More stories

  • in

    Q&A: Transforming research through global collaborations

    The MIT Global Seed Funds (GSF) program fosters global research collaborations with MIT faculty and their peers abroad — creating partnerships that tackle complex global issues, from climate change to health-care challenges and beyond. Administered by the MIT Center for International Studies (CIS), the GSF program has awarded more than $26 million to over 1,200 faculty research projects since its inception in 2008. Through its unique funding structure — comprising a general fund for unrestricted geographical use and several specific funds within individual countries, regions, and universities — GSF supports a wide range of projects. The current call for proposals from MIT faculty and researchers with principal investigator status is open until Dec. 10. CIS recently sat down with faculty recipients Josephine Carstensen and David McGee to discuss the value and impact GSF added to their research. Carstensen, the Gilbert W. Winslow Career Development Associate Professor of Civil and Environmental Engineering, generates computational designs for large-scale structures with the intent of designing novel low-carbon solutions. McGee, the William R. Kenan, Jr. Professor in the Department of Earth, Atmospheric and Planetary Sciences (EAPS), reconstructs the patterns, pace, and magnitudes of past hydro-climate changes.Q: How did the Global Seed Funds program connect you with global partnerships related to your research?Carstensen: One of the projects my lab is working on is to unlock the potential of complex cast-glass structures. Through our GSF partnership with researchers at TUDelft (Netherlands), my group was able to leverage our expertise in generative design algorithms alongside the TUDelft team, who are experts in the physical casting and fabrication of glass structures. Our initial connection to TUDelft was actually through one of my graduate students who was at a conference and met TUDelft researchers. He was inspired by their work and felt there could be synergy between our labs. The question then became: How do we connect with TUDelft? And that was what led us to the Global Seed Funds program. McGee: Our research is based in fieldwork conducted in partnership with experts who have a rich understanding of local environments. These locations range from lake basins in Chile and Argentina to caves in northern Mexico, Vietnam, and Madagascar. GSF has been invaluable for helping foster partnerships with collaborators and universities in these different locations, enabling the pilot work and relationship-building necessary to establish longer-term, externally funded projects.Q: Tell us more about your GSF-funded work.Carstensen: In my research group at MIT, we live mainly in a computational regime, and we do very little proof-of-concept testing. To that point, we do not even have the facilities nor experience to physically build large-scale structures, or even specialized structures. GSF has enabled us to connect with the researchers at TUDelft who do much more experimental testing than we do. Being able to work with the experts at TUDelft within their physical realm provided valuable insights into their way of approaching problems. And, likewise, the researchers at TUDelft benefited from our expertise. It has been fruitful in ways we couldn’t have imagined within our lab at MIT.McGee: The collaborative work supported by the GSF has focused on reconstructing how past climate changes impacted rainfall patterns around the world, using natural archives like lake sediments and cave formations. One particularly successful project has been our work in caves in northeastern Mexico, which has been conducted in partnership with researchers from the National Autonomous University of Mexico (UNAM) and a local caving group. This project has involved several MIT undergraduate and graduate students, sponsored a research symposium in Mexico City, and helped us obtain funding from the National Science Foundation for a longer-term project.Q: You both mentioned the involvement of your graduate students. How exactly has the GSF augmented the research experience of your students?Carstensen: The collaboration has especially benefited the graduate students from both the MIT and TUDelft teams. The opportunity presented through this project to engage in research at an international peer institution has been extremely beneficial for their academic growth and maturity. It has facilitated training in new and complementary technical areas that they would not have had otherwise and allowed them to engage with leading world experts. An example of this aspect of the project’s success is that the collaboration has inspired one of my graduate students to actively pursue postdoc opportunities in Europe (including at TU Delft) after his graduation.McGee: MIT students have traveled to caves in northeastern Mexico and to lake basins in northern Chile to conduct fieldwork and build connections with local collaborators. Samples enabled by GSF-supported projects became the focus of two graduate students’ PhD theses, two EAPS undergraduate senior theses, and multiple UROP [Undergraduate Research Opportunity Program] projects.Q: Were there any unexpected benefits to the work funded by GSF?Carstensen: The success of this project would not have been possible without this specific international collaboration. Both the Delft and MIT teams bring highly different essential expertise that has been necessary for the successful project outcome. It allowed both the Delft and MIT teams to gain an in-depth understanding of the expertise areas and resources of the other collaborators. Both teams have been deeply inspired. This partnership has fueled conversations about potential future projects and provided multiple outcomes, including a plan to publish two journal papers on the project outcome. The first invited publication is being finalized now.McGee: GSF’s focus on reciprocal exchange has enabled external collaborators to spend time at MIT, sharing their work and exchanging ideas. Other funding is often focused on sending MIT researchers and students out, but GSF has helped us bring collaborators here, making the relationship more equal. A GSF-supported visit by Argentinian researchers last year made it possible for them to interact not just with my group, but with students and faculty across EAPS. More

  • in

    Consortium led by MIT, Harvard University, and Mass General Brigham spurs development of 408 MW of renewable energy

