More stories

  • in

    Improving predictions of sea level rise for the next century

    When we think of climate change, one of the most dramatic images that comes to mind is the loss of glacial ice. As the Earth warms, these enormous rivers of ice become a casualty of the rising temperatures. But, as ice sheets retreat, they also become an important contributor to one the more dangerous outcomes of climate change: sea-level rise. At MIT, an interdisciplinary team of scientists is determined to improve sea level rise predictions for the next century, in part by taking a closer look at the physics of ice sheets.

    Last month, two research proposals on the topic, led by Brent Minchew, the Cecil and Ida Green Career Development Professor in the Department of Earth, Atmospheric and Planetary Sciences (EAPS), were announced as finalists in the MIT Climate Grand Challenges initiative. Launched in July 2020, Climate Grand Challenges fielded almost 100 project proposals from collaborators across the Institute who heeded the bold charge: to develop research and innovations that will deliver game-changing advances in the world’s efforts to address the climate challenge.

    As finalists, Minchew and his collaborators from the departments of Urban Studies and Planning, Economics, Civil and Environmental Engineering, the Haystack Observatory, and external partners, received $100,000 to develop their research plans. A subset of the 27 proposals tapped as finalists will be announced next month, making up a portfolio of multiyear “flagship” projects receiving additional funding and support.

    One goal of both Minchew proposals is to more fully understand the most fundamental processes that govern rapid changes in glacial ice, and to use that understanding to build next-generation models that are more predictive of ice sheet behavior as they respond to, and influence, climate change.

    “We need to develop more accurate and computationally efficient models that provide testable projections of sea-level rise over the coming decades. To do so quickly, we want to make better and more frequent observations and learn the physics of ice sheets from these data,” says Minchew. “For example, how much stress do you have to apply to ice before it breaks?”

    Currently, Minchew’s Glacier Dynamics and Remote Sensing group uses satellites to observe the ice sheets on Greenland and Antarctica primarily with interferometric synthetic aperture radar (InSAR). But the data are often collected over long intervals of time, which only gives them “before and after” snapshots of big events. By taking more frequent measurements on shorter time scales, such as hours or days, they can get a more detailed picture of what is happening in the ice.

    “Many of the key unknowns in our projections of what ice sheets are going to look like in the future, and how they’re going to evolve, involve the dynamics of glaciers, or our understanding of how the flow speed and the resistances to flow are related,” says Minchew.

    At the heart of the two proposals is the creation of SACOS, the Stratospheric Airborne Climate Observatory System. The group envisions developing solar-powered drones that can fly in the stratosphere for months at a time, taking more frequent measurements using a new lightweight, low-power radar and other high-resolution instrumentation. They also propose air-dropping sensors directly onto the ice, equipped with seismometers and GPS trackers to measure high-frequency vibrations in the ice and pinpoint the motions of its flow.

    How glaciers contribute to sea level rise

    Current climate models predict an increase in sea levels over the next century, but by just how much is still unclear. Estimates are anywhere from 20 centimeters to two meters, which is a large difference when it comes to enacting policy or mitigation. Minchew points out that response measures will be different, depending on which end of the scale it falls toward. If it’s closer to 20 centimeters, coastal barriers can be built to protect low-level areas. But with higher surges, such measures become too expensive and inefficient to be viable, as entire portions of cities and millions of people would have to be relocated.

    “If we’re looking at a future where we could get more than a meter of sea level rise by the end of the century, then we need to know about that sooner rather than later so that we can start to plan and to do our best to prepare for that scenario,” he says.

    There are two ways glaciers and ice sheets contribute to rising sea levels: direct melting of the ice and accelerated transport of ice to the oceans. In Antarctica, warming waters melt the margins of the ice sheets, which tends to reduce the resistive stresses and allow ice to flow more quickly to the ocean. This thinning can also cause the ice shelves to be more prone to fracture, facilitating the calving of icebergs — events which sometimes cause even further acceleration of ice flow.

    Using data collected by SACOS, Minchew and his group can better understand what material properties in the ice allow for fracturing and calving of icebergs, and build a more complete picture of how ice sheets respond to climate forces. 

    “What I want is to reduce and quantify the uncertainties in projections of sea level rise out to the year 2100,” he says.

    From that more complete picture, the team — which also includes economists, engineers, and urban planning specialists — can work on developing predictive models and methods to help communities and governments estimate the costs associated with sea level rise, develop sound infrastructure strategies, and spur engineering innovation.

    Understanding glacier dynamics

    More frequent radar measurements and the collection of higher-resolution seismic and GPS data will allow Minchew and the team to develop a better understanding of the broad category of glacier dynamics — including calving, an important process in setting the rate of sea level rise which is currently not well understood.  

    “Some of what we’re doing is quite similar to what seismologists do,” he says. “They measure seismic waves following an earthquake, or a volcanic eruption, or things of this nature and use those observations to better understand the mechanisms that govern these phenomena.”

    Air-droppable sensors will help them collect information about ice sheet movement, but this method comes with drawbacks — like installation and maintenance, which is difficult to do out on a massive ice sheet that is moving and melting. Also, the instruments can each only take measurements at a single location. Minchew equates it to a bobber in water: All it can tell you is how the bobber moves as the waves disturb it.

