over time. Experimental results showed that adding the DNA prevented the catalyst from degrading at voltages of interest for practical devices. Moreover, with all three catalysts in solution, the DNA modification significantly increased the production of CO per minute.

    Allowing the DNA-linked catalyst to hybridize with the DNA connected to the electrode brought further improvements, even compared to the same DNA-linked catalyst in solution. For example, as a result of the DNA-directed assembly, the catalyst ended up firmly attached to the electrode, and the catalyst stability was further enhanced. Despite being highly soluble in aqueous solutions, the DNA-linked catalyst molecules remained hybridized at the surface of the electrode, even under harsh experimental conditions.

    Immobilizing the DNA-linked catalyst on the electrode also significantly increased the rate of CO production. In a series of experiments, the researchers monitored the CO production rate with each of their catalysts in solution without attached DNA strands — the conventional setup — and then with them immobilized by DNA on the electrode. With all three catalysts, the amount of CO generated per minute was far higher when the DNA-linked catalyst was immobilized on the electrode.

    In addition, immobilizing the DNA-linked catalyst on the electrode greatly increased the “selectivity” in terms of the products. One persistent challenge in using CO2 to generate CO in aqueous solutions is that there is an inevitable competition between the formation of CO and the formation of hydrogen. That tendency was eased by adding DNA to the catalyst in solution — and even more so when the catalyst was immobilized on the electrode using DNA. For both the cobalt-porphyrin catalyst and the hemin-based catalyst, the formation of CO relative to hydrogen was significantly higher with the DNA-linked catalyst on the electrode than in solution. With the iron-porphyrin catalyst they were about the same. “With the iron, it doesn’t matter whether it’s in solution or on the electrode,” Furst explains. “Both of them have selectivity for CO, so that’s good, too.”

    Progress and plans

    Furst and her team have now demonstrated that their DNA-based approach combines the advantages of the traditional solid-state catalysts and the newer small-molecule ones. In their experiments, they achieved the highly efficient chemical conversion of CO2 to CO and also were able to control the mix of products formed. And they believe that their technique should prove scalable: DNA is inexpensive and widely available, and the amount of catalyst required is several orders of magnitude lower when it’s immobilized using DNA.

    Based on her work thus far, Furst hypothesizes that the structure and spacing of the small molecules on the electrode may directly impact both catalytic efficiency and product selectivity. Using DNA to control the precise positioning of her small-molecule catalysts, she plans to evaluate those impacts and then extrapolate design parameters that can be applied to other classes of energy-conversion catalysts. Ultimately, she hopes to develop a predictive algorithm that researchers can use as they design electrocatalytic systems for a wide variety of applications.

    This research was supported by a grant from the MIT Energy Initiative Seed Fund.

    This article appears in the Spring 2022 issue of Energy Futures, the magazine of the MIT Energy Initiative. More

  • in

    Stranded assets could exact steep costs on fossil energy producers and investors

    A 2021 study in the journal Nature found that in order to avert the worst impacts of climate change, most of the world’s known fossil fuel reserves must remain untapped. According to the study, 90 percent of coal and nearly 60 percent of oil and natural gas must be kept in the ground in order to maintain a 50 percent chance that global warming will not exceed 1.5 degrees Celsius above preindustrial levels.

    As the world transitions away from greenhouse-gas-emitting activities to keep global warming well below 2 C (and ideally 1.5 C) in alignment with the Paris Agreement on climate change, fossil fuel companies and their investors face growing financial risks (known as transition risks), including the prospect of ending up with massive stranded assets. This ongoing transition is likely to significantly scale back fossil fuel extraction and coal-fired power plant operations, exacting steep costs — most notably asset value losses — on fossil-energy producers and shareholders.

    Now, a new study in the journal Climate Change Economics led by researchers at the MIT Joint Program on the Science and Policy of Global Change estimates the current global asset value of untapped fossil fuels through 2050 under four increasingly ambitious climate-policy scenarios. The least-ambitious scenario (“Paris Forever”) assumes that initial Paris Agreement greenhouse gas emissions-reduction pledges are upheld in perpetuity; the most stringent scenario (“Net Zero 2050”) adds coordinated international policy instruments aimed at achieving global net-zero emissions by 2050.

