More stories

  • in

    MIT Energy Initiative conference spotlights research priorities amidst a changing energy landscape

    “We’re here to talk about really substantive changes, and we want you to be a participant in that,” said Desirée Plata, the School of Engineering Distinguished Professor of Climate and Energy in MIT’s Department of Civil and Environmental Engineering, at Energizing@MIT: the MIT Energy Initiative’s (MITEI) Annual Research Conference that was held on Sept. 9-10.Plata’s words resonated with the 150-plus participants from academia, industry, and government meeting in Cambridge for the conference, whose theme was “tackling emerging energy challenges.” Meeting such challenges and ultimately altering the trajectory of global climate outcomes requires partnerships, speakers agreed.“We have to be humble and open,” said Giacomo Silvestri, chair of Eniverse Ventures at Eni, in a shared keynote address. “We cannot develop innovation just focusing on ourselves and our competencies … so we need to partner with startups, venture funds, universities like MIT and other public and private institutions.” Added his Eni colleague, Annalisa Muccioli, head of research and technology, “The energy transition is a race we can win only by combining mature solutions ready to deploy, together with emerging technologies that still require acceleration and risk management.”Research targetsIn a conference that showcased a suite of research priorities MITEI has identified as central to ensuring a low-carbon energy future, participants shared both promising discoveries and strategies for advancing proven technologies in the face of shifting political winds and policy uncertainties.One panel focused on grid resiliency — a topic that has moved from the periphery to the center of energy discourse as climate-driven disruptions, cyber threats, and the integration of renewables challenge legacy systems. A dramatic case in point: the April 2025 outage in Spain and Portugal that left millions without power for eight to 15 hours. “I want to emphasize that this failure was about more than the power system,” said MITEI research scientist Pablo Duenas-Martinez. While he pinpointed technical problems with reactive power and voltage control behind the system collapse, Duenas-Martinez also called out a lack of transmission capacity with Central Europe and out-of-date operating procedures, and recommended better preparation and communication among transmission systems and utility operators.“You can’t plan for every single eventuality, which means we need to broaden the portfolio of extreme events we prepare for,” noted Jennifer Pearce, vice president at energy company Avangrid. “We are making the system smarter, stronger, and more resilient to better protect from a wide range of threats such as storms, flooding, and extreme heat events.” Pearce noted that Avangrid’s commitment to deliver safe, reliable power to its customers necessitates “meticulous emergency planning procedures.”The resiliency of the electric grid under greatly increased demand is an important motivation behind MITEI’s September 2025 launch of the Data Center Power Forum, which was also announced during the annual research conference. The forum will include research projects, webinars, and other content focused on energy supply and storage, grid design and management, infrastructure, and public and economic policy related to data centers. The forum’s members include MITEI companies that also participate in MIT’s Center for Environmental and Energy Policy Research (CEEPR).Storage and transportation: Staggering challengesMeeting climate goals to decarbonize the world by 2050 requires building around 300 terawatt-hours of storage, according to Asegun Henry, a professor in the MIT Department of Mechanical Engineering. “It’s an unbelievably enormous problem people have to wrap their minds around,” he said. Henry has been developing a high-temperature thermal energy storage system he has nicknamed “sun in a box.” His system uses liquid metal and graphite to hold electricity as heat and then convert it back to electricity, enabling storage anywhere from five to 500 hours.“At the end of the day, storage provides a service, and the type of technology that you need is a function of the service that you value the most,” said Nestor Sepulveda, commercial lead for advanced energy investments and partnerships at Google. “I don’t think there is one winner-takes-all type of market here.”Another panel explored sustainable fuels that could help decarbonize hard-to-electrify sectors like aviation, shipping, and long-haul trucking. Randall Field, MITEI’s director of research, noted that sustainably produced drop-in fuels — fuels that are largely compatible with existing engines — “could eliminate potentially trillions of dollars of cost for fleet replacement and for infrastructure build-out, while also helping us to accelerate the rate of decarbonization of the transportation sectors.”Erik G. Birkerts is the chief growth officer of LanzaJet, which produces a drop-in, high-energy-density aviation fuel derived from agricultural residue and other waste carbon sources. “The key to driving broad sustainable aviation fuel adoption is solving both the supply-side challenge through more production and the demand-side hurdle by reducing costs,” he said.“We think a good policy framework [for sustainable fuels] would be something that is technology-neutral, does not exclude any pathways to produce, is based on life cycle accounting practices, and on market mechanisms,” said Veronica L. Robertson, energy products technology portfolio manager at ExxonMobil.MITEI plans a major expansion of its research on sustainable fuels, announcing a two-year study, “The future of fuels: Pathways to sustainable transportation,” starting in early 2026. According to Field, the study will analyze and assess biofuels and e-fuels.Solutions from labs big and smallGlobal energy leaders offered glimpses of their research projects. A panel on carbon capture in power generation featured three takes on the topic: Devin Shaw, commercial director of decarbonization technologies at Shell, described post-combustion carbon capture in power plants using steam for heat recovery; Jan Marsh, a global program lead at Siemens Energy, discussed deploying novel materials to capture carbon dioxide directly from the air; and Jeffrey Goldmeer, senior director of technology strategy at GE Vernova, explained integrating carbon capture into gas-powered turbine systems.During a panel on vehicle electrification, Brian Storey, vice president of energy and materials at the Toyota Research Institute, provided an overview of Toyota’s portfolio of projects for decarbonization, including solid-state batteries, flexible manufacturing lines, and grid-forming inverters to support EV charging infrastructure.A session on MITEI seed fund projects revealed promising early-stage research inside MIT’s own labs. A new process for decarbonizing the production of ethylene was presented by Yogesh Surendranath, Donner Professor of Science in the MIT Department of Chemistry. Materials Science and Engineering assistant professor Aristide Gumyusenge also discussed the development of polymers essential for a new kind of sodium-ion battery.Shepherding bold, new technologies like these from academic labs into the real world cannot succeed without ample support and deft management. A panel on paths to commercialization featured the work of Iwnetim Abate, Chipman Career Development Professor and assistant professor in the MIT Department of Materials Science and Engineering, who has spun out a company, Addis Energy, based on a novel geothermal process for harvesting clean hydrogen and ammonia from subsurface, iron-rich rocks. Among his funders: ARPA-E and MIT’s own The Engine Ventures.The panel also highlighted the MIT Proto Ventures Program, an initiative to seize early-stage MIT ideas and unleash them as world-changing startups. “A mere 4.2 percent of all the patents that are actually prosecuted in the world are ever commercialized, which seems like a shocking number,” said Andrew Inglis, an entrepreneur working with Proto Ventures to translate geothermal discoveries into businesses. “Can’t we do this better? Let’s do this better!”Geopolitical hazardsThroughout the conference, participants often voiced concern about the impacts of competition between the United States and China. Kelly Sims Gallagher, dean of the Fletcher School at Tufts University and an expert on China’s energy landscape, delivered the sobering news in her keynote address: “U.S. competitiveness in low-carbon technologies has eroded in nearly every category,” she said. “The Chinese are winning the clean tech race.”China enjoys a 51 percent share in global wind turbine manufacture and 75 percent in solar modules. It also controls low-carbon supply chains that much of the world depends on. “China is getting so dominant that nobody can carve out a comparative advantage in anything,” said Gallagher. “China is just so big, and the scale is so huge that the Chinese can truly conquer markets and make it very hard for potential competitors to find a way in.”And for the United States, the problem is “the seesaw of energy policy,” she says. “It’s incredibly difficult for the private sector to plan and to operate, given the lack of predictability and policy here.”Nevertheless, Gallagher believes the United States still has a chance of at least regaining competitiveness, by setting up a stable, bipartisan energy policy, rebuilding domestic manufacturing and supply chains; providing consistent fiscal incentives; attracting and retaining global talent; and fostering international collaboration.The conference shone a light on one such collaboration: a China-U.S. joint venture to manufacture lithium iron phosphate batteries for commercial vehicles in the United States. The venture brings together Eve Energy, a Chinese battery technology and manufacturing company; Daimler, a global commercial vehicle manufacturer; PACCAR Inc., a U.S.-based truck manufacturer; and Accelera, the zero-emissions business of Cummins Inc. “Manufacturing batteries in the U.S. makes the supply chain more robust and reduces geopolitical risks,” said Mike Gerty, of PACCAR.While she acknowledged the obstacles confronting her colleagues in the room, Plata nevertheless concluded her remarks as a panel moderator with some optimism: “I hope you all leave this conference and look back on it in the future, saying I was in the room when they actually solved some of the challenges standing between now and the future that we all wish to manifest.” More