    But by also taking continuous radar measurements from the air, Minchew’s team can collect observations both in space and in time. Instead of just watching the bobber in the water, they can effectively make a movie of the waves propagating out, as well as visualize processes like iceberg calving happening in multiple dimensions.

    Once the bobbers are in place and the movies recorded, the next step is developing machine learning algorithms to help analyze all the new data being collected. While this data-driven kind of discovery has been a hot topic in other fields, this is the first time it has been applied to glacier research.

    “We’ve developed this new methodology to ingest this huge amount of data,” he says, “and from that create an entirely new way of analyzing the system to answer these fundamental and critically important questions.”  More

  • in

    New program bolsters innovation in next-generation artificial intelligence hardware

    The MIT AI Hardware Program is a new academia and industry collaboration aimed at defining and developing translational technologies in hardware and software for the AI and quantum age. A collaboration between the MIT School of Engineering and MIT Schwarzman College of Computing, involving the Microsystems Technologies Laboratories and programs and units in the college, the cross-disciplinary effort aims to innovate technologies that will deliver enhanced energy efficiency systems for cloud and edge computing.

    “A sharp focus on AI hardware manufacturing, research, and design is critical to meet the demands of the world’s evolving devices, architectures, and systems,” says Anantha Chandrakasan, dean of the MIT School of Engineering and Vannevar Bush Professor of Electrical Engineering and Computer Science. “Knowledge-sharing between industry and academia is imperative to the future of high-performance computing.”

    Based on use-inspired research involving materials, devices, circuits, algorithms, and software, the MIT AI Hardware Program convenes researchers from MIT and industry to facilitate the transition of fundamental knowledge to real-world technological solutions. The program spans materials and devices, as well as architecture and algorithms enabling energy-efficient and sustainable high-performance computing.

    “As AI systems become more sophisticated, new solutions are sorely needed to enable more advanced applications and deliver greater performance,” says Daniel Huttenlocher, dean of the MIT Schwarzman College of Computing and Henry Ellis Warren Professor of Electrical Engineering and Computer Science. “Our aim is to devise real-world technological solutions and lead the development of technologies for AI in hardware and software.”

    The inaugural members of the program are companies from a wide range of industries including chip-making, semiconductor manufacturing equipment, AI and computing services, and information systems R&D organizations. The companies represent a diverse ecosystem, both nationally and internationally, and will work with MIT faculty and students to help shape a vibrant future for our planet through cutting-edge AI hardware research.

    The five inaugural members of the MIT AI Hardware Program are:  

    Amazon, a global technology company whose hardware inventions include the Kindle, Amazon Echo, Fire TV, and Astro; 
    Analog Devices, a global leader in the design and manufacturing of analog, mixed signal, and DSP integrated circuits; 
    ASML, an innovation leader in the semiconductor industry, providing chipmakers with hardware, software, and services to mass produce patterns on silicon through lithography; 
    NTT Research, a subsidiary of NTT that conducts fundamental research to upgrade reality in game-changing ways that improve lives and brighten our global future; and 
    TSMC, the world’s leading dedicated semiconductor foundry.

    The MIT AI Hardware Program will create a roadmap of transformative AI hardware technologies. Leveraging MIT.nano, the most advanced university nanofabrication facility anywhere, the program will foster a unique environment for AI hardware research.  

    “We are all in awe at the seemingly superhuman capabilities of today’s AI systems. But this comes at a rapidly increasing and unsustainable energy cost,” says Jesús del Alamo, the Donner Professor in MIT’s Department of Electrical Engineering and Computer Science. “Continued progress in AI will require new and vastly more energy-efficient systems. This, in turn, will demand innovations across the entire abstraction stack, from materials and devices to systems and software. The program is in a unique position to contribute to this quest.”

    The program will prioritize the following topics:

    analog neural networks;
    new roadmap CMOS designs;
    heterogeneous integration for AI systems;
    onolithic-3D AI systems;
    analog nonvolatile memory devices;
    software-hardware co-design;
    intelligence at the edge;
    intelligent sensors;
    energy-efficient AI;
    intelligent internet of things (IIoT);
    neuromorphic computing;
    AI edge security;
    quantum AI;
    wireless technologies;
    hybrid-cloud computing; and
    high-performance computation.

    “We live in an era where paradigm-shifting discoveries in hardware, systems communications, and computing have become mandatory to find sustainable solutions — solutions that we are proud to give to the world and generations to come,” says Aude Oliva, senior research scientist in the MIT Computer Science and Artificial Intelligence Laboratory (CSAIL) and director of strategic industry engagement in the MIT Schwarzman College of Computing.

    The new program is co-led by Jesús del Alamo and Aude Oliva, and Anantha Chandrakasan serves as chair. More

  • in

    Finding her way to fusion

    “I catch myself startling people in public.”

    Zoe Fisher’s animated hands carry part of the conversation as she describes how her naturally loud and expressive laughter turned heads in the streets of Yerevan. There during MIT’s Independent Activities period (IAP), she was helping teach nuclear science at the American University of Armenia, before returning to MIT to pursue fusion research at the Plasma Science and Fusion Center (PSFC).

