More stories

  • in

    Material designed to improve power plant efficiency wins 2022 Water Innovation Prize

    The winner of this year’s Water Innovation Prize is a company commercializing a material that could dramatically improve the efficiency of power plants.

    The company, Mesophase, is developing a more efficient power plant steam condenser that leverages a surface coating developed in the lab of Evelyn Wang, MIT’s Ford Professor of Engineering and the head of the Department of Mechanical Engineering. Such condensers, which convert steam into water, sit at the heart of the energy extraction process in most of the world’s power plants.

    In the winning pitch, company founders said they believe their low-cost, durable coating will improve the heat transfer performance of such condensers.

    “What makes us excited about this technology is that in the condenser field, this is the first time we’ve seen a coating that can last long enough for industrial applications and be made with a high potential to scale up,” said Yajing Zhao SM ’18, who is currently a PhD candidate in mechanical engineering at MIT. “When compared to what’s available in academia and industry, we believe you’ll see record performance in terms of both heat transfer and lifetime.”

    In most power plants, condensers cool steam to turn it into water. The pressure change caused by that conversion creates a vacuum that pulls steam through a turbine. Mesophase’s patent-pending surface coating improves condensers’ ability to transfer heat, thus allowing operators to extract power more efficiently.

    Based on lab tests, the company predicts it can increase power plant output by up to 7 percent using existing infrastructure. Because steam condensers are used around the world, this advance could help increase global electricity production by 500 terawatt hours per year, which is equivalent to the electricity supply for about 1 billion people.

    The efficiency gains will also lead to less water use. Water sent from cooling towers is a common means of keeping condensers cool. The company estimates its system could reduce fresh water withdrawals by the equivalent of what is used by 50 million people per year.

    After running pilots, the company believes the new material could be installed in power plants during the regularly scheduled maintenance that occurs every two to five years. The company is also planning to work with existing condenser manufacturers to get to market faster.

    “This all works because a condenser with our technology in it has significantly more attractive economics than what you find in the market today,” says Mesophase’s Michael Gangemi, an MBA candidate at MIT’s Sloan School of Management.

    The company plans to start in the U.S. geothermal space, where Mesophase estimates its technology is worth about $800 million a year.

    “Much of the geothermal capacity in the U.S. was built in the ’50s and ’60s,” Gangemi said. “That means most of these plants are operating way below capacity, and they invest frequently in technology like ours just to maintain their power output.”

    The company will use the prize money, in part, to begin testing in a real power plant environment.

    “We are excited about these developments, but we know that they are only first steps as we move toward broader energy applications,” Gangemi said.

    MIT’s Water Innovation Prize helps translate water-related research and ideas into businesses and impact. Each year, student-led finalist teams pitch their innovations to students, faculty, investors, and people working in various water-related industries.

    This year’s event, held in a virtual hybrid format in MIT’s Media Lab, included five finalist teams. The second-place $15,000 award was given to Livingwater Systems, which provides portable rainwater collection and filtration systems to displaced and off-grid communities.

    The company’s product consists of a low-cost mesh that goes on roofs to collect the water and a collapsible storage unit that incorporates a sediment filter. The water becomes drinkable after applying chlorine tablets to the storage unit.

    “Perhaps the single greatest attraction of our units is their elegance and simplicity,” Livingwater CEO Joshua Kao said in the company’s pitch. “Anyone can take advantage of their easy, do-it-yourself setup without any preexisting knowhow.”

    The company says the system works on the pitched roofs used in many off-grid settlements, refugee camps, and slums. The entire unit fits inside a backpack.

    The team also notes existing collection systems cost thousands of dollars, require expert installation, and can’t be attached to surfaces like tents. Livingwater is aiming to partner with nongovernmental organizations and nonprofit entities to sell its systems for $60 each, which would represent significant cost savings when compared to alternatives like busing water into settlements.

    The company will be running a paid pilot with the World Food Program this fall.

    “Support from MIT will be crucial for building the core team on the ground,” said Livingwater’s Gabriela Saade, a master’s student in public policy at the University of Chicago. “Let’s begin to realize a new era of water security in Latin America and across the globe.”

    The third-place $10,000 prize went to Algeon Materials, which is creating sustainable and environmentally friendly bioplastics from kelp. Algeon also won the $5,000 audience choice award for its system, which doesn’t require water, fertilizer, or land to produce.

    The other finalists were:

    Flowless, which uses artificial intelligence and an internet of things (IoT) platform to detect leaks and optimize water-related processes to reduce waste;
    Hydrologistics Africa Ltd, a platform to help consumers and utilities manage their water consumption; and
    Watabot, which is developing autonomous, artificial intelligence-powered systems to monitor harmful algae in real time and predict algae activity.

    Each year the Water Innovation Prize, hosted by the MIT Water Club, awards up to $50,000 in grants to teams from around the world. This year’s program received over 50 applications. A group of 20 semifinalist teams spent one month working with mentors to refine their pitches and business plans, and the final field of finalists received another month of mentorship.

    The Water Innovation Prize started in 2015 and has awarded more than $275,000 to 24 different teams to date. More

  • in

    Surface coating designed to improve power plant efficiency wins 2022 Water Innovation Prize

    The winner of this year’s Water Innovation Prize is a company commercializing a material that could dramatically improve the efficiency of power plants.

    The company, Mesophase, is developing a more efficient power plant steam condenser that leverages a surface coating developed in the lab of Evelyn Wang, MIT’s Ford Professor of Engineering and the head of the Department of Mechanical Engineering. Such condensers, which convert steam into water, sit at the heart of the energy extraction process in most of the world’s power plants.

    In the winning pitch, company founders said they believe their low-cost, durable coating will improve the heat transfer performance of such condensers.

    “What makes us excited about this technology is that in the condenser field, this is the first time we’ve seen a coating that can last long enough for industrial applications and be made with a high potential to scale up,” said Yajing Zhao SM ’18, who is currently a PhD candidate in mechanical engineering at MIT. “When compared to what’s available in academia and industry, we believe you’ll see record performance in terms of both heat transfer and lifetime.”