  • in

    Introducing the MIT-GE Vernova Climate and Energy Alliance

    MIT and GE Vernova launched the MIT-GE Vernova Energy and Climate Alliance on Sept. 15, a collaboration to advance research and education focused on accelerating the global energy transition.Through the alliance — an industry-academia initiative conceived by MIT Provost Anantha Chandrakasan and GE Vernova CEO Scott Strazik — GE Vernova has committed $50 million over five years in the form of sponsored research projects and philanthropic funding for research, graduate student fellowships, internships, and experiential learning, as well as professional development programs for GE Vernova leaders.“MIT has a long history of impactful collaborations with industry, and the collaboration between MIT and GE Vernova is a shining example of that legacy,” said Chandrakasan in opening remarks at a launch event. “Together, we are working on energy and climate solutions through interdisciplinary research and diverse perspectives, while providing MIT students the benefit of real-world insights from an industry leader positioned to bring those ideas into the world at scale.”The energy of changeAn independent company since its spinoff from GE in April 2024, GE Vernova is focused on accelerating the global energy transition. The company generates approximately 25 percent of the world’s electricity — with the world’s largest installed base of over 7,000 gas turbines, about 57,000 wind turbines, and leading-edge electrification technology.GE Vernova’s slogan, “The Energy of Change,” is reflected in decisions such as locating its headquarters in Cambridge, Massachusetts — in close proximity to MIT. In pursuing transformative approaches to the energy transition, the company has identified MIT as a key collaborator.A key component of the mission to electrify and decarbonize the world is collaboration, according to CEO Scott Strazik. “We want to inspire, and be inspired by, students as we work together on our generation’s greatest challenge, climate change. We have great ambition for what we want the world to become, but we need collaborators. And we need folks that want to iterate with us on what the world should be from here.”Representing the Healey-Driscoll administration at the launch event were Massachusetts Secretary of Energy and Environmental Affairs Rebecca Tepper and Secretary of the Executive Office of Economic Development Eric Paley. Secretary Tepper highlighted the Mass Leads Act, a $1 billion climate tech and life sciences initiative enacted by Governor Maura Healey last November to strengthen Massachusetts’ leadership in climate tech and AI.“We’re harnessing every part of the state, from hydropower manufacturing facilities to the blue-to-blue economy in our south coast, and right here at the center of our colleges and universities. We want to invent and scale the solutions to climate change in our own backyard,” said Tepper. “That’s been the Massachusetts way for decades.”

    Launch event attendees explore interactive displays in MIT’s Lobby 13.

