More stories

  • in

    3 Questions: Tolga Durak on building a safety culture at MIT

    Environment, Health, and Safety Managing Director Tolga Durak heads a team working to build a strong safety culture at the Institute and to implement systems that lead to successful lab and makerspace operations. EHS is also pursuing new opportunities in the areas of safe and sustainable labs and applied makerspace research. 

    Durak holds a BS in mechanical engineering, a MS in industrial and systems engineering, and a PhD in building construction/environmental design and planning. He has over 20 years of experience in engineering and EHS in higher education, having served in such roles as authority having jurisdiction, responsible official, fire marshal, risk manager, radiation safety officer, laser safety officer, safety engineer, project manager, and emergency manager for government agencies, as well as universities with extensive health-care and research facilities.

    Q: What “words of wisdom” regarding lab/shop health and safety would you like to share with the research community? 

    A: EHS staff always strive to help maintain the safety and well-being of the MIT community. When it comes to lab/shop safety or any areas with hazards, first and foremost, we encourage wearing the appropriate personal protective equipment (PPE) when handling potentially hazardous materials. While PPE needs depend on the hazards and the space, common PPE includes safety glasses, lab coats, gloves, clothes that cover your skin, and closed-toe shoes. Shorts and open-toe shoes have no place in the lab/shop setting when hazardous materials are stored or used. Accidents will and do happen. The severity of injuries due to accidental exposures can be minimized when researchers are wearing PPE. Remember, there is only one you!   

    Overall, be aware of your surroundings, be knowledgeable about the hazards of the materials and equipment you are using, and be prepared for the unexpected. Ask yourself, “What’s the worst thing that can happen during this experiment or procedure?” Prepare by doing a thorough risk assessment, ask others who may be knowledgeable for their ideas and help, and standardize procedures where possible. Be prepared to respond appropriately when an emergency arises. 

    Safety in our classrooms, labs, and makerspaces is paramount and requires a collaborative effort. 

    Q: What are the established programs within EHS that students and researchers should be aware of, and what opportunities and challenges do you face trying to advance a healthy safety culture at MIT? 

    A: The EHS program staff in Biosafety, Industrial Hygiene, Environmental Management, Occupational and Construction Safety, and Radiation Protection are ready to assist with risk assessments, chemical safety, physical hazards, hazard-specific training, materials management, and hazardous waste disposal and reuse/recycling. Locally, each department, laboratory, and center has an EHS coordinator, as well as an assigned EHS team, to assist in the implementation of required EHS programs. Each lab/shop also has a designated EHS representative — someone who has local knowledge of your lab/shop and can help you with safety requirements specific to your work area.  

    One of the biggest challenges we face is that due to the decentralized nature of the Institute, no one size fits all when it comes to implementing successful safety practices. We also view this as an opportunity to enhance our safety culture. A strong safety culture is reflected at MIT when all lab and makerspace members are willing to look out for each other, challenge the status quo when necessary, and do the right thing even when no one is looking. In labs/shops with a strong safety culture, faculty and researchers discuss safety topics at group meetings, group members remind each other to wear the appropriate PPE (lab coats, safety glasses, etc.), more experienced team members mentor the newcomers, and riskier operations are reviewed and assessed to make them as safe as possible.  

    Q: Can you describe the new Safe and Sustainable Laboratories (S2L) efforts and the makerspace operational research programs envisioned for the future? 

    A: The MIT EHS Office has a plan for renewing its dedication to sustainability and climate action. We are dedicated to doing our part to promote a research environment that assures the highest level of health and safety but also strives to reduce energy, water, and waste through educating and supporting faculty, students, and researchers. With the goal of integrating sustainability across the lab sector of campus and bridging that with the Institute’s climate action goals, EHS has partnered with the MIT Office of Sustainability, Department of Facilities, vice president for finance, and vice president for campus services and stewardship to relaunch the “green” labs sustainability efforts under a new Safe and Sustainable Labs program.