    MIT is co-leading an effort to enable the development of two new large-scale renewable energy projects in regions with carbon-intensive electrical grids: Big Elm Solar in Bell County, Texas, came online this year, and the Bowman Wind Project in Bowman County, North Dakota, is expected to be operational in 2026. Together, they will add a combined 408 megawatts (MW) of new renewable energy capacity to the power grid. This work is a critical part of MIT’s strategy to achieve its goal of net-zero carbon emissions by 2026.The Consortium for Climate Solutions, which includes MIT and 10 other Massachusetts organizations, seeks to eliminate close to 1 million metric tons of greenhouse gases each year — more than five times the annual direct emissions from MIT’s campus — by committing to purchase an estimated 1.3-million-megawatt hours of new solar and wind electricity generation annually.“MIT has mobilized on multiple fronts to expedite solutions to climate change,” says Glen Shor, executive vice president and treasurer. “Catalyzing these large-scale renewable projects is an important part of our comprehensive efforts to reduce carbon emissions from generating energy. We are pleased to work in partnership with other local enterprises and organizations to amplify the impact we could achieve individually.”The two new projects complement MIT’s existing 25-year power purchase agreement established with Summit Farms in 2016, which enabled the construction of a roughly 650-acre, 60 MW solar farm on farmland in North Carolina, leading to the early retirement of a coal-fired plant nearby. Its success has inspired other institutions to implement similar aggregation models.A collective approach to enable global impactMIT, Harvard University, and Mass General Brigham formed the consortium in 2020 to provide a structure to accelerate global emissions reductions through the development of large-scale renewable energy projects — accelerating and expanding the impact of each institution’s greenhouse gas reduction initiatives. As the project’s anchors, they collectively procured the largest volume of energy through the aggregation.  The consortium engaged with PowerOptions, a nonprofit energy-buying consortium, which offered its members the opportunity to participate in the projects. The City of Cambridge, Beth Israel Lahey, Boston Children’s Hospital, Dana-Farber Cancer Institute, Tufts University, the Mass Convention Center Authority, the Museum of Fine Arts, and GBH later joined the consortium through PowerOptions.  The consortium vetted over 125 potential projects against its rigorous project evaluation criteria. With faculty and MIT stakeholder input on a short list of the highest-ranking projects, it ultimately chose Bowman Wind and Big Elm Solar. Collectively, these two projects will achieve large greenhouse gas emissions reductions in two of the most carbon-intensive electrical grid regions in the United States and create clean energy generation sources to reduce negative health impacts.“Enabling these projects in regions where the grids are most carbon-intensive allows them to have the greatest impact. We anticipate these projects will prevent two times more emissions per unit of generated electricity than would a similar-scale project in New England,” explains Vice President for Campus Services and Stewardship Joe Higgins.By all consortium institutions making significant 15-to-20-year financial commitments to buy electricity, the developer was able to obtain critical external project financing to build the projects. Owned and operated by Apex Clean Energy, the projects will add new renewable electricity to the grid equivalent to powering 130,000 households annually, displacing over 950,000 metric tons of greenhouse gas emissions each year from highly carbon-intensive power plants in the region. Complementary decarbonization work underway In addition to investing in offsite renewable energy projects, many consortium members have developed strategies to reduce and eliminate their own direct emissions. At MIT, accomplishing this requires transformative change in how energy is generated, distributed, and used on campus. Efforts underway include the installation of solar panels on campus rooftops that will increase renewable energy generation four-fold by 2026; continuing to transition our heat distribution infrastructure from steam-based to hot water-based; utilizing design and construction that minimizes emissions and increases energy efficiency; employing AI-enabled sensors to optimize temperature set points and reduce energy use in buildings; and converting MIT’s vehicle fleet to all-electric vehicles while adding more electric car charging stations.The Institute has also upgraded the Central Utilities Plant, which uses advanced co-generation technology to produce power that is up to 20 percent less carbon-intensive than that from the regional power grid. MIT is charting the course toward a next-generation district energy system, with a comprehensive planning initiative to revolutionize its campus energy infrastructure. The effort is exploring leading-edge technology, including industrial-scale heat pumps, geothermal exchange, micro-reactors, bio-based fuels, and green hydrogen derived from renewable sources as solutions to achieve full decarbonization of campus operations by 2050.“At MIT, we are focused on decarbonizing our own campus as well as the role we can play in solving climate at the largest of scales, including supporting a cleaner grid in line with the call to triple renewables globally by 2030. By enabling these large-scale renewable projects, we can have an immediate and significant impact of reducing emissions through the urgently needed decarbonization of regional power grids,” says Julie Newman, MIT’s director of sustainability.   More

  • in

    J-PAL North America announces new evaluation incubator collaborators from state and local governments

    J-PAL North America recently selected government partners for the 2024-25 Leveraging Evaluation and Evidence for Equitable Recovery (LEVER) Evaluation Incubator cohort. Selected collaborators will receive funding and technical assistance to develop or launch a randomized evaluation for one of their programs. These collaborations represent jurisdictions across the United States and demonstrate the growing enthusiasm for evidence-based policymaking.Launched in 2023, LEVER is a joint venture between J-PAL North America and Results for America. Through the Evaluation Incubator, trainings, and other program offerings, LEVER seeks to address the barriers many state and local governments face around finding and generating evidence to inform program design. LEVER offers government leaders the opportunity to learn best practices for policy evaluations and how to integrate evidence into decision-making. Since the program’s inception, more than 80 government jurisdictions have participated in LEVER offerings.J-PAL North America’s Evaluation Incubator helps collaborators turn policy-relevant research questions into well-designed randomized evaluations, generating rigorous evidence to inform pressing programmatic and policy decisions. The program also aims to build a culture of evidence use and give government partners the tools to continue generating and utilizing evidence in their day-to-day operations.In addition to funding and technical assistance, the selected state and local government collaborators will be connected with researchers from J-PAL’s network to help advance their evaluation ideas. Evaluation support will also be centered on community-engaged research practices, which emphasize collaborating with and learning from the groups most affected by the program being evaluated.Evaluation Incubator selected projectsPierce County Human Services (PCHS) in the state of Washington will evaluate two programs as part of the Evaluation Incubator. The first will examine how extending stays in a fentanyl detox program affects the successful completion of inpatient treatment and hospital utilization for individuals. “PCHS is interested in evaluating longer fentanyl detox stays to inform our funding decisions, streamline our resource utilization, and encourage additional financial commitments to address the unmet needs of individuals dealing with opioid use disorder,” says Trish Crocker, grant coordinator.The second PCHS program will evaluate the impact of providing medication and outreach services via a mobile distribution unit to individuals with opioid use disorders on program take-up and substance usage. Margo Burnison, a behavioral health manager with PCHS, says that the team is “thrilled to be partnering with J-PAL North America to dive deep into the data to inform our elected leaders on the best way to utilize available resources.”The City of Los Angeles Youth Development Department (YDD) seeks to evaluate a research-informed program: Student Engagement, Exploration, and Development in STEM (SEEDS). This intergenerational STEM mentorship program supports underrepresented middle school and college students in STEM by providing culturally responsive mentorship. The program seeks to foster these students’ STEM identity and degree attainment in higher education. YDD has been working with researchers at the University of Southern California to measure the SEEDS program’s impact, but is interested in developing a randomized evaluation to generate further evidence. Darnell Cole, professor and co-director of the Research Center for Education, Identity and Social Justice, shares his excitement about the collaboration with J-PAL: “We welcome the opportunity to measure the impact of the SEEDS program on our students’ educational experience. Rigorously testing the SEEDS program will help us improve support for STEM students, ultimately enhancing their persistence and success.”The Fort Wayne Police Department’s Hope and Recovery Team in Indiana will evaluate the impact of two programs that connect social workers with people who have experienced an overdose, or who have a mental health illness, to treatment and resources. “We believe we are on the right track in the work we are doing with the crisis intervention social worker and the recovery coach, but having an outside evaluation of both programs would be extremely helpful in understanding whether and what aspects of these programs are most effective,” says Police Captain Kevin Hunter.The County of San Diego’s Office of Evaluation, Performance and Analytics, and Planning & Development Services will engage with J-PAL staff to explore evaluation opportunities for two programs that are a part of the county’s Climate Action Plan. The Equity-Driven Tree Planting Program seeks to increase tree canopy coverage, and the Climate Smart Land Stewardship Program will encourage climate-smart agricultural practices. Ricardo Basurto-Davila, chief evaluation officer, says that “the county is dedicated to evidence-based policymaking and taking decisive action against climate change. The work with J-PAL will support us in combining these commitments to maximize the effectiveness in decreasing emissions through these programs.”J-PAL North America looks forward to working with the selected collaborators in the coming months to learn more about these promising programs, clarify our partner’s evidence goals, and design randomized evaluations to measure their impact. More