    Photo: Gretchen Ertl

    Previous item
    Next item

    Real-world problems, insights, and solutionsThe launch celebration featured interactive science displays and student presenters introducing the first round of 13 research projects led by MIT faculty. These projects focus on generating scalable solutions to our most pressing challenges in the areas of electrification, decarbonization, renewables acceleration, and digital solutions. Read more about the funded projects here.Collaborating with industry offers the opportunity for researchers and students to address real-world problems informed by practical insights. The diverse, interdisciplinary perspectives from both industry and academia will significantly strengthen the research supported through the GE Vernova Fellowships announced at the launch event.“I’m excited to talk to the industry experts at GE Vernova about the problems that they work on,” said GE Vernova Fellow Aaron Langham. “I’m looking forward to learning more about how real people and industries use electrical power.”Fellow Julia Estrin echoed a similar sentiment: “I see this as a chance to connect fundamental research with practical applications — using insights from industry to shape innovative solutions in the lab that can have a meaningful impact at scale.”GE Vernova’s commitment to research is also providing support and inspiration for fellows. “This level of substantive enthusiasm for new ideas and technology is what comes from a company that not only looks toward the future, but also has the resources and determination to innovate impactfully,” says Owen Mylotte, a GE Vernova Fellow.The inaugural cohort of eight fellows will continue their research at MIT with tuition support from GE Vernova. Find the full list of fellows and their research topics here.Pipeline of future energy leadersHighlighting the alliance’s emphasis on cultivating student talent and leadership, GE Vernova CEO Scott Strazik introduced four MIT alumni who are now leaders at GE Vernova: Dhanush Mariappan SM ’03, PhD ’19, senior engineering manager in the GE Vernova Advanced Research Center; Brent Brunell SM ’00, technology director in the Advanced Research Center; Paolo Marone MBA ’21, CFO of wind; and Grace Caza MAP ’22, chief of staff in supply chain and operations.The four shared their experiences of working with MIT as students and their hopes for the future of this alliance in the realm of “people development,” as Mariappan highlighted. “Energy transition means leaders. And every one of the innovative research and professional education programs that will come out of this alliance is going to produce the leaders of the energy transition industry.”The alliance is underscoring its commitment to developing future energy leaders by supporting the New Engineering Education Transformation program (NEET) and expanding opportunities for student internships. With 100 new internships for MIT students announced in the days following the launch, GE Vernova is opening broad opportunities for MIT students at all levels to contribute to a sustainable future.“GE Vernova has been a tremendous collaborator every step of the way, with a clear vision of the technical breakthroughs we need to affect change at scale and a deep respect for MIT’s strengths and culture, as well as a hunger to listen and learn from us as well,” said Betar Gallant, alliance director who is also the Kendall Rohsenow Associate Professor of Mechanical Engineering at MIT. “Students, take this opportunity to learn, connect, and appreciate how much you’re valued, and how bright your futures are in this area of decarbonizing our energy systems. Your ideas and insight are going to help us determine and drive what’s next.”

    Event attendees mingle in MIT’s Lobby 13.

    Photo: Gretchen Ertl

    Previous item
    Next item

    Daring to create the future we wantThe launch event transformed MIT’s Lobby 13 with green lighting and animated conversation around the posters and hardware demos on display, reflecting the sense of optimism for the future and the type of change the alliance — and the Commonwealth of Massachusetts — seeks to advance.“Because of this collaboration and the commitment to the work that needs doing, many things will be created,” said Secretary Paley. “People in this room will work together on all kinds of projects that will do incredible things for our economy, for our innovation, for our country, and for our climate.”The alliance builds on MIT’s growing portfolio of initiatives around sustainable energy systems, including the Climate Project at MIT, a presidential initiative focused on developing solutions to some of the toughest barriers to an effective global climate response. “This new alliance is a significant opportunity to move the needle of energy and climate research as we dare to create the future that we want, with the promise of impactful solutions for the world,” said Evelyn Wang, MIT vice president for energy and climate, who attended the launch.To that end, the alliance is supporting critical cross-institution efforts in energy and climate policy, including funding three master’s students in MIT Technology and Policy Program and hosting an annual symposium in February 2026 to advance interdisciplinary research. GE Vernova is also providing philanthropic support to the MIT Human Insight Collaborative. For 2025-26, this support will contribute to addressing global energy poverty by supporting the MIT Abdul Latif Jameel Poverty Action Lab (J-PAL) in its work to expand access to affordable electricity in South Africa.“Our hope to our fellows, our hope to our students is this: While the stakes are high and the urgency has never been higher, the impact that you are going to have over the decades to come has never been greater,” said Roger Martella, chief corporate and sustainability officer at GE Vernova. “You have so much opportunity to move the world in a better direction. We need you to succeed. And our mission is to serve you and enable your success.”With the alliance’s launch — and GE Vernova’s new membership in several other MIT consortium programs related to sustainability, automation and robotics, and AI, including the Initiative for New Manufacturing, MIT Energy Initiative, MIT Climate and Sustainability Consortium, and Center for Transportation and Logistics — it’s evident why Betar Gallant says the company is “all-in at MIT.”The potential for tremendous impact on the energy industry is clear to those involved in the alliance. As GE Vernova Fellow Jack Morris said at the launch, “This is the beginning of something big.” More

