More stories

  • in

    Developing electricity-powered, low-emissions alternatives to carbon-intensive industrial processes

    On April 11, 2022, MIT announced five multiyear flagship projects in the first-ever Climate Grand Challenges, a new initiative to tackle complex climate problems and deliver breakthrough solutions to the world as quickly as possible. This is the second article in a five-part series highlighting the most promising concepts to emerge from the competition, and the interdisciplinary research teams behind them.

    One of the biggest leaps that humankind could take to drastically lower greenhouse gas emissions globally would be the complete decarbonization of industry. But without finding low-cost, environmentally friendly substitutes for industrial materials, the traditional production of steel, cement, ammonia, and ethylene will continue pumping out billions of tons of carbon annually; these sectors alone are responsible for at least one third of society’s global greenhouse gas emissions. 

    A major problem is that industrial manufacturers, whose success depends on reliable, cost-efficient, and large-scale production methods, are too heavily invested in processes that have historically been powered by fossil fuels to quickly switch to new alternatives. It’s a machine that kicked on more than 100 years ago, and which MIT electrochemical engineer Yet-Ming Chiang says we can’t shut off without major disruptions to the world’s massive supply chain of these materials. What’s needed, Chiang says, is a broader, collaborative clean energy effort that takes “targeted fundamental research, all the way through to pilot demonstrations that greatly lowers the risk for adoption of new technology by industry.”

    This would be a new approach to decarbonization of industrial materials production that relies on largely unexplored but cleaner electrochemical processes. New production methods could be optimized and integrated into the industrial machine to make it run on low-cost, renewable electricity in place of fossil fuels. 

    Recognizing this, Chiang, the Kyocera Professor in the Department of Materials Science and Engineering, teamed with research collaborator Bilge Yildiz, the Breene M. Kerr Professor of Nuclear Science and Engineering and professor of materials science and engineering, with key input from Karthish Manthiram, visiting professor in the Department of Chemical Engineering, to submit a project proposal to the MIT Climate Grand Challenges. Their plan: to create an innovation hub on campus that would bring together MIT researchers individually investigating decarbonization of steel, cement, ammonia, and ethylene under one roof, combining research equipment and directly collaborating on new methods to produce these four key materials.

    Many researchers across MIT have already signed on to join the effort, including Antoine Allanore, associate professor of metallurgy, who specializes in the development of sustainable materials and manufacturing processes, and Elsa Olivetti, the Esther and Harold E. Edgerton Associate Professor in the Department of Materials Science and Engineering, who is an expert in materials economics and sustainability. Other MIT faculty currently involved include Fikile Brushett, Betar Gallant, Ahmed Ghoniem, William Green, Jeffrey Grossman, Ju Li, Yuriy Román-Leshkov, Yang Shao-Horn, Robert Stoner, Yogesh Surendranath, Timothy Swager, and Kripa Varanasi.

    “The team we brought together has the expertise needed to tackle these challenges, including electrochemistry — using electricity to decarbonize these chemical processes — and materials science and engineering, process design and scale-up technoeconomic analysis, and system integration, which is all needed for this to go out from our labs to the field,” says Yildiz.

    Selected from a field of more than 100 proposals, their Center for Electrification and Decarbonization of Industry (CEDI) will be the first such institute worldwide dedicated to testing and scaling the most innovative and promising technologies in sustainable chemicals and materials. CEDI will work to facilitate rapid translation of lab discoveries into affordable, scalable industry solutions, with potential to offset as much as 15 percent of greenhouse gas emissions. The team estimates that some CEDI projects already underway could be commercialized within three years.

    “The real timeline is as soon as possible,” says Chiang.

    To achieve CEDI’s ambitious goals, a physical location is key, staffed with permanent faculty, as well as undergraduates, graduate students, and postdocs. Yildiz says the center’s success will depend on engaging student researchers to carry forward with research addressing the biggest ongoing challenges to decarbonization of industry.

    “We are training young scientists, students, on the learned urgency of the problem,” says Yildiz. “We empower them with the skills needed, and even if an individual project does not find the implementation in the field right away, at least, we would have trained the next generation that will continue to go after them in the field.”

    Chiang’s background in electrochemistry showed him how the efficiency of cement production could benefit from adopting clean electricity sources, and Yildiz’s work on ethylene, the source of plastic and one of industry’s most valued chemicals, has revealed overlooked cost benefits to switching to electrochemical processes with less expensive starting materials. With industry partners, they hope to continue these lines of fundamental research along with Allanore, who is focused on electrifying steel production, and Manthiram, who is developing new processes for ammonia. Olivetti will focus on understanding risks and barriers to implementation. This multilateral approach aims to speed up the timeline to industry adoption of new technologies at the scale needed for global impact.

    “One of the points of emphasis in this whole center is going to be applying technoeconomic analysis of what it takes to be successful at a technical and economic level, as early in the process as possible,” says Chiang.

    The impact of large-scale industry adoption of clean energy sources in these four key areas that CEDI plans to target first would be profound, as these sectors are currently responsible for 7.5 billion tons of emissions annually. There is the potential for even greater impact on emissions as new knowledge is applied to other industrial products beyond the initial four targets of steel, cement, ammonia, and ethylene. Meanwhile, the center will stand as a hub to attract new industry, government stakeholders, and research partners to collaborate on urgently needed solutions, both newly arising and long overdue.

    When Chiang and Yildiz first met to discuss ideas for MIT Climate Grand Challenges, they decided they wanted to build a climate research center that functioned unlike any other to help pivot large industry toward decarbonization. Beyond considering how new solutions will impact industry’s bottom line, CEDI will also investigate unique synergies that could arise from the electrification of industry, like processes that would create new byproducts that could be the feedstock to other industry processes, reducing waste and increasing efficiencies in the larger system. And because industry is so good at scaling, those added benefits would be widespread, finally replacing century-old technologies with critical updates designed to improve production and markedly reduce industry’s carbon footprint sooner rather than later.

    “Everything we do, we’re going to try to do with urgency,” Chiang says. “The fundamental research will be done with urgency, and the transition to commercialization, we’re going to do with urgency.” More

  • in

    Chemical reactions for the energy transition

    One challenge in decarbonizing the energy system is knowing how to deal with new types of fuels. Traditional fuels such as natural gas and oil can be combined with other materials and then heated to high temperatures so they chemically react to produce other useful fuels or substances, or even energy to do work. But new materials such as biofuels can’t take as much heat without breaking down.

    A key ingredient in such chemical reactions is a specially designed solid catalyst that is added to encourage the reaction to happen but isn’t itself consumed in the process. With traditional materials, the solid catalyst typically interacts with a gas; but with fuels derived from biomass, for example, the catalyst must work with a liquid — a special challenge for those who design catalysts.