  • in

    Tackling the energy revolution, one sector at a time

    As a major contributor to global carbon dioxide (CO2) emissions, the transportation sector has immense potential to advance decarbonization. However, a zero-emissions global supply chain requires re-imagining reliance on a heavy-duty trucking industry that emits 810,000 tons of CO2, or 6 percent of the United States’ greenhouse gas emissions, and consumes 29 billion gallons of diesel annually in the U.S. alone.A new study by MIT researchers, presented at the recent American Society of Mechanical Engineers 2024 International Design Engineering Technical Conferences and Computers and Information in Engineering Conference, quantifies the impact of a zero-emission truck’s design range on its energy storage requirements and operational revenue. The multivariable model outlined in the paper allows fleet owners and operators to better understand the design choices that impact the economic feasibility of battery-electric and hydrogen fuel cell heavy-duty trucks for commercial application, equipping stakeholders to make informed fleet transition decisions.“The whole issue [of decarbonizing trucking] is like a very big, messy pie. One of the things we can do, from an academic standpoint, is quantify some of those pieces of pie with modeling, based on information and experience we’ve learned from industry stakeholders,” says ZhiYi Liang, PhD student on the renewable hydrogen team at the MIT K. Lisa Yang Global Engineering and Research Center (GEAR) and lead author of the study. Co-authored by Bryony Dupont, visiting scholar at GEAR, and Amos Winter, the Germeshausen Professor in the MIT Department of Mechanical Engineering, the paper elucidates operational and socioeconomic factors that need to be considered in efforts to decarbonize heavy-duty vehicles (HDVs).Operational and infrastructure challengesThe team’s model shows that a technical challenge lies in the amount of energy that needs to be stored on the truck to meet the range and towing performance needs of commercial trucking applications. Due to the high energy density and low cost of diesel, existing diesel drivetrains remain more competitive than alternative lithium battery-electric vehicle (Li-BEV) and hydrogen fuel-cell-electric vehicle (H2 FCEV) drivetrains. Although Li-BEV drivetrains have the highest energy efficiency of all three, they are limited to short-to-medium range routes (under 500 miles) with low freight capacity, due to the weight and volume of the onboard energy storage needed. In addition, the authors note that existing electric grid infrastructure will need significant upgrades to support large-scale deployment of Li-BEV HDVs.While the hydrogen-powered drivetrain has a significant weight advantage that enables higher cargo capacity and routes over 750 miles, the current state of hydrogen fuel networks limits economic viability, especially once operational cost and projected revenue are taken into account. Deployment will most likely require government intervention in the form of incentives and subsidies to reduce the price of hydrogen by more than half, as well as continued investment by corporations to ensure a stable supply. Also, as H2-FCEVs are still a relatively new technology, the ongoing design of conformal onboard hydrogen storage systems — one of which is the subject of Liang’s PhD — is crucial to successful adoption into the HDV market.The current efficiency of diesel systems is a result of technological developments and manufacturing processes established over many decades, a precedent that suggests similar strides can be made with alternative drivetrains. However, interactions with fleet owners, automotive manufacturers, and refueling network providers reveal another major hurdle in the way that each “slice of the pie” is interrelated — issues must be addressed simultaneously because of how they affect each other, from renewable fuel infrastructure to technological readiness and capital cost of new fleets, among other considerations. And first steps into an uncertain future, where no one sector is fully in control of potential outcomes, is inherently risky. “Besides infrastructure limitations, we only have prototypes [of alternative HDVs] for fleet operator use, so the cost of procuring them is high, which means there isn’t demand for automakers to build manufacturing lines up to a scale that would make them economical to produce,” says Liang, describing just one step of a vicious cycle that is difficult to disrupt, especially for industry stakeholders trying to be competitive in a free market. Quantifying a path to feasibility“Folks in the industry know that some kind of energy transition needs to happen, but they may not necessarily know for certain what the most viable path forward is,” says Liang. Although there is no singular avenue to zero emissions, the new model provides a way to further quantify and assess at least one slice of pie to aid decision-making.Other MIT-led efforts aimed at helping industry stakeholders navigate decarbonization include an interactive mapping tool developed by Danika MacDonell, Impact Fellow at the MIT Climate and Sustainability Consortium (MCSC); alongside Florian Allroggen, executive director of MITs Zero Impact Aviation Alliance; and undergraduate researchers Micah Borrero, Helena De Figueiredo Valente, and Brooke Bao. The MCSC’s Geospatial Decision Support Tool supports strategic decision-making for fleet operators by allowing them to visualize regional freight flow densities, costs, emissions, planned and available infrastructure, and relevant regulations and incentives by region.While current limitations reveal the need for joint problem-solving across sectors, the authors believe that stakeholders are motivated and ready to tackle climate problems together. Once-competing businesses already appear to be embracing a culture shift toward collaboration, with the recent agreement between General Motors and Hyundai to explore “future collaboration across key strategic areas,” including clean energy. Liang believes that transitioning the transportation sector to zero emissions is just one part of an “energy revolution” that will require all sectors to work together, because “everything is connected. In order for the whole thing to make sense, we need to consider ourselves part of that pie, and the entire system needs to change,” says Liang. “You can’t make a revolution succeed by yourself.” The authors acknowledge the MIT Climate and Sustainability Consortium for connecting them with industry members in the HDV ecosystem; and the MIT K. Lisa Yang Global Engineering and Research Center and MIT Morningside Academy for Design for financial support. More