    In most power plants, condensers cool steam to turn it into water. The pressure change caused by that conversion creates a vacuum that pulls steam through a turbine. Mesophase’s patent-pending surface coating improves condensers’ ability to transfer heat, thus allowing operators to extract power more efficiently.

    Based on lab tests, the company predicts it can increase power plant output by up to 7 percent using existing infrastructure. Because steam condensers are used around the world, this advance could help increase global electricity production by 500 terawatt hours per year, which is equivalent to the electricity supply for about 1 billion people.

    The efficiency gains will also lead to less water use. Water sent from cooling towers is a common means of keeping condensers cool. The company estimates its system could reduce fresh water withdrawals by the equivalent of what is used by 50 million people per year.

    After running pilots, the company believes the new material could be installed in power plants during the regularly scheduled maintenance that occurs every two to five years. The company is also planning to work with existing condenser manufacturers to get to market faster.

    “This all works because a condenser with our technology in it has significantly more attractive economics than what you find in the market today,” says Mesophase’s Michael Gangemi, an MBA candidate at MIT’s Sloan School of Management.

    The company plans to start in the U.S. geothermal space, where Mesophase estimates its technology is worth about $800 million a year.

    “Much of the geothermal capacity in the U.S. was built in the ’50s and ’60s,” Gangemi said. “That means most of these plants are operating way below capacity, and they invest frequently in technology like ours just to maintain their power output.”

    The company will use the prize money, in part, to begin testing in a real power plant environment.

    “We are excited about these developments, but we know that they are only first steps as we move toward broader energy applications,” Gangemi said.

    MIT’s Water Innovation Prize helps translate water-related research and ideas into businesses and impact. Each year, student-led finalist teams pitch their innovations to students, faculty, investors, and people working in various water-related industries.

    This year’s event, held in a virtual hybrid format in MIT’s Media Lab, included five finalist teams. The second-place $15,000 award was given to Livingwater Systems, which provides portable rainwater collection and filtration systems to displaced and off-grid communities.

    The company’s product consists of a low-cost mesh that goes on roofs to collect the water and a collapsible storage unit that incorporates a sediment filter. The water becomes drinkable after applying chlorine tablets to the storage unit.

    “Perhaps the single greatest attraction of our units is their elegance and simplicity,” Livingwater CEO Joshua Kao said in the company’s pitch. “Anyone can take advantage of their easy, do-it-yourself setup without any preexisting knowhow.”

    The company says the system works on the pitched roofs used in many off-grid settlements, refugee camps, and slums. The entire unit fits inside a backpack.

    The team also notes existing collection systems cost thousands of dollars, require expert installation, and can’t be attached to surfaces like tents. Livingwater is aiming to partner with nongovernmental organizations and nonprofit entities to sell its systems for $60 each, which would represent significant cost savings when compared to alternatives like busing water into settlements.

    The company will be running a paid pilot with the World Food Program this fall.

    “Support from MIT will be crucial for building the core team on the ground,” said Livingwater’s Gabriela Saade, a master’s student in public policy at the University of Chicago. “Let’s begin to realize a new era of water security in Latin America and across the globe.”

    The third-place $10,000 prize went to Algeon Materials, which is creating sustainable and environmentally friendly bioplastics from kelp. Algeon also won the $5,000 audience choice award for its system, which doesn’t require water, fertilizer, or land to produce.

    The other finalists were:

    Flowless, which uses artificial intelligence and an internet of things (IoT) platform to detect leaks and optimize water-related processes to reduce waste;
    Hydrologistics Africa Ltd, a platform to help consumers and utilities manage their water consumption; and
    Watabot, which is developing autonomous, artificial intelligence-powered systems to monitor harmful algae in real time and predict algae activity.

    Each year the Water Innovation Prize, hosted by the MIT Water Club, awards up to $50,000 in grants to teams from around the world. This year’s program received over 50 applications. A group of 20 semifinalist teams spent one month working with mentors to refine their pitches and business plans, and the final field of finalists received another month of mentorship.

    The Water Innovation Prize started in 2015 and has awarded more than $275,000 to 24 different teams to date. More

  • in

    At Climate Grand Challenges showcase event, an exploration of how to accelerate breakthrough solutions

    On the eve of Earth Day, more than 300 faculty, researchers, students, government officials, and industry leaders gathered in the Samberg Conference Center, along with thousands more who tuned in online, to celebrate MIT’s first-ever Climate Grand Challenges and the five most promising concepts to emerge from the two-year competition.

    The event began with a climate policy conversation between MIT President L. Rafael Reif and Special Presidential Envoy for Climate John Kerry, followed by presentations from each of the winning flagship teams, and concluded with an expert panel that explored pathways for moving from ideas to impact at scale as quickly as possible.

    “In 2020, when we launched the Climate Grand Challenges, we wanted to focus the daring creativity and pioneering expertise of the MIT community on the urgent problem of climate change,” said President Reif in kicking off the event. “Together these flagship projects will define a transformative new research agenda at MIT, one that has the potential to make meaningful contributions to the global climate response.”

    Reif and Kerry discussed multiple aspects of the climate crisis, including mitigation, adaptation, and the policies and strategies that can help the world avert the worst consequences of climate change and make the United States a leader again in bringing technology into commercial use. Referring to the accelerated wartime research effort that helped turn the tide in World War II, which included work conducted at MIT, Kerry said, “We need about five Manhattan Projects, frankly.”

    “People are now sensing a much greater urgency to finding solutions — new technology — and taking to scale some of the old technologies,” Kerry said. “There are things that are happening that I think are exciting, but the problem is it’s not happening fast enough.”