    For nearly a decade, Yogesh Surendranath, an associate professor of chemistry at MIT, has been focusing on chemical reactions between solid catalysts and liquids, but in a different situation: rather than using heat to drive reactions, he and his team input electricity from a battery or a renewable source such as wind or solar to give chemically inactive molecules more energy so they react. And key to their research is designing and fabricating solid catalysts that work well for reactions involving liquids.

    Recognizing the need to use biomass to develop sustainable liquid fuels, Surendranath wondered whether he and his team could take the principles they have learned about designing catalysts to drive liquid-solid reactions with electricity and apply them to reactions that occur at liquid-solid interfaces without any input of electricity.

    To their surprise, they found that their knowledge is directly relevant. Why? “What we found — amazingly — is that even when you don’t hook up wires to your catalyst, there are tiny internal ‘wires’ that do the reaction,” says Surendranath. “So, reactions that people generally think operate without any flow of current actually do involve electrons shuttling from one place to another.” And that means that Surendranath and his team can bring the powerful techniques of electrochemistry to bear on the problem of designing catalysts for sustainable fuels.

    A novel hypothesis

    Their work has focused on a class of chemical reactions important in the energy transition that involve adding oxygen to small organic (carbon-containing) molecules such as ethanol, methanol, and formic acid. The conventional assumption is that the reactant and oxygen chemically react to form the product plus water. And a solid catalyst — often a combination of metals — is present to provide sites on which the reactant and oxygen can interact.

    But Surendranath proposed a different view of what’s going on. In the usual setup, two catalysts, each one composed of many nanoparticles, are mounted on a conductive carbon substrate and submerged in water. In that arrangement, negatively charged electrons can flow easily through the carbon, while positively charged protons can flow easily through water.

    Surendranath’s hypothesis was that the conversion of reactant to product progresses by means of two separate “half-reactions” on the two catalysts. On one catalyst, the reactant turns into a product, in the process sending electrons into the carbon substrate and protons into the water. Those electrons and protons are picked up by the other catalyst, where they drive the oxygen-to-water conversion. So, instead of a single reaction, two separate but coordinated half-reactions together achieve the net conversion of reactant to product.

    As a result, the overall reaction doesn’t actually involve any net electron production or consumption. It is a standard “thermal” reaction resulting from the energy in the molecules and maybe some added heat. The conventional approach to designing a catalyst for such a reaction would focus on increasing the rate of that reactant-to-product conversion. And the best catalyst for that kind of reaction could turn out to be, say, gold or palladium or some other expensive precious metal.

    However, if that reaction actually involves two half-reactions, as Surendranath proposed, there is a flow of electrical charge (the electrons and protons) between them. So Surendranath and others in the field could instead use techniques of electrochemistry to design not a single catalyst for the overall reaction but rather two separate catalysts — one to speed up one half-reaction and one to speed up the other half-reaction. “That means we don’t have to design one catalyst to do all the heavy lifting of speeding up the entire reaction,” says Surendranath. “We might be able to pair up two low-cost, earth-abundant catalysts, each of which does half of the reaction well, and together they carry out the overall transformation quickly and efficiently.”

    But there’s one more consideration: Electrons can flow through the entire catalyst composite, which encompasses the catalyst particle(s) and the carbon substrate. For the chemical conversion to happen as quickly as possible, the rate at which electrons are put into the catalyst composite must exactly match the rate at which they are taken out. Focusing on just the electrons, if the reaction-to-product conversion on the first catalyst sends the same number of electrons per second into the “bath of electrons” in the catalyst composite as the oxygen-to-water conversion on the second catalyst takes out, the two half-reactions will be balanced, and the electron flow — and the rate of the combined reaction — will be fast. The trick is to find good catalysts for each of the half-reactions that are perfectly matched in terms of electrons in and electrons out.

    “A good catalyst or pair of catalysts can maintain an electrical potential — essentially a voltage — at which both half-reactions are fast and are balanced,” says Jaeyune Ryu PhD ’21, a former member of the Surendranath lab and lead author of the study; Ryu is now a postdoc at Harvard University. “The rates of the reactions are equal, and the voltage in the catalyst composite won’t change during the overall thermal reaction.”

    Drawing on electrochemistry

    Based on their new understanding, Surendranath, Ryu, and their colleagues turned to electrochemistry techniques to identify a good catalyst for each half-reaction that would also pair up to work well together. Their analytical framework for guiding catalyst development for systems that combine two half-reactions is based on a theory that has been used to understand corrosion for almost 100 years, but has rarely been applied to understand or design catalysts for reactions involving small molecules important for the energy transition.

    Key to their work is a potentiostat, a type of voltmeter that can either passively measure the voltage of a system or actively change the voltage to cause a reaction to occur. In their experiments, Surendranath and his team use the potentiostat to measure the voltage of the catalyst in real time, monitoring how it changes millisecond to millisecond. They then correlate those voltage measurements with simultaneous but separate measurements of the overall rate of catalysis to understand the reaction pathway.

    For their study of the conversion of small, energy-related molecules, they first tested a series of catalysts to find good ones for each half-reaction — one to convert the reactant to product, producing electrons and protons, and another to convert the oxygen to water, consuming electrons and protons. In each case, a promising candidate would yield a rapid reaction — that is, a fast flow of electrons and protons out or in.

    To help identify an effective catalyst for performing the first half-reaction, the researchers used their potentiostat to input carefully controlled voltages and measured the resulting current that flowed through the catalyst. A good catalyst will generate lots of current for little applied voltage; a poor catalyst will require high applied voltage to get the same amount of current. The team then followed the same procedure to identify a good catalyst for the second half-reaction.

    To expedite the overall reaction, the researchers needed to find two catalysts that matched well — where the amount of current at a given applied voltage was high for each of them, ensuring that as one produced a rapid flow of electrons and protons, the other one consumed them at the same rate.

    To test promising pairs, the researchers used the potentiostat to measure the voltage of the catalyst composite during net catalysis — not changing the voltage as before, but now just measuring it from tiny samples. In each test, the voltage will naturally settle at a certain level, and the goal is for that to happen when the rate of both reactions is high.

    Validating their hypothesis and looking ahead

    By testing the two half-reactions, the researchers could measure how the reaction rate for each one varied with changes in the applied voltage. From those measurements, they could predict the voltage at which the full reaction would proceed fastest. Measurements of the full reaction matched their predictions, supporting their hypothesis.

    The team’s novel approach of using electrochemistry techniques to examine reactions thought to be strictly thermal in nature provides new insights into the detailed steps by which those reactions occur and therefore into how to design catalysts to speed them up. “We can now use a divide-and-conquer strategy,” says Ryu. “We know that the net thermal reaction in our study happens through two ‘hidden’ but coupled half-reactions, so we can aim to optimize one half-reaction at a time” — possibly using low-cost catalyst materials for one or both.