    Startling people may simply be in Fisher’s DNA. She admits that when she first arrived at MIT, knowing nothing about nuclear science and engineering (NSE), she chose to join that department’s Freshman Pre-Orientation Program (FPOP) “for the shock value.” It was a choice unexpected by family, friends, and mostly herself. Now in her senior year, a 2021 recipient of NSE’s Irving Kaplan Award for academic achievements by a junior and entering a fifth-year master of science program in nuclear fusion, Fisher credits that original spontaneous impulse for introducing her to a subject she found so compelling that, after exploring multiple possibilities, she had to return to it.

    Fisher’s venture to Armenia, under the guidance of NSE associate professor Areg Danagoulian, is not the only time she has taught oversees with MISTI’s Global Teaching Labs, though it is the first time she has taught nuclear science, not to mention thermodynamics and materials science. During IAP 2020 she was a student teacher at a German high school, teaching life sciences, mathematics, and even English to grades five through 12. And after her first year she explored the transportation industry with a mechanical engineering internship in Tuscany, Italy.

    By the time she was ready to declare her NSE major she had sampled the alternatives both overseas and at home, taking advantage of MIT’s Undergraduate Research Opportunities Program (UROP). Drawn to fusion’s potential as an endless source of carbon-free energy on earth, she decided to try research at the PSFC, to see if the study was a good fit. 

    Much fusion research at MIT has favored heating hydrogen fuel inside a donut-shaped device called a tokamak, creating plasma that is hot and dense enough for fusion to occur. Because plasma will follow magnetic field lines, these devices are wrapped with magnets to keep the hot fuel from damaging the chamber walls.

    Fisher was assigned to SPARC, the PSFC’s new tokamak collaboration with MIT startup Commonwealth Fusion Systems (CSF), which uses a game-changing high-temperature superconducting (HTS) tape to create fusion magnets that minimize tokamak size and maximize performance. Working on a database reference book for SPARC materials, she was finding purpose even in the most repetitive tasks. “Which is how I knew I wanted to stay in fusion,” she laughs.

    Fisher’s latest UROP assignment takes her — literally — deeper into SPARC research. She works in a basement laboratory in building NW13 nicknamed “The Vault,” on a proton accelerator whose name conjures an underworld: DANTE. Supervised by PSFC Director Dennis Whyte and postdoc David Fischer, she is exploring the effects of radiation damage on the thin HTS tape that is key to SPARC’s design, and ultimately to the success of ARC, a prototype working fusion power plant.

    Because repetitive bombardment with neutrons produced during the fusion process can diminish the superconducting properties of the HTS, it is crucial to test the tape repeatedly. Fisher assists in assembling and testing the experimental setups for irradiating the HTS samples. Fisher recalls her first project was installing a “shutter” that would allow researchers to control exactly how much radiation reached the tape without having to turn off the entire experiment.

    “You could just push the button — block the radiation — then unblock it. It sounds super simple, but it took many trials. Because first I needed the right size solenoid, and then I couldn’t find a piece of metal that was small enough, and then we needed cryogenic glue…. To this day the actual final piece is made partially of paper towels.”

    She shrugs and laughs. “It worked, and it was the cheapest option.”

    Fisher is always ready to find the fun in fusion. Referring to DANTE as “A really cool dude,” she admits, “He’s perhaps a bit fickle. I may or may not have broken him once.” During a recent IAP seminar, she joined other PSFC UROP students to discuss her research, and expanded on how a mishap can become a gateway to understanding.

    “The grad student I work with and I got to repair almost the entire internal circuit when we blew the fuse — which originally was a really bad thing. But it ended up being great because we figured out exactly how it works.”

    Fisher’s upbeat spirit makes her ideal not only for the challenges of fusion research, but for serving the MIT community. As a student representative for NSE’s Diversity, Equity and Inclusion Committee, she meets monthly with the goal of growing and supporting diversity within the department.

    “This opportunity is impactful because I get my voice, and the voices of my peers, taken seriously,” she says. “Currently, we are spending most of our efforts trying to identify and eliminate hurdles based on race, ethnicity, gender, and income that prevent people from pursuing — and applying to — NSE.”

    To break from the lab and committees, she explores the Charles River as part of MIT’s varsity sailing team, refusing to miss a sunset. She also volunteers as an FPOP mentor, seeking to provide incoming first-years with the kind of experience that will make them want to return to the topic, as she did.

    She looks forward to continuing her studies on the HTS tapes she has been irradiating, proposing to send a current pulse above the critical current through the tape, to possibly anneal any defects from radiation, which would make repairs on future fusion power plants much easier.

    Fisher credits her current path to her UROP mentors and their infectious enthusiasm for the carbon-free potential of fusion energy.

    “UROPing around the PSFC showed me what I wanted to do with my life,” she says. “Who doesn’t want to save the world?” More

  • in

    Tuning in to invisible waves on the JET tokamak

    Research scientist Alex Tinguely is readjusting to Cambridge and Boston.