  • in

    MIT Energy Initiative launches Data Center Power Forum

    With global power demand from data centers expected to more than double by 2030, the MIT Energy Initiative (MITEI) in September launched an effort that brings together MIT researchers and industry experts to explore innovative solutions for powering the data-driven future. At its annual research conference, MITEI announced the Data Center Power Forum, a targeted research effort for MITEI member companies interested in addressing the challenges of data center power demand. The Data Center Power Forum builds on lessons from MITEI’s May 2025 symposium on the energy to power the expansion of artificial intelligence (AI) and focus panels related to data centers at the fall 2024 research conference.In the United States, data centers consumed 4 percent of the country’s electricity in 2023, with demand expected to increase to 9 percent by 2030, according to the Electric Power Research Institute. Much of the growth in demand is from the increasing use of AI, which is placing an unprecedented strain on the electric grid. This surge in demand presents a serious challenge for the technology and energy sectors, government policymakers, and everyday consumers, who may see their electric bills skyrocket as a result.“MITEI has long supported research on ways to produce more efficient and cleaner energy and to manage the electric grid. In recent years, MITEI has also funded dozens of research projects relevant to data center energy issues. Building on this history and knowledge base, MITEI’s Data Center Power Forum is convening a specialized community of industry members who have a vital stake in the sustainable growth of AI and the acceleration of solutions for powering data centers and expanding the grid,” says William H. Green, the director of MITEI and the Hoyt C. Hottel Professor of Chemical Engineering.MITEI’s mission is to advance zero- and low-carbon solutions to expand energy access and mitigate climate change. MITEI works with companies from across the energy innovation chain, including in the infrastructure, automotive, electric power, energy, natural resources, and insurance sectors. MITEI member companies have expressed strong interest in the Data Center Power Forum and are committing to support focused research on a wide range of energy issues associated with data center expansion, Green says.MITEI’s Data Center Power Forum will provide its member companies with reliable insights into energy supply, grid load operations and management, the built environment, and electricity market design and regulatory policy for data centers. The forum complements MIT’s deep expertise in adjacent topics such as low-power processors, efficient algorithms, task-specific AI, photonic devices, quantum computing, and the societal consequences of data center expansion. As part of the forum, MITEI’s Future Energy Systems Center is funding projects relevant to data center energy in its upcoming proposal cycles. MITEI Research Scientist Deep Deka has been named the program manager for the forum.“Figuring out how to meet the power demands of data centers is a complicated challenge. Our research is coming at this from multiple directions, from looking at ways to expand transmission capacity within the electrical grid in order to bring power to where it is needed, to ensuring the quality of electrical service for existing users is not diminished when new data centers come online, and to shifting computing tasks to times and places when and where energy is available on the grid,” said Deka.MITEI currently sponsors substantial research related to data center energy topics across several MIT departments. The existing research portfolio includes more than a dozen projects related to data centers, including low- or zero-carbon solutions for energy supply and infrastructure, electrical grid management, and electricity market policy. MIT researchers funded through MITEI’s industry consortium are also designing more energy-efficient power electronics and processors and investigating behind-the-meter low-/no-carbon power plants and energy storage. MITEI-supported experts are studying how to use AI to optimize electrical distribution and the siting of data centers and conducting techno-economic analyses of data center power schemes. MITEI’s consortium projects are also bringing fresh perspectives to data center cooling challenges and considering policy approaches to balance the interests of shareholders. By drawing together industry stakeholders from across the AI and grid value chain, the Data Center Power Forum enables a richer dialog about solutions to power, grid, and carbon management problems in a noncommercial and collaborative setting.“The opportunity to meet and to hold discussions on key data center challenges with other forum members from different sectors, as well as with MIT faculty members and research scientists, is a unique benefit of this MITEI-led effort,” Green says.MITEI addressed the issue of data center power needs with its company members during its fall 2024 Annual Research Conference with a panel session titled, “The extreme challenge of powering data centers in a decarbonized way.” MITEI Director of Research Randall Field led a discussion with representatives from large technology companies Google and Microsoft, known as “hyperscalers,” as well as Madrid-based infrastructure developer Ferrovial S.E. and utility company Exelon Corp. Another conference session addressed the related topic, “Energy storage and grid expansion.” This past spring, MITEI focused its annual Spring Symposium on data centers, hosting faculty members and researchers from MIT and other universities, business leaders, and a representative of the Federal Energy Regulatory Commission for a full day of sessions on the topic, “AI and energy: Peril and promise.”  More