    Strategies for taking technology from the lab to the marketplace were the basis for the final portion of the event. The panel was moderated by Alicia Barton, president and CEO of FirstLight Power, and included Manish Bapna, president and CEO of the Natural Resources Defense Council; Jack Little, CEO and co-founder of MathWorks; Arati Prabhakar, president of Actuate and former head of the Defense Advanced Research Projects Agency; and Katie Rae, president and managing director of The Engine. The discussion touched upon the importance of marshaling the necessary resources and building the cross-sector partnerships required to scale the technologies being developed by the flagship teams and to deliver them to the world in time to make a difference. 

    “MIT doesn’t sit on its hands ever, and innovation is central to its founding,” said Rae. “The students coming out of MIT at every level, along with the professors, have been committed to these challenges for a long time and therefore will have a big impact. These flagships have always been in process, but now we have an extraordinary moment to commercialize these projects.”

    The panelists weighed in on how to change the mindset around finance, policy, business, and community adoption to scale massive shifts in energy generation, transportation, and other major carbon-emitting industries. They stressed the importance of policies that address the economic, equity, and public health impacts of climate change and of reimagining supply chains and manufacturing to grow and distribute these technologies quickly and affordably. 

    “We are embarking on five adventures, but we do not know yet, cannot know yet, where these projects will take us,” said Maria Zuber, MIT’s vice president for research. “These are powerful and promising ideas. But each one will require focused effort, creative and interdisciplinary teamwork, and sustained commitment and support if they are to become part of the climate and energy revolution that the world urgently needs. This work begins now.” 

    Zuber called for investment from philanthropists and financiers, and urged companies, governments, and others to join this all-of-humanity effort. Associate Provost for International Activities Richard Lester echoed this message in closing the event. 

    “Every one of us needs to put our shoulder to the wheel at the points where our leverage is maximized — where we can do what we’re best at,” Lester said. “For MIT, Climate Grand Challenges is one of those maximum leverage points.” More

  • in

    Empowering people to adapt on the frontlines of climate change

    On April 11, MIT announced five multiyear flagship projects in the first-ever Climate Grand Challenges, a new initiative to tackle complex climate problems and deliver breakthrough solutions to the world as quickly as possible. This article is the fifth in a five-part series highlighting the most promising concepts to emerge from the competition and the interdisciplinary research teams behind them.

    In the coastal south of Bangladesh, rice paddies that farmers could once harvest three times a year lie barren. Sea-level rise brings saltwater to the soil, ruining the staple crop. It’s one of many impacts, and inequities, of climate change. Despite producing less than 1 percent of global carbon emissions, Bangladesh is suffering more than most countries. Rising seas, heat waves, flooding, and cyclones threaten 90 million people.

    A platform being developed in a collaboration between MIT and BRAC, a Bangladesh-based global development organization, aims to inform and empower climate-threatened communities to proactively adapt to a changing future. Selected as one of five MIT Climate Grand Challenges flagship projects, the Climate Resilience Early Warning System (CREWSnet) will forecast the local impacts of climate change on people’s lives, homes, and livelihoods. These forecasts will guide BRAC’s development of climate-resiliency programs to help residents prepare for and adapt to life-altering conditions.

    “The communities that CREWSnet will focus on have done little to contribute to the problem of climate change in the first place. However, because of socioeconomic situations, they may be among the most vulnerable. We hope that by providing state-of-the-art projections and sharing them broadly with communities, and working through partners like BRAC, we can help improve the capacity of local communities to adapt to climate change, significantly,” says Elfatih Eltahir, the H.M. King Bhumibol Professor in the Department of Civil and Environmental Engineering.

    Eltahir leads the project with John Aldridge and Deborah Campbell in the Humanitarian Assistance and Disaster Relief Systems Group at Lincoln Laboratory. Additional partners across MIT include the Center for Global Change Science; the Department of Earth, Atmospheric and Planetary Sciences; the Joint Program on the Science and Policy of Global Change; and the Abdul Latif Jameel Poverty Action Lab. 

    Predicting local risks

    CREWSnet’s forecasts rely upon a sophisticated model, developed in Eltahir’s research group over the past 25 years, called the MIT Regional Climate Model. This model zooms in on climate processes at local scales, at a resolution as granular as 6 miles. In Bangladesh’s population-dense cities, a 6-mile area could encompass tens, or even hundreds, of thousands of people. The model takes into account the details of a region’s topography, land use, and coastline to predict changes in local conditions.

    When applying this model over Bangladesh, researchers found that heat waves will get more severe and more frequent over the next 30 years. In particular, wet-bulb temperatures, which indicate the ability for humans to cool down by sweating, will rise to dangerous levels rarely observed today, particularly in western, inland cities.

    Such hot spots exacerbate other challenges predicted to worsen near Bangladesh’s coast. Rising sea levels and powerful cyclones are eroding and flooding coastal communities, causing saltwater to surge into land and freshwater. This salinity intrusion is detrimental to human health, ruins drinking water supplies, and harms crops, livestock, and aquatic life that farmers and fishermen depend on for food and income.

    CREWSnet will fuse climate science with forecasting tools that predict the social and economic impacts to villages and cities. These forecasts — such as how often a crop season may fail, or how far floodwaters will reach — can steer decision-making.

    “What people need to know, whether they’re a governor or head of a household, is ‘What is going to happen in my area, and what decisions should I make for the people I’m responsible for?’ Our role is to integrate this science and technology together into a decision support system,” says Aldridge, whose group at Lincoln Laboratory specializes in this area. Most recently, they transitioned a hurricane-evacuation planning system to the U.S. government. “We know that making decisions based on climate change requires a deep level of trust. That’s why having a powerful partner like BRAC is so important,” he says.

    Testing interventions

    Established 50 years ago, just after Bangladesh’s independence, BRAC works in every district of the nation to provide social services that help people rise from extreme poverty. Today, it is one of the world’s largest nongovernmental organizations, serving 110 million people across 11 countries in Asia and Africa, but its success is cultivated locally.

    “BRAC is thrilled to partner with leading researchers at MIT to increase climate resilience in Bangladesh and provide a model that can be scaled around the globe,” says Donella Rapier, president and CEO of BRAC USA. “Locally led climate adaptation solutions that are developed in partnership with communities are urgently needed, particularly in the most vulnerable regions that are on the frontlines of climate change.”