    As a postdoc with the Plasma Science and Fusion Center (PSFC), the MIT graduate spent the last two years in Oxford, England, a city he recalls can be traversed entirely “in the time it takes to walk from MIT to Harvard.” With its ancient stone walls, cathedrals, cobblestone streets, and winding paths, that small city was his home base for a big project: JET, a tokamak that is currently the largest operating magnetic fusion energy experiment in the world.

    Located at the Culham Center for Fusion Energy (CCFE), part of the U.K. Atomic Energy Authority, this key research center of the European Fusion Program has recently announced historic success. Using a 50-50 deuterium-tritium fuel mixture for the first time since 1997, JET established a fusion power record of 10 megawatts output over five seconds. It produced 59 megajoules of fusion energy, more than doubling the 22 megajoule record it set in 1997. As a member of the JET Team, Tinguely has overseen the measurement and instrumentation systems (diagnostics) contributed by the MIT group.

    A lucky chance

    The postdoctoral opportunity arose just as Tinguely was graduating with a PhD in physics from MIT. Managed by Professor Miklos Porkolab as the principal investigator for over 20 years, this postdoctoral program has prepared multiple young researchers for careers in fusion facilities around the world. The collaborative research provided Tinguely the chance to work on a fusion device that would be adding tritium to the usual deuterium fuel.

    Fusion, the process that fuels the sun and other stars, could provide a long-term source of carbon-free power on Earth, if it can be harnessed. For decades researchers have tried to create an artificial star in a doughnut-shaped bottle, or “tokamak,” using magnetic fields to keep the turbulent plasma fuel confined and away from the walls of its container long enough for fusion to occur.

    In his graduate student days at MIT, Tinguely worked on the PSFC’s Alcator C-Mod tokamak, now decommissioned, which, like most magnetic fusion devices, used deuterium to create the plasmas for experiments. JET, since beginning operation in 1983, has done the same, later joining a small number of facilities that added tritium, a radioactive isotope of hydrogen. While this addition increases the amount of fusion, it also creates much more radiation and activation.

    Tinguely considers himself fortunate to have been placed at JET.

    “There aren’t that many operating tokamaks in the U.S. right now,” says Tinguely, “not to mention one that would be running deuterium-tritium (DT), which hasn’t been run for over 20 years, and which would be making some really important measurements. I got a very lucky spot where I was an MIT postdoc, but I lived in Oxford, working on a very international project.”

    Strumming magnetic field lines

    The measurements that interest Tinguely are of low-frequency electromagnetic waves in tokamak plasmas. Tinguely uses an antenna diagnostic developed by MIT, EPFL Swiss Plasma Center, and CCFE to probe the so-called Alfvén eigenmodes when they are stable, before the energetic alpha particles produced by DT fusion plasmas can drive them toward instability.

    What makes MIT’s “Alfvén Eigenmode Active Diagnostic” essential is that without it researchers cannot see, or measure, stable eigenmodes. Unstable modes show up clearly as magnetic fluctuations in the data, but stable waves are invisible without prompting from the antenna. These measurements help researchers understand the physics of Alfvén waves and their potential for degrading fusion performance, providing insights that will be increasingly important for future DT fusion devices.

    Tinguely likens the diagnostic to fingers on guitar strings.

    “The magnetic field lines in the tokamak are like guitar strings. If you have nothing to give energy to the strings — or give energy to the waves of the magnetic field lines — they just sit there, they don’t do anything. The energetic plasma particles can essentially ‘play the guitar strings,’ strum the magnetic field lines of the plasma, and that’s when you can see the waves in your plasma. But if the energetic particle drive of the waves is not strong enough you won’t see them, so you need to come along and ‘pluck the strings’ with our antenna. And that’s how you learn some information about the waves.”

    Much of Tinguely’s experience on JET took place during the Covid-19 pandemic, when off-site operation and analysis were the norm. However, because the MIT diagnostic needed to be physically turned on and off, someone from Tinguely’s team needed to be on site twice a day, a routine that became even less convenient when tritium was introduced.

    “When you have deuterium and tritium, you produce a lot of neutrons. So, some of the buildings became off-limits during operation, which meant they had to be turned on really early in the morning, like 6:30 a.m., and then turned off very late at night, around 10:30 p.m.”

    Looking to the future

    Now a research scientist at the PSFC, Tinguely continues to work at JET remotely. He sometimes wishes he could again ride that train from Oxford to Culham — which he fondly remembers for its clean, comfortable efficiency — to see work colleagues and to visit local friends. The life he created for himself in England included practice and performance with the 125-year-old Oxford Bach Choir, as well as weekly dinner service at The Gatehouse, a facility that offers free support for the local homeless and low-income communities.

    “Being back is exciting too,” he says. “It’s fun to see how things have changed, how people and projects have grown, what new opportunities have arrived.”

    He refers specifically to a project that is beginning to take up more of his time: SPARC, the tokamak the PSFC supports in collaboration with Commonwealth Fusion Systems. Designed to use deuterium-tritium to make net fusion gains, SPARC will be able to use the latest research on JET to advantage. Tinguely is already exploring how his expertise with Alfvén eigenmodes can support the experiment.

    “I actually had an opportunity to do my PhD — or DPhil as they would call it — at Oxford University, but I went to MIT for grad school instead,” Tinguely reveals. “So, this is almost like closure, in a sense. I got to have my Oxford experience in the end, just in a different way, and have the MIT experience too.”