    Adds Surendranath, “One of the things that we’re excited about in this study is that the result is not final in and of itself. It has really seeded a brand-new thrust area in our research program, including new ways to design catalysts for the production and transformation of renewable fuels and chemicals.”

    This research was supported primarily by the Air Force Office of Scientific Research. Jaeyune Ryu PhD ’21 was supported by a Samsung Scholarship. Additional support was provided by a National Science Foundation Graduate Research Fellowship.

    This article appears in the Autumn 2021 issue of Energy Futures, the magazine of the MIT Energy Initiative. More

  • in

    Q&A: Climate Grand Challenges finalists on new pathways to decarbonizing industry

    Note: This is the third article in a four-part interview series highlighting the work of the 27 MIT Climate Grand Challenges finalist teams, which received a total of $2.7 million in startup funding to advance their projects. In April, the Institute will name a subset of the finalists as multiyear flagship projects.

    The industrial sector is the backbone of today’s global economy, yet its activities are among the most energy-intensive and the toughest to decarbonize. Efforts to reach net-zero targets and avert runaway climate change will not succeed without new solutions for replacing sources of carbon emissions with low-carbon alternatives and developing scalable nonemitting applications of hydrocarbons.

    In conversations prepared for MIT News, faculty from three of the teams with projects in the competition’s “Decarbonizing complex industries and processes” category discuss strategies for achieving impact in hard-to-abate sectors, from long-distance transportation and building construction to textile manufacturing and chemical refining. The other Climate Grand Challenges research themes include using data and science to forecast climate-related risk, building equity and fairness into climate solutions, and removing, managing, and storing greenhouse gases. The following responses have been edited for length and clarity.

    Moving toward an all-carbon material approach to building

    Faced with the prospect of building stock doubling globally by 2050, there is a great need for sustainable alternatives to conventional mineral- and metal-based construction materials. Mark Goulthorpe, associate professor in the Department of Architecture, explains the methods behind Carbon >Building, an initiative to develop energy-efficient building materials by reorienting hydrocarbons from current use as fuels to environmentally benign products, creating an entirely new genre of lightweight, all-carbon buildings that could actually drive decarbonization.

    Q: What are all-carbon buildings and how can they help mitigate climate change?

    A: Instead of burning hydrocarbons as fuel, which releases carbon dioxide and other greenhouse gases that contribute to atmospheric pollution, we seek to pioneer a process that uses carbon materially to build at macro scale. New forms of carbon — carbon nanotube, carbon foam, etc. — offer salient properties for building that might effectively displace the current material paradigm. Only hydrocarbons offer sufficient scale to beat out the billion-ton mineral and metal markets, and their perilous impact. Carbon nanotube from methane pyrolysis is of special interest, as it offers hydrogen as a byproduct.

    Q: How will society benefit from the widespread use of all-carbon buildings?

    A: We anticipate reducing costs and timelines in carbon composite buildings, while increasing quality, longevity, and performance, and diminishing environmental impact. Affordability of buildings is a growing problem in all global markets as the cost of labor and logistics in multimaterial assemblies creates a burden that is very detrimental to economic growth and results in overcrowding and urban blight.

    Alleviating these challenges would have huge societal benefits, especially for those in lower income brackets who cannot afford housing, but the biggest benefit would be in drastically reducing the environmental footprint of typical buildings, which account for nearly 40 percent of global energy consumption.

    An all-carbon building sector will not only reduce hydrocarbon extraction, but can produce higher value materials for building. We are looking to rethink the building industry by greatly streamlining global production and learning from the low-labor methods pioneered by composite manufacturing such as wind turbine blades, which are quick and cheap to produce. This technology can improve the sustainability and affordability of buildings — and holds the promise of faster, cheaper, greener, and more resilient modes of dwelling.

    Emissions reduction through innovation in the textile industry

    Collectively, the textile industry is responsible for over 4 billion metric tons of carbon dioxide equivalent per year, or 5 to 10 percent of global greenhouse gas emissions — more than aviation and maritime shipping combined. And the problem is only getting worse with the industry’s rapid growth. Under the current trajectory, consumption is projected to increase 30 percent by 2030, reaching 102 million tons. A diverse group of faculty and researchers led by Gregory Rutledge, the Lammot du Pont Professor in the Department of Chemical Engineering, and Yuly Fuentes-Medel, project manager for fiber technologies and research advisor to the MIT Innovation Initiative, is developing groundbreaking innovations to reshape how textiles are selected, sourced, designed, manufactured, and used, and to create the structural changes required for sustained reductions in emissions by this industry.

    Q: Why has the textile industry been difficult to decarbonize?

    A: The industry currently operates under a linear model that relies heavily on virgin feedstock, at roughly 97 percent, yet recycles or downcycles less than 15 percent. Furthermore, recent trends in “fast fashion” have led to massive underutilization of apparel, such that products are discarded on average after only seven to 10 uses. In an industry with high volume and low margins, replacement technologies must achieve emissions reduction at scale while maintaining performance and economic efficiency.

    There are also technical barriers to adopting circular business models, from the challenge of dealing with products comprising fiber blends and chemical additives to the low maturity of recycling technologies. The environmental impacts of textiles and apparel have been estimated using life cycle analysis, and industry-standard indexes are under development to assess sustainability throughout the life cycle of a product, but information and tools are needed to model how new solutions will alter those impacts and include the consumer as an active player to keep our planet safe. This project seeks to deliver both the new solutions and the tools to evaluate their potential for impact.

    Q: Describe the five components of your program. What is the anticipated timeline for implementing these solutions?

    A: Our plan comprises five programmatic sections, which include (1) enabling a paradigm shift to sustainable materials using nontraditional, carbon-negative polymers derived from biomass and additives that facilitate recycling; (2) rethinking manufacturing with processes to structure fibers and fabrics for performance, waste reduction, and increased material efficiency; (3) designing textiles for value by developing products that are customized, adaptable, and multifunctional, and that interact with their environment to reduce energy consumption; (4) exploring consumer behavior change through human interventions that reduce emissions by encouraging the adoption of new technologies, increased utilization of products, and circularity; and (5) establishing carbon transparency with systems-level analyses that measure the impact of these strategies and guide decision making.

    We have proposed a five-year timeline with annual targets for each project. Conservatively, we estimate our program could reduce greenhouse gas emissions in the industry by 25 percent by 2030, with further significant reductions to follow.

    Tough-to-decarbonize transportation

    Airplanes, transoceanic ships, and freight trucks are critical to transporting people and delivering goods, and the cornerstone of global commerce, manufacturing, and tourism. But these vehicles also emit 3.7 billion tons of carbon dioxide annually and, left unchecked, they could take up a quarter of the remaining carbon budget by 2050. William Green, the Hoyt C. Hottel Professor in the Department Chemical Engineering, co-leads a multidisciplinary team with Steven Barrett, professor of aeronautics and astronautics and director of the MIT Laboratory for Aviation and the Environment, that is working to identify and advance economically viable technologies and policies for decarbonizing heavy duty trucking, shipping, and aviation. The Tough to Decarbonize Transportation research program aims to design and optimize fuel chemistry and production, vehicles, operations, and policies to chart the course to net-zero emissions by midcentury.