    Part of that plan is to implement a Sustainable Labs Certification program. The process is designed to be as easy as possible for the lab groups. We are starting with simple actions like promoting the use of equipment timers in certain locations to conserve energy, fume hood/ventilation management, preventative maintenance for ultra-low-temperature freezers, increasing recycling, and helping labs update their central chemical inventory system, which can help forecast MIT’s potential waste streams. 

    EHS has also partnered with Project Manus to build a test-bed lab to study potential health and environmental exposures present in makerspaces as a result of specialized equipment and processes with our new Applied Makerspace Research Initiative.   More

  • in

    Scientists and musicians tackle climate change together

    Audiences may travel long distances to see their favorite musical acts in concert or to attend large music festivals, which can add to their personal carbon footprint of emissions that are steadily warming the planet. But these same audiences, and the performers they follow, are often quite aware of the dangers of climate change and eager to contribute to ways of curbing those emissions.

    How should the industry reconcile these two perspectives, and how should it harness the enormous influence that musicians have on their fans to help promote action on climate change?

    That was the focus of a wide-ranging discussion on Monday hosted by MIT’s Environmental Solutions Initiative, titled “Artists and scientists together on climate solutions.” The event, which was held live at the Media Lab’s Bartos Theater and streamed online, featured John Fernandez, director of ESI; Dava Newman, director of the Media Lab; Tony McGuinness, a musician with the group Above and Beyond; and Anna Johnson, the sustainability and environment officer at Involved Group, an organization dedicated to embedding sustainability in business operations in the arts and culture fields.

    Fernandez pointed out in opening the discussion that when it comes to influencing people’s attitudes and behavior, changes tend to come about not just through information from a particular field, but rather from a whole culture. “We started thinking about how we might work with artists, how to have scientists and engineers, inventors, and designers working with artists on the challenges that we really need to face,” he said.

    Dealing with the climate change issue, he said, “is not about 2050 or 2100. This is about 2030. This is about this decade. This is about the next two or three years, really shifting that curve” to lowering the world’s greenhouse gas emissions. “It’s not going to be done just with science and engineering,” he added. “It’s got to be done with artists and business and everyone else. It’s not only ‘all of the above’ solutions, it’s ‘all of the above’ people, coming together to solve this problem.”

    Newman, who is also a professor in MIT’s Department of Aeronautics and Astronautics and has served as a NASA deputy administrator, said that while scientists and engineers can produce vast amounts of useful data that clearly demonstrate the dramatic changes the Earth’s climate is undergoing, communicating that information effectively is often a challenge for these specialists. “That data is just the data, but that doesn’t change the hearts and minds,” she said.

    “As scientists, having the data from our satellites, looking down, but also flying airplanes into the atmosphere, … we have the sensors, and then what can we do with it all? … How do we change human behavior? That’s the part I don’t know how to do,” Newman said. “I can have the technology, I can get precision measurements, I can study it, but really at the end of the day, we have to change human behavior, and that is so hard.”

    And that’s where the world of art and music can play a part, she said. “The best way that I know how to do it is with artistic experiences. You can have one moving experience and when you wake up tomorrow, maybe you’re going to do something a little different.” To help generate the compassion and empathy needed to affect behavior positively, she said, “that’s where we turn to the storytellers. We turn to the visionaries.”

    McGuinness, whose electronic music trio has performed for millions of people around the world, said that his own awareness of the urgency of the climate issue came from his passion for scuba diving, and the dramatic changes he has seen over the last two decades. In diving at a coral reef off Palau in the South Pacific, he returned to what had been a lush, brightly colored ecosystem, and found that “immediately when you put your face under the water, you’re looking at the surface of the moon. It was a horrible shock to see this.”

    After this and other similar diving experiences, he said, “I just came away shocked and stunned,” and realizing the kinds of underwater experiences he had enjoyed would no longer exist for his children. After reading more on the subject of global warming,  “that really sort of tipped me over the edge. And I was like, this is probably the most important thing for living beings now. And that’s sort of where I’ve remained ever since.”

    While his group Above and Beyond has performed one song specifically related to global warming, he doesn’t expect that to be the most impactful way of using their influence. Rather, they’re trying to lead by example, he said, by paying more attention to everything from the supply chains of the merchandise sold at concerts to the emissions generated by travel to the concerts. They’re also being selective about concert venues and making an effort to find performance spaces that are making a significant effort to curb their emissions.