    He adds, “And I see myself being here at MIT for some time.” More

  • in

    Advancing public understanding of sea-level rise

    Museum exhibits can be a unique way to communicate science concepts and information. Recently, MIT faculty have served as sounding boards for curators at the Museum of Science, Boston, a close neighbor of the MIT campus.

    In January, Professor Emerita Paola Malanotte-Rizzoli and Cecil and Ida Green Professor Raffaele Ferrari of the Department of Earth, Atmospheric and Planetary Science (EAPS) visited the museum to view the newly opened pilot exhibit, “Resilient Venice: Adapting to Climate Change.”

    When Malanotte-Rizzoli was asked to contribute her expertise on the efforts in Venice, Italy, to mitigate flood damage, she was more than willing to offer her knowledge. “I love Venice. It is fun to tell people all of the challenges which you see the lagoon has … how much must be done to preserve, not only the city, but the environment, the islands and buildings,” she says.

    The installation is the second Museum of Science exhibit to be developed in recent years in consultation with EAPS scientists. In December 2020, “Arctic Adventure: Exploring with Technology” opened with the help of Cecil and Ida Green Career Development Professor Brent Minchew, who lent his expertise in geophysics and glaciology to the project. But for Malanotte-Rizzoli, the new exhibit hits a little closer to home.

    “My house is there,” Malanotte-Rizzoli excitedly pointed out on the exhibit’s aerial view of Venice, which includes a view above St. Mark’s Square and some of the surrounding city.

    “Resilient Venice” focuses on Malanotte-Rizzoli’s hometown, a city known for flooding. Built on a group of islands in the Venetian Lagoon, Venice has always experienced flooding, but climate change has brought unprecedented tide levels, causing billions of dollars in damages and even causing two deaths in the flood of 2019.

    The dark exhibit hall is lined with immersive images created by Iconem, a startup whose mission is digital preservation of endangered World Heritage Sites. The firm took detailed 3D scans and images of Venice to put together the displays and video.

    The video on which Malanotte-Rizzoli pointed to her home shows the potential sea level rise by 2100 if action isn’t taken. It shows the entrance to St. Mark’s Basilica completely submerged in water; she compares it to the disaster movie “The Day After Tomorrow.”

    The MOSE system

    Between critiques of the choice of music (“that’s not very Venice-inspired,” joked Ferrari, who is also Italian) and bits of conversation exchanged in Italian, the two scientists do what scientists do: discuss technicalities.

    Ferrari pointed to a model of a gate system and asked Malanotte-Rizzoli if the hydraulic jump seen in the model is present in the MOSE system; she confirmed it is not.

    This is the part of the exhibit that Malanotte-Rizzoli was consulted on. One of the plans Venice has implemented to address the flooding is the MOSE system — short for Modulo Sperimentale Elettromeccanico, or the Experimental Electromechanical Module. The MOSE is a system of flood barriers designed to protect the city from extremely high tides. Construction began in 2003, and its first successful operation happened on Oct. 3, 2020, when it prevented a tide 53 inches above normal from flooding the city.

    The barriers are made of a series of gates, each 66-98 feet in length and 66 feet wide, which sit in chambers built into the sea floor when not in use to allow boats and wildlife to travel between the ocean and lagoon. The gates are filled with water to keep them submerged; when activated, air is pumped into them, pushing out the water and allowing them to rise. The entire process takes 30 minutes to complete, and half that time to return to the sea floor.

    The top of the gates in the MOSE come out of the water completely and are individually controlled so that sections can remain open to allow ships to pass through. In the model, the gate remains partially submerged, and as the high-velocity water passes over it into an area of low velocity, it creates a small rise of water before it falls over the edge of the barrier, creating a hydraulic jump.

    But Malanotte-Rizzoli joked that only scientists will care about that; otherwise, the model does a good job demonstrating how the MOSE gates rise and fall.

    The MOSE system is only one of many plans taken to mitigate the rising water levels in Venice and to protect the lagoon and the surrounding area, and this is an important point for Malanotte-Rizzoli, who worked on the project from 1995 to 2013.

    “It is not the MOSE or,” she emphasized. “It is the MOSE and.” Other complementary plans have been implemented to reduce harm to both economic sectors, such as shipping and tourism, as well as the wildlife that live in the lagoons.

    Beyond barriers

    There’s more to protecting Venice than navigating flooded streets — it’s not just “putting on rainboots,” as Malanotte-Rizzoli put it.

    “It’s destroying the walls,” she said, pointing out the corrosive effects of water on a model building, which emphasizes the damage to architecture caused by the unusually high flood levels. “People don’t think about this.” The exhibit also emphasizes the economic costs of businesses lost by having visitors take down and rebuild a flood barrier for a gelato shop with the rising and falling water levels.

    Malanotte-Rizzoli gave the exhibit her seal of approval, but the Venice section is only a small portion of what the finished exhibit will look like. The current plan involves expanding it to include a few other World Heritage Sites.