    CREWSnet will help BRAC identify communities most vulnerable to forecasted impacts. In these areas, they will share knowledge and innovate or bolster programs to improve households’ capacity to adapt.

    Many climate initiatives are already underway. One program equips homes to filter and store rainwater, as salinity intrusion makes safe drinking water hard to access. Another program is building resilient housing, able to withstand 120-mile-per-hour winds, that can double as local shelters during cyclones and flooding. Other services are helping farmers switch to different livestock or crops better suited for wetter or saltier conditions (e.g., ducks instead of chickens, or salt-tolerant rice), providing interest-free loans to enable this change.

    But adapting in place will not always be possible, for example in areas predicted to be submerged or unbearably hot by midcentury. “Bangladesh is working on identifying and developing climate-resilient cities and towns across the country, as closer-by alternative destinations as compared to moving to Dhaka, the overcrowded capital of Bangladesh,” says Campbell. “CREWSnet can help identify regions better suited for migration, and climate-resilient adaptation strategies for those regions.” At the same time, BRAC’s Climate Bridge Fund is helping to prepare cities for climate-induced migration, building up infrastructure and financial services for people who have been displaced.

    Evaluating impact

    While CREWSnet’s goal is to enable action, it can’t quite measure the impact of those actions. The Abdul Latif Jameel Poverty Action Lab (J-PAL), a development economics program in the MIT School of Humanities, Arts, and Social Sciences, will help evaluate the effectiveness of the climate-adaptation programs.

    “We conduct randomized controlled trials, similar to medical trials, that help us understand if a program improved people’s lives,” says Claire Walsh, the project director of the King Climate Action Initiative at J-PAL. “Once CREWSnet helps BRAC implement adaptation programs, we will generate scientific evidence on their impacts, so that BRAC and CREWSnet can make a case to funders and governments to expand effective programs.”

    The team aspires to bring CREWSnet to other nations disproportionately impacted by climate change. “Our vision is to have this be a globally extensible capability,” says Campbell. CREWSnet’s name evokes another early-warning decision-support system, FEWSnet, that helped organizations address famine in eastern Africa in the 1980s. Today it is a pillar of food-security planning around the world.

    CREWSnet hopes for a similar impact in climate change planning. Its selection as an MIT Climate Grand Challenges flagship project will inject the project with more funding and resources, momentum that will also help BRAC’s fundraising. The team plans to deploy CREWSnet to southwestern Bangladesh within five years.

    “The communities that we are aspiring to reach with CREWSnet are deeply aware that their lives are changing — they have been looking climate change in the eye for many years. They are incredibly resilient, creative, and talented,” says Ashley Toombs, the external affairs director for BRAC USA. “As a team, we are excited to bring this system to Bangladesh. And what we learn together, we will apply at potentially even larger scales.” More

  • in

    Using plant biology to address climate change

    On April 11, MIT announced five multiyear flagship projects in the first-ever Climate Grand Challenges, a new initiative to tackle complex climate problems and deliver breakthrough solutions to the world as quickly as possible. This article is the fourth in a five-part series highlighting the most promising concepts to emerge from the competition and the interdisciplinary research teams behind them.

    The impact of our changing climate on agriculture and food security — and how contemporary agriculture contributes to climate change — is at the forefront of MIT’s multidisciplinary project “Revolutionizing agriculture with low-emissions, resilient crops.” The project The project is one of five flagship winners in the Climate Grand Challenges competition, and brings together researchers from the departments of Biology, Biological Engineering, Chemical Engineering, and Civil and Environmental Engineering.

    “Our team’s research seeks to address two connected challenges: first, the need to reduce the greenhouse gas emissions produced by agricultural fertilizer; second, the fact that the yields of many current agricultural crops will decrease, due to the effects of climate change on plant metabolism,” says the project’s faculty lead, Christopher Voigt, the Daniel I.C. Wang Professor in MIT’s Department of Biological Engineering. “We are pursuing six interdisciplinary projects that are each key to our overall goal of developing low-emissions methods for fertilizing plants that are bioengineered to be more resilient and productive in a changing climate.”

    Whitehead Institute members Mary Gehring and Jing-Ke Weng, plant biologists who are also associate professors in MIT’s Department of Biology, will lead two of those projects.

    Promoting crop resilience

    For most of human history, climate change occurred gradually, over hundreds or thousands of years. That pace allowed plants to adapt to variations in temperature, precipitation, and atmospheric composition. However, human-driven climate change has occurred much more quickly, and crop plants have suffered: Crop yields are down in many regions, as is seed protein content in cereal crops.

    “If we want to ensure an abundant supply of nutritious food for the world, we need to develop fundamental mechanisms for bioengineering a wide variety of crop plants that will be both hearty and nutritious in the face of our changing climate,” says Gehring. In her previous work, she has shown that many aspects of plant reproduction and seed development are controlled by epigenetics — that is, by information outside of the DNA sequence. She has been using that knowledge and the research methods she has developed to identify ways to create varieties of seed-producing plants that are more productive and resilient than current food crops.

    But plant biology is complex, and while it is possible to develop plants that integrate robustness-enhancing traits by combining dissimilar parental strains, scientists are still learning how to ensure that the new traits are carried forward from one generation to the next. “Plants that carry the robustness-enhancing traits have ‘hybrid vigor,’ and we believe that the perpetuation of those traits is controlled by epigenetics,” Gehring explains. “Right now, some food crops, like corn, can be engineered to benefit from hybrid vigor, but those traits are not inherited. That’s why farmers growing many of today’s most productive varieties of corn must purchase and plant new batches of seeds each year. Moreover, many important food crops have not yet realized the benefits of hybrid vigor.”

    The project Gehring leads, “Developing Clonal Seed Production to Fix Hybrid Vigor,” aims to enable food crop plants to create seeds that are both more robust and genetically identical to the parent — and thereby able to pass beneficial traits from generation to generation.