  • in

    “Mens et manus” in Guatemala

    In a new, well-equipped lab at the University del Valle de Guatemala (UVG) in June 2024, members of two Mayan farmers’ cooperatives watched closely as Rodrigo Aragón, professor of mechanical engineering at UVG, demonstrated the operation of an industrial ultrasound machine. Then he invited each of them to test the device.“For us, it is a dream to be able to interact with technology,” said Francisca Elizabeth Saloj Saloj, a member of the Ija´tz women’s collective, a group from Guatemala’s highlands.After a seven-hour bumpy bus ride, the farmers had arrived in Guatemala City with sacks full of rosemary, chamomile, and thyme. Their objective: to explore processes for extracting essential oils from their plants and to identify new products to manufacture with these oils. Currently, farmers sell their herbs in local markets for medicinal or culinary purposes. With new technology, says Aragón, they can add value to their harvest, using herb oils as the basis for perfumes, syrups, and tinctures that would reach broader markets. These goods could provide much-needed income to the farmers’ households.A strategy for transformationThis collaboration is just one part of a five-year, $15-million project funded by the U.S. Agency for International Development (USAID) and managed by MIT’s Department of Mechanical Engineering in collaboration with UVG and the Guatemalan Export Association (AGEXPORT). Launched in 2021 and called ASPIRE — Achieving Sustainable Partnerships for Innovation, Research, and Entrepreneurship — the project aims to collaboratively strengthen UVG, and eventually other universities in Central America, as problem-solving powerhouses that research, design, and build solutions with and for the people most in need.“The vision of ASPIRE is that within a decade, UVG researchers are collaborating with community members on research that generates results that are relevant to addressing local development challenges — results that are picked up and used by policymakers and actors in the private sector,” says MIT Research Scientist Elizabeth Hoffecker, a co-principal investigator of ASPIRE at MIT, and leader of the Institute’s Local Innovation Group.UVG, one of Guatemala’s top universities, has embraced ASPIRE as part of its long-term strategic plan, and is now pursuing wide-ranging changes based on a playbook developed at MIT — including at MIT D-Lab, which deploys participatory design, co-creation, low-cost technologies, and capacity building to meet the complex challenges of poverty — and piloted at UVG. The ASPIRE team is working to extend the reach of its research innovation and entrepreneurship activities to its two regional campuses and to other regional universities. The overall program is informed by MIT’s approach to development of research-driven innovation ecosystems.Although lacking the resources (and PhD programs) of a typical U.S. university, UVG has big ambitions for itself, and for Guatemala.“We want to thrive and lead the country in research and teaching, and to accomplish this, we are creating an innovation and entrepreneurship ecosystem, based on best practices drawn from D-Lab and other MIT groups,” says Mónica Stein, vice-rector for research and outreach at UVG, who holds a doctorate from Stanford University in plant biology. “ASPIRE can really change the way that development work and local research is done so that it has more impact,” says Stein. “And in theory, if you have more impact, then you improve environmental outcomes, health outcomes, educational outcomes, and economic outcomes.”Local innovation and entrepreneurshipShifting gears at a university and launching novel development initiatives are complex challenges, but with training and workshops conducted by D-Lab-trained collaborators and MIT-based ASPIRE staff, UVG faculty, staff, and students are embracing the change. Programs underway should sound familiar to anyone who has set foot recently on the campus of a U.S. research university: hackathons, makerspaces, pitchapaloozas, entrepreneurship competitions, and spinouts. But at UVG, all of these serve a larger purpose: addressing sustainable development goals.ASPIRE principal investigator Daniel Frey, professor of mechanical engineering at MIT, believes some of these programs are already paying off, particularly a UVG venture mentoring service (VMS), modeled after and facilitated by MIT’s own VMS program. “We’d like to see students building companies and improving their livelihoods and those of people from indigenous and marginalized communities,” says Frey.The ASPIRE project intends to enable the lowest-income communities to share more of Guatemala’s wealth, derived mainly from agricultural goods. In collaborating with AGEXPORT, which enables networking with companies across the country, the team zeroed in on creating or enhancing the value chain for several key crops.“Snow peas offer a great target for both research and innovation,” says Adilia Blandón, ASPIRE research project manager and professor of food engineering at UVG. Many farming communities grow snow peas, which they send along to companies for export to the U.S. Unless these peas are perfect in shape and color, Blandón explains, they don’t make it to market. Nearly a third of Guatemala’s crop is left at processing plants, turned into animal feed, or wasted.An ASPIRE snow pea team located farmers from two cooperatives who wanted to solve this problem. At a series of co-creation sessions, these growers and mechanical engineers at UVG developed a prototype for a low-tech cart for collecting snow peas, made from easily acquired local materials, which can navigate the steep and narrow paths on the hills where the plants grow. This method avoids crushing snow peas in a conventional harvest bag. In addition, the snow pea project has engaged women at a technical school to design a harvest apron for women snow pea