  • in

    Giving buildings an “MRI” to make them more energy-efficient and resilient

    Older buildings let thousands of dollars-worth of energy go to waste each year through leaky roofs, old windows, and insufficient insulation. But even as building owners face mounting pressure to comply with stricter energy codes, making smart decisions about how to invest in efficiency is a major challenge.Lamarr.AI, born in part from MIT research, is making the process of finding ways to improve the energy efficiency of buildings as easy as clicking a button. When customers order a building review, it triggers a coordinated symphony of drones, thermal and visible-range cameras, and artificial intelligence designed to identify problems and quantify the impact of potential upgrades. Lamarr.AI’s technology also assesses structural conditions, creates detailed 3D models of buildings, and recommends retrofits. The solution is already being used by leading organizations across facilities management as well as by architecture, engineering, and construction firms.“We identify the root cause of the anomalies we find,” says CEO and co-founder Tarek Rakha PhD ’15. “Our platform doesn’t just say, ‘This is a hot spot and this is a cold spot.’ It specifies ‘This is infiltration or exfiltration. This is missing insulation. This is water intrusion.’ The detected anomalies are also mapped to a 3D model of the building, and there are deeper analytics, such as the cost of each retrofit and the return on investment.”To date, the company estimates its platform has helped clients across health care, higher education, and multifamily housing avoid over $3 million in unnecessary construction and retrofit costs by recommending targeted interventions over costly full-system replacements, while improving energy performance and extending asset life. For building owners managing portfolios worth hundreds of millions of dollars, Lamarr.AI’s approach represents a fundamental shift from reactive maintenance to strategic asset management.The founders, who also include MIT Professor John Fernández and Research Scientist Norhan Bayomi SM ’17, PhD ’21, are thrilled to see their technology accelerating the transition to more energy-efficient and higher-performing buildings.“Reducing carbon emissions in buildings gets you the greatest return on investment in terms of climate interventions, but what has been needed are the technologies and tools to help the real estate and construction sectors make the right decisions in a timely and economical way,” Fernández says.Automating building scansBayomi and Rakha completed their PhDs in the MIT Department of Architecture’s Building Technology Program. For her thesis, Bayomi developed technology to detect features of building exteriors and classify thermal anomalies through scans of buildings, with a specific focus on the impact of heat waves on low-income communities. Bayomi and her collaborators eventually deployed the system to detect air leaks as part of a partnership with a community in New York City.After graduating MIT, Rakha became an assistant professor at Syracuse University. In 2015, together with fellow Syracuse University Professor Senem Velipasalar, he began developing his concept for drone-based building analytics — an idea that later received support through a grant from New York State’s Department of Economic Development. In 2019, Bayomi and Fernández joined the project, and the team received a $1.8 million research award from the U.S. Department of Energy.“The technology is like giving a building an MRI using drones, infrared imaging, visible light imaging, and proprietary AI that we developed through computer vision technology, along with large language models for report generation,” Rakha explains.“When we started the research, we saw firsthand how vulnerable communities were suffering from inefficient buildings, but couldn’t afford comprehensive diagnostics,” Bayomi says. “We knew that if we could automate this process and reduce costs while improving accuracy, we’d unlock a massive market. Now we’re seeing demand from everyone, from municipal buildings to major institutional portfolios.”Lamarr.AI was officially founded in 2021 to commercialize the technology, and the founders wasted no time tapping into MIT’s entrepreneurial ecosystem. First, they received a small seed grant from the MIT Sandbox Innovation Fund. In 2022, they won the MITdesignX prize and were semifinalists in the MIT $100K Entrepreneurship Competition. The founders named the company after Hedy Lamarr, the famous actress and inventor of a patented technology that became the basis for many modern secure communications.Current methods for detecting air leaks in buildings utilize fan pressurizers or smoke. Contractors or building engineers may also spot-check buildings with handheld infrared cameras to manually identify temperature differences across individual walls, windows, and ductwork.Lamarr.AI’s system can perform building inspections far more quickly. Building managers can order the company’s scans online and select when they’d like the drone to fly. Lamarr.AI partners with drone companies worldwide to fly off-the-shelf drones around buildings, providing them with flight plans and specifications for success. Images are then uploaded onto Lamarr.AI’s platform for automated analysis.“As an example, a survey of a 180,000-square-foot building like the MIT Schwarzman College of Computing, which we scanned, produces around 2,000 images,” Fernández says. “For someone to go through those manually would take a couple of weeks. Our models autonomously analyze those images in a few seconds.”After the analysis, Lamarr.AI’s platform generates a report that includes the suspected root cause of every weak point found, an estimated cost to correct that problem, and its estimated return on investment using advanced building energy simulations.“We knew if we were able to quickly, inexpensively, and accurately survey the thermal envelope of buildings and understand their performance, we would be addressing a huge need in the real estate, building construction, and built environment sectors,” Fernández explains. “Thermal anomalies are a huge cause of unwanted heat loss, and more than 45 percent of construction defects are tied to envelope failures.”The ability to operate at scale is especially attractive to building owners and operators, who often manage large portfolios of buildings across multiple campuses.“We see Lamarr.AI becoming the premier solution for building portfolio diagnostics and prognosis across the globe, where every building can be equipped not just for the climate crisis, but also to minimize energy losses and be more efficient, safer, and sustainable,” Rakha says.Building science for everyoneLamarr.AI has worked with building operators across the U.S. as well as in Canada, the United Kingdom, and the United Arab Emirates.In June, Lamarr.AI partnered with the City of Detroit, with support from Newlab and Michigan Central, to inspect three municipal buildings to identify areas for improvement. Across two of the buildings, the system identified more than 460 problems like insulation gaps and water leaks. The findings were presented in a report that also utilized energy simulations to demonstrate that upgrades, such as window replacements and targeted weatherization, could reduce HVAC energy use by up to 22 percent.The entire process took a few days. The founders note that it was the first building inspection drone flight to utilize an off-site operator, an approach that further enhances the scalability of their platform. It also helps further reduce costs, which could make building scans available to a broader swath of people around the world.“We’re democratizing access to very high-value building science expertise that previously cost tens of thousands per audit,” Bayomi says. “Our platform makes advanced diagnostics affordable enough for routine use, not just one-time assessments. The bigger vision is automated, regular building health monitoring that keeps facilities teams informed in real-time, enabling proactive decisions rather than reactive crisis management. When building intelligence becomes continuous and accessible, operators can optimize performance systematically rather than waiting for problems to emerge.” More