    The process of clonal (or asexual) production of seeds that are genetically identical to the maternal parent is called apomixis. Gehring says, “Because apomixis is present in 400 flowering plant species — about 1 percent of flowering plant species — it is probable that genes and signaling pathways necessary for apomixis are already present within crop plants. Our challenge is to tweak those genes and pathways so that the plant switches reproduction from sexual to asexual.”

    The project will leverage the fact that genes and pathways related to autonomous asexual development of the endosperm — a seed’s nutritive tissue — exist in the model plant Arabidopsis thaliana. In previous work on Arabidopsis, Gehring’s lab researched a specific gene that, when misregulated, drives development of an asexual endosperm-like material. “Normally, that seed would not be viable,” she notes. “But we believe that by epigenetic tuning of the expression of additional relevant genes, we will enable the plant to retain that material — and help achieve apomixis.”

    If Gehring and her colleagues succeed in creating a gene-expression “formula” for introducing endosperm apomixis into a wide range of crop plants, they will have made a fundamental and important achievement. Such a method could be applied throughout agriculture to create and perpetuate new crop breeds able to withstand their changing environments while requiring less fertilizer and fewer pesticides.

    Creating “self-fertilizing” crops

    Roughly a quarter of greenhouse gas (GHG) emissions in the United States are a product of agriculture. Fertilizer production and use accounts for one third of those emissions and includes nitrous oxide, which has heat-trapping capacity 298-fold stronger than carbon dioxide, according to a 2018 Frontiers in Plant Science study. Most artificial fertilizer production also consumes huge quantities of natural gas and uses minerals mined from nonrenewable resources. After all that, much of the nitrogen fertilizer becomes runoff that pollutes local waterways. For those reasons, this Climate Grand Challenges flagship project aims to greatly reduce use of human-made fertilizers.

    One tantalizing approach is to cultivate cereal crop plants — which account for about 75 percent of global food production — capable of drawing nitrogen from metabolic interactions with bacteria in the soil. Whitehead Institute’s Weng leads an effort to do just that: genetically bioengineer crops such as corn, rice, and wheat to, essentially, create their own fertilizer through a symbiotic relationship with nitrogen-fixing microbes.

    “Legumes such as bean and pea plants can form root nodules through which they receive nitrogen from rhizobia bacteria in exchange for carbon,” Weng explains. “This metabolic exchange means that legumes release far less greenhouse gas — and require far less investment of fossil energy — than do cereal crops, which use a huge portion of the artificially produced nitrogen fertilizers employed today.

    “Our goal is to develop methods for transferring legumes’ ‘self-fertilizing’ capacity to cereal crops,” Weng says. “If we can, we will revolutionize the sustainability of food production.”

    The project — formally entitled “Mimicking legume-rhizobia symbiosis for fertilizer production in cereals” — will be a multistage, five-year effort. It draws on Weng’s extensive studies of metabolic evolution in plants and his identification of molecules involved in formation of the root nodules that permit exchanges between legumes and nitrogen-fixing bacteria. It also leverages his expertise in reconstituting specific signaling and metabolic pathways in plants.

    Weng and his colleagues will begin by deciphering the full spectrum of small-molecule signaling processes that occur between legumes and rhizobium bacteria. Then they will genetically engineer an analogous system in nonlegume crop plants. Next, using state-of-the-art metabolomic methods, they will identify which small molecules excreted from legume roots prompt a nitrogen/carbon exchange from rhizobium bacteria. Finally, the researchers will genetically engineer the biosynthesis of those molecules in the roots of nonlegume plants and observe their effect on the rhizobium bacteria surrounding the roots.

    While the project is complex and technically challenging, its potential is staggering. “Focusing on corn alone, this could reduce the production and use of nitrogen fertilizer by 160,000 tons,” Weng notes. “And it could halve the related emissions of nitrous oxide gas.” More

  • in

    Looking forward to forecast the risks of a changing climate

    On April 11, MIT announced five multiyear flagship projects in the first-ever Climate Grand Challenges, a new initiative to tackle complex climate problems and deliver breakthrough solutions to the world as quickly as possible. This article is the third in a five-part series highlighting the most promising concepts to emerge from the competition, and the interdisciplinary research teams behind them.

    Extreme weather events that were once considered rare have become noticeably less so, from intensifying hurricane activity in the North Atlantic to wildfires generating massive clouds of ozone-damaging smoke. But current climate models are unprepared when it comes to estimating the risk that these increasingly extreme events pose — and without adequate modeling, governments are left unable to take necessary precautions to protect their communities.

    MIT Department of Earth, Atmospheric and Planetary Science (EAPS) Professor Paul O’Gorman researches this trend by studying how climate affects the atmosphere and incorporating what he learns into climate models to improve their accuracy. One particular focus for O’Gorman has been changes in extreme precipitation and midlatitude storms that hit areas like New England.

    “These extreme events are having a lot of impact, but they’re also difficult to model or study,” he says. Seeing the pressing need for better climate models that can be used to develop preparedness plans and climate change mitigation strategies, O’Gorman and collaborators Kerry Emanuel, the Cecil and Ida Green Professor of Atmospheric Science in EAPS, and Miho Mazereeuw, associate professor in MIT’s Department of Architecture, are leading an interdisciplinary group of scientists, engineers, and designers to tackle this problem with their MIT Climate Grand Challenges flagship project, “Preparing for a new world of weather and climate extremes.”

    “We know already from observations and from climate model predictions that weather and climate extremes are changing and will change more,” O’Gorman says. “The grand challenge is preparing for those changing extremes.”

    Their proposal is one of five flagship projects recently announced by the MIT Climate Grand Challenges initiative — an Institute-wide effort catalyzing novel research and engineering innovations to address the climate crisis. Selected from a field of almost 100 submissions, the team will receive additional funding and exposure to help accelerate and scale their project goals. Other MIT collaborators on the proposal include researchers from the School of Engineering, the School of Architecture and Planning, the Office of Sustainability, the Center for Global Change Science, and the Institute for Data, Systems and Society.