    Powered by the MIT Joint Program’s model of the world economy with detailed representation of the energy sector and energy industry assets over time, the study finds that the global net present value of untapped fossil fuel output through 2050 relative to a reference “No Policy” scenario ranges from $21.5 trillion (Paris Forever) to $30.6 trillion (Net Zero 2050). The estimated global net present value of stranded assets in coal power generation through 2050 ranges from $1.3 to $2.3 trillion.

    “The more stringent the climate policy, the greater the volume of untapped fossil fuels, and hence the higher the potential asset value loss for fossil-fuel owners and investors,” says Henry Chen, a research scientist at the MIT Joint Program and the study’s lead author.

    The global economy-wide analysis presented in the study provides a more fine-grained assessment of stranded assets than those performed in previous studies. Firms and financial institutions may combine the MIT analysis with details on their own investment portfolios to assess their exposure to climate-related transition risk. More

  • in

    Getting the carbon out of India’s heavy industries

    The world’s third largest carbon emitter after China and the United States, India ranks seventh in a major climate risk index. Unless India, along with the nearly 200 other signatory nations of the Paris Agreement, takes aggressive action to keep global warming well below 2 degrees Celsius relative to preindustrial levels, physical and financial losses from floods, droughts, and cyclones could become more severe than they are today. So, too, could health impacts associated with the hazardous air pollution levels now affecting more than 90 percent of its population.  

    To address both climate and air pollution risks and meet its population’s escalating demand for energy, India will need to dramatically decarbonize its energy system in the coming decades. To that end, its initial Paris Agreement climate policy pledge calls for a reduction in carbon dioxide intensity of GDP by 33-35 percent by 2030 from 2005 levels, and an increase in non-fossil-fuel-based power to about 40 percent of cumulative installed capacity in 2030. At the COP26 international climate change conference, India announced more aggressive targets, including the goal of achieving net-zero emissions by 2070.

    Meeting its climate targets will require emissions reductions in every economic sector, including those where emissions are particularly difficult to abate. In such sectors, which involve energy-intensive industrial processes (production of iron and steel; nonferrous metals such as copper, aluminum, and zinc; cement; and chemicals), decarbonization options are limited and more expensive than in other sectors. Whereas replacing coal and natural gas with solar and wind could lower carbon dioxide emissions in electric power generation and transportation, no easy substitutes can be deployed in many heavy industrial processes that release CO2 into the air as a byproduct.

    However, other methods could be used to lower the emissions associated with these processes, which draw upon roughly 50 percent of India’s natural gas, 25 percent of its coal, and 20 percent of its oil. Evaluating the potential effectiveness of such methods in the next 30 years, a new study in the journal Energy Economics led by researchers at the MIT Joint Program on the Science and Policy of Global Change is the first to explicitly explore emissions-reduction pathways for India’s hard-to-abate sectors.

    Using an enhanced version of the MIT Economic Projection and Policy Analysis (EPPA) model, the study assesses existing emissions levels in these sectors and projects how much they can be reduced by 2030 and 2050 under different policy scenarios. Aimed at decarbonizing industrial processes, the scenarios include the use of subsidies to increase electricity use, incentives to replace coal with natural gas, measures to improve industrial resource efficiency, policies to put a price on carbon, carbon capture and storage (CCS) technology, and hydrogen in steel production.

    The researchers find that India’s 2030 Paris Agreement pledge may still drive up fossil fuel use and associated greenhouse gas emissions, with projected carbon dioxide emissions from hard-to-abate sectors rising by about 2.6 times from 2020 to 2050. But scenarios that also promote electrification, natural gas support, and resource efficiency in hard-to-abate sectors can lower their CO2 emissions by 15-20 percent.

    While appearing to move the needle in the right direction, those reductions are ultimately canceled out by increased demand for the products that emerge from these sectors. So what’s the best path forward?