  • in

    Battery-powered appliances make it easy to switch from gas to electric

    As batteries have gotten cheaper and more powerful, they have enabled the electrification of everything from vehicles to lawn equipment, power tools, and scooters. But electrifying homes has been a slower process. That’s because switching from gas appliances often requires ripping out drywall, running new wires, and upgrading the electrical box.Now the startup Copper, founded by Sam Calisch SM ’14, PhD ’19, has developed a battery-equipped kitchen range that can plug into a standard 120-volt wall outlet. The induction range features a lithium iron phosphate battery that charges when energy is cheapest and cleanest, then delivers power when you’re ready to cook.“We’re making ‘going electric’ like an appliance swap instead of a construction project,” says Calisch. “If you have a gas stove today, there is almost certainly an outlet within reach because the stove has an oven light, clock, or electric igniters. That’s big if you’re in a single-family home, but in apartments it’s an existential factor. Rewiring a 100-unit apartment building is such an expensive proposition that basically no one’s doing it.”Copper has shipped about 1,000 of its battery-powered ranges to date, often to developers and owners of large apartment complexes. The company also has an agreement with the New York City Housing Authority for at least 10,000 units.Once installed, the ranges can contribute to a distributed, cleaner, and more resilient energy network. In fact, Copper recently piloted a program in California to offer cheap, clean power to the grid from its home batteries when it would otherwise need to fire up a gas-powered plant to meet spiking electricity demand.“After these appliances are installed, they become a grid asset,” Calisch says. “We can manage the fleet of batteries to help provide firm power and help grids deliver more clean electricity. We use that revenue, in turn, to further drive down the cost of electrification.”Finding a missionCalisch has been working on climate technologies his entire career. It all started at the clean technology incubator Otherlab that was founded by Saul Griffith SM ’01, PhD ’04.“That’s where I caught the bug for technology and product development for climate impact,” Calisch says. “But I realized I needed to up my game, so I went to grad school in [MIT Professor] Neil Gershenfeld’s lab, the Center for Bits and Atoms. I got to dabble in software engineering, mechanical engineering, electrical engineering, mathematical modeling, all with the lens of building and iterating quickly.”Calisch stayed at MIT for his PhD, where he worked on approaches in manufacturing that used fewer materials and less energy. After finishing his PhD in 2019, Calisch helped start a nonprofit called Rewiring America focused on advocating for electrification. Through that work, he collaborated with U.S. Senate offices on the Inflation Reduction Act.The cost of lithium ion batteries has decreased by about 97 percent since their commercial debut in 1991. As more products have gone electric, the manufacturing process for everything from phones to drones, robots, and electric vehicles has converged around an electric tech stack of batteries, electric motors, power electronics, and chips. The countries that master the electric tech stack will be at a distinct manufacturing advantage.Calisch started Copper to boost the supply chain for batteries while contributing to the electrification movement.“Appliances can help deploy batteries, and batteries help deploy appliances,” Calisch says. “Appliances can also drive down the installed cost of batteries.”The company is starting with the kitchen range because its peak power draw is among the highest in the home. Flattening that peak brings big benefits. Ranges are also meaningful: It’s where people gather around and cook each night. People take pride in their kitchen ranges more than, say, a water heater.Copper’s 30-inch induction range heats up more quickly and reaches more precise temperatures than its gas counterpart. Installing it is as easy as swapping a fridge or dishwasher. Thanks to its 5-kilowatt-hour battery, the range even works when the power goes out.“Batteries have become 10 times cheaper and are now both affordable and create tangible improvements in quality of life,” Calisch says. “It’s a new notion of climate impact that isn’t about turning down thermostats and suffering for the planet, it’s about adopting new technologies that are better.”Scaling impactCalisch says there’s no way for the U.S. to maintain resilient energy systems in the future without a lot of batteries. Because of power transmission and regulatory limitations, those batteries can’t all be located out on the grid.“We see an analog to the internet,” Calisch says. “In order to deliver millions of times more information across the internet, we didn’t add millions of times more wires. We added local storage and caching across the network. That’s what increased throughput. We’re doing the same thing for the electric grid.”This summer, Copper raised $28 million to scale its production to meet growing demand for its battery equipped appliances. Copper is also working to license its technology to other appliance manufacturers to help speed the electric transition.“These electric technologies have the potential to improve people’s lives and, as a byproduct, take us off of fossil fuels,” Calisch says. “We’re in the business of identifying points of friction for that transition. We are not an appliance company; we’re an energy company.”Looking back, Calisch credits MIT with equipping him with the knowledge needed to run a technical business.“My time at MIT gave me hands-on experience with a variety of engineering systems,” Calisch. “I can talk to our embedded engineering team or electrical engineering team or mechanical engineering team and understand what they’re saying. That’s been enormously useful for running a company.”He adds: “I also developed an expansive view of infrastructure at MIT, which has been instrumental in launching Copper and thinking about the electrical grid not just as wires on the street, but all of the loads in our buildings. It’s about making homes not just consumers of electricity, but participants in this broader network.” More

  • in

    Burning things to make things

    Around 80 percent of global energy production today comes from the combustion of fossil fuels. Combustion, or the process of converting stored chemical energy into thermal energy through burning, is vital for a variety of common activities including electricity generation, transportation, and domestic uses like heating and cooking — but it also yields a host of environmental consequences, contributing to air pollution and greenhouse gas emissions.Sili Deng, the Doherty Chair in Ocean Utilization and associate professor of mechanical engineering at MIT, is leading research to drive the transition from the heavy dependence on fossil fuels to renewable energy with storage.“I was first introduced to flame synthesis in my junior year in college,” Deng says. “I realized you can actually burn things to make things, [and] that was really fascinating.”

    Play video

    Burning Things to Make ThingsVideo: Department of Mechanical Engineering

    Deng says she ultimately picked combustion as a focus of her work because she likes the intellectual challenge the concept offers. “In combustion you have chemistry, and you have fluid mechanics. Each subject is very rich in science. This also has very strong engineering implications and applications.”Deng’s research group targets three areas: building up fundamental knowledge on combustion processes and emissions; developing alternative fuels and metal combustion to replace fossil fuels; and synthesizing flame-based materials for catalysis and energy storage, which can bring down the cost of manufacturing battery materials.One focus of the team has been on low-cost, low-emission manufacturing of cathode materials for lithium-ion batteries. Lithium-ion batteries play an increasingly critical role in transportation electrification (e.g., batteries for electric vehicles) and grid energy storage for electricity that is generated from renewable energy sources like wind and solar. Deng’s team has developed a technology they call flame-assisted spray pyrolysis, or FASP, which can help reduce the high manufacturing costs associated with cathode materials.FASP is based on flame synthesis, a technology that dates back nearly 3,000 years. In ancient China, this was the primary way black ink materials were made. “[People burned] vegetables or woods, such that afterwards they can collect the solidified smoke,” Deng explains. “For our battery applications, we can try to fit in the same formula, but of course with new tweaks.”The team is also interested in developing alternative fuels, including looking at the use of metals like aluminum to power rockets. “We’re interested in utilizing aluminum as a fuel for civil applications,” Deng says, because aluminum is abundant in the earth, cheap, and it’s available globally. “What we are trying to do is to understand [aluminum combustion] and be able to tailor its ignition and propagation properties.”Among other accolades, Deng is a 2025 recipient of the Hiroshi Tsuji Early Career Researcher Award from the Combustion Institute, an award that recognizes excellence in fundamental or applied combustion science research. More