    “How do we make people care about a site that they haven’t been to?” asked Julia Tate, the project manager of touring exhibits and exhibit production at the museum. She said that it’s easy to start with a city like Venice, since it’s a popular tourist destination. But it becomes trickier to get people to care about a site that they maybe haven’t been to, such as the Easter Islands, that are just as much at risk. The plan is to incorporate a few more sites before turning it into a traveling exhibit that will end by asking visitors to think about climate change in their own towns.

    “We want them to think about solutions and how to do better,” said Tate. Hope is the alternative message: It’s not too late to act.

    Malanotte-Rizzoli thinks it’s important for Bostonians to see their own city in Venice, as Boston is also at risk from sea level rise. The history of Boston reminds Malanotte-Rizzoli about her hometown and is one of the reasons why she was willing to emigrate. The history encompassed in Boston makes the need for preservation even more important.

    “Those things that cannot be replaced, they must be respected in the process of preservation,” she said. “Modern things and engineering can be done even in a city which is so fragile, so delicate.” More

  • in

    3 Questions: The future of international education

    Evan Lieberman is the Total Professor of Political Science and Contemporary Africa in the MIT Department of Political Science. He conducts research in the field of comparative politics, with a focus on development and ethnic conflict in sub-Saharan Africa. He directs the Global Diversity Lab (GDL) and was recently named faculty director of the MIT International Science and Technology Initiatives (MISTI), MIT’s global experiential learning program. Here, Lieberman describes international education and its import for solving global problems.

    Q: Why is now an especially important time for international education?

    A: The major challenges we currently face — climate change, the pandemic, supply chain management — are all global problems that require global solutions. We will need to collaborate across borders to a greater extent than ever before. There is no time more pressing for students to gain an international outlook on these challenges; the ideas, thinking, and perspectives from other parts of the world; and to build global networks. And yet, most of us have stayed very close to home for the past couple of years. While remote internships and communications have offered temporary solutions when travel was limited, these have been decidedly inferior to the opportunities for learning and making connections through in-person cultural and collaborative experiences at the heart of MISTI. It is important for students and faculty to be able to thrive in an interconnected world as they navigate their research/careers during this unusual time. The changing landscape of the past few years has left all of us somewhat anxious. Nonetheless, I am buoyed by important examples of global collaboration in problem-solving, with scientists, governments and other organizations working together on the things that unite us all.

    Q: How is MIT uniquely positioned to provide global opportunities for students and faculty?

    A: MISTI is a unique program with a long history of building robust partnerships with industry, universities, and other sectors in countries around the world, establishing opportunities that complement MIT students’ unique skill sets. MIT is fortunate to be the home of some of the top students and faculty in the world, and this is a benefit to partners seeking collaborators. The broad range of disciplines across the entire institute provides opportunities to match in nearly every sector. MISTI’s rigorous, country-specific preparation ensures that students build durable cultural connections while abroad and empowers them to play a role in addressing critical global challenges. The combination of technical and humanistic training that MIT students receive are exactly the profiles necessary to take advantage of opportunities abroad, hopefully with a long-term impact. Student participants have a depth of knowledge in their subject areas as well as MIT’s one-of-a-kind education model that is exceptionally valuable. The diversity of our community offers a wide variety of perspectives and life experiences, on top of academic expertise. Also, MISTI’s donor-funded programs provide the unique ability for all students to be able to participate in international programs, regardless of financial situation. This is a direct contrast with internship programs that often skew toward participants with little-to-no financial need.

    Q: How do these kinds of collaborations help tackle global problems?

    A: Of course, we don’t expect that even intensive internships of a few months are going to generate the global solutions we need. It is our hope that our students — who we anticipate being leaders in a range of sectors — will opt for global careers, and/or bring a global perspective to their work and in their lives. We believe that by building on their MISTI experiences and training, they will be able to forge the types of collaborations that lead to equity-enhancing solutions to universal problems — the climate emergency, ongoing threats to global public health, the liabilities associated with the computing revolution — and are able to improve human development more generally.

    More than anything, at MISTI we are planting the seeds for longer-term collaborations. We literally grant several millions of dollars in seed funds to establish faculty-led collaborations with student involvement in addition to supporting hundreds of internships around the world. The MISTI Global Seed Funds (GSF) program compounds the Institute’s impact by supporting partnerships abroad that often turn into long-standing research relationships addressing the critical challenges that require international solutions. GSF projects often have an impact far beyond their original scope. For example, a number of MISTI GSF projects have utilized their results to jump-start research efforts to combat the pandemic. More