    Q: What are the highest priority focus areas of your research program?

    A: Hydrocarbon fuels made from biomass are the least expensive option, but it seems impractical, and probably damaging to the environment, to harvest the huge amount of biomass that would be needed to meet the massive and growing energy demands from these sectors using today’s biomass-to-fuel technology. We are exploring strategies to increase the amount of useful fuel made per ton of biomass harvested, other methods to make low-climate-impact hydrocarbon fuels, such as from carbon dioxide, and ways to make fuels that do not contain carbon at all, such as with hydrogen, ammonia, and other hydrogen carriers.

    These latter zero-carbon options free us from the need for biomass or to capture gigatons of carbon dioxide, so they could be a very good long-term solution, but they would require changing the vehicles significantly, and the construction of new refueling infrastructure, with high capital costs.

    Q: What are the scientific, technological, and regulatory barriers to scaling and implementing potential solutions?

    A: Reimagining an aviation, trucking, and shipping sector that connects the world and increases equity without creating more environmental damage is challenging because these vehicles must operate disconnected from the electrical grid and have energy requirements that cannot be met by batteries alone. Some of the concepts do not even exist in prototype yet, and none of the appealing options have been implemented at anywhere near the scale required.

    In most cases, we do not know the best way to make the fuel, and for new fuels the vehicles and refueling systems all need to be developed. Also, new fuels, or large-scale use of biomass, will introduce new environmental problems that need to be carefully considered, to ensure that decarbonization solutions do not introduce big new problems.

    Perhaps most difficult are the policy, economic, and equity issues. A new long-haul transportation system will be expensive, and everyone will be affected by the increased cost of shipping freight. To have the desired climate impact, the transport system must change in almost every country. During the transition period, we will need both the existing vehicle and fuel system to keep running smoothly, even as a new low-greenhouse system is introduced. We will also examine what policies could make that work and how we can get countries around the world to agree to implement them. More

  • in

    A better way to separate gases

    Industrial processes for chemical separations, including natural gas purification and the production of oxygen and nitrogen for medical or industrial uses, are collectively responsible for about 15 percent of the world’s energy use. They also contribute a corresponding amount to the world’s greenhouse gas emissions. Now, researchers at MIT and Stanford University have developed a new kind of membrane for carrying out these separation processes with roughly 1/10 the energy use and emissions.

    Using membranes for separation of chemicals is known to be much more efficient than processes such as distillation or absorption, but there has always been a tradeoff between permeability — how fast gases can penetrate through the material — and selectivity — the ability to let the desired molecules pass through while blocking all others. The new family of membrane materials, based on “hydrocarbon ladder” polymers, overcomes that tradeoff, providing both high permeability and extremely good selectivity, the researchers say.

    The findings are reported today in the journal Science, in a paper by Yan Xia, an associate professor of chemistry at Stanford; Zachary Smith, an assistant professor of chemical engineering at MIT; Ingo Pinnau, a professor at King Abdullah University of Science and Technology, and five others.

    Gas separation is an important and widespread industrial process whose uses include removing impurities and undesired compounds from natural gas or biogas, separating oxygen and nitrogen from air for medical and industrial purposes, separating carbon dioxide from other gases for carbon capture, and producing hydrogen for use as a carbon-free transportation fuel. The new ladder polymer membranes show promise for drastically improving the performance of such separation processes. For example, separating carbon dioxide from methane, these new membranes have five times the selectivity and 100 times the permeability of existing cellulosic membranes for that purpose. Similarly, they are 100 times more permeable and three times as selective for separating hydrogen gas from methane.

    The new type of polymers, developed over the last several years by the Xia lab, are referred to as ladder polymers because they are formed from double strands connected by rung-like bonds, and these linkages provide a high degree of rigidity and stability to the polymer material. These ladder polymers are synthesized via an efficient and selective chemistry the Xia lab developed called CANAL, an acronym for catalytic arene-norbornene annulation, which stitches readily available chemicals into ladder structures with hundreds or even thousands of rungs. The polymers are synthesized in a solution, where they form rigid and kinked ribbon-like strands that can easily be made into a thin sheet with sub-nanometer-scale pores by using industrially available polymer casting processes. The sizes of the resulting pores can be tuned through the choice of the specific hydrocarbon starting compounds. “This chemistry and choice of chemical building blocks allowed us to make very rigid ladder polymers with different configurations,” Xia says.

    To apply the CANAL polymers as selective membranes, the collaboration made use of Xia’s expertise in polymers and Smith’s specialization in membrane research. Holden Lai, a former Stanford doctoral student, carried out much of the development and exploration of how their structures impact gas permeation properties. “It took us eight years from developing the new chemistry to finding the right polymer structures that bestow the high separation performance,” Xia says.

    The Xia lab spent the past several years varying the structures of CANAL polymers to understand how their structures affect their separation performance. Surprisingly, they found that adding additional kinks to their original CANAL polymers significantly improved the mechanical robustness of their membranes and boosted their selectivity  for molecules of similar sizes, such as oxygen and nitrogen gases, without losing permeability of the more permeable gas. The selectivity actually improves as the material ages. The combination of high selectivity and high permeability makes these materials outperform all other polymer materials in many gas separations, the researchers say.

    Today, 15 percent of global energy use goes into chemical separations, and these separation processes are “often based on century-old technologies,” Smith says. “They work well, but they have an enormous carbon footprint and consume massive amounts of energy. The key challenge today is trying to replace these nonsustainable processes.” Most of these processes require high temperatures for boiling and reboiling solutions, and these often are the hardest processes to electrify, he adds.

    For the separation of oxygen and nitrogen from air, the two molecules only differ in size by about 0.18 angstroms (ten-billionths of a meter), he says. To make a filter capable of separating them efficiently “is incredibly difficult to do without decreasing throughput.” But the new ladder polymers, when manufactured into membranes produce tiny pores that achieve high selectivity, he says. In some cases, 10 oxygen molecules permeate for every nitrogen, despite the razor-thin sieve needed to access this type of size selectivity. These new membrane materials have “the highest combination of permeability and selectivity of all known polymeric materials for many applications,” Smith says.

    “Because CANAL polymers are strong and ductile, and because they are soluble in certain solvents, they could be scaled for industrial deployment within a few years,” he adds. An MIT spinoff company called Osmoses, led by authors of this study, recently won the MIT $100K entrepreneurship competition and has been partly funded by The Engine to commercialize the technology.