    “If people start voting with their wallets,” McGuinness said, “and there are companies that are doing better than others and are doing the right thing, maybe it’ll catch on. I guess that’s what we can hope for.”

    Understanding these kinds of issues, involving supply chains, transportation, and facilities associated within the music industry, has been the focus of much of Johnson’s work, through the organization Involved Group, which has entered into a collaboration with MIT through the Environmental Solutions Initiative. “It’s these kinds of novel partnerships that have so much potential to catalyze the change that we need to see at an incredible pace,” she said. Already, her group has worked with MIT on mapping out where emissions occur throughout the various aspects of the music industry.

    At a recent music festival in London, she said, the group interviewed hundreds of participants, including audience members, band members, and the crew. “We explored people’s level of awareness of the issues around climate change and environmental degradation,” she said. “And what was really interesting was that there was clearly a lot of awareness of the issue across those different stakeholders, and what felt like a real, genuine level of concern and also of motivation, to want to deepen their understanding of what their contribution on a personal level really meant.”

    Working together across the boundaries of different disciplines and areas of expertise could be crucial to winning the battle against global warming, Newman said. “That’s usually how breakthroughs work,” she said. “If we’re really looking to have impact, it’s going to be from teams of people who are trained across the disciplines.” She pointed out that 90 percent of MIT students are also musicians: “It does go together!” she said. “I think going forward, we have to create new academia, new opportunities that are truly multidisciplinary.” More

  • in

    MIT makes strides on climate action plan

    Two recent online events related to MIT’s ambitious new climate action plan highlighted several areas of progress, including uses of the campus as a real-life testbed for climate impact research, the creation of new planning bodies with opportunities for input from all parts of the MIT community, and a variety of moves toward reducing the Institute’s own carbon footprint in ways that may also provide a useful model for others.

    On Monday, MIT’s Office of Sustainability held its seventh annual “Sustainability Connect” event, bringing together students, faculty, staff, and alumni to learn about and share ideas for addressing climate change. This year’s virtual event emphasized the work toward carrying out the climate plan, titled “Fast Forward: MIT’s Climate Action Plan for the Decade,” which was announced in May. An earlier event, the “MIT Climate Tune-in” on Nov. 3, provided an overview of the many areas of MIT’s work to tackle climate change and featured a video message from Maria Zuber, MIT’s vice president for research, who was attending the COP26 international climate meeting in Glasgow, Scotland, as part of an 18-member team from MIT.

    Zuber pointed out some significant progress that was made at the conference, including a broad agreement by over 100 nations to end deforestation by the end of the decade; she also noted that the U.S. and E.U. are leading a global coalition of countries committed to curbing methane emissions by 30 percent from 2020 levels by decade’s end. “It’s easy to be pessimistic,” she said, “but being here in Glasgow, I’m actually cautiously optimistic, seeing the thousands and thousands of people here who are working toward meaningful climate action. And I know that same spirit exists on our own campus also.”

    As for MIT’s own climate plan, Zuber emphasized three points: “We’re committed to action; second of all, we’re committed to moving fast; and third, we’ve organized ourselves better for success.” That organization includes the creation of the MIT Climate Steering Committee, to oversee and coordinate MIT’s strategies on climate change; the Climate Nucleus, to oversee the management and implementation of the new plan; and three working groups that are forming now, to involve all parts of the MIT community.

    The “Fast Forward” plan calls for reducing the campus’s net greenhouse gas emissions to zero by 2026 and eliminating all such emissions, including indirect ones, by 2050. At Monday’s event, Director of Sustainability Julie Newman pointed out that the climate plan includes no less than 14 specific commitments related to the campus itself. These can be grouped into five broad areas, she said: mitigation, resiliency, electric vehicle infrastructure, investment portfolio sustainability, and climate leadership. “Each of these commitments has due dates, and they range from the tactical to the strategic,” she said. “We’re in the midst of activating our internal teams” to address these commitments, she added, noting that there are 30 teams that involve 75 faculty and researcher members, plus up to eight student positions.