  • in

    MIT engineers solve the sticky-cell problem in bioreactors and other industries

    To help mitigate climate change, companies are using bioreactors to grow algae and other microorganisms that are hundreds of times more efficient at absorbing CO2 than trees. Meanwhile, in the pharmaceutical industry, cell culture is used to manufacture biologic drugs and other advanced treatments, including lifesaving gene and cell therapies.Both processes are hampered by cells’ tendency to stick to surfaces, which leads to a huge amount of waste and downtime for cleaning. A similar problem slows down biofuel production, interferes with biosensors and implants, and makes the food and beverage industry less efficient.Now, MIT researchers have developed an approach for detaching cells from surfaces on demand, using electrochemically generated bubbles. In an open-access paper published in Science Advances, the researchers demonstrated their approach in a lab prototype and showed it could work across a range of cells and surfaces without harming the cells.“We wanted to develop a technology that could be high-throughput and plug-and-play, and that would allow cells to attach and detach on demand to improve the workflow in these industrial processes,” says Professor Kripa Varanasi, senior author of the study. “This is a fundamental issue with cells, and we’ve solved it with a process that can scale. It lends itself to many different applications.”Joining Varanasi on the study are co-first authors Bert Vandereydt, a PhD student in mechanical engineering, and former postdoc Baptiste Blanc.Solving a sticky problem

    Credit: Joy Zheng

    The researchers began with a mission.“We’ve been working on figuring out how we can efficiently capture CO2 across different sources and convert it into valuable products for various end markets,” Varanasi says. “That’s where this photobioreactor and cell detachment comes into the picture.”Photobioreactors are used to grow carbon-absorbing algae cells by creating tightly controlled environments involving water and sunlight. They feature long, winding tubes with clear surfaces to let in the light algae need to grow. When algae stick to those surfaces, they block out the light, requiring cleaning.“You have to shut down and clean up the entire reactor as frequently as every two weeks,” Varanasi says. “It’s a huge operational challenge.”The researchers realized other industries have similar problem due to many cells’ natural adhesion, or stickiness. Each industry has its own solution for cell adhesion depending on how important it is that the cells survive. Some people scrape the surfaces clean, while others use special coatings that are toxic to cells.In the pharmaceutical and biotech industries, cell detachment is typically carried out using enzymes. However, this method poses several challenges — it can damage cell membranes, is time-consuming, and requires large amounts of consumables, resulting in millions of liters of biowaste.To create a better solution, the researchers began by studying other efforts to clear surfaces with bubbles, which mainly involved spraying bubbles onto surfaces and had been largely ineffective.“We realized we needed the bubbles to form on the surfaces where we don’t want these cells to stick, so when the bubbles detach it creates a local fluid flow that creates shear stress at the interface and removes the cells,” Varanasi explains.Electric currents generate bubbles by splitting water into hydrogen and oxygen. But previous attempts at using electricity to detach cells were hampered because the cell culture mediums contain sodium chloride, which turns into bleach when combined with an electric current. The bleach damages the cells, making it impractical for many applications.“The culprit is the anode — that’s where the sodium chloride turns to bleach,” Vandereydt explained. “We figured if we could separate that electrode from the rest of the system, we could prevent bleach from being generated.”To make a better system, the researchers built a 3-square-inch glass surface and deposited a gold electrode on top of it. The layer of gold is so thin it doesn’t block out light. To keep the other electrode separate, the researchers integrated a special membrane that only allows protons to pass through. The set up allowed the researchers to send a current through without generating bleach.To test their setup, they allowed algae cells from a concentrated solution to stick to the surfaces. When they applied a voltage, the bubbles separated the cells from the surfaces without harming them.The researchers also studied the interaction between the bubbles and cells, finding the higher the current density, the more bubbles were created and the more algae was removed. They developed a model for understanding how much current would be needed to remove algae in different settings and matched it with results from experiments involving algae as well as cells from ovarian cancer and bones.“Mammalian cells are orders of magnitude more sensitive than algae cells, but even with those cells, we were able to detach them with no impact to the viability of the cell,” Vandereydt says.Getting to scaleThe researchers say their system could represent a breakthrough in applications where bleach or other chemicals would harm cells. That includes pharmaceutical and food production.“If we can keep these systems running without fouling and other problems, then we can make them much more economical,” Varanasi says.For cell culture plates used in the pharmaceutical industry, the team envisions their system comprising an electrode that could be robotically moved from one culture plate to the next, to detach cells as they’re grown. It could also be coiled around algae harvesting systems.“This has general applicability because it doesn’t rely on any specific biological or chemical treatments, but on a physical force that is system-agnostic,” Varanasi says. “It’s also highly scalable to a lot of different processes, including particle removal.”Varanasi cautions there is much work to be done to scale up the system. But he hopes it can one day make algae and other cell harvesting more efficient.“The burning problem of our time is to somehow capture CO2 in a way that’s economically feasible,” Varanasi says. “These photobioreactors could be used for that, but we have to overcome the cell adhesion problem.”The work was supported, in part, by Eni S.p.A through the MIT Energy Initiative, the Belgian American Educational Foundation Fellowship, and the Maria Zambrano Fellowship. More