farmers. “This could be a business opportunity for them,” Blandón says.Blandón vividly recalls her first ASPIRE workshop, focused on participatory design. “It opened my eyes as a researcher in so many ways,” she says. “I learned that instead of taking information from people, I can learn from them and create things with them that they are really excited about.” It completely changed how she approaches research, she says.Working with Mayan communities that produce snow peas, where malnourishment and illness are rampant, Blandón and ASPIRE researchers found that families don’t eat the protein-packed vegetable because they don’t find it palatable — even though so much of it is left over from harvest. Participatory design sessions with a group of mothers yielded an intriguing possibility: grinding snow peas into flour, which would then be incorporated into traditional bean- and corn-based dishes. The recipes born of this collaboration could land on WhatsApp or TikTok, mobile apps familiar to these families.Building value chainsAdditional research projects are teasing out novel ways of adding value to the products grown or made by Guatemalan hands.These include an educational toolkit developed with government farm extension workers to teach avocado producers how to improve their practices. The long-term goal is to grow and export larger and unblemished fruit for the lucrative U.S. market, currently dominated by Mexico. The kit, featuring simple graphics for growers who can’t read or don’t have the time, offers lessons on soil care, fertilizing, and protecting the fruit post-harvest.ASPIRE UVG Research Director Ana Lucia Solano is especially proud of “an immersive, animated, Monopoly-like game that shows farmers the impact of activities like buying fertilizer on their finances,” she says. “If small producers improve their practices, they will have better opportunities to sell their products at a better price, which may allow them to hire more people, teach others more easily, and offer better jobs and working conditions — and maybe this will help prevent farmworkers from having to leave the country.”Solano has just begun a similar program to educate cocoa producers. “The cocoa of Guatemala is wonderful, but the growers, who have great native knowledge, also need to learn new methods so they can transform their chocolate into the kind of high-quality product expected in European markets, with the help of AGEXPORT,” she says.At the UVG Altiplano campus, Mayan instructor Jeremías Morales, who runs the maker space, trained with Amy Smith, an MIT senior lecturer and founding director of the D-Lab, to facilitate creative capacity-building programs. He is working with nearby villages on a solution for the backbreaking labor of planting broccoli seedlings.“Here in Guatemala, small farm holders don’t have technology to do this task,” says Solano. Through design and prototyping workshops, the village and UVG professors have developed an inexpensive device that accomplishes this painful work. “After their next iteration of this technology, we can support the participants in starting a business,” says Solano.Opportunities to invent solutions to commonplace but vexing problems keep popping up. A small village of 100 families has to share two mills to grind corn for their tortillas. It’s a major household expense. With ASPIRE facilitators, a group of women designed a prototype corn mill for home use. “They were skeptical at first, especially when their initial prototypes didn’t work,” reports Solano, “but when they finally succeeded, there was so much excitement about the results, an energy and happiness that you could feel in the room.”Adopting an MIT mindsetThis feeling of empowerment, a pillar of sustainable development, has great meaning for UVG Professor Victor Hugo Ayerdi, an ASPIRE project manager and director of UVG’s Department of Mechanical Engineering.“In college and after I graduated, I thought since everything came from developed countries, and I was in a developing country, I couldn’t invent products.” With that mindset, he says, he went to work in manufacturing and sales for an international tire manufacturing company.But when he arrived at UVG in 2009, Ayerdi heard from mechanical engineering students who craved practical experience designing and building things. Determined to create maker spaces for the three UVG campuses, he took a field trip to MIT, whose motto is “mens et manus” or “mind and hand.”“The trip changed my life,” he says. “The MIT mindset is to believe in yourself, try things, and fail, but assume there has to be a way to do it.” As a result, he says, he realized UVG faculty and students could also use scientific and engineering knowledge to invent products, become entrepreneurs, spark economic growth; they had the capacity. He and other UVG colleagues were primed for change when the ASPIRE opportunity emerged.As some ASPIRE research projects wind down their initial phases, others are just gearing up, including an effort to fashion a water purification system from the shells of farmed shrimp. “We are only just starting to get results from our research,” says Stein. “But we are totally betting on the ASPIRE model because it works at MIT and other places.”The ASPIRE researchers acknowledge they are looking at long timelines to make significant inroads against environmental, health, educational, and economic challenges.“My greatest hope is that ASPIRE will have planted the seed of this innovation and entrepreneurship ecosystem model, and that in a decade, UVG will have optimized the different programs, whether in training, entrepreneurship, or research, enough to actively transfer them to other Central American universities,” says Stein.“We would like to be the hub of this network and we want to stay connected, because, in theory, we can work together on problems that we have in common in our region. That would be really cool.” More