    One specific project that is well underway involves preparing a detailed map of the flood risks to the campus as sea levels rise and storm surges increase. While previous attempts to map out the campus flooding risks had treated buildings essentially as uniform blocks, the new project has already mapped out in detail the location, elevation, and condition of every access point — doors, windows, and drains — in every building in the main campus, and now plans to extend the work to the residence buildings and outlying parts of campus. The project’s methods for identifying and quantifying the risks to specific parts of the campus, Newman said, represents “part of our mission for leveraging the campus as a test bed” by creating a map that is “true to the nature of the topography and the infrastructure,” in order to be prepared for the effects of climate change.

    Also speaking at the Sustainability Connect event, Vice President for Campus Services and Stewardship Joe Higgins outlined a variety of measures that are underway to cut the carbon footprint of the campus as much as possible, as quickly as possible. Part of that, he explained, involves using the campus as a testbed for the development of the equivalent of a “smart thermostat” system for campus buildings. While such products exist commercially for homeowners, there is no such system yet for large institutional or commercial buildings.

    There is a team actively developing such a pilot program in some MIT buildings, he said, focusing on some large lab buildings that have especially high energy usage. They are examining the use of artificial intelligence to reduce energy consumption, he noted. By adding systems to monitor energy use, temperatures, occupancy, and so on, and to control heating, lighting and air conditioning systems, Higgins said at least a 3 to 5 percent reduction in energy use can be realized. “It may be well beyond that,” he added. “There’s a huge opportunity here.”

    Higgins also outlined the ongoing plan to convert the existing steam distribution system for campus heating into a hot water system. Though the massive undertaking may take decades to complete, he said that project alone may reduce campus carbon emissions by 10 percent. Other efforts include the installation of an additional 400 kilowatts of rooftop solar installations.

    Jeremy Gregory, executive director of MIT’s climate and sustainability consortium, described efforts to deal with the most far-reaching areas of greenhouse gas emission, the so-called Scope 3 emissions. He explained that Scope 1 is the direct emissions from the campus itself, from buildings and vehicles; Scope 2 includes indirect emissions from the generation of electricity; and Scope 3 is “everything else.” That includes employee travel, buildings that MIT leases from others and to others, and all goods and services, he added, “so it includes a lot of different categories of emissions.” Gregory said his team, including several student fellows, is actively investigating and quantifying these Scope 3 emissions at MIT, along with potential methods of reducing them.

    Professor Noelle Selin, who was recently named as co-chair of the new Climate Nucleus along with Professor Anne White, outlined their plans for the coming year, including the setting up of the three working groups.

    Selin said the nucleus consists of representatives of departments, labs, centers, and institutes that have significant responsibilities under the climate plan. That body will make recommendations to the steering committee, which includes the deans of all five of MIT’s schools and the MIT Schwarzman College of Computing, “about how to amplify MIT’s impact in the climate sphere. We have an implementation role, but we also have an accelerator pedal that can really make MIT’s climate impact more ambitious, and really push the buttons and make sure that the Institute’s commitments are actually borne out in reality.”

    The MIT Climate Tune-In also featured Selin and White, as well as a presentation on MIT’s expanded educational offerings on climate and sustainability, from Sarah Meyers, ESI’s education program manager; students Derek Allmond and Natalie Northrup; and postdoc Peter Godart. Professor Dennis Whyte also spoke about MIT and Commonwealth Fusion Systems’ recent historical advance toward commercial fusion energy. Organizers said that the Climate Tune-In event is the first of what they hope will be many opportunities to hear updates on the wide range of work happening across campus to implement the Fast Forward plan, and to spark conversations within the MIT community. More

  • in

    For campus “porosity hunters,” climate resilience is the goal

    At MIT, it’s not uncommon to see groups navigating campus with smartphones and measuring devices in hand, using the Institute as a test bed for research. During one week this summer more than a dozen students, researchers, and faculty, plus an altimeter, could be seen doing just that as they traveled across MIT to measure the points of entry into campus buildings — including windows, doors, and vents — known as a building’s porosity.

    Why measure campus building porosity?