    The researchers conclude that only the incentive of carbon pricing or the advance of disruptive technology can move hard-to-abate sector emissions below their current levels. To achieve significant emissions reductions, they maintain, the price of carbon must be high enough to make CCS economically viable. In that case, reductions of 80 percent below current levels could be achieved by 2050.

    “Absent major support from the government, India will be unable to reduce carbon emissions in its hard-to-abate sectors in alignment with its climate targets,” says MIT Joint Program deputy director Sergey Paltsev, the study’s lead author. “A comprehensive government policy could provide robust incentives for the private sector in India and generate favorable conditions for foreign investments and technology advances. We encourage decision-makers to use our findings to design efficient pathways to reduce emissions in those sectors, and thereby help lower India’s climate and air pollution-related health risks.” More

  • in

    Making hydrogen power a reality

    For decades, government and industry have looked to hydrogen as a potentially game-changing tool in the quest for clean energy. As far back as the early days of the Clinton administration, energy sector observers and public policy experts have extolled the virtues of hydrogen — to the point that some people have joked that hydrogen is the energy of the future, “and always will be.”

    Even as wind and solar power have become commonplace in recent years, hydrogen has been held back by high costs and other challenges. But the fuel may finally be poised to have its moment. At the MIT Energy Initiative Spring Symposium — entitled “Hydrogen’s role in a decarbonized energy system” — experts discussed hydrogen production routes, hydrogen consumption markets, the path to a robust hydrogen infrastructure, and policy changes needed to achieve a “hydrogen future.”

    During one panel, “Options for producing low-carbon hydrogen at scale,” four experts laid out existing and planned efforts to leverage hydrogen for decarbonization. 

    “The race is on”

    Huyen N. Dinh, a senior scientist and group manager at the National Renewable Energy Laboratory (NREL), is the director of HydroGEN, a consortium of several U.S. Department of Energy (DOE) national laboratories that accelerates research and development of innovative and advanced water splitting materials and technologies for clean, sustainable, and low-cost hydrogen production.

    For the past 14 years, Dinh has worked on fuel cells and hydrogen production for NREL. “We think that the 2020s is the decade of hydrogen,” she said. Dinh believes that the energy carrier is poised to come into its own over the next few years, pointing to several domestic and international activities surrounding the fuel and citing a Hydrogen Council report that projected the future impacts of hydrogen — including 30 million jobs and $2.5 trillion in global revenue by 2050.

    “Now is the time for hydrogen, and the global race is on,” she said.

    Dinh also explained the parameters of the Hydrogen Shot — the first of the DOE’s “Energy Earthshots” aimed at accelerating breakthroughs for affordable and reliable clean energy solutions. Hydrogen fuel currently costs around $5 per kilogram to produce, and the Hydrogen Shot’s stated goal is to bring that down by 80 percent to $1 per kilogram within a decade.

    The Hydrogen Shot will be facilitated by $9.5 billion in funding for at least four clean hydrogen hubs located in different parts of the United States, as well as extensive research and development, manufacturing, and recycling from last year’s bipartisan infrastructure law. Still, Dinh noted that it took more than 40 years for solar and wind power to become cost competitive, and now industry, government, national lab, and academic leaders are hoping to achieve similar reductions in hydrogen fuel costs over a much shorter time frame. In the near term, she said, stakeholders will need to improve the efficiency, durability, and affordability of hydrogen production through electrolysis (using electricity to split water) using today’s renewable and nuclear power sources. Over the long term, the focus may shift to splitting water more directly through heat or solar energy, she said.

    “The time frame is short, the competition is intense, and a coordinated effort is critical for domestic competitiveness,” Dinh said.

    Hydrogen across continents

    Wambui Mutoru, principal engineer for international commercial development, exploration, and production international at the Norwegian global energy company Equinor, said that hydrogen is an important component in the company’s ambitions to be carbon-neutral by 2050. The company, in collaboration with partners, has several hydrogen projects in the works, and Mutoru laid out the company’s Hydrogen to Humber project in Northern England. Currently, the Humber region emits more carbon dioxide than any other industrial cluster in the United Kingdom — 50 percent more, in fact, than the next-largest carbon emitter.   