    There are a variety of potential applications for these materials in the chemical processing industry, Smith says, including the separation of carbon dioxide from other gas mixtures as a form of emissions reduction. Another possibility is the purification of biogas fuel made from agricultural waste products in order to provide carbon-free transportation fuel. Hydrogen separation for producing a fuel or a chemical feedstock, could also be carried out efficiently, helping with the transition to a hydrogen-based economy.

    The close-knit team of researchers is continuing to refine the process to facilitate the development from laboratory to industrial scale, and to better understand the details on how the macromolecular structures and packing result in the ultrahigh selectivity. Smith says he expects this platform technology to play a role in multiple decarbonization pathways, starting with hydrogen separation and carbon capture, because there is such a pressing need for these technologies in order to transition to a carbon-free economy.

    “These are impressive new structures that have outstanding gas separation performance,” says Ryan Lively, am associate professor of chemical and biomolecular engineering at Georgia Tech, who was not involved in this work. “Importantly, this performance is improved during membrane aging and when the membranes are challenged with concentrated gas mixtures. … If they can scale these materials and fabricate membrane modules, there is significant potential practical impact.”

    The research team also included Jun Myun Ahn and Ashley Robinson at Stanford, Francesco Benedetti at MIT, now the chief executive officer at Osmoses, and Yingge Wang at King Abdullah University of Science and Technology in Saudi Arabia. The work was supported by the Stanford Natural Gas Initiative, the Sloan Research Fellowship, the U.S. Department of Energy Office of Basic Energy Sciences, and the National Science Foundation. More

  • in

    Q&A: Climate Grand Challenges finalists on accelerating reductions in global greenhouse gas emissions

    This is the second article in a four-part interview series highlighting the work of the 27 MIT Climate Grand Challenges finalists, which received a total of $2.7 million in startup funding to advance their projects. In April, the Institute will name a subset of the finalists as multiyear flagship projects.

    Last month, the Intergovernmental Panel on Climate Change (IPCC), an expert body of the United Nations representing 195 governments, released its latest scientific report on the growing threats posed by climate change, and called for drastic reductions in greenhouse gas emissions to avert the most catastrophic outcomes for humanity and natural ecosystems.

    Bringing the global economy to net-zero carbon dioxide emissions by midcentury is complex and demands new ideas and novel approaches. The first-ever MIT Climate Grand Challenges competition focuses on four problem areas including removing greenhouse gases from the atmosphere and identifying effective, economic solutions for managing and storing these gases. The other Climate Grand Challenges research themes address using data and science to forecast climate-related risk, decarbonizing complex industries and processes, and building equity and fairness into climate solutions.

    In the following conversations prepared for MIT News, faculty from three of the teams working to solve “Removing, managing, and storing greenhouse gases” explain how they are drawing upon geological, biological, chemical, and oceanic processes to develop game-changing techniques for carbon removal, management, and storage. Their responses have been edited for length and clarity.

    Directed evolution of biological carbon fixation

    Agricultural demand is estimated to increase by 50 percent in the coming decades, while climate change is simultaneously projected to drastically reduce crop yield and predictability, requiring a dramatic acceleration of land clearing. Without immediate intervention, this will have dire impacts on wild habitat, rob the livelihoods of hundreds of millions of subsistence farmers, and create hundreds of gigatons of new emissions. Matthew Shoulders, associate professor in the Department of Chemistry, talks about the working group he is leading in partnership with Ed Boyden, the Y. Eva Tan professor of neurotechnology and Howard Hughes Medical Institute investigator at the McGovern Institute for Brain Research, that aims to massively reduce carbon emissions from agriculture by relieving core biochemical bottlenecks in the photosynthetic process using the most sophisticated synthetic biology available to science.

    Q: Describe the two pathways you have identified for improving agricultural productivity and climate resiliency.

    A: First, cyanobacteria grow millions of times faster than plants and dozens of times faster than microalgae. Engineering these cyanobacteria as a source of key food products using synthetic biology will enable food production using less land, in a fundamentally more climate-resilient manner. Second, carbon fixation, or the process by which carbon dioxide is incorporated into organic compounds, is the rate-limiting step of photosynthesis and becomes even less efficient under rising temperatures. Enhancements to Rubisco, the enzyme mediating this central process, will both improve crop yields and provide climate resilience to crops needed by 2050. Our team, led by Robbie Wilson and Max Schubert, has created new directed evolution methods tailored for both strategies, and we have already uncovered promising early results. Applying directed evolution to photosynthesis, carbon fixation, and food production has the potential to usher in a second green revolution.

    Q: What partners will you need to accelerate the development of your solutions?

    A: We have already partnered with leading agriculture institutes with deep experience in plant transformation and field trial capacity, enabling the integration of our improved carbon-dioxide-fixing enzymes into a wide range of crop plants. At the deployment stage, we will be positioned to partner with multiple industry groups to achieve improved agriculture at scale. Partnerships with major seed companies around the world will be key to leverage distribution channels in manufacturing supply chains and networks of farmers, agronomists, and licensed retailers. Support from local governments will also be critical where subsidies for seeds are necessary for farmers to earn a living, such as smallholder and subsistence farming communities. Additionally, our research provides an accessible platform that is capable of enabling and enhancing carbon dioxide sequestration in diverse organisms, extending our sphere of partnership to a wide range of companies interested in industrial microbial applications, including algal and cyanobacterial, and in carbon capture and storage.

    Strategies to reduce atmospheric methane

    One of the most potent greenhouse gases, methane is emitted by a range of human activities and natural processes that include agriculture and waste management, fossil fuel production, and changing land use practices — with no single dominant source. Together with a diverse group of faculty and researchers from the schools of Humanities, Arts, and Social Sciences; Architecture and Planning; Engineering; and Science; plus the MIT Schwarzman College of Computing, Desiree Plata, associate professor in the Department of Civil and Environmental Engineering, is spearheading the MIT Methane Network, an integrated approach to formulating scalable new technologies, business models, and policy solutions for driving down levels of atmospheric methane.

    Q: What is the problem you are trying to solve and why is it a “grand challenge”?

    A: Removing methane from the atmosphere, or stopping it from getting there in the first place, could change the rates of global warming in our lifetimes, saving as much as half a degree of warming by 2050. Methane sources are distributed in space and time and tend to be very dilute, making the removal of methane a challenge that pushes the boundaries of contemporary science and engineering capabilities. Because the primary sources of atmospheric methane are linked to our economy and culture — from clearing wetlands for cultivation to natural gas extraction and dairy and meat production — the social and economic implications of a fundamentally changed methane management system are far-reaching. Nevertheless, these problems are tractable and could significantly reduce the effects of climate change in the near term.

    Q: What is known about the rapid rise in atmospheric methane and what questions remain unanswered?