    The group was part of the MIT Porosity Hunt, a citizen-science effort that is using the MIT campus as a place to test emerging methodologies, instruments, and data collection processes to better understand the potential impact of a changing climate — and specifically storm scenarios resulting from it — on infrastructure. The hunt is a collaborative effort between the Urban Risk Lab, led by director and associate professor of architecture and urbanism Miho Mazereeuw, and the Office of Sustainability (MITOS), aimed at supporting an MIT that is resilient to the impacts of climate change, including flooding and extreme heat events. Working over three days, members of the hunt catalogued openings in dozens of buildings across campus to better support flood mapping and resiliency planning at MIT.

    For Mazereeuw, the data collection project lies at the nexus of her work with the Urban Risk Lab and as a member of MIT’s Climate Resiliency Committee. While the lab’s mission is to “develop methods, prototypes, and technologies to embed risk reduction and preparedness into the design of cities and regions to increase resilience,” the Climate Resiliency Committee — made up of faculty, staff, and researchers — is focused on assessing, planning, and operationalizing a climate-resilient MIT. The work of both the lab and the committee is embedded in the recently released MIT Climate Resiliency Dashboard, a visualization tool that allows users to understand potential flooding impacts of a number of storm scenarios and drive decision-making.

    While the debut of the tool signaled a big advancement in resiliency planning at MIT, some, including Mazereeuw, saw an opportunity for enhancement. In working with Ken Strzepek, a MITOS Faculty Fellow and research scientist at the MIT Center for Global Change Science who was also an integral part of this work, Mazereeuw says she was surprised to learn that even the most sophisticated flood modeling treats buildings as solid blocks. With all buildings being treated the same, despite varying porosity, the dashboard is limited in some flood scenario analysis. To address this, Mazereeuw and others got to work to fill in that additional layer of data, with the citizen science efforts a key factor of that work. “Understanding the porosity of the building is important to understanding how much water actually goes in the building in these scenarios,” she explains.

    Though surveyors are often used to collect and map this type of information, Mazereeuw wanted to leverage the MIT community in order to collect data quickly while engaging students, faculty, and researchers as resiliency stewards for the campus. “It’s important for projects like this to encourage awareness,” she explains. “Generally, when something fails, we notice it, but otherwise we don’t. With climate change bringing on more uncertainty in the scale and intensity of events, we need everyone to be more aware and help us understand things like vulnerabilities.”

    To do this, MITOS and the Urban Risk Lab reached out to more than a dozen students, who were joined by faculty, staff, and researchers, to map porosity of 31 campus buildings connected by basements. The buildings were chosen based on this connectivity, understanding that water that reaches one basement could potentially flow to another.

    Urban Risk Lab research scientists Aditya Barve and Mayank Ojha aided the group’s efforts by creating a mapping app and chatbot to support consistency in reporting and ease of use. Each team member used the app to find buildings where porosity points needed to be mapped. As teams arrived at the building exteriors, they entered their location in the app, which then triggered the Facebook and LINE-powered chatbot on their phone. There, students were guided through measuring the opening, adjusting for elevation to correlate to the City of Cambridge base datum, and, based on observable features, noting the materials and quality of the opening on a one-through-three scale. Over just three days, the team, which included Mazereeuw herself, mapped 1,030 porosity points that will aid in resiliency planning and preparation on campus in a number of ways.

    “The goal is to understand various heights for flood waters around porous spots on campus,” says Mazereeuw. “But the impact can be different depending on the space. We hope this data can inform safety as well as understanding potential damage to research or disruption to campus operations from future storms.”

    The porosity data collection is complete for this round — future hunts will likely be conducted to confirm and converge data — but one team member’s work continues at the basement level of MIT. Katarina Boukin, a PhD student in civil and environmental engineering and PhD student fellow with MITOS, has been focused on methods of collecting data beneath buildings at MIT to understand how they would be impacted if flood water were to enter. “We have a number of connected basements on campus, and if one of them floods, potentially all of them do,” explains Boukin. “By looking at absolute elevation and porosity, we’re connecting the outside to the inside and tracking how much and where water may flow.” With the added data from the Porosity Hunt, a complete picture of vulnerabilities and resiliency opportunities can be shared.