  • in

    Conversations at the front line of climate

    The climate crisis is a novel and developing chapter in human and planetary history. As a species, humankind is still very much learning how to face this crisis, and the world’s frontline communities — those being most affected by climate change — are struggling to make their voices heard. How can communities imperiled by climate change convey the urgency of their situation to countries and organizations with the means to make a difference? And how can governments and other powerful groups provide resources to these vulnerable frontline communities?The MIT Civic Design Initiative (CDI), an interdisciplinary confluence of media studies and design expertise, emerged in 2020 to tackle just these kinds of questions. It brings together the MIT Design Lab, a program originally founded in the School of Architecture and Planning with its research practices in design, and the Comparative Media Studies program (CMS/W) with its focus on the fundamentals of human connection and communication. Drawing on these complementary sources of scholarly perspective and expertise, CDI is a suitably broad umbrella for the range of climate-related issues that humanistic research and design can potentially address. Based in the CMS/W program of the School of Humanities, Arts, and Social Sciences, the initiative is responding to the climate crises with a spirit of inquiry, listening, and solid data. Reflecting on the mission, James Paradis, the Robert M. Metcalfe Professor of CMS/W and CDI faculty director, says the core idea is to address global issues by combining new and emerging technologies with an equally keen focus on the social and cultural contexts — the human dimensions of the issue — with many of their nuances.  Working closely with Paradis on this vision are the two CDI co-directors: Yihyun Lim, an architect, urban designer, and MIT researcher; and Eric Gordon, a visiting professor of civic media in MIT CMS/W. Prior to CDI, when she was leading the MIT Design Lab research group, Lim says “At MIT Design Lab, I was working within the realm of applied research with industry partnerships, how we can apply user-centered design methods in creating connected experiences. Eric, Jim, and I wanted to shift the focus into a more civic realm, where we could bring all our collective expertise together to address tricky problems.”

    Deep listeningThe initiative’s flagship project, the Deep Listening Project, is currently working with an initial group of frontline communities in Nepal and Indigenous tribes in the United States and Canada. The work is a direct application of communication protocols: understanding how people are communicating with and often without technologies — and how technologies can be better used to help people get the help they need, when they need it, in the face of the climate crisis.

    The CDI team describes deep listening as “a form of institutional and community intake that considers diversity, tensions, and frictions, and that incorporates communities’ values in creating solutions.”

    Globally, the majority of climate response funding currently goes toward mitigation efforts — such as reducing emissions or using more eco-friendly materials. It is only in recent years that more substantial funding has been focused on climate adaptation: making adjustments that can help a community adapt to present changes and impacts and also prepare for future climate-related crises. For the millions of people in frontline communities, such adaptation can be crucial to protecting and sustaining their communities.Gordon describes the scope of the situation: “We know that over the next 10 years, climate change will drive over 100 million people to adapt where and how they live, regardless of the success of mitigation efforts. And in order for those adaptations to succeed, there must be a concerted collaborative effort between frontline communities and institutions with the resources to facilitate adaptation.“Communication between institutions and their constituents is a fundamental planning problem in any context,” Gordon continues. “In the case of climate adaptation, there will not be a surplus of time to get things right. Putting communication mechanisms in place to connect affected communities with institutional resources is already imperative.“This situation requires that we figure out, quickly, how to listen to the people who will rely on [those institutions] for their lives and livelihoods. We want to understand how institutions — from governments to universities to NGOs [nongovernmental organizations] — are adopting and adapting technologies, and how that is benefiting or hurting their constituencies.  People with direct frontline experience need to be supported in their speech and ideas, and institutions need to be able to take in the data from these communities, listen carefully to discern its significance, and then act upon it.” Sensemaking: infrastructure for connection

    One important aspect of meaningful, effective communication will be the ability of frontline and Indigenous communities to communicate likely or imagined futures, based on their own knowledge and desires. One potential tool is what the initiative calls “sensemaking:” producing and sharing data visualizations that can communicate to governments the experiences of frontline communities. The initiative also hopes to develop additional elements of the “deep listening infrastructure” — mechanisms to make sure important community voices carry and that important data isn’t lost to noise in the vast question of climate adaptability.“Oftentimes in academia, the paper gets published or the website gets developed, and everybody says, ‘OK, we’ve done our work,’” Paradis observes. “What we’re aiming to do in the CDI is the necessary work that happens after the publication of research — where research is applied to actually improve peoples’ lives.”The Deep Listening Project is also building a network of scholars and practitioners nationwide, including Henry Jenkins, co-founder and former faculty member at MIT CMS/W; Sangita Shresthova SM ’03 at the University of Southern California; and Darren Ranco at the University of Maine. Ranco, an anthropologist, Indigenous activist, and organizational leader, has been instrumental in connecting with Indigenous groups and tribal governments across North America. Meanwhile, Gordon has helped forge connections with groups like the International Red Cross/Red Crescent, the World Bank, and the UN Development. At the root of these connections is the impetus to communicate lived realities from the level of a small community to that of global relief organizations and governmental powers.