  • in

    How to reduce greenhouse gas emissions from ammonia production

    Ammonia is one of the most widely produced chemicals in the world, used mostly as fertilizer, but also for the production of some plastics, textiles, and other applications. Its production, through processes that require high heat and pressure, accounts for up to 20 percent of all the greenhouse gases from the entire chemical industry, so efforts have been underway worldwide to find ways to reduce those emissions.Now, researchers at MIT have come up with a clever way of combining two different methods of producing the compound that minimizes waste products, that, when combined with some other simple upgrades, could reduce the greenhouse emissions from production by as much as 63 percent, compared to the leading “low-emissions” approach being used today.The new approach is described in the journal Energy & Fuels, in a paper by MIT Energy Initiative (MITEI) Director William H. Green, graduate student Sayandeep Biswas, MITEI Director of Research Randall Field, and two others.“Ammonia has the most carbon dioxide emissions of any kind of chemical,” says Green, who is the Hoyt C. Hottel Professor in Chemical Engineering. “It’s a very important chemical,” he says, because its use as a fertilizer is crucial to being able to feed the world’s population.Until late in the 19th century, the most widely used source of nitrogen fertilizer was mined deposits of bat or bird guano, mostly from Chile, but that source was beginning to run out, and there were predictions that the world would soon be running short of food to sustain the population. But then a new chemical process, called the Haber-Bosch process after its inventors, made it possible to make ammonia out of nitrogen from the air and hydrogen, which was mostly derived from methane. But both the burning of fossil fuels to provide the needed heat and the use of methane to make the hydrogen led to massive climate-warming emissions from the process.To address this, two newer variations of ammonia production have been developed: so-called “blue ammonia,” where the greenhouse gases are captured right at the factory and then sequestered deep underground, and “green ammonia,” produced by a different chemical pathway, using electricity instead of fossil fuels to hydrolyze water to make hydrogen.Blue ammonia is already beginning to be used, with a few plants operating now in Louisiana, Green says, and the ammonia mostly being shipped to Japan, “so that’s already kind of commercial.” Other parts of the world are starting to use green ammonia, especially in places that have lots of hydropower, solar, or wind to provide inexpensive electricity, including a giant plant now under construction in Saudi Arabia.But in most places, both blue and green ammonia are still more expensive than the traditional fossil-fuel-based version, so many teams around the world have been working on ways to cut these costs as much as possible so that the difference is small enough to be made up through tax subsidies or other incentives.The problem is growing, because as the population grows, and as wealth increases, there will be ever-increasing demands for nitrogen fertilizer. At the same time, ammonia is a promising substitute fuel to power hard-to-decarbonize transportation such as cargo ships and heavy trucks, which could lead to even greater needs for the chemical.“It definitely works” as a transportation fuel, by powering fuel cells that have been demonstrated for use by everything from drones to barges and tugboats and trucks, Green says. “People think that the most likely market of that type would be for shipping,” he says, “because the downside of ammonia is it’s toxic and it’s smelly, and that makes it slightly dangerous to handle and to ship around.” So its best uses may be where it’s used in high volume and in relatively remote locations, like the high seas. In fact, the International Maritime Organization will soon be voting on new rules that might give a strong boost to the ammonia alternative for shipping.The key to the new proposed system is to combine the two existing approaches in one facility, with a blue ammonia factory next to a green ammonia factory. The process of generating hydrogen for the green ammonia plant leaves a lot of leftover oxygen that just gets vented to the air. Blue ammonia, on the other hand, uses a process called autothermal reforming that requires a source of pure oxygen, so if there’s a green ammonia plant next door, it can use that excess oxygen.“Putting them next to each other turns out to have significant economic value,” Green says. This synergy could help hybrid “blue-green ammonia” facilities serve as an important bridge toward a future where eventually green ammonia, the cleanest version, could finally dominate. But that future is likely decades away, Green says, so having the combined plants could be an important step along the way.“It might be a really long time before [green ammonia] is actually attractive” economically, he says. “Right now, it’s nowhere close, except in very special situations.” But the combined plants “could be a really appealing concept, and maybe a good way to start the industry,” because so far only small, standalone demonstration plants of the green process are being built.“If green or blue ammonia is going to become the new way of making ammonia, you need to find ways to make it relatively affordable in a lot of countries, with whatever resources they’ve got,” he says. This new proposed combination, he says, “looks like a really good idea that can help push things along. Ultimately, there’s got to be a lot of green ammonia plants in a lot of places,” and starting out with the combined plants, which could be more affordable now, could help to make that happen. The team has filed for a patent on the process.Although the team did a detailed study of both the technology and the economics that show the system has great promise, Green points out that “no one has ever built one. We did the analysis, it looks good, but surely when people build the first one, they’ll find funny little things that need some attention,” such as details of how to start up or shut down the process. “I would say there’s plenty of additional work to do to make it a real industry.” But the results of this study, which shows the costs to be much more affordable than existing blue or green plants in isolation, “definitely encourages the possibility of people making the big investments that would be needed to really make this industry feasible.”This proposed integration of the two methods “improves efficiency, reduces greenhouse gas emissions, and lowers overall cost,” says Kevin van Geem, a professor in the Center for Sustainable Chemistry at Ghent University, who was not associated with this research. “The analysis is rigorous, with validated process models, transparent assumptions, and comparisons to literature benchmarks. By combining techno-economic analysis with emissions accounting, the work provides a credible and balanced view of the trade-offs.”He adds that, “given the scale of global ammonia production, such a reduction could have a highly impactful effect on decarbonizing one of the most emissions-intensive chemical industries.”The research team also included MIT postdoc Angiras Menon and MITEI research lead Guiyan Zang. The work was supported by IHI Japan through the MIT Energy Initiative and the Martin Family Society of Fellows for Sustainability.  More