  • in

    Preparing Taiwan for a decarbonized economy

    The operations of Taiwan’s electronics, manufacturing, and financial firms vary widely, but their leaders all have at least one thing in common: They recognize the role that a changing energy landscape will play in their future success, and they’re actively planning for that transition.“They’re all interested in how Taiwan can supply energy for its economy going forward — energy that meets global goals for decarbonization,” says Robert C. Armstrong, the Chevron Professor of Chemical Engineering Emeritus at MIT, as well as a principal investigator for the Taiwan Innovative Green Economy Roadmap (TIGER) program. “Each company is going to have its own particular needs. For example, financial companies have data centers that need energy 24/7, with no interruptions. But the need for a robust, reliable, resilient energy system is shared among all of them.”Ten Taiwanese companies are participating in TIGER, a two-year program with the MIT Energy Initiative (MITEI) to explore various ways that industry and government can promote and adopt technologies, practices, and policies that will keep Taiwan competitive amid a quickly changing energy landscape. MIT research teams are exploring a set of six topics during the first year of the program, with plans to tackle a second set of topics during the second year, eventually leading to a roadmap to green energy security for Taiwan.“We are helping them to understand green energy technologies, we are helping them to understand how policies around the world might affect supply chains, and we are helping them to understand different pathways for their domestic policies,” says Sergey Paltsev, a principal investigator for the TIGER program, as well as a deputy director of the MIT Center for Sustainability Science and Strategy and a senior research scientist at MITEI. “We are looking at how Taiwan will be affected in terms of the cost of doing business and how to preserve the competitive advantage of its export-oriented industries.”“The biggest question,” Paltsev adds, “is how Taiwanese companies can decarbonize their energy in a sustainable manner.”Why Taiwan?Paul Hsu, founding partner of the Taiwanese business consultancy Paul Hsu and Partners (one of the 10 participating TIGER companies), as well as founding chair and current board member of the Epoch Foundation, has been working for more than 30 years to forge collaborations between business leaders in Taiwan and MIT researchers. The energy challenges facing Taiwanese businesses, as well as their place in the global supply chain, make the TIGER program critical not only to improve environmental sustainability, but also to ensure future competitiveness, he says. “The energy field is facing revolution,” Hsu says. “Taiwanese companies are not operating in Taiwan alone, but also operating worldwide, and we are affected by the global supply chain. We need to diversify our businesses and our energy resources, and the first thing we’re looking for in this partnership is education — an understanding about how to orient Taiwanese industry toward the future of energy.”Wendy Duan, the program director of the Asia Pacific program at MITEI, notes that Taiwan has a number of similarities to places such as Singapore and Japan. The lessons learned through the TIGER program, she says, will likely be applicable — at least on some level — to other markets throughout Asia, and even around the world.“Taiwan is very much dependent on imported energy,” Duan notes. “Many countries in East Asia are facing similar challenges, and if Taiwan has a good roadmap for the future of energy, it can be a good role model.”“Taiwan is a great place for this sort of collaboration,” Armstrong says. “Their industry is very innovative, and it’s a place where businesses are willing to implement new, important ideas. At the same time, their economy is highly dependent on trade, and they import a lot of fossil fuels today. To compete in a decarbonized global economy, they’re going to have to find alternatives to that. If you can develop a path from today’s economy in Taiwan to a future manufacturing economy that is decarbonized, then that gives you a lot of interesting tools you could bring to bear in other economies.”Uncovering solutionsStakeholders from MIT and the participating companies meet for monthly webinars and biannual in-person workshops (alternating between Cambridge, Massachusetts, and Taipei) to discuss progress. The research addresses options for Taiwan to increase its supply of green energy, methods for storing and distributing that energy more efficiently, policy levers for implementing these changes, and Taiwan’s place in the global energy economy.“The project on the electric grid, the project on storage, and the project on hydrogen — all three of those are related to the issue of how to decarbonize power generation and delivery,” notes Paltsev. “But we also need to understand how things in other parts of the world are going to affect demand for the products that are produced in Taiwan. If there is a huge change in demand for certain products due to decarbonization, Taiwanese companies are going to feel it. Therefore, the companies want to understand where the demand is going to be coming from, and how to adjust their business strategies.”One of the research projects is looking closely at advanced nuclear power. There are significant political roadblocks standing in the way, but business leaders are intrigued by the prospect of nuclear energy in Taiwan, where available land for wind and solar power generation is sparse.“So far, Taiwan government policy is anti-nuclear,” Hsu says. “The current ruling party is against it. They are still thinking about what happened in the 1960s and 1970s, and they think nuclear is very dangerous. But if you look into it, nuclear generation technology has really improved.”Implementing a green economy roadmapTIGER participants’ interest in green energy solutions is, of course, not merely academic. Ultimately, the success of the program will be determined not only by the insights from the research produced over these two years, but by how these findings constructively inform both the private and public sectors.“MIT and TIGER participants are united in their commitment to advancing regional industrial and economic development, while championing decarbonization and sustainability efforts in Taiwan,” Duan says. “MIT researchers are informed by insights and domain expertise contributed by TIGER participants, believing that their collaborative efforts can help other nations facing similar geo-economic challenges.”“We are helping the companies understand how to stay leaders in this changing world,” says Paltsev. “We want to make sure that we are not painting an unrealistically rosy picture, or conveying that it will be easy to decarbonize. On the contrary, we want to stay realistic and try to show them both where they can make advances and where we see challenges.”The goal, Armstrong says, is not energy independence for Taiwan, but rather energy security. “Energy security requires diversity of supply,” he says. “So, you have a diverse set of suppliers, who are trusted trading partners, but it doesn’t mean you’re on your own. That’s the goal for Taiwan.”What will that mean, more specifically? Well, that’s what TIGER researchers aim to learn. “It probably means a mix of energy sources,” Armstrong says. “It could be that nuclear fission provides a core of energy that companies need for their industrial operations, it could be that they can import hydrogen in the form of ammonia or another carrier, and it could be that they leverage the renewable resources they have, together with storage technologies, to provide some pretty inexpensive energy for their manufacturing sector.”“We don’t know,” Armstrong adds. “But that’s what we’re looking at, to see if we can figure out a pathway that gets them to their goals. We are optimistic that we can get there.”The companies participating in the TIGER program include AcBel Polytech Inc., CDIB Capital Group / KGI Bank Co., Ltd.; Delta Electronics, Inc.; Fubon Financial Holding Co., Ltd.; Paul Hsu and Partners Co., Ltd.; Ta Ya Electric Wire & Cable Co., Ltd.; TCC Group Holdings Co. Ltd.; Walsin Lihwa Corporation; Wistron Corporation; and Zhen Ding Technology Holding, Ltd. More