    Weather risk modeling

    Fifteen years ago, Kerry Emanuel developed a simple hurricane model. It was based on physics equations, rather than statistics, and could run in real time, making it useful for modeling risk assessment. Emanuel wondered if similar models could be used for long-term risk assessment of other things, such as changes in extreme weather because of climate change.

    “I discovered, somewhat to my surprise and dismay, that almost all extant estimates of long-term weather risks in the United States are based not on physical models, but on historical statistics of the hazards,” says Emanuel. “The problem with relying on historical records is that they’re too short; while they can help estimate common events, they don’t contain enough information to make predictions for more rare events.”

    Another limitation of weather risk models which rely heavily on statistics: They have a built-in assumption that the climate is static.

    “Historical records rely on the climate at the time they were recorded; they can’t say anything about how hurricanes grow in a warmer climate,” says Emanuel. The models rely on fixed relationships between events; they assume that hurricane activity will stay the same, even while science is showing that warmer temperatures will most likely push typical hurricane activity beyond the tropics and into a much wider band of latitudes.

    As a flagship project, the goal is to eliminate this reliance on the historical record by emphasizing physical principles (e.g., the laws of thermodynamics and fluid mechanics) in next-generation models. The downside to this is that there are many variables that have to be included. Not only are there planetary-scale systems to consider, such as the global circulation of the atmosphere, but there are also small-scale, extremely localized events, like thunderstorms, that influence predictive outcomes.

    Trying to compute all of these at once is costly and time-consuming — and the results often can’t tell you the risk in a specific location. But there is a way to correct for this: “What’s done is to use a global model, and then use a method called downscaling, which tries to infer what would happen on very small scales that aren’t properly resolved by the global model,” explains O’Gorman. The team hopes to improve downscaling techniques so that they can be used to calculate the risk of very rare but impactful weather events.

    Global climate models, or general circulation models (GCMs), Emanuel explains, are constructed a bit like a jungle gym. Like the playground bars, the Earth is sectioned in an interconnected three-dimensional framework — only it’s divided 100 to 200 square kilometers at a time. Each node comprises a set of computations for characteristics like wind, rainfall, atmospheric pressure, and temperature within its bounds; the outputs of each node are connected to its neighbor. This framework is useful for creating a big picture idea of Earth’s climate system, but if you tried to zoom in on a specific location — like, say, to see what’s happening in Miami or Mumbai — the connecting nodes are too far apart to make predictions on anything specific to those areas.

    Scientists work around this problem by using downscaling. They use the same blueprint of the jungle gym, but within the nodes they weave a mesh of smaller features, incorporating equations for things like topography and vegetation or regional meteorological models to fill in the blanks. By creating a finer mesh over smaller areas they can predict local effects without needing to run the entire global model.

    Of course, even this finer-resolution solution has its trade-offs. While we might be able to gain a clearer picture of what’s happening in a specific region by nesting models within models, it can still make for a computing challenge to crunch all that data at once, with the trade-off being expense and time, or predictions that are limited to shorter windows of duration — where GCMs can be run considering decades or centuries, a particularly complex local model may be restricted to predictions on timescales of just a few years at a time.

    “I’m afraid that most of the downscaling at present is brute force, but I think there’s room to do it in better ways,” says Emanuel, who sees the problem of finding new and novel methods of achieving this goal as an intellectual challenge. “I hope that through the Grand Challenges project we might be able to get students, postdocs, and others interested in doing this in a very creative way.”

    Adapting to weather extremes for cities and renewable energy

    Improving climate modeling is more than a scientific exercise in creativity, however. There’s a very real application for models that can accurately forecast risk in localized regions.

    Another problem is that progress in climate modeling has not kept up with the need for climate mitigation plans, especially in some of the most vulnerable communities around the globe.

    “It is critical for stakeholders to have access to this data for their own decision-making process. Every community is composed of a diverse population with diverse needs, and each locality is affected by extreme weather events in unique ways,” says Mazereeuw, the director of the MIT Urban Risk Lab. 

    A key piece of the team’s project is building on partnerships the Urban Risk Lab has developed with several cities to test their models once they have a usable product up and running. The cities were selected based on their vulnerability to increasing extreme weather events, such as tropical cyclones in Broward County, Florida, and Toa Baja, Puerto Rico, and extratropical storms in Boston, Massachusetts, and Cape Town, South Africa.

    In their proposal, the team outlines a variety of deliverables that the cities can ultimately use in their climate change preparations, with ideas such as online interactive platforms and workshops with stakeholders — such as local governments, developers, nonprofits, and residents — to learn directly what specific tools they need for their local communities. By doing so, they can craft plans addressing different scenarios in their region, involving events such as sea-level rise or heat waves, while also providing information and means of developing adaptation strategies for infrastructure under these conditions that will be the most effective and efficient for them.

    “We are acutely aware of the inequity of resources both in mitigating impacts and recovering from disasters. Working with diverse communities through workshops allows us to engage a lot of people, listen, discuss, and collaboratively design solutions,” says Mazereeuw.

    By the end of five years, the team is hoping that they’ll have better risk assessment and preparedness tool kits, not just for the cities that they’re partnering with, but for others as well.

    “MIT is well-positioned to make progress in this area,” says O’Gorman, “and I think it’s an important problem where we can make a difference.” More

  • in

    Computing our climate future

    On Monday, MIT announced five multiyear flagship projects in the first-ever Climate Grand Challenges, a new initiative to tackle complex climate problems and deliver breakthrough solutions to the world as quickly as possible. This article is the first in a five-part series highlighting the most promising concepts to emerge from the competition, and the interdisciplinary research teams behind them.

    With improvements to computer processing power and an increased understanding of the physical equations governing the Earth’s climate, scientists are continually working to refine climate models and improve their predictive power. But the tools they’re refining were originally conceived decades ago with only scientists in mind. When it comes to developing tangible climate action plans, these models remain inscrutable to the policymakers, public safety officials, civil engineers, and community organizers who need their predictive insight most.