    A: Tracking atmospheric methane is a challenge in and of itself, but it has become clear that emissions are large, accelerated by human activity, and cause damage right away. While some progress has been made in satellite-based measurements of methane emissions, there is a need to translate that data into actionable solutions. Several key questions remain around improving sensor accuracy and sensor network design to optimize placement, improve response time, and stop leaks with autonomous controls on the ground. Additional questions involve deploying low-level methane oxidation systems and novel catalytic materials at coal mines, dairy barns, and other enriched sources; evaluating the policy strategies and the socioeconomic impacts of new technologies with an eye toward decarbonization pathways; and scaling technology with viable business models that stimulate the economy while reducing greenhouse gas emissions.

    Deploying versatile carbon capture technologies and storage at scale

    There is growing consensus that simply capturing current carbon dioxide emissions is no longer sufficient — it is equally important to target distributed sources such as the oceans and air where carbon dioxide has accumulated from past emissions. Betar Gallant, the American Bureau of Shipping Career Development Associate Professor of Mechanical Engineering, discusses her work with Bradford Hager, the Cecil and Ida Green Professor of Earth Sciences in the Department of Earth, Atmospheric and Planetary Sciences, and T. Alan Hatton, the Ralph Landau Professor of Chemical Engineering and director of the School of Chemical Engineering Practice, to dramatically advance the portfolio of technologies available for carbon capture and permanent storage at scale. (A team led by Assistant Professor Matěj Peč of EAPS is also addressing carbon capture and storage.)

    Q: Carbon capture and storage processes have been around for several decades. What advances are you seeking to make through this project?

    A: Today’s capture paradigms are costly, inefficient, and complex. We seek to address this challenge by developing a new generation of capture technologies that operate using renewable energy inputs, are sufficiently versatile to accommodate emerging industrial demands, are adaptive and responsive to varied societal needs, and can be readily deployed to a wider landscape.

    New approaches will require the redesign of the entire capture process, necessitating basic science and engineering efforts that are broadly interdisciplinary in nature. At the same time, incumbent technologies have been optimized largely for integration with coal- or natural gas-burning power plants. Future applications must shift away from legacy emitters in the power sector towards hard-to-mitigate sectors such as cement, iron and steel, chemical, and hydrogen production. It will become equally important to develop and optimize systems targeted for much lower concentrations of carbon dioxide, such as in oceans or air. Our effort will expand basic science studies as well as human impacts of storage, including how public engagement and education can alter attitudes toward greater acceptance of carbon dioxide geologic storage.

    Q: What are the expected impacts of your proposed solution, both positive and negative?

    A: Renewable energy cannot be deployed rapidly enough everywhere, nor can it supplant all emissions sources, nor can it account for past emissions. Carbon capture and storage (CCS) provides a demonstrated method to address emissions that will undoubtedly occur before the transition to low-carbon energy is completed. CCS can succeed even if other strategies fail. It also allows for developing nations, which may need to adopt renewables over longer timescales, to see equitable economic development while avoiding the most harmful climate impacts. And, CCS enables the future viability of many core industries and transportation modes, many of which do not have clear alternatives before 2050, let alone 2040 or 2030.

    The perceived risks of potential leakage and earthquakes associated with geologic storage can be minimized by choosing suitable geologic formations for storage. Despite CCS providing a well-understood pathway for removing enough of the carbon dioxide already emitted into the atmosphere, some environmentalists vigorously oppose it, fearing that CCS rewards oil companies and disincentivizes the transition away from fossil fuels. We believe that it is more important to keep in mind the necessity of meeting key climate targets for the sake of the planet, and welcome those who can help. More

  • in

    Using soap to remove micropollutants from water

    Imagine millions of soapy sponges the size of human cells that can clean water by soaking up contaminants. This simplistic model is used to describe technology that MIT chemical engineers have recently developed to remove micropollutants from water — a concerning, worldwide problem.

    Patrick S. Doyle, the Robert T. Haslam Professor of Chemical Engineering, PhD student Devashish Pratap Gokhale, and undergraduate Ian Chen recently published their research on micropollutant removal in the journal ACS Applied Polymer Materials. The work is funded by MIT’s Abdul Latif Jameel Water and Food Systems Lab (J-WAFS).

    In spite of their low concentrations (about 0.01–100 micrograms per liter), micropollutants can be hazardous to the ecosystem and to human health. They come from a variety of sources and have been detected in almost all bodies of water, says Gokhale. Pharmaceuticals passing through people and animals, for example, can end up as micropollutants in the water supply. Others, like endocrine disruptor bisphenol A (BPA), can leach from plastics during industrial manufacturing. Pesticides, dyes, petrochemicals, and per-and polyfluoroalkyl substances, more commonly known as PFAS, are also examples of micropollutants, as are some heavy metals like lead and arsenic. These are just some of the kinds of micropollutants, all of which can be toxic to humans and animals over time, potentially causing cancer, organ damage, developmental defects, or other adverse effects.

    Micropollutants are numerous but since their collective mass is small, they are difficult to remove from water. Currently, the most common practice for removing micropollutants from water is activated carbon adsorption. In this process, water passes through a carbon filter, removing only 30 percent of micropollutants. Activated carbon requires high temperatures to produce and regenerate, requiring specialized equipment and consuming large amounts of energy. Reverse osmosis can also be used to remove micropollutants from water; however, “it doesn’t lead to good elimination of this class of molecules, because of both their concentration and their molecular structure,” explains Doyle.

    Inspired by soap

    When devising their solution for how to remove micropollutants from water, the MIT researchers were inspired by a common household cleaning supply — soap. Soap cleans everything from our hands and bodies to dirty dishes to clothes, so perhaps the chemistry of soap could also be applied to sanitizing water. Soap has molecules called surfactants which have both hydrophobic (water-hating) and hydrophilic (water-loving) components. When water comes in contact with soap, the hydrophobic parts of the surfactant stick together, assembling into spherical structures called micelles with the hydrophobic portions of the molecules in the interior. The hydrophobic micelle cores trap and help carry away oily substances like dirt. 

    Doyle’s lab synthesized micelle-laden hydrogel particles to essentially cleanse water. Gokhale explains that they used microfluidics which “involve processing fluids on very small, micron-like scales” to generate uniform polymeric hydrogel particles continuously and reproducibly. These hydrogels, which are porous and absorbent, incorporate a surfactant, a photoinitiator (a molecule that creates reactive species), and a cross-linking agent known as PEGDA. The surfactant assembles into micelles that are chemically bonded to the hydrogel using ultraviolet light. When water flows through this micro-particle system, micropollutants latch onto the micelles and separate from the water. The physical interaction used in the system is strong enough to pull micropollutants from water, but weak enough that the hydrogel particles can be separated from the micropollutants, restabilized, and reused. Lab testing shows that both the speed and extent of pollutant removal increase when the amount of surfactant incorporated into the hydrogels is increased.