    Synthesizing much of this data is where Eva Then ’21 comes in. Then was among the students who worked to capture data points over the three days and is now working in ArcGIS — an online mapping software that also powers the Climate Resiliency Dashboard — to process and visualize the data collected. Once completed, the data will be incorporated into the campus flood model to increase the accuracy of projections on the Climate Resiliency Dashboard. “Over the next decades, the model will serve as an adaptive planning tool to make campus safe and resilient amid growing climate risks,” Then says.

    For Mazereeuw, the Porosity Hunt and data collected additionally serve as a study in scalability, providing valuable insight on how similar research efforts inspired by the MIT test bed approach could be undertaken and inform policy beyond MIT. She also hopes it will inspire students to launch their own hunts in the future, becoming resiliency stewards for their campus and dorms. “Going through measuring and documenting turns on and shows a new set of goggles — you see campus and buildings in a slightly different way,” she says, “Having people look carefully and document change is a powerful tool in climate and resiliency planning.” 

    Mazereeuw also notes that recent devastating flooding events across the country, including those resulting from Hurricane Ida, have put a special focus on this work. “The loss of life that occurred in that storm, including those who died as waters flooded their basement homes  underscores the urgency of this type of research, planning, and readiness.” More

  • in

    Finding common ground in Malden

    When disparate groups convene around a common goal, exciting things can happen.

    That is the inspiring story unfolding in Malden, Massachusetts, a city of about 60,000 — nearly half people of color — where a new type of community coalition continues to gain momentum on its plan to build a climate-resilient waterfront park along its river. The Malden River Works (MRW) project, recipient of the inaugural Leventhal City Prize, is seeking to connect to a contiguous greenway network where neighboring cities already have visitors coming to their parks and enjoying recreational boating. More important, the MRW is changing the model for how cities address civic growth, community engagement, equitable climate resilience, and environmental justice.                                                                                        

    The MRW’s steering committee consists of eight resident leaders of color, a resident environmental advocate, and three city representatives. One of the committee’s primary responsibilities is providing direction to the MRW’s project team, which includes urban designers, watershed and climate resilience planners, and a community outreach specialist. MIT’s Kathleen Vandiver, director of the Community Outreach Education and Engagement Core at MIT’s Center for Environmental Health Sciences (CEHS), and Marie Law Adams MArch ’06, a lecturer in the School of Architecture and Planning’s Department of Urban Studies and Planning (DUSP), serve on the project team.

    “This governance structure is somewhat unusual,” says Adams. “More typical is having city government as the primary decision-maker. It is important that one of the first things our team did was build a steering committee that is the decision maker on this project.”

    Evan Spetrini ’18 is the senior planner and policy manager for the Malden Redevelopment Authority and sits on both the steering committee and project team. He says placing the decision-making power with the steering committee and building it to be representative of marginalized communities was intentional. 

    “Changing that paradigm of power and decision-making in planning processes was the way we approached social resilience,” says Spetrini. “We have always intended this project to be a model for future planning projects in Malden.”

    This model ushers in a new history chapter for a city founded in 1640.

    Located about six miles north of Boston, Malden was home to mills and factories that used the Malden River for power, and a site for industrial waste over the last two centuries. Decades after the city’s industrial decline, there is little to no public access to the river. Many residents were not even aware there was a river in their city. Before the project was under way, Vandiver initiated a collaborative effort to evaluate the quality of the river’s water. Working with the Mystic River Watershed Association, Gradient Corporation, and CEHS, water samples were tested and a risk analysis conducted.

    “Having the study done made it clear the public could safely enjoy boating on the water,” says Vandiver. “It was a breakthrough that allowed people to see the river as an amenity.”

    A team effort

    Marcia Manong had never seen the river, but the Malden resident was persuaded to join the steering committee with the promise the project would be inclusive and of value to the community. Manong has been involved with civic engagement most of her life in the United States and for 20 years in South Africa.

    “It wasn’t going to be a marginalized, token-ized engagement,” says Manong. “It was clear to me that they were looking for people that would actually be sitting at the table.”