    “What you end up having is a gap between what’s typically used in practice, and the real cutting-edge science,” says Noelle Selin, a professor in the Institute for Data, Systems and Society and the Department of Earth, Atmospheric and Planetary Sciences (EAPS), and co-lead with Professor Raffaele Ferrari on the MIT Climate Grand Challenges flagship project “Bringing Computation to the Climate Crisis.” “How can we use new computational techniques, new understandings, new ways of thinking about modeling, to really bridge that gap between state-of-the-art scientific advances and modeling, and people who are actually needing to use these models?”

    Using this as a driving question, the team won’t just be trying to refine current climate models, they’re building a new one from the ground up.

    This kind of game-changing advancement is exactly what the MIT Climate Grand Challenges is looking for, which is why the proposal has been named one of the five flagship projects in the ambitious Institute-wide program aimed at tackling the climate crisis. The proposal, which was selected from 100 submissions and was among 27 finalists, will receive additional funding and support to further their goal of reimagining the climate modeling system. It also brings together contributors from across the Institute, including the MIT Schwarzman College of Computing, the School of Engineering, and the Sloan School of Management.

    When it comes to pursuing high-impact climate solutions that communities around the world can use, “it’s great to do it at MIT,” says Ferrari, EAPS Cecil and Ida Green Professor of Oceanography. “You’re not going to find many places in the world where you have the cutting-edge climate science, the cutting-edge computer science, and the cutting-edge policy science experts that we need to work together.”

    The climate model of the future

    The proposal builds on work that Ferrari began three years ago as part of a joint project with Caltech, the Naval Postgraduate School, and NASA’s Jet Propulsion Lab. Called the Climate Modeling Alliance (CliMA), the consortium of scientists, engineers, and applied mathematicians is constructing a climate model capable of more accurately projecting future changes in critical variables, such as clouds in the atmosphere and turbulence in the ocean, with uncertainties at least half the size of those in existing models.

    To do this, however, requires a new approach. For one thing, current models are too coarse in resolution — at the 100-to-200-kilometer scale — to resolve small-scale processes like cloud cover, rainfall, and sea ice extent. But also, explains Ferrari, part of this limitation in resolution is due to the fundamental architecture of the models themselves. The languages most global climate models are coded in were first created back in the 1960s and ’70s, largely by scientists for scientists. Since then, advances in computing driven by the corporate world and computer gaming have given rise to dynamic new computer languages, powerful graphics processing units, and machine learning.

    For climate models to take full advantage of these advancements, there’s only one option: starting over with a modern, more flexible language. Written in Julia, a part of Julialab’s Scientific Machine Learning technology, and spearheaded by Alan Edelman, a professor of applied mathematics in MIT’s Department of Mathematics, CliMA will be able to harness far more data than the current models can handle.

    “It’s been real fun finally working with people in computer science here at MIT,” Ferrari says. “Before it was impossible, because traditional climate models are in a language their students can’t even read.”

    The result is what’s being called the “Earth digital twin,” a climate model that can simulate global conditions on a large scale. This on its own is an impressive feat, but the team wants to take this a step further with their proposal.

    “We want to take this large-scale model and create what we call an ‘emulator’ that is only predicting a set of variables of interest, but it’s been trained on the large-scale model,” Ferrari explains. Emulators are not new technology, but what is new is that these emulators, being referred to as the “Earth digital cousins,” will take advantage of machine learning.

    “Now we know how to train a model if we have enough data to train them on,” says Ferrari. Machine learning for projects like this has only become possible in recent years as more observational data become available, along with improved computer processing power. The goal is to create smaller, more localized models by training them using the Earth digital twin. Doing so will save time and money, which is key if the digital cousins are going to be usable for stakeholders, like local governments and private-sector developers.

    Adaptable predictions for average stakeholders

    When it comes to setting climate-informed policy, stakeholders need to understand the probability of an outcome within their own regions — in the same way that you would prepare for a hike differently if there’s a 10 percent chance of rain versus a 90 percent chance. The smaller Earth digital cousin models will be able to do things the larger model can’t do, like simulate local regions in real time and provide a wider range of probabilistic scenarios.

    “Right now, if you wanted to use output from a global climate model, you usually would have to use output that’s designed for general use,” says Selin, who is also the director of the MIT Technology and Policy Program. With the project, the team can take end-user needs into account from the very beginning while also incorporating their feedback and suggestions into the models, helping to “democratize the idea of running these climate models,” as she puts it. Doing so means building an interactive interface that eventually will give users the ability to change input values and run the new simulations in real time. The team hopes that, eventually, the Earth digital cousins could run on something as ubiquitous as a smartphone, although developments like that are currently beyond the scope of the project.

    The next thing the team will work on is building connections with stakeholders. Through participation of other MIT groups, such as the Joint Program on the Science and Policy of Global Change and the Climate and Sustainability Consortium, they hope to work closely with policymakers, public safety officials, and urban planners to give them predictive tools tailored to their needs that can provide actionable outputs important for planning. Faced with rising sea levels, for example, coastal cities could better visualize the threat and make informed decisions about infrastructure development and disaster preparedness; communities in drought-prone regions could develop long-term civil planning with an emphasis on water conservation and wildfire resistance.

    “We want to make the modeling and analysis process faster so people can get more direct and useful feedback for near-term decisions,” she says.

    The final piece of the challenge is to incentivize students now so that they can join the project and make a difference. Ferrari has already had luck garnering student interest after co-teaching a class with Edelman and seeing the enthusiasm students have about computer science and climate solutions.

    “We’re intending in this project to build a climate model of the future,” says Selin. “So it seems really appropriate that we would also train the builders of that climate model.” More

  • in

    Leveraging science and technology against the world’s top problems

    Looking back on nearly a half-century at MIT, Richard K. Lester, associate provost and Japan Steel Industry Professor, sees a “somewhat eccentric professional trajectory.”