    “We’ve shown that in terms of rate of pullout, which is what really matters when you scale this up for industrial use, that with our initial format, we can already outperform the activated carbon,” says Doyle. “We can actually regenerate these particles very easily at room temperature. Nearly 10 regeneration cycles with minimal change in performance,” he adds.

    Regeneration of the particles occurs by soaking the micelles in 90 percent ethanol, whereby “all the pollutants just come out of the particles and back into the ethanol” says Gokhale. Ethanol is biosafe at low concentrations, inexpensive, and combustible, allowing for safe and economically feasible disposal. The recycling of the hydrogel particles makes this technology sustainable, which is a large advantage over activated carbon. The hydrogels can also be tuned to any hydrophobic micropollutant, making this system a novel, flexible approach to water purification.

    Scaling up

    The team experimented in the lab using 2-naphthol, a micropollutant that is an organic pollutant of concern and known to be difficult to remove by using conventional water filtration methods. They hope to continue testing with real water samples. 

    “Right now, we spike one micropollutant into pure lab water. We’d like to get water samples from the natural environment, that we can study and look at experimentally,” says Doyle. 

    By using microfluidics to increase particle production, Doyle and his lab hope to make household-scale filters to be tested with real wastewater. They then anticipate scaling up to municipal water treatment or even industrial wastewater treatment. 

    The lab recently filed an international patent application for their hydrogel technology that uses immobilized micelles. They plan to continue this work by experimenting with different kinds of hydrogels for the removal of heavy metal contaminants like lead from water. 

    Societal impacts

    Funded by a 2019 J-WAFS seed grant that is currently ongoing, this research has the potential to improve the speed, precision, efficiency, and environmental sustainability of water purification systems across the world. 

    “I always wanted to do work which had a social impact, and I was also always interested in water, because I think it’s really cool,” says Gokhale. He notes, “it’s really interesting how water sort of fits into different kinds of fields … we have to consider the cultures of peoples, how we’re going to use this, and then just the equity of these water processes.” Originally from India, Gokhale says he’s seen places that have barely any water at all and others that have floods year after year. “There’s a lot of interesting work to be done, and I think it’s work in this area that’s really going to impact a lot of people’s lives in years to come,” Gokhale says.

    Doyle adds, “water is the most important thing, perhaps for the next decades to come, so it’s very fulfilling to work on something that is so important to the whole world.” More

  • in

    Students dive into research with the MIT Climate and Sustainability Consortium

    Throughout the fall 2021 semester, the MIT Climate and Sustainability Consortium (MCSC) supported several research projects with a climate-and-sustainability topic related to the consortium, through the MIT Undergraduate Research Opportunities Program (UROP). These students, who represent a range of disciplines, had the opportunity to work with MCSC Impact Fellows on topics related directly to the ongoing work and collaborations with MCSC member companies and the broader MIT community, from carbon capture to value-chain resilience to biodegradables. Many of these students are continuing their work this spring semester.

    Hannah Spilman, who is studying chemical engineering, worked with postdoc Glen Junor, an MCSC Impact Fellow, to investigate carbon capture, utilization, and storage (CCUS), with the goal of facilitating CCUS on a gigaton scale, a much larger capacity than what currently exists. “Scientists agree CCUS will be an important tool in combating climate change, but the largest CCUS facility only captures CO2 on a megaton scale, and very few facilities are actually operating,” explains Spilman. 

    Throughout her UROP, she worked on analyzing the currently deployed technology in the CCUS field, using National Carbon Capture Center post-combustion project reports to synthesize the results and outline those technologies. Examining projects like the RTI-NAS experiment, which showcased innovation with carbon capture technology, was especially helpful. “We must first understand where we are, and as we continue to conduct analyses, we will be able to understand the field’s current state and path forward,” she concludes.

    Fellow chemical engineering students Claire Kim and Alfonso Restrepo are working with postdoc and MCSC Impact Fellow Xiangkun (Elvis) Cao, also on investigating CCUS technology. Kim’s focus is on life cycle assessment (LCA), while Restrepo’s focus is on techno-economic assessment (TEA). They have been working together to use the two tools to evaluate multiple CCUS technologies. While LCA and TEA are not new tools themselves, their application in CCUS has not been comprehensively defined and described. “CCUS can play an important role in the flexible, low-carbon energy systems,” says Kim, which was part of the motivation behind her project choice.

    Through TEA, Restrepo has been investigating how various startups and larger companies are incorporating CCUS technology in their processes. “In order to reduce CO2 emissions before it’s too late to act, there is a strong need for resources that effectively evaluate CCUS technology, to understand the effectiveness and viability of emerging technology for future implementation,” he explains. For their next steps, Kim and Restrepo will apply LCA and TEA to the analysis of a specific capture (for example, direct ocean capture) or conversion (for example, CO2-to-fuel conversion) process​ in CCUS.

    Cameron Dougal, a first-year student, and James Santoro, studying management, both worked with postdoc and MCSC Impact Fellow Paloma Gonzalez-Rojas on biodegradable materials. Dougal explored biodegradable packaging film in urban systems. “I have had a longstanding interest in sustainability, with a newer interest in urban planning and design, which motivated me to work on this project,” Dougal says. “Bio-based plastics are a promising step for the future.”

    Dougal spent time conducting internet and print research, as well as speaking with faculty on their relevant work. From these efforts, Dougal has identified important historical context for the current recycling landscape — as well as key case studies and cities around the world to explore further. In addition to conducting more research, Dougal plans to create a summary and statistic sheet.

    Santoro dove into the production angle, working on evaluating the economic viability of the startups that are creating biodegradable materials. “Non-renewable plastics (created with fossil fuels) continue to pollute and irreparably damage our environment,” he says. “As we look for innovative solutions, a key question to answer is how can we determine a more effective way to evaluate the economic viability and probability of success for new startups and technologies creating biodegradable plastics?” The project aims to develop an effective framework to begin to answer this.

    At this point, Santoro has been understanding the overall ecosystem, understanding how these biodegradable materials are developed, and analyzing the economics side of things. He plans to have conversations with company founders, investors, and experts, and identify major challenges for biodegradable technology startups in creating high performance products with attractive unit economics. There is also still a lot to research about new technologies and trends in the industry, the profitability of different products, as well as specific individual companies doing this type of work.

    Tess Buchanan, who is studying materials science and engineering, is working with Katharina Fransen and Sarah Av-Ron, MIT graduate students in the Department of Chemical Engineering, and principal investigator Professor Bradley Olsen, to also explore biodegradables by looking into their development from biomass “This is critical work, given the current plastics sustainability crisis, and the potential of bio-based polymers,” Buchanan says.