    Manong agreed to recruit additional people of color to join the team. From the beginning, she says, language was a huge barrier, given that nearly half of Malden’s residents do not speak English at home. Finding the translation efforts at their public events to be inadequate, the steering committee directed more funds to be made available for translation in several languages when public meetings began being held over Zoom this past year.

    “It’s unusual for most cities to spend this money, but our population is so diverse that we require it,” says Manong. “We have to do it. If the steering committee wasn’t raising this issue with the rest of the team, perhaps this would be overlooked.”

    Another alteration the steering committee has made is how the project engages with the community. While public attendance at meetings had been successful before the pandemic, Manong says they are “constantly working” to reach new people. One method has been to request invitations to attend the virtual meetings of other organizations to keep them apprised of the project.

    “We’ve said that people feel most comfortable when they’re in their own surroundings, so why not go where the people are instead of trying to get them to where we are,” says Manong.

    Buoyed by the $100,000 grant from MIT’s Norman B. Leventhal Center for Advanced Urbanism (LCAU) in 2019, the project team worked with Malden’s Department of Public Works, which is located along the river, to redesign its site and buildings and to study how to create a flood-resistant public open space as well as an elevated greenway path, connecting with other neighboring cities’ paths. The park’s plans also call for 75 new trees to reduce urban heat island effect, open lawn for gathering, and a dock for boating on the river.

    “The storm water infrastructure in these cities is old and isn’t going to be able to keep up with increased precipitation,” says Adams. “We’re looking for ways to store as much water as possible on the DPW site so we can hold it and release it more gradually into the river to avoid flooding.”

    The project along the 2.3-mile-long river continues to receive attention. Recently, the city of Malden was awarded a 2021 Accelerating Climate Resilience Grant of more than $50,000 from the state’s Metropolitan Area Planning Council and the Barr Foundation to support the project. Last fall, the project was awarded a $150,015 Municipal Vulnerability Preparedness Action Grant. Both awards are being directed to fund engineering work to refine the project’s design.

    “We — and in general, the planning profession — are striving to create more community empowerment in decision-making as to what happens to their community,” says Spetrini. “Putting the power in the community ensures that it’s actually responding to the needs of the community.”

    Contagious enthusiasm

    Manong says she’s happy she got involved with the project and believes the new governance structure is making a difference.

    “This project is definitely engaging with communities of color in a manner that is transformative and that is looking to build a long-lasting power dynamic built on trust,” she says. “It’s a new energized civic engagement and we’re making that happen. It’s very exciting.”

    Spetrini finds the challenge of creating an open space that’s publicly accessible and alongside an active work site professionally compelling.

    “There is a way to preserve the industrial employment base while also giving the public greater access to this natural resource,” he says. “It has real implications for other communities to follow this type of model.”

    Despite the pandemic this past year, enthusiasm for the project is palpable. For Spetrini, a Malden resident, it’s building “the first significant piece of what has been envisioned as the Malden River Greenway.” Adams sees the total project as a way to build social resilience as well as garnering community interest in climate resilience. For Vandiver, it’s the implications for improved community access.

    “From a health standpoint, everybody has learned from Covid-19 that the health aspects of walking in nature are really restorative,” says Vandiver. “Creating greater green space gives more attention to health issues. These are seemingly small side benefits, but they’re huge for mental health benefits.”

    Leventhal City Prize’s next cycle

    The Leventhal City Prize was established by the LCAU to catalyze innovative, interdisciplinary urban design, and planning approaches worldwide to improve both the environment and the quality of life for residents. Support for the LCAU was provided by the Muriel and Norman B. Leventhal Family Foundation and the Sherry and Alan Leventhal Family Foundation.

    “We’re thrilled with inaugural recipients of the award and the extensive work they’ve undertaken that is being held up as an exemplary model for others to learn from,” says Sarah Williams, LCAU director and a professor in DUSP. “Their work reflects the prize’s intent. We look forward to catalyzing these types of collaborative partnership in the next prize cycle.”

    Submissions for the next cycle of the Leventhal City Prize will open in early 2022.    More