    “The ambition here is for us to deploy the world’s first at-scale hydrogen value chain to decarbonize the Humber industrial cluster,” Mutoru said.

    The project consists of three components: a clean hydrogen production facility, an onshore hydrogen and carbon dioxide transmission network, and offshore carbon dioxide transportation and storage operations. Mutoru highlighted the importance of carbon capture and storage in hydrogen production. Equinor, she said, has captured and sequestered carbon offshore for more than 25 years, storing more than 25 million tons of carbon dioxide during that time.

    Mutoru also touched on Equinor’s efforts to build a decarbonized energy hub in the Appalachian region of the United States, covering territory in Ohio, West Virginia, and Pennsylvania. By 2040, she said, the company’s ambition is to produce about 1.5 million tons of clean hydrogen per year in the region — roughly equivalent to 6.8 gigawatts of electricity — while also storing 30 million tons of carbon dioxide.

    Mutoru acknowledged that the biggest challenge facing potential hydrogen producers is the current lack of viable business models. “Resolving that challenge requires cross-industry collaboration, and supportive policy frameworks so that the market for hydrogen can be built and sustained over the long term,” she said.

    Confronting barriers

    Gretchen Baier, executive external strategy and communications leader for Dow, noted that the company already produces hydrogen in multiple ways. For one, Dow operates the world’s largest ethane cracker, in Texas. An ethane cracker heats ethane to break apart molecular bonds to form ethylene, with hydrogen one of the byproducts of the process. Also, Baier showed a slide of the 1891 patent for the electrolysis of brine water, which also produces hydrogen. The company still engages in this practice, but Dow does not have an effective way of utilizing the resulting hydrogen for their own fuel.

    “Just take a moment to think about that,” Baier said. “We’ve been talking about hydrogen production and the cost of it, and this is basically free hydrogen. And it’s still too much of a barrier to somewhat recycle that and use it for ourselves. The environment is clearly changing, and we do have plans for that, but I think that kind of sets some of the challenges that face industry here.”

    However, Baier said, hydrogen is expected to play a significant role in Dow’s future as the company attempts to decarbonize by 2050. The company, she said, plans to optimize hydrogen allocation and production, retrofit turbines for hydrogen fueling, and purchase clean hydrogen. By 2040, Dow expects more than 60 percent of its sites to be hydrogen-ready.

    Baier noted that hydrogen fuel is not a “panacea,” but rather one among many potential contributors as industry attempts to reduce or eliminate carbon emissions in the coming decades. “Hydrogen has an important role, but it’s not the only answer,” she said.

    “This is real”

    Colleen Wright is vice president of corporate strategy for Constellation, which recently separated from Exelon Corporation. (Exelon now owns the former company’s regulated utilities, such as Commonwealth Edison and Baltimore Gas and Electric, while Constellation owns the competitive generation and supply portions of the business.) Wright stressed the advantages of nuclear power in hydrogen production, which she said include superior economics, low barriers to implementation, and scalability.

    “A quarter of emissions in the world are currently from hard-to-decarbonize sectors — the industrial sector, steel making, heavy-duty transportation, aviation,” she said. “These are really challenging decarbonization sectors, and as we continue to expand and electrify, we’re going to need more supply. We’re also going to need to produce clean hydrogen using emissions-free power.”

    “The scale of nuclear power plants is uniquely suited to be able to scale hydrogen production,” Wright added. She mentioned Constellation’s Nine Mile Point site in the State of New York, which received a DOE grant for a pilot program that will see a proton exchange membrane electrolyzer installed at the site.

    “We’re very excited to see hydrogen go from a [research and development] conversation to a commercial conversation,” she said. “We’ve been calling it a little bit of a ‘middle-school dance.’ Everybody is standing around the circle, waiting to see who’s willing to put something at stake. But this is real. We’re not dancing around the edges. There are a lot of people who are big players, who are willing to put skin in the game today.” More