  • in

    Aspiring to sustainable development

    In a first for both universities, MIT undergraduates are engaged in research projects at the Universidad del Valle de Guatemala (UVG), while MIT scholars are collaborating with UVG undergraduates on in-depth field studies in Guatemala.These pilot projects are part of a larger enterprise, called ASPIRE (Achieving Sustainable Partnerships for Innovation, Research, and Entrepreneurship). Funded by the U.S. Agency for International Development, this five-year, $15-million initiative brings together MIT, UVG, and the Guatemalan Exporters Association to promote sustainable solutions to local development challenges.“This research is yielding insights into our understanding of how to design with and for marginalized people, specifically Indigenous people,” says Elizabeth Hoffecker, co-principal investigator of ASPIRE at MIT and director of the MIT Local Innovation Group.The students’ work is bearing fruit in the form of publications and new products — directly advancing ASPIRE’s goals to create an innovation ecosystem in Guatemala that can be replicated elsewhere in Central and Latin America.For the students, the project offers rewards both tangible and inspirational.“My experience allowed me to find my interest in local innovation and entrepreneurship,” says Ximena Sarmiento García, a fifth-year undergraduate at UVG majoring in anthropology. Supervised by Hoffecker, Sarmiento García says, “I learned how to inform myself, investigate, and find solutions — to become a researcher.”Sandra Youssef, a rising junior in mechanical engineering at MIT, collaborated with UVG researchers and Indigenous farmers to design a mobile cart to improve the harvest yield of snow peas. “It was perfect for me,” she says. “My goal was to use creative, new technologies and science to make a dent in difficult problems.”Remote and effectiveKendra Leith, co-principal investigator of ASPIRE, and associate director for research at MIT D-Lab, shaped the MIT-based undergraduate research opportunities (UROPs) in concert with UVG colleagues. “Although MIT students aren’t currently permitted to travel to Guatemala, I wanted them to have an opportunity to apply their experience and knowledge to address real-world challenges,” says Leith. “The Covid pandemic prepared them and their counterparts at UVG for effective remote collaboration — the UROPs completed remarkably productive research projects over Zoom and met our goals for them.”MIT students participated in some of UVG’s most ambitious ASPIRE research. For instance, Sydney Baller, a rising sophomore in mechanical engineering, joined a team of Indigenous farmers and UVG mechanical engineers investigating the manufacturing process and potential markets for essential oils extracted from thyme, rosemary, and chamomile plants.“Indigenous people have thousands of years working with plant extracts and ancient remedies,” says Baller. “There is promising history there that would be important to follow up with more modern research.”Sandra Youssef used computer-aided design and manufacturing to realize a design created in a hackathon by snow pea farmers. “Our cart had to hold 495 pounds of snow peas without collapsing or overturning, navigate narrow paths on hills, and be simple and inexpensive to assemble,” she says. The snow pea producers have tested two of Youssef’s designs, built by a team at UVG led by Rony Herrarte, a faculty member in the department of mechanical engineering.From waste to filterTwo MIT undergraduates joined one of UVG’s long-standing projects: addressing pollution in Guatemala’s water. The research seeks to use chitosan molecules, extracted from shrimp shells, for bioremediation of heavy metals and other water contaminants. These shells are available in abundance, left as waste by the country’s shrimp industry.Sophomores Ariana Hodlewsky, majoring in chemical engineering, and Paolo Mangiafico, majoring in brain and cognitive sciences, signed on to work with principal investigator and chemistry department instructor Allan Vásquez (UVG) on filtration systems utilizing chitosan.“The team wants to find a cost-effective product rural communities, most at risk from polluted water, can use in homes or in town water systems,” says Mangiafico. “So we have been investigating different technologies for water filtration, and analyzing the Guatemalan and U.S. markets to understand the regulations and opportunities that might affect introduction of a chitosan-based product.”“Our research into how different communities use water and into potential consumers and pitfalls sets the scene for prototypes UVG wants to produce,” says Hodlewsky.Lourdes Figueroa, UVG ASPIRE project manager for technology transfer, found their assistance invaluable.“Paolo and Ariana brought the MIT culture and mindset to the project,” she says. “They wanted to understand not only how the technology works, but the best ways of getting the technology out of the lab to make it useful.”This was an “Aha!” moment, says Figueroa. “The MIT students made a major contribution to both the engineering and marketing sides by emphasizing that you have to think about how to guarantee the market acceptance of the technology while it is still under development.”Innovation ecosystemsUVG’s three campuses have served as incubators for problem-solving innovation and entrepreneurship, in many cases driven by students from Indigenous communities and families. In 2022, Elizabeth Hoffecker, with eight UVG anthropology majors, set out to identify the most vibrant examples of these collaborative initiatives, which ASPIRE seeks to promote and replicate.Hoffecker’s “innovation ecosystem diagnostic” revealed a cluster of activity centered on UVG’s Altiplano campus in the central highlands, which serves Mayan communities. Hoffecker and two of the anthropology students focused on four examples for a series of case studies, which they are currently preparing for submission to a peer-reviewed journal.“The caliber of their work was so good that it became clear to me that we could collaborate on a paper,” says Hoffecker. “It was my first time publishing with undergraduates.”The researchers’ cases included novel production of traditional thread, and creation of a 3D phytoplankton kit that is being used to educate community members about water pollution in Lake Atitlán, a tourist destination that drives the local economy but is increasingly being affected by toxic algae blooms. Hoffecker singles out a project by Indigenous undergraduates who developed play-based teaching tools for introducing basic mathematical concepts.“These connect to local Mayan ways of understanding and offer a novel, hands-on way to strengthen the math teaching skills of local primary school teachers in Indigenous communities,” says Hoffecker. “They created something that addresses a very immediate need in the community — lack of training.Both of Hoffecker’s undergraduate collaborators are writing theses inspired by these case studies.“My time with Elizabeth allowed me to learn how to conduct research from scratch, ask for help, find solutions, and trust myself,” says Sarmiento García. She finds the ASPIRE approach profoundly appealing. “It is not only ethical, but also deeply committed to applying results to the real lives of the people involved.”“This experience has been incredibly positive, validating my own ability to generate knowledge through research, rather than relying only on established authors to back up my arguments,” says Camila del Cid, a fifth-year anthropology student. “This was empowering, especially as a Latin American researcher, because it emphasized that my perspective and contributions are important.”Hoffecker says this pilot run with UVG undergrads produced “high-quality research that can inform evidence-based decision-making on development issues of top regional priority” — a key goal for ASPIRE. Hoffecker plans to “develop a pathway that other UVG students can follow to conduct similar research.”MIT undergraduate research will continue. “Our students’ activities have been very valuable in Guatemala, so much so that the snow pea, chitosan, and essential oils teams would like to continue working with our students this year,” says Leith.  She anticipates a new round of MIT UROPs for next summer.Youssef, for one, is eager to get to work on refining the snow pea cart. “I like the idea of working outside my comfort zone, thinking about things that seem unsolvable and coming up with a solution to fix some aspect of the problem,” she says. More