    Potential human futures

    Mona Vijaykumar, a second-year student in the SMArchS Architecture and Urbanism program in the Department of Architecture, and among the first student researcher assistants attached to the new initiative, is excited to have the chance to help build CDI from the ground up. “It’s been a great honor to be working with CDI’s amazing team for the last eight months,” she says. With her background in urban design and research interest in climate adaptation processes, Vijaykumar has been engaged in developing the Deep Listening Project’s white paper as part of MIT Climate Grand Challenges. She works alongside the initiative’s two other inaugural research assistants: Tomas Guarna, a master’s student in CMS, and Gabriela Degetau, a master’s student in the SMarchS Urbanism program, with Vijaykumar.“I was involved in analyzing the literature case study on community-based adaptation processes and co-writing the white paper,” Vijaykumar says, “and am currently working on conducting interviews with communities and institutions in India. Going forward, Gabriela and I will be presenting the white paper at gatherings such as the American Association of Geographers’ Conference in New York and the Climate and Social Impact Conference in Vancouver.”“The support and collaboration of the team have been incredibly empowering,” reflects Degetau, who will be co-presenting the white paper with Vijaykumar in New York and Vancouver, British Columbia. “Even when working from different countries and through Zoom, the experience has been unique and cohesive.”Both Degetau and Vijaykumar were selected as the first fellows of the Vuslat Foundation, organized by the MIT Transmedia Storytelling Initiative. In this one-year fellowship, they are seeking to co-design “climate imaginaries” through the Deep Listening Project. Vijaykumar’s work is also supported by the MIT Human Rights and Technology Fellowship for 2021-22, which guides her personal focus on what she refers to as the “dual sword” of technology and data colonialism in India.As the Deep Listening Project continues to develop a sustainable and balanced communication infrastructure, Lim reflects that a vital part of that is sharing how potential futures are envisioned. Both large institutions and individual communities imagine, separately — and hopefully soon together — how the human world will reshape itself to be viable in profoundly shifting climate conditions. “What are our possible futures?” asks Lim. “What are people dreaming?” 

    Story prepared by MIT SHASS CommunicationsEditorial and design director: Emily HiestandSenior communications associate: Alison Lanier More

  • in

    MIT Energy Initiative launches the Future Energy Systems Center

    The MIT Energy Initiative (MITEI) has launched a new research consortium — the Future Energy Systems Center — to address the climate crisis and the role energy systems can play in solving it. This integrated effort engages researchers from across all of MIT to help the global community reach its goal of net-zero carbon emissions. The center examines the accelerating energy transition and collaborates with industrial leaders to reform the world’s energy systems. The center is part of “Fast Forward: MIT’s Climate Action Plan for the Decade,” MIT’s multi-pronged effort announced last year to address the climate crisis.

    The Future Energy Systems Center investigates the emerging technology, policy, demographics, and economics reshaping the landscape of energy supply and demand. The center conducts integrative analysis of the entire energy system — a holistic approach essential to understanding the cross-sectorial impact of the energy transition.

    “We must act quickly to get to net-zero greenhouse gas emissions. At the same time, we have a billion people around the world with inadequate access, or no access, to electricity — and we need to deliver it to them,” says MITEI Director Robert C. Armstrong, the Chevron Professor of Chemical Engineering. “The Future Energy Systems Center combines MIT’s deep knowledge of energy science and technology with advanced tools for systems analysis to examine how advances in technology and system economics may respond to various policy scenarios.”  

    The overarching focus of the center is integrative analysis of the entire energy system, providing insights into the complex multi-sectorial transformations needed to alter the three major energy-consuming sectors of the economy — transportation, industry, and buildings — in conjunction with three major decarbonization-enabling technologies — electricity, energy storage and low-carbon fuels, and carbon management. “Deep decarbonization of our energy system requires an economy-wide perspective on the technology options, energy flows, materials flows, life-cycle emissions, costs, policies, and socioeconomics consequences,” says Randall Field, the center’s executive director. “A systems approach is essential in enabling cross-disciplinary teams to work collaboratively together to address the existential crisis of climate change.”

    Through techno-economic and systems-oriented research, the center analyzes these important interactions. For example:

    •  Increased reliance on variable renewable energy, such as wind and solar, and greater electrification of transportation, industry, and buildings will require expansion of demand management and other solutions for balancing of electricity supply and demand across these areas.

    •  Likewise, balancing supply and demand will require deploying grid-scale energy storage and converting the electricity to low-carbon fuels (hydrogen and liquid fuels), which can in turn play a vital role in the energy transition for hard-to-decarbonize segments of transportation, industry, and buildings.

    •  Carbon management (carbon dioxide capture from industry point sources and from air and oceans; utilization/conversion to valuable products; transport; storage) will also play a critical role in decarbonizing industry, electricity, and fuels — both as carbon-mitigation and negative-carbon solutions.

    As a member-supported research consortium, the center collaborates with industrial experts and leaders — from both energy’s consumer and supplier sides — to gain insights to help researchers anticipate challenges and opportunities of deploying technology at the scale needed to achieve decarbonization. “The Future Energy Systems Center gives us a powerful way to engage with industry to accelerate the energy transition,” says Armstrong. “Working together, we can better understand how our current technology toolbox can be more effectively put to use now to reduce emissions, and what new technologies and policies will ultimately be needed to reach net-zero.”

    A steering committee, made up of 11 MIT professors and led by Armstrong, selects projects to create a research program with high impact on decarbonization, while leveraging MIT strengths and addressing interests of center members in pragmatic and scalable solutions. “MIT — through our recently released climate action plan — is committed to moving with urgency and speed to help wring carbon dioxide emissions out the global economy to resolve the growing climate crisis,” says Armstrong. “We have no time to waste.”

    The center members to date are: AECI, Analog Devices, Chevron, ConocoPhillips, Copec, Dominion, Duke Energy, Enerjisa, Eneva, Eni, Equinor, Eversource, Exelon, ExxonMobil, Ferrovial, Iberdrola, IHI, National Grid, Raizen, Repsol, Rio Tinto, Shell, Tata Power, Toyota Research Institute, and Washington Gas. More