    But while his path has been irregular, there has been a clearly defined through line, Lester says: the emergence of new science and new technologies, the potential of these developments to shake up the status quo and address some of society’s most consequential problems, and what the outcomes might mean for America’s place in the world.

    Perhaps no assignment in Lester’s portfolio better captures this theme than the new MIT Climate Grand Challenges competition. Spearheaded by Lester and Maria Zuber, MIT vice president for research, and launched at the height of the pandemic in summer 2020, this initiative is designed to mobilize the entire MIT research community around tackling “the really hard, challenging problems currently standing in the way of an effective global response to the climate emergency,” says Lester. “The focus is on those problems where progress requires developing and applying frontier knowledge in the natural and social sciences and cutting-edge technologies. This is the MIT community swinging for the fences in areas where we have a comparative advantage.”This is a passion project for him, not least because it has engaged colleagues from nearly all of MIT’s departments. After nearly 100 initial ideas were submitted by more than 300 faculty, 27 teams were named finalists and received funding to develop comprehensive research and innovation plans in such areas as decarbonizing complex industries; risk forecasting and adaptation; advancing climate equity; and carbon removal, management, and storage. In April, a small subset of this group will become multiyear flagship projects, augmenting the work of existing MIT units that are pursuing climate research. Lester is sunny in the face of these extraordinarily complex problems. “This is a bottom-up effort with exciting proposals, and where the Institute is collectively committed — it’s MIT at its best.”

    Nuclear to the core

    This initiative carries a particular resonance for Lester, who remains deeply engaged in nuclear engineering. “The role of nuclear energy is central and will need to become even more central if we’re to succeed in addressing the climate challenge,” he says. He also acknowledges that for nuclear energy technologies — both fission and fusion — to play a vital role in decarbonizing the economy, they must not just win “in the court of public opinion, but in the marketplace,” he says. “Over the years, my research has sought to elucidate what needs to be done to overcome these obstacles.”

    In fact, Lester has been campaigning for much of his career for a U.S. nuclear innovation agenda, a commitment that takes on increased urgency as the contours of the climate crisis sharpen. He argues for the rapid development and testing of nuclear technologies that can complement the renewable but intermittent energy sources of sun and wind. Whether powerful, large-scale, molten-salt-cooled reactors or small, modular, light water reactors, nuclear batteries or promising new fusion projects, U.S. energy policy must embrace nuclear innovation, says Lester, or risk losing the high-stakes race for a sustainable future.

    Chancing into a discipline

    Lester’s introduction to nuclear science was pure happenstance.

    Born in the English industrial city of Leeds, he grew up in a musical family and played piano, violin, and then viola. “It was a big part of my life,” he says, and for a time, music beckoned as a career. He tumbled into a chemical engineering concentration at Imperial College, London, after taking a job in a chemical factory following high school. “There’s a certain randomness to life, and in my case, it’s reflected in my choice of major, which had a very large impact on my ultimate career.”

    In his second year, Lester talked his way into running a small experiment in the university’s research reactor, on radiation effects in materials. “I got hooked, and began thinking of studying nuclear engineering.” But there were few graduate programs in British universities at the time. Then serendipity struck again. The instructor of Lester’s single humanities course at Imperial had previously taught at MIT, and suggested Lester take a look at the nuclear program there. “I will always be grateful to him (and, indirectly, to MIT’s Humanities program) for opening my eyes to the existence of this institution where I’ve spent my whole adult life,” says Lester.

    He arrived at MIT with the notion of mitigating the harms of nuclear weapons. It was a time when the nuclear arms race “was an existential threat in everyone’s life,” he recalls. He targeted his graduate studies on nuclear proliferation. But he also encountered an electrifying study by MIT meteorologist Jule Charney. “Professor Charney produced one of the first scientific assessments of the effects on climate of increasing CO2 concentrations in the atmosphere, with quantitative estimates that have not fundamentally changed in 40 years.”

    Lester shifted directions. “I came to MIT to work on nuclear security, but stayed in the nuclear field because of the contributions that it can and must make in addressing climate change,” he says.

    Research and policy

    His path forward, Lester believed, would involve applying his science and technology expertise to critical policy problems, grounded in immediate, real-world concerns, and aiming for broad policy impacts. Even as a member of NSE, he joined with colleagues from many MIT departments to study American industrial practices and what was required to make them globally competitive, and then founded MIT’s Industrial Performance Center (IPC). Working at the IPC with interdisciplinary teams of faculty and students on the sources of productivity and innovation, his research took him to many countries at different stages of industrialization, including China, Taiwan, Japan, and Brazil.

    Lester’s wide-ranging work yielded books (including the MIT Press bestseller “Made in America”), advisory positions with governments, corporations, and foundations, and unexpected collaborations. “My interests were always fairly broad, and being at MIT made it possible to team up with world-leading scholars and extraordinary students not just in nuclear engineering, but in many other fields such as political science, economics, and management,” he says.

    Forging cross-disciplinary ties and bringing creative people together around a common goal proved a valuable skill as Lester stepped into positions of ever-greater responsibility at the Institute. He didn’t exactly relish the prospect of a desk job, though. “I religiously avoided administrative roles until I felt I couldn’t keep avoiding them,” he says.

    Today, as associate provost, he tends to MIT’s international activities — a daunting task given increasing scrutiny of research universities’ globe-spanning research partnerships and education of foreign students. But even in the midst of these consuming chores, Lester remains devoted to his home department. “Being a nuclear engineer is a central part of my identity,” he says.

    To students entering the nuclear field nearly 50 years after he did, who are understandably “eager to fix everything that seems wrong immediately,” he has a message: “Be patient. The hard things, the ones that are really worth doing, will take a long time to do.” Putting the climate crisis behind us will take two generations, Lester believes. Current students will start the job, but it will also take the efforts of their children’s generation before it is done.  “So we need you to be energetic and creative, of course, but whatever you do we also need you to be patient and to have ‘stick-to-itiveness’ — and maybe also a moral compass that our generation has lacked.” More