  • in

    3 Questions: Bridging anthropology and engineering for clean energy in Mongolia

    In 2021, Michael Short, an associate professor of nuclear science and engineering, approached professor of anthropology Manduhai Buyandelger with an unusual pitch: collaborating on a project to prototype a molten salt heat bank in Mongolia, Buyandelger’s country of origin and place of her scholarship. It was also an invitation to forge a novel partnership between two disciplines that rarely overlap. Developed in collaboration with the National University of Mongolia (NUM), the device was built to provide heat for people in colder climates, and in places where clean energy is a challenge. Buyandelger and Short teamed up to launch Anthro-Engineering Decarbonization at the Million-Person Scale, an initiative intended to advance the heat bank idea in Mongolia, and ultimately demonstrate its potential as a scalable clean heat source in comparably challenging sites around the world. This project received funding from the inaugural MIT Climate and Sustainability Consortium Seed Awards program. In order to fund various components of the project, especially student involvement and additional staff, the project also received support from the MIT Global Seed Fund, New Engineering Education Transformation (NEET), Experiential Learning Office, Vice Provost for International Activities, and d’Arbeloff Fund for Excellence in Education.As part of this initiative, the partners developed a special topic course in anthropology to teach MIT undergraduates about Mongolia’s unique energy and climate challenges, as well as the historical, social, and economic context in which the heat bank would ideally find a place. The class 21A.S01 (Anthro-Engineering: Decarbonization at the Million-Person Scale) prepares MIT students for a January Independent Activities Period (IAP) trip to the Mongolian capital of Ulaanbaatar, where they embed with Mongolian families, conduct research, and collaborate with their peers. Mongolian students also engaged in the project. Anthropology research scientist and lecturer Lauren Bonilla, who has spent the past two decades working in Mongolia, joined to co-teach the class and lead the IAP trips to Mongolia. With the project now in its third year and yielding some promising solutions on the ground, Buyandelger and Bonilla reflect on the challenges for anthropologists of advancing a clean energy technology in a developing nation with a unique history, politics, and culture. Q: Your roles in the molten salt heat bank project mark departures from your typical academic routine. How did you first approach this venture?Buyandelger: As an anthropologist of contemporary religion, politics, and gender in Mongolia, I have had little contact with the hard sciences or building or prototyping technology. What I do best is listening to people and working with narratives. When I first learned about this device for off-the-grid heating, a host of issues came straight to mind right away that are based on socioeconomic and cultural context of the place. The salt brick, which is encased in steel, must be heated to 400 degrees Celsius in a central facility, then driven to people’s homes. Transportation is difficult in Ulaanbaatar, and I worried about road safety when driving the salt brick to gers [traditional Mongolian homes] where many residents live. The device seemed a bit utopian to me, but I realized that this was an amazing educational opportunity: We could use the heat bank as part of an ethnographic project, so students could learn about the everyday lives of people — crucially, in the dead of winter — and how they might respond to this new energy technology in the neighborhoods of Ulaanbaatar.Bonilla: When I first went to Mongolia in the early 2000s as an undergraduate student, the impacts of climate change were already being felt. There had been a massive migration to the capital after a series of terrible weather events that devastated the rural economy. Coal mining had emerged as a vital part of the economy, and I was interested in how people regarded this industry that both provided jobs and damaged the air they breathed. I am trained as a human geographer, which involves seeing how things happening in a local place correspond to things happening at a global scale. Thinking about climate or sustainability from this perspective means making linkages between social life and environmental life. In Mongolia, people associated coal with national progress. Based on historical experience, they had low expectations for interventions brought by outsiders to improve their lives. So my first take on the molten salt project was that this was no silver bullet solution. At the same time, I wanted to see how we could make this a great project-based learning experience for students, getting them to think about the kind of research necessary to see if some version of the molten salt would work.Q: After two years, what lessons have you and the students drawn from both the class and the Ulaanbaatar field trips?Buyandelger: We wanted to make sure MIT students would not go to Mongolia and act like consultants. We taught them anthropological methods so they could understand the experiences of real people and think about how to bring people and new technologies together. The students, from engineering and anthropological and social science backgrounds, became critical thinkers who could analyze how people live in ger districts. When they stay with families in Ulaanbaatar in January, they not only experience the cold and the pollution, but they observe what people do for work, how parents care for their children, how they cook, sleep, and get from one place to another. This enables them to better imagine and test out how these people might utilize the molten salt heat bank in their homes.Bonilla: In class, students learn that interventions like this often fail because the implementation process doesn’t work, or the technology doesn’t meet people’s real needs. This is where anthropology is so important, because it opens up the wider landscape in which you’re intervening. We had really difficult conversations about the professional socialization of engineers and social scientists. Engineers love to work within boxes, but don’t necessarily appreciate the context in which their invention will serve.As a group, we discussed the provocative notion that engineers construct and anthropologists deconstruct. This makes it seem as if engineers are creators, and anthropologists are brought in as add-ons to consult and critique engineers’ creations. Our group conversation concluded that a project such as ours benefits from an iterative back-and-forth between the techno-scientific and humanistic disciplines.Q: So where does the molten salt brick project stand?Bonilla: Our research in Mongolia helped us produce a prototype that can work: Our partners at NUM are developing a hybrid stove that incorporates the molten salt brick. Supervised by instructor Nathan Melenbrink of MIT’s NEET program, our engineering students have been involved in this prototyping as well.The concept is for a family to heat it up using a coal fire once a day and it warms their home overnight. Based on our anthropological research, we believe that this stove would work better than the device as originally conceived. It won’t eliminate coal use in residences, but it will reduce emissions enough to have a meaningful impact on ger districts in Ulaanbaatar. The challenge now is getting funding to NUM so they can test different salt combinations and stove models and employ local blacksmiths to work on the design.This integrated stove/heat bank will not be the ultimate solution to the heating and pollution crisis in Mongolia. But it will be something that can inspire even more ideas. We feel with this project we are planting all kinds of seeds that will germinate in ways we cannot anticipate. It has sparked new relationships between MIT and Mongolian students, and catalyzed engineers to integrate a more humanistic, anthropological perspective in their work.Buyandelger: Our work illustrates the importance of anthropology in responding to the unpredictable and diverse impacts of climate change. Without our ethnographic research — based on participant observation and interviews, led by Dr. Bonilla, — it would have been impossible to see how the prototyping and modifications could be done, and where the molten salt brick could work and what shape it needed to take. This project demonstrates how indispensable anthropology is in moving engineering out of labs and companies and directly into communities.Bonilla: This is where the real solutions for climate change are going to come from. Even though we need solutions quickly, it will also take time for new technologies like molten salt bricks to take root and grow. We don’t know where the outcomes of these experiments will take us. But there’s so much that’s emerging from this project that I feel very hopeful about. More