    The objective of the project is to explore new sustainable polymers through a biodegradation assay using clear zone growth analysis to yield degradation rates. For next steps, Buchanan is diving into synthesis expansion and using machine learning to understand the relationship between biodegradation and polymer chemistry.

    Kezia Hector, studying chemical engineering, and Tamsin Nottage, a first-year student, working with postdoc and MCSC Impact Fellow Sydney Sroka, explored advancing and establishing sustainable solutions for value chain resilience. Hector’s focus was understanding how wildfires can affect supply chains, specifically identifying sources of economic loss. She reviewed academic literature and news articles, and looked at the Amazon, California, Siberia, and Washington, finding that wildfires cause millions of dollars in damage every year and impact supply chains by cutting off or slowing down freight activity. She will continue to identify ways to make supply chains more resilient and sustainable.

    Nottage focused on the economic impact of typhoons, closely studying Typhoon Mangkhut, a powerful and catastrophic tropical cyclone that caused extensive damages of $593 million in Guam, the Philippines, and South China in September 2018. “As a Bahamian, I’ve witnessed the ferocity of hurricanes and challenges of rebuilding after them,” says Nottage. “I used this project to identify the tropical cyclones that caused the most extensive damage for further investigation.”She compiled the causes of damage and their costs to inform targets of supply chain resiliency reform (shipping, building materials, power supply, etc.). As a next step, Nottage will focus on modeling extreme events like Mangkunt to develop frameworks that companies can learn from and utilize to build more sustainable supply chains in the future.

    Ellie Vaserman, a first-year student working with postdoc and MCSC Impact Fellow Poushali Maji, also explored a topic related to value chains: unlocking circularity across the entire value chain through quality improvement, inclusive policy, and behavior to improve materials recovery. Specifically, her objectives have been to learn more about methods of chemolysis and the viability of their products, to compare methods of chemical recycling of polyethylene terephthalate (PET) using quantitative metrics, and to design qualitative visuals to make the steps in PET chemical recycling processes more understandable.

    To do so, she conducted a literature review to identify main methods of chemolysis that are utilized in the field (and collect data about these methods) and created graphics for some of the more common processes. Moving forward, she hopes to compare the processes using other metrics and research the energy intensity of the monomer purification processes.

    The work of these students, as well as many others, continued over MIT’s Independent Activities Period in January. More

  • in

    Energizing communities in Africa

    Growing up in Lagos, Nigeria, Ayomikun Ayodeji enjoyed the noisy hustle and bustle of his neighborhood. The cacophony included everything from vendors hawking water sachets and mini sausages, to commuters shouting for the next bus.

    Another common sound was the cry of “Up NEPA!” — an acronym for the Nigerian Electrical Power Authority — which Ayodeji would chant in unison with other neighborhood children when power had been restored after an outage. He remembers these moments fondly because, despite the difficulties of the frequent outages, the call also meant that people finally did have long-awaited electricity in their homes.

    “I grew up without reliable electricity, so power is something I’ve always been interested in,” says Ayodeji, who is now a senior studying chemical engineering. He hopes to use the knowledge he has gained during his time at MIT to expand energy access in his home country and elsewhere in Africa.

    Before coming to MIT, Ayodeji spent two years in Italy at United World College, where he embarked on chemistry projects, specifically focusing on dye-sensitized solar cells. He then transferred to the Institute, seeking a more technical grounding. He hoped that the knowledge gained in and out of the classroom would equip him with the tools to help combat the energy crisis in Lagos.

    “The questions that remained in the back of my mind were: How can I give back to the community I came from? How can I use the resources around me to help others?”  he says.

    This community-oriented mindset led Ayodeji to team up with a group of friends and brainstorm ideas for how they could help communities close to them. They eventually partnered with the Northeast Children’s Trust (NECT), an organization that helps children affected by the extremist group Boko Haram. Ayodeji and his friends looked at how to expand NECT’s educational program, and decided to build an offline, portable classroom server with a repository of books, animations, and activities for students at the primary and secondary education levels. The project was sponsored by Davis Projects for Peace and MIT’s PKG Center.

    Because of travel restrictions, Ayodeji was the only member of his team able to fly to Nigeria in the summer of 2019 to facilitate installing the servers. He says he wished his team could have been there, but he appreciated the opportunity to speak with the children directly, inspired by their excitement to learn and grow. The experience reaffirmed Ayodeji’s desire to pursue social impact projects, especially in Nigeria.

    “We knew we hadn’t just taken a step in providing the kids with a well-rounded education, but we also supported the center, NECT, in raising the next generation of future leaders that would guide that region to a sustainable, peaceful future,” he says.

    Ayodeji has also sought out energy-related opportunities on campus, pursuing an undergraduate research program (UROP) in the Buonassisi Lab in his sophomore year. He was tasked with testing perovskite solar cells, which have the potential to reach high efficiencies at low production costs. He characterized the cells using X-ray diffraction, studying their stability and degradation pathways. While Ayodeji enjoyed his first experience doing hands-on energy research, he found he was more curious about how energy technologies were implemented to reach various communities. “I wanted to see how things were being done in the industry,” he says.

    In the summer after his sophomore year, Ayodeji interned with Pioneer Natural Resources, an independent oil and gas company in Texas. Ayodeji worked as part of the completions projects team to assess the impact of design changes on cluster efficiency, that is, how evenly fluid is distributed along the wellbore. By using fiberoptic and photographic data to analyze perforation erosion, he discovered ways to lower costs while maintaining environmental stability during completions. The experience taught Ayodeji about the corporate side of the energy industry and enabled him to observe how approaches to alternative energy sources differ across countries, especially in the U.S. and Nigeria.

    “Some developing economies don’t have the capacity to pour resources into expanding renewable energy infrastructure at the rate that most developed economies do. While it is important to think sustainably for the long run, it is also important for us to understand that a clean energy transition is not something that can be done overnight,” he says.

    Ayodeji also employs his community-oriented mindset on campus. He is currently the vice president of the African Students’ Association (ASA), where he formerly chaired the African Learning Circle, a weekly discussion panel spotlighting key development and innovation events taking place on the African continent. He is also involved with student outreach, both within the ASA and as an international orientation student coordinator for the International Students Office.

    As a member of Cru, a Christian community on campus, Ayodeji helps lead a bible study and says the group supports him as he navigates college life. “It is a wonderful community of people I explore faith with and truly lean on when things get tough,” he says.

    After graduating, Ayodeji plans to start work at Boston Consulting Group, where he interned last summer. He expects he’ll have opportunities to engage with private equity issues and tackle energy-related cases while learning more about where the industry is headed.

    His long-term goal is to help expand renewable energy access and production across the African continent.

    “A key element of what the world needs to develop and grow is access to reliable energy. I hope to keep expanding my problem-solving toolkit so that, one day, it can be useful in electrifying communities back home,” he says. More